On deformations of cross-sections of a differentiable fibre bundle

By
Toshimasa Yagyu

(Received Jan. 19, 1963)

Introduction

It is well-known that geometric structures on a topological space can be defined mostly through the notion of (B, Γ)-structure, where Γ is a pseudogroup of local homeomorphisms of a topological space B. Particularly for a differentiable manifold, when we take the euclidean space R^{n} as B and some pseudogroup I_{d} of local differentiable transformations of R^{n} as $\Gamma,\left(R^{n}, \Gamma_{d}\right)$-structures are objects of differential geometry. On the other hand, there are also structures defined by cross-sections of differentiable bundles over a differentiable manifold such as Riemannian metric structures. But they are not considered generally as $\left(R^{n}, \Gamma_{d}\right)$-structures. However if we take the space of germs of cross-sections of the product bundle over R^{n} as B and a suitable pseudogroup on it as Γ, we can regard the structures by cross-sections of the differentiable fibre bundle as (B, Γ)-structures. (§5.)
D. C. Spencer ([10]) has pointed out without proof that the set of germs of m-parameter deformations of a (B, Γ)-structure may be identified with a 1 -cohomology set with coefficients on some sheaf, from the theory of A. Haefliger ([8]). Hence, we can apply this theory to deformations of a cross-section and we have a theorem on deformations of a Riemannian manifold as an example.

We give a direct formulation and proof of Spencer's proposition without such a objectionable condition for our application, that B is paracompact. Though our result (Theorem 3) can be
proved more directly, we treat it from a view point of a general theory of deformations of (B, Γ)-structures, ($(\S 1-4$) and its application. (§§5-7)

\S 1. Differentiable (B, Γ)-structures

Let B be a topological space with a differentiable structure, i.e. there exists a neighborhood U of each point of B and a homeomorphism \mathscr{P}_{U} from U to an open set of n-dimensional euclidean space R^{n} such that $\mathcal{P}_{U} \cdot \mathcal{P}_{V}^{-1}$ is a bidifferentiable transformation on $\mathscr{P}_{V}(U \cap V)$ for $U \cap V \neq \Phi$. (B is not necessarily separable or paracompact.)

Let Γ be some pseudogroup of local bidifferentiable transformations of B and let M be a differentiable manifold. For each open set U of M, we set
$B(U)=\{\mathcal{P} ;$ a diffeomorphism, in the sense of differentiable structures of M and B, from U onto the domain of an element of $\Gamma\}$.
We define that $\mathscr{\rho}, \psi \in B(U)$ are equivalent if and only if $\mathscr{\rho} \cdot \psi^{-1} \in \Gamma$ and we denote the set of the equivalence classes of $B(U)$ by $B / \Gamma(U)$. For $U \supset U^{\prime}$, the restriction induces a correspondence $r_{U^{\prime}}^{U}: B(U) \rightarrow B\left(U^{\prime}\right)$ such that $r_{U^{\prime \prime}}^{U^{\prime}} \cdot r_{U^{\prime \prime}}^{U}=r_{U^{\prime \prime}}^{U}$ for $U \supset U^{\prime} \supset U^{\prime \prime}$ and $\left(r_{U}^{U} \mathcal{P}\right)\left(r_{U^{\prime}}^{U} \psi\right)^{-1} \in \Gamma$ if $\psi \cdot \mathscr{P}^{-1} \in \Gamma$. Therefore, there exists a correspondence $r^{\prime} U_{U^{\prime}}: B / \Gamma(U)$ $\rightarrow B / \Gamma\left(U^{\prime}\right)$ such that $r_{U^{\prime \prime}}^{\prime U^{\prime}} \cdot r_{U^{\prime}}^{\prime}=r_{U^{\prime \prime}}^{\prime}$ for $U \supset U^{\prime} \supset U^{\prime \prime}$. and then $\{B / \Gamma(U)\}$ is a presheaf over M and induces a sheaf $[B / \Gamma]_{M}$ over M.

Definition. A differentiable (B, Γ) structure on M is an element s of $H^{0}\left(M,[B / \Gamma]_{M}\right)$, which is a section of $[B / \Gamma]_{M}$ over M.

For a differentiable (B, Γ)-structure s, there exist a suitable open neighborhood U of each point x of M and $s_{U} \in B / \Gamma(U)$ such that the germ of s_{U} at x is $s(x)$, and we have $\mathscr{\rho}_{U} \in B(U)$ such that $p_{U}\left(p_{U}\right)=s_{U}$ where p_{U} is the projection $B(U) \rightarrow B / \Gamma(U) . \quad U$ and φ_{U} are called a coordinate neighborhood of s and coordinate map of s, respectively. For an open covering $\left\{U_{j}, j \in J\right\}$ of M by coordinate neighborhoods of s and coordinate maps $\varphi_{j} \in B\left(U_{j}\right),\left\{U_{j}, \varphi_{j}, j \in J\right\}$ is called a coordinate system of s. This definition ensures that

On deformations of cross-sections of a differentiable fibre bundle 211
each element of $H^{0}\left(M,[B / \Gamma]_{M}\right)$ has necessarily a coordinate system. If $\left\{U_{k}^{\prime}, k \in K\right\}$ is a refinement of $\left\{U_{i}, j \in J\right\}$ (with the index injection of the refinement $\kappa ; K \rightarrow J)$, then $\left\{U_{k}^{\prime}, \varphi_{\kappa(k)} \mid U_{k}^{\prime}\right\}$ is also a coordinate system of s. If $\left\{U_{j}, \mathscr{P}_{j}, j \in J\right\}$ and $\left\{U_{k}^{\prime}, \mathscr{P}_{k}^{\prime}, k \in K\right\}$ are coordinate systems of the same element of $H^{\circ}\left(M,[B / \Gamma]_{M}\right)$, there exists a refinement $\left\{U_{\imath}^{\prime \prime}, l \in L\right\}$ of $\left\{U_{j}\right\}$ and $\left\{U_{k}^{\prime}\right\}$ (with the index injections of the refinement $\iota: L \rightarrow J, \kappa: L \rightarrow K)$ such that $\mathcal{P}_{\iota(\imath)} \mid U_{\imath}^{\prime \prime}$ and $\mathscr{P}_{\kappa(l)}^{\prime} \mid U_{l}^{\prime \prime}$ are equivalent in $B\left(U_{l}^{\prime \prime}\right)$.

Lemma 1. Let $B^{\prime}(U)$ be a subset of $B(U)$ for each open set U of M such that $r_{U}^{U}\left(B^{\prime}(U)\right) \subset B^{\prime}\left(U^{\prime}\right)$ if $U \supset U^{\prime}$, and let Γ^{\prime} be a subpseudogroup of Γ such that $\rho \cdot \psi^{-1} \in \Gamma^{\prime}$ if $\rho, \psi \in B^{\prime}(U)$ and $\rho \cdot \psi^{-1} \in \Gamma$. Then $\left[B^{\prime} / \Gamma^{\prime}\right]_{M}$ is a sub-sheaf of $[B / \Gamma]_{M}$ and so $H^{0}\left(M,\left[B^{\prime} / \Gamma^{\prime}\right]_{M}\right)$ can be identified with a subset of $\left.H^{\circ}(M,[B / \Gamma])_{M}\right)$.

Proof. If $\rho, \psi \in B^{\prime}(U)$ are equivalent in $B(U)$, they are equivalent in $B^{\prime}(U)$, and then $B^{\prime} / \Gamma^{\prime}(U) \subset B / \Gamma(U)$. Since $r_{U}^{U}\left(B^{\prime}(U)\right) \subset$ $B^{\prime}\left(U^{\prime}\right), r^{\prime} U_{U^{\prime}}: B / \Gamma(U) \rightarrow B / \Gamma\left(U^{\prime}\right)$ maps $\quad B^{\prime} / \Gamma^{\prime}(U)$ into $\quad B^{\prime} / \Gamma^{\prime}\left(U^{\prime}\right)$. Therefore, $\left\{B^{\prime} / \Gamma^{\prime}(U)\right\}$ is a sub-presheaf of $\{B / \Gamma(U)\}$ and so $\left[B^{\prime} / \Gamma^{\prime}\right]_{M}$ is a sub-sheaf of $[B / \Gamma]_{M}$.

When W is an open set of M, we define similarly a coordinate system of a section $s \mid W$ of $[B / \Gamma]_{M}$ over W.

Lemma 2. Let η be a diffeomorphism of W onto an open set of M. Then η induces a map $\bar{\eta}$ of sections over $\eta(W)$ into sections over W.

Proof. If $\left\{U_{j}, \mathscr{P}_{j}\right\}$ is a coordinate system of a section $s \mid \eta(W)$ over $\eta(W), \rho_{j} \cdot \eta: \eta^{-1}\left(U_{j}\right) \rightarrow B$ is an element of $B\left(\eta^{-1}\left(U_{j}\right)\right)$ and $\left(\mathcal{P}_{i} \eta\right) \cdot\left(\mathcal{P}_{j} \eta\right)^{-1}=\mathcal{P}_{i} \cdot \mathcal{P}_{j}^{-1} \in \Gamma$ for $U_{i} \cap U_{j}(\neq \Phi)$. Therefore $\left\{\mathcal{P}_{j} \cdot \eta, \eta^{-1}\left(U_{j}\right)\right\}$ is a coordinate system of a section over W which is denoted by $\bar{\eta}(s \mid W)$.

