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1 .  Introduction.

Given a standard 1-dimensional Brownian motion with sample
paths t —>e(t) (e(0)= 0), le t P a b (B ) be the chance that the solution
g: t —>(u, v) E R 2 of

l a .  D[u] fi + c,(u)ie + c 2 (u)
lb .  v = ù
2a. u(0) = a
2b. v(0) = b

experiences the event B , interpreting la  as v +  [ c i (u )v+ c,(u)]ds=0
b + e .  [ g ,  P . ]  is a (singular) diffusion in the plane winding clock-
wise about the origin, governed by

ap _ a2 p ap
•_  —  + b 4  -  [ci(a)b+ c,(a)i—at 2  amd a ab '

it should be viewed as the response of the resonator D  to  the white
noise 4.

J. Potter [ 5 ]  found that for a spring (u c,> 0 ) with no damping

(c, 0), the energy  e------ ( 1 1 2 ) e+  c ,  is a martingale and used this0
fact to obtain the bounds

1 The partial support of the National Science Foundation (NSF-G-19684) is grate-
fully acknowledged,
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ci t 110  <  max e(s) <  c2t 1g2t (t .)
c, >0, c2 >1, 1g 2 t t) .

Potter also proved that the sample path hits each disc i.o. (t f co)

if r  (1 +  r  c 2 ) -112du<00 .
J o  \ J o  /

M . K a c  [ 4 ]  studied the damped spring D[u] =
(0< c„ c , =  constant) :  in  that case [N, P .] is Gaussian having a
stable distribution p(da x db) of total mass +1, and letting E  denote

the integral (expectation) based on  Pd p (d ax d b )P a b  and t ,  the

time between roots of u = 0 ,  the total angle  0 = 0 ( t )  sw ep t out
between times 1 and t> 1  is found to be about 27rt/E(t 1) (t t co).
S. O. Rice [6 ]  had evaluated E(t i )  and now K ac finds a minimum
principle for E(ti) similar to Thompson's principle for Newtonian
electrostatic capacities ; the actual distribution of t, is still unknown.

The purpose of the present note is to give a complete descrip-
tion o f the winding of the phase path about the origin in the
simplest case (c1 =c 2

.--- .0 )  ;  the joint distribution of the 1/2  winding
time t, = min (t : t >0, u(t) =O) and the hitting place ft, = is
evaluated fo r paths starting on the line a = 0 , and the following
strong laws for the speed of winding are established

a l l ,im (1g t) - 1 8(t) = —  /\  3 /8] = 1t  

P00 [lip (1g 11t) - 1 0(t) = +\/ 3 /8] = 1.

2 .  Winding times and hitting places (c1 = c 2 -----0).

Before it is possible to talk about winding abou t = 0 , it must
be proved that the sample path does not hit x=0 at positive times.

D[u] =ü im p lies  v =b+ç t eds, so is Gaussian and it  is  a0
simple matter to evaluate the probabilities

1 . Pab[U(t) G d , v (t ) E  d ] P(t, a, b, n)dW

(-\/- I xt 2 ) exp [_ a  — bt)2 _F ( — a— bt)(y— b)
 ag'ant3/6 t2/6 t/2
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of coming from x(0) = (a, b) into d ><  in  time t and to check the
that the Green function

2. G(a, p(t, a, b, 0, 0)dt

\/ 3 _(a+bt)2 + (a +bt)b b 2  

0 v t 2  exp (
t3/6 t2/6 t/2

has the following properties :

3a. G < c o a2 +1)2 > 0
3b. lim  G = 00 .

a 2 +b 2 10

G(u, v, 0, 0) is now a continuous supermartingale, its sample paths
are bounded on bounded time intervals i f  x(0)+0, and the result
follows from the fact that P a b ( F . ( t ) = 0 ) = 0  at each positive time.

Given a  sample path x, starting at x(0) = (a, b)4 -0 , the 1/2
winding time t >0, u(t) =0) statisfies P a b (0< t,< 0 0 ) = 1 .