Remark. If η is a diffeomorphism of W into M such that $\rho \cdot \eta \in B^{\prime}(U) \subset B(U)$ for any $\rho \in B^{\prime}(\eta(U)) \subset B(\eta(U))$ and any open set U included in W, then Lemma 2 ensures that η induces a map $\bar{\eta}$ of sections of $\left[B^{\prime} / \Gamma^{\prime}\right]_{M}$ over $\eta(W)$ into sections of $\left[B^{\prime} / \Gamma^{\prime}\right]_{M}$ over W.

§ 2. Differentiable deformations of (B, Γ)-structures

Let I be the open interval $(-1,1)$ of real numbers. The product space $B \times I$ is naturally a topological space with a differentiable structure. Let $\Gamma \times I$ denote the pseudogroup of local bidifferentiable transformations γ of $B \times I$ such that
$1^{\circ} . \quad t=\gamma_{t}(x, t)$,
2°. For every fixed t, the local bidifferentiable transformation $\gamma_{x}(x, t)$ of B is an element of the given pseudogroup Γ of B.
where $\gamma(x, t)=\left(\gamma_{x}(x, t), \gamma_{t}(x, t)\right), x \in B, t \in(-1,1)$.
For each open set U of $M \times I$, we set
$B \times I(U)=\{\mathscr{P}$; diffeomorphisms of U onto domains of elements of $\Gamma \times I$ such that $\mathscr{\rho}_{t}(x, t)$ are independent of x where $\varphi(x, t)=\left(\mathcal{P}_{x}(x, t), \mathscr{P}_{t}(x, t)\right)$ and $\left.(x, t) \in U\right\}$.
$\varphi, \psi \in B \times I(U)$ are said to be equivalent if and only if $\varphi \cdot \psi^{-1} \in \Gamma \times I$. We set $B \times I / \Gamma \times I(U)=\{$ equivalence classes of $B \times I(U)\}$. Similarly as in $\S 1,\{B \times I / \Gamma \times I(U)\}$ is a presheaf over $M \times I$, and induces a sheaf $[B \times I / \Gamma \times I]_{M \times I}$ over $M \times I$.

Let $\left\{U_{j}, \varphi_{j}, j \in J\right\}$ be a coordinate system of $s \in H^{0}(M \times I$, $\left.[B \times I / \Gamma \times I]_{M \times I}\right)$. By the properties of $B \times I(U)$ and $\Gamma \times I, t^{\prime}$ of $\left(y^{\prime}, t^{\prime}\right)=\mathscr{P}_{j}(x, 0)$ is a constant for any $j \in J$ and moreover depends only on s. We call t^{\prime} the parameter of s. We set
$D=\left\{s \in H^{0}\left(M \times I,[B \times I / \Gamma \times I]_{M \times I}\right)\right.$ whose parameter is zero $\}$
Let $\left\{U_{j}, \mathscr{P}_{j}, j \in J\right\}$ denote a coordinate system of an element s of D. Setting $V_{j}=U_{j} \cap(M \times 0)$ and identifying $M \times 0$ with M, we have $\mathscr{P}_{j} \mid V_{j} \in B\left(V_{j}\right)$ and $\mathscr{\rho}_{i} \cdot \oplus_{j}^{-1} \mid \mathscr{P}_{j}\left(V_{i} \cap V_{j}(\neq \Phi)\right) \in \Gamma$ since $\mathcal{P}_{j}\left(V_{j}\right) \subset B \times 0$. Therefore $\left\{V_{j}, \mathcal{P}_{j}, j \in J\right\}$ is a coordinate system of an element s_{0} of $H^{0}\left(M,[B / \Gamma]_{M}\right)$ i.e. a differentiable (B, Γ)-structure. Obviously s_{0} depends only on the element s of D and so we have a map $i: D \rightarrow H^{\circ}\left(M,[B / \Gamma]_{M}\right)$.

Lemma 3. The map i maps D onto $H^{0}\left(M,[B / \Gamma]_{M}\right)$.
Proof. Let $\left\{V_{\alpha}, \psi_{a}, \alpha \in A\right\}$ be a coordinate system of an

On deformations of cross-sections of a differentiable fibre bundle 213
element s_{0} of $H^{0}\left(M,[B / \Gamma]_{M}\right)$ and ρ_{a} denote a map of $V_{a} \times I$ into $B \times I$ defined by

$$
\rho_{\infty}(x, t)=\left(\psi_{\infty}(x), t\right), \quad\left(x \in V_{\infty}, t \in I\right) .
$$

Hence,

$$
\left(\mathcal{P}_{a} \mid\left(V_{a} \times I\right) \cap\left(V_{\beta} \times I\right)\right)\left(\mathcal{P}_{\beta} \mid\left(V_{\infty} \times I\right) \cap\left(V_{\beta} \times I\right)\right)^{-1} \in \Gamma \times I
$$

where $V_{a} \cap V_{\beta} \neq \Phi$, and thus $\left\{\mathcal{\varphi}_{a}, V_{a} \times I, \alpha \in A\right\}$ is a coordinate system of an element of $H^{0}\left(M \times I,[B \times I / \Gamma \times I]_{M \times I}\right)$ and determines d of D. Since $\varphi_{a} \mid V_{a}=\psi_{\infty}$, then $i(d)=s$.

Definition. Differentiable deformations of a given differentiable (B, Γ)-structure s_{0} are elements d of D such as $i(d)=s_{0}$. We denote their set by $D\left(s_{0}\right)$, i.e. $D\left(s_{0}\right)=i^{-1}\left(s_{0}\right)$.

Let d_{ε} be a section of $[B \times I / \Gamma \times I]_{M \times I}$ over $M \times(-\varepsilon, \varepsilon)$ where ε is an arbitrary positive number (<1). d_{e} also determines an element of $H^{\circ}\left(M,[B / \Gamma]_{M}\right)$.

Lemma 4. When d_{e} determines an element s_{0}, d_{s} can be extended to a section of $[B \times I / \Gamma \times I]_{M \times I}$ over $M \times I$ which is an element of $D\left(s_{0}\right)$.

Proof. It is well-known that there exists a diffeomorphism η of $M \times I$ on $M \times(-\varepsilon, \varepsilon)$ such that $\eta \mid M \times(-\varepsilon, \varepsilon)=$ identity, $\eta_{x}(x, t)$ is independent of t and $\eta_{t}(x, t)$ is independent of x, where $\eta(x, t)=\left(\eta_{x}(x, t), \eta_{t}(x, t)\right)$. If we apply Lemma 2 and Remark of $\S 1$, to $M \times I$ and $\Gamma \times I$, then η induces a map η of sections over $M \times(-\varepsilon, \varepsilon)$ into sections over $M \times I$, since $\rho \cdot \eta \in B \times I(U)$ for each open set U of $M \times I$ and for $\rho \in B \times I(\eta(U))$. Then $\bar{\eta}\left(d_{\mathrm{e}}\right) \in H^{0}(M \times I$, $\left.[B \times I / \Gamma \times I]_{M \times I}\right)$ and moreover $\bar{\eta}\left(d_{\mathrm{\varepsilon}}\right) \in D\left(s_{0}\right)$ since $\bar{\eta}\left(d_{\mathrm{\varepsilon}}\right) \mid M \times(-\varepsilon, \varepsilon)$ $=d_{\mathrm{e}}$.

Henceforth, we suppose that M is compact.
A diffeomorphism \mathcal{P} from an open set V of M to an open set of B is said a regular $m a p$ on V for a differentiable (B, Γ)-structure s_{0} if $\left(\mathscr{\varphi}_{j} \mid V_{j} \cap V\right)\left(\mathcal{P} \mid V_{j} \cap V\right)^{-1} \in \Gamma$ for a coordinate system $\left\{V_{j}, \varphi_{j}\right\}$ of s_{0} and for any j such as $V_{j} \cap V \neq \Phi$. This definition is independent of a coordinate system of s_{0}.