Pab(0 < ti)  = 1  is immediate.
t, = .0 implies that moves in  a  1 /2  plane for a ll positive

times, or, what is the same, th a t 
flt

 

eds is bounded above or below

for all positive tim es. But such Brownian (tail) events have prob-
abilities 0  or 1 and so the obvious bound

P ab(ti= c>0) < l i m l i m  ( t  eds < cl) 1/2
d t , , s 0

implies the desired /3 ,,,,(ti < 0()= 1.
Consider now the 1 /2  winding time t ,  and the corresponding

hitting place b, v ( t i )1> 0  for sample paths starting on the line
a =0 (v(0) = b 0). Because the Brownian scaling e c e (t  I 6.2 ) (c > 0 )
takes e into a  new standard Brownian motion, the 1 /2  winding

time t, =min(t : (t>0 , b t eds =0) is identical in law to0

min ((t : t >  0, bt + t
o ce(s1c2 )ds = 0)

.tte2
=  min ((t : t > 0, c 2bt1c2 +c 3e ( s ) d s  =  0). 0

=  c2 min ((t : t >  0, el.+ 6.3 Leds = 0)

= b 2 min ((t : t > 0 , eds = 0)0
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i.e., t, is identical in  law  to  b2 x th e  1/2 w inding tim e f o r paths
starting  at (0, 1), and the same trick applied to v= b + e  verifies
that the hitting place bi  f o r paths starting  at (0, b) is identical in
law to b x the hitting place for paths starting at (0, 1), indeed, since
the motion starts afresh at its passage time to the line a=0, it
follows that the series o f 1/2 winding times and hitting places

4a. 1„ = min (t : t >  t„, u(t) = 0)—t0 n > l ,
to m in  (t : t >  0, u(t) = 0)
1)„ = n 1

for paths starting at x:(0)= (a, b) 0 is identical in law to the series

5a. et i , e(t 1 +14t2), c2 (t 1 +14t2 +(h 1h2 )1 3), etc.
5b. ch„ ch,h„ ch,h,h„ etc.,

in which c--* v(10)1 and the pairs (t1, h1), 122), etc. are indepen-
dent with common distribution P01(11<t, €) 1 <h).

3 . Computing the joint distribution Po i (ti <t , ) 1 <h).

Because winds clockwise about the origin and begins afresh
at the 1/2 winding time t1 , the Gauss function p  of 2. 12 satisfies

1. p (t, 0, 1, 0, b)

=  r  Poi(ti E ds, h, E da)P(t—s, 0, — a, 0, b)
0 0

t > 0 ,  b > 0,

and, using the Laplace transform

2. e-c"p(t, 0, a, 0, b)dt
0

=  a constant depending on a alone

x
.K (/ 8 a (a 2 + ab +b 2 )) 

-\/a2 + ab + b2

a, a, b>  0, 3

1 becomes

2 n -m  means formula m of section n.
3 [1 (2 )  :  1 4 6 (2 9 ) ] . K _ 1 is  the usual modified Bessel function.
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3 a . IL 1 (V 8 c (1 + b + b 2 ))
V 1.+b+b 2

K_1(N/8a(d—ab+b2))t  E da)
0 a2—ab+b2

x > 0 ,  b > 0 . 4

3 a  is now multiplied by K(/ b) ( 1 7 1 < 1 )  and integrated (db)
over [0 , +  Do) :  the result is

3b. KY(N/8a)  — E da)K y(N /8a a)I a2 cos (iry/3)

and now using the Lebedev transform pair

4a. 1(7) f  (a)K iy (a) c-L:

4b. f ( a)  = .1 ( 7 ) K 1,(a)do do 27r - 2 7 sinh 7r7 dy ,

3b is solved to obtain

5. E 0,(catl, bi E da)
_ f - Kiv(Y8ce)Ki7( .\ a  doda ,

Jo2  cosh (7r7/3)

which in turn can be inverted as a Laplace transform to obtain
the joint distribution of t , and bi :