For each open set V of M (identified with $M \times 0$), we set $\amalg(V)=\{(\psi, \bar{\gamma})\}$ where ψ is a regular map on V for the given s_{0}
and $\bar{\gamma}$ is the germ of $\gamma \in \Gamma \times I$ on $\psi(V)$ where the domain of γ includes $\psi(V)$. For $\left(\psi^{1}, \bar{\gamma}^{1}\right),\left(\psi^{2}, \bar{\gamma}^{2}\right) \in \Pi(V)$, let the product $\left(\psi^{2}, \bar{\gamma}^{2}\right) \cdot\left(\psi^{1}, \bar{\gamma}^{1}\right)$ be defined if and only if the regular map $\left(\gamma^{\prime} \mid \psi^{\prime}(V)\right) \cdot \psi^{\prime}$ on V is equal to ψ^{2}, in this case $\gamma^{2} \cdot \gamma^{1}$ can be combined in the sense of the pseudogroup $\Gamma \times I$ by a suitable restricution of domain, and we set

$$
\left(\psi^{2}, \bar{\gamma}^{2}\right) \cdot\left(\psi^{1}, \bar{\gamma}^{1}\right)=\left(\psi^{1}, \text { germ of } \gamma^{2} \cdot \gamma^{1} \text { on } \psi^{\prime}(V)\right) \in \Pi(V),
$$

where germs of γ^{i} on $\psi^{i}(V)$ is $\bar{\gamma}^{i}(i=1,2)$. By this product $\pi(V)$ is a groupoid. For $V>V^{\prime}$, the restriction of $\psi, \bar{\gamma}$ defines a map $\Pi(V) \rightarrow \Pi\left(V^{\prime}\right)$ and $\{\amalg(V)\}$ is a presheaf over M and it induces a sheaf [Π] of groupoid over M.

For an open covering $\mathfrak{B}=\left\{V_{\alpha}, \alpha \in A\right\}$ of M, let $\mathcal{C}^{1}(\mathfrak{B}$, II) denote the set of systems $\left\{\bar{\psi}_{a \beta} \in \Pi\left(V_{\alpha} \cap V_{\beta}\right),\left(V_{a} \cap V_{\beta} \neq \Phi\right)\right\}$ such that

$$
\bar{\psi}_{a \beta} \cdot \bar{\psi}_{\beta \gamma}=\bar{\psi}_{a \gamma} \quad \text { for } \quad V_{\alpha \gamma} \cap V_{\beta} \cap V_{\gamma} \neq \Phi .
$$

$\left\{\bar{\Psi}_{\alpha \beta}\right\},\left\{\bar{\psi}_{\alpha \beta \beta}^{\prime}\right\} \in \mathcal{C}^{1}(\mathfrak{B}, \Pi)$ are said to be cohomologous if there exists $\bar{\psi}_{\alpha} \in \Pi\left(V_{\alpha}\right)$ for each α such as $\bar{\psi}_{\alpha} \cdot \bar{\psi}_{\alpha \beta}=\bar{\psi}_{\alpha \beta}^{\prime} \bar{\psi}_{\beta}$ for $V_{\alpha} \cap V_{\beta}(\neq \Phi)$ and we denote by $\mathfrak{S}^{1}\left(\mathfrak{Y}, \Pi\right.$) the set of cohomologous classes of $\mathcal{C}^{1}(\mathfrak{F}, \mathrm{II})$. For a refinement $\mathfrak{V ^ { \prime }}=\left\{V_{a^{\prime}}^{\prime}, \alpha^{\prime} \in A^{\prime}\right\}$ of \mathfrak{B}, (with the index injection of the refinement $\mathfrak{a}: A^{\prime} \rightarrow A$),

$$
\left\{\left\{\bar{\Psi}_{a\left(\alpha^{\prime}\right) a\left(\beta^{\prime}\right)} \mid V_{a^{\prime}}^{\prime} \cap V_{\beta^{\prime}}^{\prime}(\neq \Phi)\right\} \in \mathcal{C}^{1}\left(\mathfrak{B}^{\prime}, \mathrm{II}\right)\right.
$$

and if $\left\{\bar{\psi}_{a, \beta}\right\},\left\{\bar{\psi}_{a, \beta}^{\prime}\right\}$ are cohomologous, then $\left\{\bar{\psi}_{a\left(\alpha^{\prime}\right) a\left(\beta^{\prime}\right)} \mid V_{\alpha^{\prime}}^{\prime} \cap V_{\beta^{\prime}}^{\prime}\right\}$, $\left\{\bar{\psi}_{a\left(a^{\prime}\right) a\left(\beta^{\prime}\right)}^{\prime} \mid V_{\alpha^{\prime}}^{\prime} \cap V_{\beta^{\prime}}^{\prime}\right\}$ are cohomologous in $\mathcal{C}^{1}\left(\mathfrak{B}^{\prime}\right.$, II). Therefore we have a correspondence

$$
\bar{\gamma}_{\mathfrak{Z}}^{\mathfrak{M}}: \mathfrak{V}^{1}(\mathfrak{V}, \Pi) \rightarrow \mathfrak{S}^{1}\left(\mathfrak{V}^{\prime}, \Pi\right)
$$

 and the system $\left\{\mathfrak{W}^{1}(\mathfrak{B}, \Pi), \mathfrak{B} \in\right.$ the systems of open coverings of $\left.M\right\}$ forms a direct system. We denote its inductive limit by $H^{1}(M,[I I])$. (The Čech cohomology set of 1-dim with coefficients in the sheaf [II]). An element $\left\{\bar{\psi}_{\alpha \beta \beta}\right\}$ of $\mathcal{C}^{1}(\mathfrak{Y}, \mathrm{II})$ is called a cocycle of $\bar{\psi}$ for \mathfrak{N} if $\bar{\psi}$ is the element of $H^{1}(M,[I I])$ determined by the inductive limit of cohomologous class of $\left\{\bar{\psi}_{\alpha \beta}\right\}$.

Lemma 5. There exists a map δ from $D\left(s_{0}\right)$ onto $H^{1}(M,[1 I])$.
Proof. If $\left\{U_{j}, \mathscr{P}_{j}, j \in J\right\}$ is a coordinate system of $d \in D\left(s_{0}\right)$,
then $\mathscr{P}_{j} \mid V_{j}: V_{j} \rightarrow B \times 0$ (identified with B) are regular maps for s_{i} where V_{j} denote $U_{j} \cap(M \times 0)(: \mid \Phi)$, and $\left(\mathscr{P}_{i} \bullet \mathscr{P}_{j}^{-1}\right) \in \Gamma \times I\left(U_{i} \cap U_{j}=\Phi\right)$. Therefore if we denote by $\overline{\mathcal{T}}_{i j}$

$$
\left(\mathcal{P}_{j} \mid V_{j}, \text { germ of } \varphi_{i} \mathcal{P}_{j}^{-1} \text { on } \mathcal{P}_{j}\left(V_{i} \cap V_{j}\right)\right)
$$

then $\quad \overline{\mathcal{P}}_{i j} \in \Pi\left(V_{i} \cap V_{j}\right)$ and $\overline{\mathcal{P}}_{i j} \cdot \overline{\mathcal{P}}_{j k}=\overline{\mathcal{P}}_{i k}$ on $V_{i} \cap V_{j} \cap V_{k} \neq \Phi$.
Since $\left\{V_{j}=U_{j} \cap(M \times 0)\right\}$ is a covering of $M,\left\{\overline{\mathcal{P}}_{i j}\right\}$ is a cocycle of an element $\overline{\mathcal{P}}$ of $H^{1}(M,[I])$. If we take other coordinate system $\left\{U_{k}^{\prime}, \mathscr{P}_{k}^{\prime}, k \in K\right\}$ of d, there exists a refinement covering $\left\{U_{l}^{\prime \prime}, l \in L\right\}$ of the coverings $\left\{U_{j}, j \in J\right\}$ and $\left\{U_{k}^{\prime}, k \in K\right\}$ (with index injections of refinement $\iota: L \rightarrow J, \kappa: L \rightarrow K$), then

$$
\left(\mathcal{P}_{\imath(l)} \mid U_{l}^{\prime \prime}\right)\left(\mathcal{P}_{k(l)}^{\prime} \mid U_{l}^{\prime \prime}\right)^{-1} \in I \times I
$$

and
$\left(\mathcal{P}_{\iota(l)} \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right) \cdot\left(\mathscr{P}_{\kappa(l)}^{\prime} \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right)^{-1} \cdot\left(\mathcal{P}_{\kappa}^{\prime}(m) \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right) \cdot\left(\mathscr{P}_{\kappa}^{\prime}(m) \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right)^{-1}$ $=\left(\mathcal{P}_{\iota(m)} \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right) \cdot\left(\mathscr{P}_{\iota(m)} \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right)^{-1} \cdot\left(\mathcal{P}_{\iota(m)} \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right) \cdot\left(\mathscr{P}_{k(m)}^{\prime} \mid U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime}\right)^{-1}$ on $U_{l}^{\prime \prime} \cap U_{m}^{\prime \prime} \neq \Phi$. If we set

$$
\bar{\psi}_{l}=\left(\mathcal{P}_{\mathbf{k}(l)}^{\prime} \mid V_{l}^{\prime \prime}, \quad \text { germ of } \mathcal{P}_{l(l)} \cdot\left(\mathscr{P}_{\mathbf{k}(l)}^{\prime}\right)^{-1} \quad \text { on } \quad \mathcal{P}_{\mathbf{k}(l)}^{\prime}\left(V_{l}^{\prime \prime}\right)\right)
$$

where $V_{l}^{\prime \prime}=U_{l}^{\prime \prime} \cap(M \times 0)(\neq \Phi)$, then $\bar{\psi}_{l} \in \Pi\left(V_{l}^{\prime \prime}\right)$ and
$\left(\bar{\psi}_{l} \mid V_{l}^{\prime \prime} \cap V_{m}^{\prime \prime}\right) \cdot\left(\overline{\mathcal{P}}_{\kappa}^{\prime}(l)_{k}(m) \mid V_{l}^{\prime \prime} \cap V_{m}^{\prime \prime}\right)=\left(\overline{\mathcal{P}}_{\iota(1) \iota(m)} \mid V_{l}^{\prime \prime} \cap V_{m}^{\prime \prime}\right) \cdot\left(\bar{\psi}_{m} \mid V_{l}^{\prime \prime} \cap V_{m}^{\prime \prime}\right)$.
Since $\left\{V_{l}^{\prime \prime}\right\}$ is a refinement of the coverings $\left\{V_{j} \equiv U_{j} \cap(M \times 0)\right\}$ and $\left\{V_{k}^{\prime} \equiv U_{k}^{\prime} \cap(M \times 0)\right\}$ of $M \times 0(\equiv M)$, then $\left\{\overline{\mathcal{P}}_{k n}^{\prime}\right\}$ is a cocycle of the same element $\overline{\mathcal{P}}$ and the correspondence $d \rightarrow \overline{\mathcal{P}}$ defines a map $\delta: D\left(s_{0}\right) \rightarrow H^{1}(M,[\Pi])$.

Next, if $\left\{\bar{\psi}_{\alpha \beta}\right\}=\left\{\left(\psi_{\alpha \beta}, \bar{\gamma}_{\alpha \beta}\right)\right\}$ is a cocycle of an element $\bar{\psi} \in H^{1}(M,[\Pi])$ for an open finite covering $\left\{V_{\alpha}, \alpha \in A\right\}$ of M, there exists a finite covering $\left\{U_{j}, j \in J\right\}$ of $M \times 0$ by open sets of $M \times I$ satisfying following conditions:

1) $\left\{U_{j} \cap(M \times 0)\right\}$ considered as a covering of M, is a refineof $\left\{V_{\alpha}\right\}$ (with the index injection of the refinement $\mathfrak{a}: J \rightarrow A$)
2) there exist $\mathscr{P}_{i j} \in B \times I\left(U_{i} \cap U_{j}(\neq \Phi)\right)$ and $\gamma_{\alpha \beta} \in \Gamma \times I$ such that (domain of $\left.\gamma_{a(i) a(j)}\right)>\varphi_{i j}\left(U_{i} \cap U_{j}\right), \varphi_{i j}\left(V_{j}^{\prime}\right) \subset B \times 0$ and

$$
\psi_{a(i) a(j)}\left|V_{i}^{\prime} \cap V_{j}^{\prime}=\mathscr{q}_{i j}\right| V_{i}^{\prime} \cap V_{j}^{\prime},
$$

where $V_{j}^{\prime}=U_{j} \cap(M \times 0)$ and

$$
\bar{\gamma}_{a(i) a(j)} \mid \mathcal{P}_{i j}\left(V_{i}^{\prime} \cap V_{j}^{\prime}\right)=\left(\text { germ of } \gamma_{i j} \text { on } \mathscr{P}_{i j}\left(V_{i}^{\prime} \cap V_{j}^{\prime}\right)\right) .
$$

Since $\bar{\psi}_{\alpha \beta} \bar{\psi}_{\beta \gamma}=\bar{\psi}_{a \gamma}$ on $V_{\alpha} \cap V_{\beta} \cap V_{\gamma}(\neq \Phi)$ and by the definition of the product in $\Pi(V)$, we can choose these objects such that $\mathscr{P}_{i i} \varphi_{j j}^{-1}=\gamma_{i j} \in \Gamma \times I$ for $U_{i} \cap U_{j} \neq \Phi$ and $\gamma_{i j} \gamma_{j k}=\gamma_{j k}$ for $U_{i} \cap U_{j} \cap U_{k}(\neq \Phi)$. Since $\left\{U_{j}\right\}$ is a finite covering, we can take a positive number $\varepsilon(<1)$ such that $M \times(-\varepsilon, \varepsilon) \subset \bigcup_{j \in \cdot I} U_{j}$. If we set $\mathcal{P}_{j}=\mathscr{P}_{j j} \mid U_{j} \cap$ $(M \times(-\varepsilon, \varepsilon)), \quad\left\{\mathscr{\rho}_{j}, U_{j} \cap(M \times(-\varepsilon, \varepsilon), j \in J\}\right.$ is a coordinate system of a section d_{s} of $[M \times I / \Gamma \times I]_{M \times I}$ over $M \times(-\varepsilon, \varepsilon)$. By Lemma 4 there is a $d \in D\left(s_{0}\right)$ such that $d \mid M \times(-\varepsilon, \varepsilon)=d_{\varepsilon}$. Since $\gamma_{i j}=\mathscr{p}_{i} \mathcal{P}_{j}^{-1}$ for $\left(U_{i} \cap M \times(-\varepsilon, \varepsilon)\right) \cap\left(U_{j} \cap(M \times(-\varepsilon, \varepsilon)) \neq \Phi\right.$ and so

$$
\mathcal{P}\left\{\left(\mathcal{P}_{i j} \mid V_{i}^{\prime} \cap V_{j}^{\prime}, \text { germ of } \gamma_{i j} \text { on } \mathcal{P}_{i j}\left(V_{i}^{\prime} \cap V_{j}^{\prime}\right)\right)\right\}=\bar{\psi}_{(a(i) a(j)} \mid V_{i}^{\prime} \cap V_{j}^{\prime},
$$ then we have $\delta(d)=\sqrt{ }$.

§3. Classes of locally equivalent deformations

Elements d of $D\left(s_{0}\right)$ being sections of the sheaf $[B \times I / \Gamma \times I]_{M \times I}$, let $d \mid W$ denote their restrictions on an open set W of $M \times I$ and set $D\left(s_{0}\right) \mid W=\left\{d \mid W ; d \in D\left(s_{0}\right)\right\}$. If η is a diffeomorphism from an open set W of $M \times I$ into $M \times I$ such that
[1] $\quad \eta_{t}(x, t)$ is independent of x
where $\eta(x, t)=\left(\eta_{x}(x, t), \eta_{t}(x, t)\right),((x, t) \in W, x \in M, t \in I)$, then η induce a map $\bar{\eta}$ from $D\left(s_{0}\right) \mid \eta(W)$ into $D\left(s_{0}\right) \mid W$.

Definition. Two differentiabl edeformation d^{1} and d^{2} of s_{0} are locally equivalent if there exist a positive number $\varepsilon>1$ and a diffeomophism η from $M \times(-\varepsilon, \varepsilon)$ into $M \times I$ such that η satisfies [1] and also the following two conditions,
[2] $\quad \eta(x, 0)$ is identity,

$$
\begin{equation*}
\bar{\eta}\left(d^{2}\left|\eta(M \times(-\varepsilon, \varepsilon))=d^{1}\right| M \times(-\varepsilon, \varepsilon) .\right. \tag{3}
\end{equation*}
$$

The local equivalence of deformations satisfies the equivalence relation and their equivalence classes are called classes of locally equivalent deformations and the set of these classes is denoted by $\bar{D}\left(s_{0}\right)$.

Proposition 1. The map $\delta: D\left(s_{0}\right) \rightarrow H^{1}(M,[I I])$ induces a bijection $\bar{\delta}: \bar{D}\left(s_{0}\right) \rightarrow H^{1}(M,[\Pi])$.

Proof. Let $\left\{U_{j}, \mathscr{P}_{j}^{1}, j \in J\right\},\left\{U_{j}, \mathscr{P}_{j}^{2}, j \in J\right\}$ denote coordinate systems of deformations d^{1}, d^{2}, respectively, for a suitable common covering $\left\{U_{j}, j \in J\right\}$ of $M \times I$. If d^{1}, d^{2} are locally equivalent, there exists a covering $\left\{W_{l}, l \in L\right\}$ of $M \times 0$ (identified with M) by open sets of $M \times I$, such that
(1) $\left\{W_{l}\right\}$ is a refinement of $\left\{U_{j} ; U_{j} \cap(M \times 0) \neq \Phi\right\}$ as a covering of $M \times 0$ by open sets of $M \times I$ (with the index injection of the refinement $\left.\mu: L \rightarrow J^{\prime} \subset J\right)$,
(2) $W_{l} \subset M \times(-\varepsilon, \varepsilon)$ for each $l \in L$,
(3) $\eta\left(W_{l}\right) \subset U_{\mu(l)}$
where η is the diffeomorphism from $M \times(-\varepsilon, \varepsilon)$ into $M \times I$ which gives the local equivalence of d^{1}, d^{2}. Since $\left\{\eta\left(W_{l}\right), \mathscr{P}_{(l)}^{2} \mid \eta\left(W_{l}\right)\right\}$ is a coordinate system of $d^{2}\left|\eta\left(\bigcup_{l \in L} W_{l}\right) \subset d^{2}\right| \eta(M \times(-\varepsilon, \varepsilon))$, we see that $\left\{W_{l}, \varphi_{\mu(l)}^{2} \cdot \eta \mid W_{l}\right\}$ is a coordinate system of $\bar{\eta}\left(d^{2} \mid \eta\left(\bigcup_{l \in L} W_{l}\right)\right)$. On the other hand, $\left\{W_{l}, \mathscr{P}_{\mu(l)}^{1} \mid W_{l}\right\}$ is a coordinate system of $d^{1} \mid \bigcup_{l \in L} W_{l}$ and $\bar{\eta} \cdot d^{2}\left|\bigcup_{l \in L} W_{l}=d^{1}\right| \bigcup_{l \in L} W_{l}$. Therefore, for each $l \in L$, the local diffeomorphism $\varphi_{\mu(l)}^{2} \bullet \eta \cdot\left(\mathcal{P}_{\mu(l)}^{1}\right)^{-1} \mid \mathcal{P}_{\mu(l)}^{1}\left(W_{l}\right)$ of $B \times I$ is an element of $\Gamma \times I$, and is denoted by γ_{l}. The image $\varphi_{\mu(l)}^{1}\left(W_{l}\right)$ is the domain of γ_{l} and $\mathscr{P}_{\mu(l)}^{1}\left(W_{l}\right)>\mathcal{P}_{\mu(l)}^{1}\left(V_{l}\right)$ where $V_{l}=W_{l} \cap(M \times 0)$. Then $\left(\mathcal{P}_{\mu(l)}^{1} \mid V_{l}\right.$, germ of γ_{l} on $\left.\varphi_{\mu(l)}^{1}\left(V_{l}\right)\right) \in \Pi\left(V_{l}\right)$. Since