6. P„(t, E dt, t d a)
1  -2 (1 -1 -a2 )/ t Ki7(4aI t) = — e do dt da

2tJ o  2  cosh (ny/3)
f  4a e -36/2 d e  . 73a

e
_2/to_ a + a 2 )

—

7 t  2  t 2) 0  -V1r8

6  can be integrated to obtain

3 h 3 1 2  

7. P o i (bi  E dh) —  dh
27r 1+ I?

4 E 0 1  is the integral (expectation) based on P0 1 .
5 [1 (2) : 377(34)].
b [1 (2 ) : 173].
7 [1 (1 ) : 285 (64 )] justifies line 2, while line 3 follows from the classical formula

K , y ( a ) =  exp ( —a cosh t )  cos rt dt.
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and

8a. E01(1gb1)
3 3 / 2

1g h 1 '" d h  —   4 7 r

7r 0 + h3N , /  3
8b. E01 [(1g ti )2 ]  <  co .

8 is needed below. I could not perform the integrals needed to
find P„(t, E dt).

4 .  Speed o f  winding.

Given a2 +b2 > 0  and using 2. 5b, 3. 8a, the strong law of large
numbers, and the fact that x starts afresh each time it hits the
line a =0, one finds

1. P a b [lim n- 1  lg =  47c /v - 3— ]  =  1.
4 t

Recall the series 2. 5a and the bound 3. 8b. Because t„ t 2 , etc.
are independent with common distribution P o ,(t i < t ) ,  it follows
from the Borel-Cantelli lemma that /g. t„l < n a  as n t 00 (8>0),
and this bound applied to 2. 5a implies that as n t o c ,  n  lg t„
behaves like n- 1  1g 112,11: • h 1 ,  whence

2. P a b [lim n - 1  1 g t„ = 87r/N/ 3 ] = 1 .

2 in turn implies that if O =0(t) is the total algebraic angle swept
out up to time t, then

3 . P a b [lim (1g 0 - 1  0(t) = —\/ 3 /8] = 1
tt-

since tn _,< t < t „  is  the same a s  —(n — 1)7r> 0 —0(t o ) >  —nit and
lgt„-87rnh/ -8- - - as n t 00.

5 .  Winding f o r  paths beginning at x= 0 .

Given a  sample path beginning at x(0)=0, it follows from
3. 6, the scaling established in 2, and the starting afresh o f x at
passage times that the fo rw a rd  ch a in  :

1. t  =  min (t : t >1, u (t) =  0) , v ( t  I
=  min (t : t >  t , u (t ) =  0) , = I v ( t )

etc.



exp ( — 2(1/2 — + b 1)/(t—t,t_,))

.01-0
e - 3 0 1 2  

de dt dh > t#,L0
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of 1 /2  winding times and hitting places is  Markovian with transi-
tion probabilities

2. P oo (t,', E d l ,  1  E db1 1 3 -1)
p -F(t,-,L„ dt x dh)

3k
7 1V 2 (t — t;2-1) 2

x ( t — t n . - - 1 )

0
= 0( t  < f

w h ere  B _  =  t he f ield o f  t 1 , tn, ••• , •
Consider now the backw ard chain:

3. max (t t  < 1 ,  u ( t ) 0) , v(E)1
t i  =  max ((t : t , u (t) =  0) , I v ( t )  I
etc.

o f 1/2  winding times and hitting places as the path spirals back
toward the origin as t  1 0 . Both t.7 and are positive and 1, 0
as n t  0 0  a s  is ev ident from  the fact that eds experiences an
infinite number of changes of sign as t 0, and taking advantage
of the scaling properties o f  winding tim es and h itting  places, a
little com putation reveals that the backward chain is Markovian
with transition probabilities

4. P„(t,T, E dt, E dh113-1)
p - (t,T_„ dt x dh)

_  13(dt x dh)P+ (t , h, dt 77,_i x AT-1)
x db,7_,)

w here B„;_, =th e  f ie ld  o f  tT / 1  7  • . .  f  t ; - 1 ) and p(dt x dh) stands
for the (infinite) stable mass distribution