$$
\begin{gathered}
\mathcal{P}_{\mu(l)}^{1}\left(\mathcal{P}_{\mu(m)}^{1}\right)^{-1} \mid \mathcal{P}_{\mu(m)}^{1}\left(W_{l} \cap W_{m}\right) \in \Gamma \times I, \\
\eta\left(W_{l} \cap W_{m}\right)=\left(\mathscr{P}_{\mu(l)}^{2}\right)^{-1} \cdot \gamma_{l} \cdot \mathcal{P}_{\mu(l)}^{1}\left|W_{l} \cap W_{m}=\left(\mathscr{P}_{\mu(m)}^{2}\right)^{-1} \cdot \gamma_{m} \cdot \mathcal{P}_{\mu(m)}^{1}\right| W_{l} \cap W_{m}
\end{gathered}
$$

and the range of γ_{l} is $\mathscr{P}_{\mu(l)}^{2}$, then

$$
\gamma_{l} \cdot \mathcal{P}_{\mu(l)}^{1} \cdot\left(\mathcal{P}_{\mu(m)}^{1}\right)^{-1}=\mathscr{P}_{\mu(l)}^{2} \cdot\left(\mathscr{P}_{\mu(m)}^{2}\right)^{-1} \cdot \gamma_{m} \quad \text { on } \quad \mathscr{P}_{\mu(m)}^{1}\left(W_{l} \cap V_{m}\right)
$$

and so $\bar{\psi}_{l} \cdot \overline{\mathcal{P}}_{l m}^{1}, \overline{\mathcal{P}}_{l m}^{2} \cdot \bar{\psi}_{m}$ are defined on $V_{l} \cap V_{m} \neq \Phi$ and are equal, where

$$
\begin{aligned}
& \bar{\psi}_{l}=\left(\mathcal{P}_{\mu(l)}^{1} \mid V_{l}, \quad \text { germ of } \gamma_{l} \text { on } \mathcal{P}_{\mu(l)}^{1}\left(V_{l}\right),\right. \\
& \overline{\mathcal{P}}_{l m}^{1}=\left(\mathcal{P}_{\mu(m)}^{1} \mid V_{m}, \quad \text { germ of } \mathcal{P}_{\mu(l)}^{1} \cdot\left(\mathcal{P}_{\mu(m)}^{1}\right)^{-1} \text { on } \mathcal{P}_{\mu(m)}^{1}\left(V_{m}\right)\right), \\
& \mathcal{P}_{l m}^{2}=\left(\mathscr{P}_{\mu(m) \cdot}^{2} \cdot \eta \mid V_{m}, \quad \text { germ of } \mathcal{P}_{\mu(l)}^{2}\left(\mathcal{P}_{\mu(m)}^{2}\right)^{-1} \text { on } \mathcal{P}_{\mu(m)}^{2}\left(V_{m}\right)\right) .
\end{aligned}
$$

Therefore, $\left\{\overline{\mathcal{P}}_{l m}^{1}\right\}$ and $\left\{\overline{\mathcal{\rho}}_{l m}^{2}\right\}$ are cohomologous in $\mathcal{C}^{1}\left(\left\{V_{i}\right\}, \Pi\right)$, where the former determines $\delta\left(d^{1}\right)$ and the latter determines $\delta\left(d^{2}\right)$ because η is identity on $M \times 0$, that is $\delta\left(d^{1}\right)=\delta\left(d^{2}\right)$.

Conversely, we suppose $\delta\left(d^{1}\right)=\delta\left(d^{2}\right)$. Since M is compact, there exists a finite covering $\left\{V_{k}, k \in K\right\}=\mathfrak{Y}$ of M by open sets of M which is a refinement of $\left\{U_{j} \cap M \times 0(\neq \Phi)\right\}$ as an open covering of M (with the index injection of the refinement $\lambda: K \rightarrow J$), such that
$\left\{\mathscr{P}_{k l}^{1}\right\}=\left\{\left(\mathscr{P}_{\lambda(l)}^{1} \mid V_{k} \cap V_{l}(\neq \mid \Phi)\right.\right.$, germ of $\mathscr{P}_{\lambda(k)}^{1} \cdot\left(\mathcal{P}_{\lambda(l)}^{1}\right)^{-1}$ on $\left.\left.\mathscr{P}_{\lambda(l)}^{1}\left(V_{k} \cap V_{l}\right)\right)\right\}$ and
$\left\{\overline{\mathcal{P}}_{k l}^{2}\right\}=\left\{\left(\mathcal{P}_{\lambda(l)}^{2} \mid V_{k} \cap V_{l}, \quad\right.\right.$ germ of $\quad \mathscr{P}_{\lambda(k)}^{2} \cdot\left(\mathscr{P}_{\lambda(l)}^{2}\right)^{-1} \quad$ on $\left.\left.\quad \mathcal{P}_{\lambda(l)}^{2}\left(V_{k} \cap V_{l}\right)\right)\right\}$ are cohomologous in $\mathcal{C}^{1}\left(\left\{V_{k}\right\}, \pi\right)$. Then we have a element $\bar{\gamma}_{k}$ of $\Pi\left(V_{k}\right)$ for each $k \in K$ such as

$$
\bar{\gamma}_{k} \cdot \overline{\mathcal{P}}_{k l}^{1}=\overline{\mathcal{P}}_{k l}^{2} \cdot \bar{\gamma}_{l} \quad \text { for } \quad V_{k} \cap V_{l} \neq \Phi .
$$

From the definition of $\pi\left(V_{k}\right)$ and the product in it,

$$
\bar{\gamma}_{k}=\left(\mathscr{P}_{\lambda(k)}^{1} \mid V_{k}, \quad \text { germ of } \quad \gamma_{k} \quad \text { on } \quad \varphi_{\lambda(k)}^{1}\left(V_{k}\right)\right)
$$

where $\gamma_{k} \in \Gamma \times I$, (the domain of $\left.\gamma_{k}\right) \cap(B \times 0)=\varphi_{\lambda(k)}^{1}\left(V_{k}\right)$, (the range of $\left.\gamma_{k}\right) \cap(B \times 0)=\varphi_{\lambda(k)}^{2}\left(V_{k}\right)$, and $\gamma_{k} \varphi_{\lambda(k)}^{1}\left|V_{k}=\varphi_{\lambda(k)}^{2}\right| V_{k}$. If we set

$$
W_{k}=\left(\mathscr{P}_{\lambda(k)}^{1}\right)^{-1} \cdot\left(\text { the domain of } \gamma_{k}\right) \cap\left(\mathscr{P}_{\lambda(k)}^{2}\right)^{-1} \cdot\left(\text { the range of } \gamma_{k}\right)
$$

$$
\subset M \times I
$$

then $W_{k} \cap(M \times 0)=V_{k},\left\{W_{k}, k \in K\right\}$ is a finite covering of $M \times 0$ by open sets of $M \times I$, and $\left(\mathscr{P}_{\lambda(k)}^{2}\right)^{-1} \cdot \gamma_{k} \cdot \varphi_{\lambda(k)}^{1}$ can be defined on W_{k}. Since

$$
\bar{\gamma}_{k} \cdot \bar{\rho}_{\lambda(k) \lambda(l)}^{1}=\bar{\rho}_{\lambda(k) \lambda(l)}^{2} \cdot \bar{\gamma}_{l}
$$

then

$$
\left(\mathscr{P}_{\lambda(k)}^{2}\right)^{-1} \cdot \gamma_{k} \cdot \mathscr{P}_{\lambda(k)}^{1}=\left(\mathscr{P}_{\lambda(k)}^{2}\right)^{-1} \cdot \gamma_{l} \cdot \mathscr{P}_{\lambda(l)}^{1} \quad \text { on } \quad W_{k} \cap W_{l}(\neq \Phi) .
$$

Therefore, there exist a positive number ε and a homeomorphism η from $M \times(-\varepsilon, \varepsilon)$ into $M \times I$ such that $M \times(-\varepsilon, \varepsilon) \subset \bigcup_{k \in \mathcal{K}} W_{k}$,

$$
\begin{aligned}
& \eta\left|M \times(-\varepsilon, \varepsilon) \cap W_{k}=\left(\mathscr{P}_{\lambda(k)}^{2}\right)^{-1} \cdot \gamma_{k} \cdot \mathscr{P}_{\lambda(k)}^{1}\right|(M \times(-\varepsilon, \varepsilon)) \cap W_{k}, \\
& \gamma_{k} \cdot \mathscr{P}_{\lambda(k)}^{1}\left|M \times(-\varepsilon, \varepsilon) \cap W_{k}=\mathscr{P}_{\lambda(k)}^{2} \eta\right| M \times(-\varepsilon, \varepsilon) \cap W_{k}
\end{aligned}
$$

and $\eta_{t}(x, t)$ is independent of x where $\eta(x, t)=\left(\eta_{x}(x, t), \eta_{t}(x, t)\right)$. Here, $\left.\left\{\gamma_{k} \cdot \mathcal{P}_{(k)},(M \times(-\varepsilon, \varepsilon)) \cap W_{k}\right)\right\}$ and $\left\{\varphi_{\lambda(k)}^{*} \cdot \eta,\left(M \times(-\varepsilon, \varepsilon) \cap W_{k}\right)\right\}$ are coordinate systems of $d^{1} \mid M \times(-\varepsilon, \varepsilon)$ and $\bar{\eta} d^{2} \mid M \times(-\varepsilon, \varepsilon)$, respectively, i.e. $d^{1} \mid M \times(-\varepsilon, \varepsilon)=\bar{\eta} d^{2}$. Since $\boldsymbol{\rho}_{\lambda(k)}^{2} \cdot \gamma_{k} \cdot \rho_{\lambda(k)}^{1}=$ identity

On deformations of cross-sections of a differentiable fibre bundle 219
on V_{k}, then $\eta \mid M \times 0=$ identity. Therefore, η gives the local equivalence of d^{1} and d^{2}.
§4. Germs of local automorphisms depending differentiably on 1-parameter for the differentiable (B, Γ)-structure

A diffeomorphism ξ of an open set V of M to an open set of M is called a local automorphism for the differentiable (B, Γ)structure s_{0} if $\xi \cdot s_{0}=s_{0}$ on V, i.e. for a regular map ρ of s_{0} on a neighborhood of each point $x \in \xi(V), \rho \cdot \xi$ is a regular map on a neighborhood of $\xi^{-1}(x)$.

A diffeomorphism ζ of $V \times(-\varepsilon, \varepsilon)$ into $M \times(-\varepsilon, \varepsilon)$ is said a local automorphism of V depening differentiably on 1-parameter for s_{n}, if

$$
\zeta(x, 0)=\text { identity }(x \in V), \zeta_{t}(x, t)=t
$$

and if $\zeta_{x}(x, t)$ is local automorphism of M for each fixed t where

$$
\zeta(x, t)=\left(\zeta_{x}(x, t), \zeta_{t}(x, t)\right), \quad x \in V, t \in(-\varepsilon, \varepsilon) .
$$

For each open set V of M, we set

$$
A(V)=\{\text { germ of } \zeta \text { on } V \times 0\}
$$

which is a group. By the restriction $A(V) \rightarrow A\left(V^{\prime}\right)$ for $V \supset V^{\prime}$, $\{A(V)\}$ is a presheaf of group over M and induces a sheaf [A] over M.

Definition. The sheaf $[A]$ is the sheaf of germs of local automorphisms depending differentiably on 1-parameter for (B, Γ) structure s_{0}.

Lemma 6. For each open set V of M where V has a regular map ψ of s_{0}, there exists an onto-map $\pi: \Pi(V) \rightarrow A(V)$.

Proof. For $\bar{\psi}=(\psi$, germ of γ on $\psi(V)) \in \Pi(V),(\gamma \in \Gamma \times I)$, if we set $\tilde{\psi}(x, t)=(\psi(x), t), \quad(x \in V, t \in I)$ and $\tilde{\gamma}(y, t)=(\gamma(y, 0), t)$, $(y \in \psi(V), t \ni I)$, then $\tilde{\psi} \in B \times I(V \times I), \tilde{\gamma} \in \Gamma \times I$ and $(\tilde{\gamma})^{-1} \cdot \gamma \in \Gamma \times I$. Hence, there exists an open set W of $M \times I$ such that $W \cap(M \times 0)=V$, $\tilde{\psi}(W) \subset\left(\right.$ domain of γ) and $\tilde{\psi}^{-1} \cdot \tilde{\gamma}^{-1} \cdot \gamma \cdot \tilde{\psi}$ can be defined on W. Since $\tilde{\gamma}^{-1} \cdot \gamma \mid \psi(V)=$ identity and since $\tilde{\psi}^{-1} \cdot \tilde{\gamma}^{-1} \cdot \gamma \cdot \tilde{\psi}$ is a local automorphism of V depending differentiably 1 -parameter for s_{0}, we see that (germ
of $\tilde{\psi}^{-1} \cdot \tilde{\gamma}^{-1} \cdot \gamma \cdot \tilde{\psi}$ on V) is an element $\pi \bar{\psi}$ of $A(V)$ and the correspondence $\bar{\psi} \rightarrow \pi \cdot \bar{\psi}$ gives a map $\pi: \Pi(V) \rightarrow A(V)$.

Conversely, let (germ of ζ on V) be an element $\bar{\zeta}$ of $A(V)$ where ζ is a local diffeomorphism of an open set of $M \times I$ including V such that ζ gives a local automorphism of V depending 1-parameter. For a regular map \mathcal{P} of s_{0} on V,
(\mathcal{P}, germ of $\widetilde{\mathcal{P}} \zeta \widetilde{\mathcal{P}}^{-1}$ on $\varphi(V)$) where $\widetilde{\mathcal{P}}(x, t)=(\mathcal{P}(x), t)$
is an element $\bar{\psi}$ of $A(V)$ such as $\pi \bar{\psi}=\zeta$, that is, π is onto.
We define $H^{1}(M,[A])$ from the presheaf $\{A(V)\}$ in the same manner as we did for $H^{1}(M,[I])$, and we have

Proposition 2. The map π induces a bijection $\pi^{*}: H^{1}(M,[I I])$ $\rightarrow H^{1}(M,[A])$.

Proof. For an element $\left\{\bar{\psi}_{\alpha \beta}\right\}=\left\{\psi_{\alpha \beta}\right.$, germ of $\gamma_{\alpha \beta}$ on $\left.\left.\psi_{\alpha \beta}\left(V_{\alpha} \cap V_{\beta}\right)\right)\right\} \in \mathcal{C}^{1}(\mathfrak{P}$, II $)$ where $\mathfrak{B}=\left\{V_{\alpha}\right\}$ and $\gamma_{\alpha \beta} \in I^{\prime} \times I$, we have

$$
\bar{\gamma}_{\alpha \beta}(y, t)=\tilde{\psi}_{\alpha} \tilde{\psi}_{\beta}^{-1}(y, t) \quad \text { where } \quad y \in \psi_{\beta}\left(V_{\beta}\right), t \in I
$$

and

$$
\left.\tilde{\psi}_{a \beta}=\tilde{\psi}_{\beta} \mid V_{\alpha} \cap V_{\beta}\right) \times I \quad \text { where } \quad \tilde{\psi}_{\alpha}=\left(\psi_{\alpha x}(x), t\right) \quad\left(x \in V_{a}\right)
$$

because $\bar{\psi}_{\alpha \alpha} \cdot \bar{\psi}_{\alpha \beta}=\bar{\psi}_{\alpha \beta} \cdot \bar{\psi}_{\beta \beta}$. Since

$$
\begin{aligned}
& \left(\tilde{\psi}_{\alpha \beta}^{-1} \cdot\left(\tilde{\gamma}_{\alpha \beta}\right)^{-1} \cdot \gamma_{\alpha \beta} \cdot \tilde{\psi}_{\alpha \beta}\right) \cdot\left(\tilde{\psi}_{\beta \gamma}^{-1} \cdot\left(\tilde{\gamma}_{\beta \gamma}\right)^{-1} \cdot \gamma_{\beta \gamma} \cdot \tilde{\psi}_{\beta \gamma}\right)=\tilde{\psi}_{\alpha}^{-1} \cdot \gamma_{\alpha \beta} \cdot \gamma_{\beta \gamma} \cdot \tilde{\psi}_{\gamma} \\
& =\tilde{\psi}_{\gamma}^{-1} \cdot \tilde{\psi}_{\gamma} \cdot \tilde{\psi}_{\alpha}^{-1} \cdot \gamma_{\alpha \gamma} \cdot \tilde{\psi}_{\gamma}=\tilde{\psi}_{\alpha \gamma}^{-1} \cdot\left(\tilde{\gamma}_{\alpha \beta}\right)^{-1} \cdot \gamma_{\alpha \gamma} \cdot \tilde{\psi}_{\alpha \gamma}
\end{aligned}
$$