5. p(dt x dh) exp ( -21elt)t - 2 0 hdh

for the fo rw ard  chain . 4  states th a t  the back w ard chain has the
sam e transition probabilities as  th e  d u al [t_ n ,f„: n= ••• , — 1, 0,
e tc .] o f  th e  tw o-sided forw ard chain [t,,„EL i_n : n= ••• , —1, 0, etc.]
w ith stable distribution p(dt x  dh), i.e., wit h  (inf inite) shift-invariant
distribution
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6. Q Ft, E dt m , f ,, E dh,„, • • • , t„ G dt„, f)„ E dhn ]
P(dt„, x dh,„)P+(tm , h m , dt m ,x  dhm +,)

•• • P+ ( t.- i, h„_„ d t,x dh„)
n, m  = • «, — 1, 0 , etc., n < m

(see G. Hunt [ 2 ]  or [ 3 ]  for such dual chains).
But now

7 a .  Q rb„, E dh,„ • • • , f)„ E dh„]
-

= (112h m )dh n i P„„(f), E d h „,„)  •  Po , .  1 (f), E d/i,,)

and
37 b .  P „n ( f  E db) p -F (a, db) — (ab) 3 1 2  db

277- a 3 + b3 a

so  th a t th e  (M arkovian) dual chain o f  h ittin g  places [ft_„ : n =
••• , — 1, 0, etc., Q ] has as its transition probabilities

a - ida p' (a, db)8. p - (b , da) —
b 'd b

3  (ba )3!' bda
27t. a3 +b 3 c e
3  (ab) - - 3 0  d a "

27z- a ' b-1
--= p+(b - i ,  da ' ) ,

i.e., the dual hitting chain has the sam e transition probabilities as
the reciprocal [f),T1 : n= •-, — 1, 0, etc., Q] of the original (Markovian)
forw ard chain o f hits, and it follows that

9. P oormin n ' lg ty „- — 47r/ N/ 3 ] =  1 .

As to the 1 /2  w inding tim es [ t„ : n= ••• , — 1, 0, etc., Q ], it is
im m ediate that the pairs t „-- (±„— t , , i ) / N - ,  and h„— b„lb„_, (n =
••• , — 1, 0, etc.) are independent with common distribution 3. 6, so
w ith  the a id  of the expression 1 .=  E ( n < 0 ) ,  the bound

fl <

g t „I <n(3  (n  t 00 ) leads at once to  the strong law

10. P on[lim n ' l g  =  —87r/ \ / T ]  =  1

for the backward chain of 1/2 winding times and to the strong law
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11. P „ [ l im  (lg 11 t) O(t)= + \ / / 8 ]  =  1

for the total angle 61 swept out between times 1  and t < 1 .

Massachusetts Institute o f Technology
August, 1962
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Note added in proof : K . It6  (private communication) showed m e the following
rapid proof of the strong laws 4 .3  and 5 .1 1 .  Because c - 112 e (c t ) (t O ) is a standard
Brownian motion if c> 0 , the law of the pair

g*=[u*, v * ]:  u * ( t )= t - - 3 12 t e (s )ds, v*(0=t - '12 e (t)

is unchanged by the substitution t — > e t ,  s o  the angle 0* 0*(0 swept out by X* be-
tween times 1  and t  is identical in law to 0 * ( c t ) - 0 * ( c ) .  But this means that the law
of the functional dO*(et)/ dt(ço)--- —  0*(et)dsa is unchanged by an additive shift of the
time scale, and it follows by the strong law of large numbers that

lim t - 1 0*(0 )— lim  (Ig t) - 1 0*(t) = constant,
et 0.3 t t

using the fact that Brownian tail events are  triv ia l. Also, I 0* —01<7r/2 so that
(1g t) -  6 (t) tends to the same constant as t 0 0 .  A  similar proof leads to 5.11.