then $\left\{\pi \bar{\psi}_{\alpha_{\beta} \beta}\right\}$ is an element of $\mathcal{C}^{1}(\mathfrak{F}, A)$ and moreover this correspondence $\left\{\bar{\psi}_{\alpha \beta}\right\} \rightarrow\left\{\pi \bar{\psi}_{\alpha \beta}\right\}$ gives a map from $\mathcal{C}^{1}(\mathfrak{B}, \Pi)$ onto $\mathcal{C}^{1}(\mathfrak{B}, A)$ by Lemma 5. If two elements $\left\{\bar{\psi}_{\alpha \beta}^{1}\right\}$ and $\left\{\bar{\psi}_{\alpha \beta}^{2}\right\}$ of $\mathcal{C}^{1}(\mathfrak{B}, \Pi)$ are cohomologous, then there exists an element $\bar{\psi}_{\infty}=\left(\psi_{\infty \alpha}^{1}\right.$, germ of γ_{∞} on $\left.\psi_{\alpha \alpha}^{1}\left(V_{a}\right)\right)$ of $\Pi\left(V_{a}\right)$ for each V_{a}, such that $\bar{\psi}_{a} \cdot \bar{\psi}_{\alpha \beta}^{1}=\bar{\psi}_{\alpha \beta}^{2} \cdot \bar{\psi}_{\beta}$ and $\gamma_{\alpha} \cdot \gamma_{\alpha \beta}^{1}=\gamma_{\alpha \beta}^{2} \cdot \gamma_{\beta}$ on a suitable domain including $\psi_{\alpha \beta}^{1}\left(V_{\alpha} \cap V_{\beta}\right)$. Then

$$
\begin{aligned}
& \left(\left(\tilde{\psi}_{\alpha}^{2}\right)^{-1} \gamma_{\alpha} \tilde{\psi}_{\alpha}^{1}\right) \cdot\left(\left(\tilde{\psi}_{\beta}^{1}\right)^{-1} \cdot\left(\tilde{\gamma}_{\alpha \beta}^{1}\right)^{-1} \cdot \gamma_{\alpha \beta}^{1} \cdot \tilde{\psi}_{\beta}^{1}\right)=\left(\tilde{\psi}_{\alpha}^{2}\right)^{-1} \cdot \gamma_{\alpha} \cdot \gamma_{\alpha \beta}^{1} \tilde{\psi}_{\beta}^{1} \\
& =\left(\tilde{\psi}_{\alpha}^{2}\right)^{-1} \cdot \gamma_{\alpha \beta}^{2} \cdot \gamma_{\beta} \cdot \tilde{\psi}_{\beta}^{1}=\left(\left(\tilde{\psi}_{\beta}^{2}\right)^{-1} \cdot\left(\tilde{\gamma}_{\alpha \beta}^{2}\right)^{-1} \cdot \gamma_{\alpha \beta}^{2} \cdot \widetilde{\psi}_{\beta}^{2}\right) \cdot\left(\left(\tilde{\psi}_{\beta}^{2}\right)^{-1} \cdot \gamma_{\beta} \cdot \widetilde{\psi}_{\beta}^{1}\right)
\end{aligned}
$$

on a suitable open set of $M \times I$ including $V_{\omega} \cap V_{\beta}(\neq \Phi)$. Therefore, if we set

$$
\bar{\zeta}_{\alpha}=\left(\text { germ of }\left(\tilde{\psi}_{\alpha}^{2}\right)^{-1} \cdot \gamma_{\infty} \cdot \tilde{\psi}_{\alpha}^{1} \text { on } V_{\alpha}\right) \in A\left(V_{\alpha}\right),
$$

we have $\zeta_{\alpha}\left(\pi \overline{\psi_{\alpha \beta}^{1}}\right)=\left(\pi \bar{\psi}_{\alpha \beta}^{1}\right) \zeta_{\beta}$ on $V_{\alpha} \cap V_{\beta}$, i.e. $\left\{\pi \bar{\psi}_{\alpha \beta}^{1}\right\},\left\{\pi \bar{\psi}_{\alpha \beta}^{2}\right\}$ are
cohomologous.
Conversely, if $\left\{\pi \bar{\psi}_{\alpha, \beta}^{1}\right\}$ and $\left\{\pi \bar{\psi}_{\alpha \beta}^{2}\right\}$ are cohomologous in $\mathcal{C}^{1}(\mathfrak{B}, A)$, then there exists, for each α, a local diffeomorphism ζ_{α} on an open set W_{α} of $M \times I$ including V_{α} such that $\bar{\zeta}_{\alpha}\left(\pi \bar{\psi}_{\alpha \beta}^{1}\right)=\left(\pi \bar{\psi}_{\alpha \beta}^{2}\right) \bar{\zeta}_{\beta}$ where ζ_{α} is the germ of ζ_{α} on V_{α}, and such that $\zeta_{\alpha}\left(\left(\tilde{\psi}^{1}\right)^{-1} \cdot\left(\tilde{\gamma}^{1}\right)^{-1} \cdot \gamma_{\alpha \beta}^{1} \cdot \tilde{\psi}_{\beta}^{1}\right)$ and $\left(\left(\tilde{\psi}_{\beta}^{2}\right)^{-1} \cdot\left(\tilde{\gamma}_{\alpha \beta}^{2}\right)^{-1} \cdot \gamma_{\alpha \beta}^{2} \cdot \tilde{\psi}^{2}\right) \zeta_{\beta}$ can be defined and are equal on $W_{\alpha} \cap W_{\beta}(\neq \Phi)$. If we set $\gamma_{\alpha}=\tilde{\psi}_{\alpha}^{2} \zeta_{\alpha}\left(\tilde{\psi}_{\alpha}^{1}\right)^{-1}$ on W_{α}, then

$$
\gamma_{x} \gamma_{\alpha \beta}^{1}=\gamma_{\alpha} \tilde{\psi}_{\alpha}^{1}\left(\tilde{\psi}_{\beta}^{1}\right)^{-1}\left(\tilde{\gamma}_{\alpha \beta}^{1}\right) \gamma_{\alpha \beta}^{1}=\tilde{\psi}_{\alpha}^{2}\left(\psi_{\beta}^{2}\right)^{-1}\left(\tilde{\gamma}_{\alpha \beta}^{2}\right)^{-1} \gamma_{\alpha \beta}^{2} \gamma_{\beta}=\gamma_{\alpha \beta}^{2} \gamma_{\beta} .
$$

Therefore, $\left(\psi_{\alpha}\right.$, germ of γ_{α} on $\left.\psi_{\alpha}\left(V_{\alpha}\right)\right) \cdot \bar{\psi}_{\alpha \beta}^{1}=\bar{\psi}_{\alpha}^{2} \cdot\left(\psi_{\beta}\right.$, germ of γ_{β} on $\psi_{\beta}\left(V_{\beta}\left(V_{\beta}\right)\right)$, that is, $\left\{\bar{\psi}_{\alpha \beta}^{1}\right\}$ and $\left\{\bar{\psi}_{\alpha \beta}^{2}\right\}$ are cohomologous in $\mathcal{C}^{1}(\mathfrak{Y}, \Pi$ II).

From Proposition 1 and Proposition 2, we have
Theorem 1. There exists a bijection $\bar{D}\left(s_{0}\right) \rightarrow H^{1}(M,[A])$.

§ 5. Cross-sections of a differentiable bundle

Let F be a differentiable manifold and G be an effective differentiable transformation group on F and let Γ_{0} be the pseudogroup of all local diffeomorphisms of R^{n}. For each element γ_{0} of Γ_{0} whose domain is U, we define a diffeomorphism $\tau\left(\gamma_{0}\right): F \times U \rightarrow$ $F \times \gamma_{0}(U)$ such that $\tau\left(\gamma_{0}\right)(x, f)=\left(\gamma_{0}(x), \tau_{F}(x, f)\right)$ and for each fixed x, τ_{F} is a transformation of F by G. Differentiable cross-sections of $F \times R^{n}$ over U can be transformed to differentiable cross-sections over $\gamma_{0}(U)$ by $\tau\left(\gamma_{0}\right)$. If we denote by \tilde{B} the space of germs of differentiable cross-sections of $F \times R^{n}$ over R^{n}, then \widetilde{B} is a topological space with a differentiable structure and $\tau\left(\gamma_{0}\right)$ induces a local diffeomorphism of \widetilde{B}. Then Γ_{0} defines a pseudogroup $\tilde{\Gamma}$ of local diffeomorphisms of \widetilde{B} associated to τ. Hence we can consider differentiable ($\tilde{B}, \tilde{\Gamma}$)-structures.

On the other hand, let $\left\{U_{i}, \varphi_{i}\right\}$ be a coordinate system of the differentiable structure of M, then $\left\{U_{i}, \mathscr{P}_{i}\right\}, F, G$, and τ define a differentiable fibre bundle \mathscr{B} with the fibre F, the structure group G, the base space M, the bundle space X and the projection p. We say \mathcal{B} an F-bundle τ-associated to the differentiable structure of M (or a differentiable F-bundle) and $\left\{U_{i}, \mathcal{P}_{i}\right\}$ a coordinate system of \mathscr{B}. The diffeomorphism $\mathscr{\varphi}_{i}: U_{i} \rightarrow R^{n}$ induces a fibre-preserving diffeomorphism $\mathcal{P}_{i}^{*}: p^{-1}\left(U_{i}\right) \rightarrow \mathcal{P}_{i}\left(U_{i}\right) \times F$ and

$$
\mathcal{P}_{j}^{*}\left(\mathscr{P}_{i}^{*}\right)^{-1} \mid \mathscr{P}_{i}\left(U_{i} \cap U_{j}\right) \times F=\tau\left(\mathcal{P}_{j} \mathscr{P}_{i}^{-1} \mid \mathscr{p}_{i}\left(U_{i} \cap U_{j}\right)\right) \quad \text { for } \quad U_{i} \cap U_{j} \neq \Phi .
$$ If c is a differentiable cross-section of \mathscr{B} over M, the map $\varphi_{i}^{*} \cdot c \mid U_{i}$ can be regarded as a diffeomorphism c_{i} of U_{i} into \widetilde{B} and $c_{j} \cdot c_{i}^{-1} \mid c_{i}\left(U_{i} \cap U_{j}\right) \in \tilde{\Gamma}$, then $\left\{U_{i}, c_{i}\right\}$ is a coordinate system of a differentiable $(\widetilde{B}, \tilde{\Gamma})$-structure s and s is independent of the coordinate system $\left\{\mathcal{P}_{i}, U_{i}\right\}$ of \mathcal{B}. Therefor we have a map $C:\{c\} \rightarrow H^{0}\left(M,[\widetilde{B} / \tilde{\Gamma}]_{M}\right)$ where $\{c\}$ is the set of all differentiable cross-sections of \mathscr{B} over M.

Lemma 7. The map C is a bijection.
Proof. We can take a coordinate system $\left\{U_{i}, \overline{\mathcal{P}}_{i}\right\}$ for $s \in H^{0}\left(M,[\tilde{B} / \tilde{\Gamma}]_{M}\right)$ such that $\left\{U_{i}, \mathscr{P}_{i}\right\}$ is a coordinate system of \mathscr{B} where $\mathcal{P}_{i}=p_{0} \cdot \overline{\mathcal{P}}_{i}, p_{0}$ is the projection of sheaf $\widetilde{B} \rightarrow R^{n}$ and $\mathscr{P}_{i}^{*}: p^{-1}\left(U_{i}\right) \rightarrow \mathscr{P}_{i}\left(U_{i}\right) \times F$ is a coordinate function induced from \mathscr{P}_{i}. Then $\left(\mathcal{P}_{i}^{*}\right)^{-1} \overline{\mathcal{P}}_{i}(U)$ is a cross-section s_{i} over U_{i} for \mathcal{B} and

$$
\left(\mathscr{P}_{j}^{*}\right)\left(\mathscr{p}_{i}^{*}\right)^{-1}\left|\overline{\mathcal{P}}_{i}\left(U_{i} \cap U_{j}\right)=\tau\left(\mathscr{P}_{j} \bullet \mathscr{P}_{i}^{-1}\right)\right| \overline{\mathcal{P}}_{i}\left(U_{i} \cap U_{j}\right)=\overline{\mathscr{p}}_{j} \overline{\mathcal{P}}_{i}^{-1} \mid \overline{\mathcal{P}}_{i}\left(U_{i} \cap U_{j}\right)
$$

for $U_{i} \cap U_{j} \neq \Phi$ and so

$$
\begin{aligned}
& \left.s_{i} \mid U_{i} \cap U_{j}\right)=\left(\mathcal{P}_{i}^{*}\right)^{-1} \overline{\mathcal{P}}_{i}\left|\left(U_{i} \cap U_{j}\right)=\left(\mathcal{P}_{j}^{*}\right)^{-1} \mathcal{P}_{j}^{*}\left(\mathcal{P}_{i}^{*}\right)^{-1} \overline{\mathcal{P}}_{i} \overline{\mathcal{P}}_{j}^{-1} \overline{\mathcal{P}}_{j}\right| U_{i} \cap U_{j} \\
& \quad=\left(\mathscr{P}_{j}^{*}\right)^{-1} \overline{\mathcal{P}}_{j}\left|U_{i} \cap U_{j}=s_{j}\right| U_{i} \cap U_{j},
\end{aligned}
$$

hence $\left\{s_{i}\right\}$ is a cross-section c over M. The correspondence $s \rightarrow c$ defines a correspondence $S: H^{0}\left(M,[\widetilde{B} / \tilde{\Gamma}]_{M}\right) \rightarrow\{c\}$ and $S \cdot C=$ identity, $C \cdot S=$ identity.

Then we have
Theorem 2. Differentiable cross-sections of the differentiable F-bundle are differentiable ($\widetilde{B}, \tilde{\Gamma}$)-structures.

Remark. The proof of Lemma 7 ensures that C gives a bijection of the set of differentiable cross-sections over an open set U of M onto the set of sections of $[\widetilde{B} / \tilde{\Gamma}]_{M}$ over U.

§6. Deformations of differentiable cross-sections of the differentiable bundle

From the differentiable F-bundle $\mathscr{B}(X, M, F, G)$, a differentiable F-bundle $\mathscr{B} \times I(X \times I, M \times I, F, G)$ is naturally defined. As for the coordinate system $\left\{U_{i}, \mathscr{P}_{i}\right\}$ of $\mathscr{B} \times I, \mathscr{P}_{i}$ can be taken to be diffeo-

On deformations of cross-sections of a differentiable fibre bundle 223
morphisms of U_{i} into $R^{n} \times I$ such as $\mathcal{P}_{i, t}(x, t)=t$ where $\mathcal{P}_{i}=\left(\mathcal{P}_{i, x}(x, t), \mathcal{P}_{i, t}(x, t)\right),(x, t) \in U$. Differentiable cross-sections \tilde{d} of $\mathscr{B} \times I$ define cross-sections c of \mathscr{B} by the restriction on $M \times 0$, and \tilde{d} is called a (differentiable) deformation of c.

Definition. A deformation \tilde{d} of a given cross-section c_{0} of \mathcal{B} is locally trivial if there exist an open neighborhood U relative to $M \times I$ for each point of M and a diffeomorphism ξ from U into $M \times I$ such as

$$
\xi_{t}(x, t)=t, \quad \xi(x, 0)=\text { identity and } \tilde{d}=\xi^{*} c_{0}
$$

where ξ^{*} is a local bundle-automorphism induced by $\xi, \tilde{c}_{0}(x, t)=\left(c_{0}(x), t\right)$ and $\xi(x, t)=\left(\xi_{x}(x, t), \xi_{t}(x, t)\right),((x, t) \in U)$.

Now, we take $\tilde{B}, \tilde{\Gamma}$ as B, Γ in $\S \S 2-3$, then $\tilde{B} \times I, \tilde{\Gamma} \times I$, $[\widetilde{B} \times I / \tilde{\Gamma} \times I]_{M \times I}, D\left(\tilde{s}_{0}\right)\left(\tilde{s}_{0} \in H^{0}\left(M,[\tilde{B} / \tilde{\Gamma}]_{M}\right)\right),[\tilde{\Pi}], \tilde{D}\left(s_{0}\right)$ and $[\widetilde{A}]$ take the place of $B \times I, \Gamma \times I,[B \times I / \Gamma \times I]_{M \times I}, D\left(s_{0}\right),[\Pi], \bar{D}\left(s_{0}\right)$ and $[A]$, respectively. If we apply Theorem 1 to this case, we have

Proposition 3. We have a bijection $\tilde{D}\left(s_{0}\right) \rightarrow H^{1}(M,[A])$.
Let $\widetilde{B \times I}$ be the space of germs of differentiable cross-sections of the product bundle $F \times\left(R^{n} \times I\right)$ over $R^{n} \times I$ and let $\widetilde{\Gamma \times I}$ be the pseudogroup of local diffeomorphisms of $\widetilde{B \times I}$ induced by local diffeomorphisms of $R^{n} \times I$ as in $\S 5$. Then

Lemma 8. $\quad H^{0}\left(M \times I, \quad[\tilde{B} \times I / \tilde{\Gamma} \times I]_{M \times I}\right) \quad$ is a sub-set of $H^{0}\left(M \times I,[\widetilde{B \times I} / \widetilde{\Gamma \times I}]_{M \times I}\right)$.

Proof. $\tilde{B} \times I$ is a sub-space of $\widetilde{B \times I}$ and $\tilde{\Gamma} \times I$ is a sub-pseudoproup of $\widetilde{\Gamma \times I}$. The set $\tilde{B} \times I(U)$ is a sub-set of $\widetilde{B \times I}(U)$ for each open set U of $M \times I$. If

$$
\mathcal{P}, \psi \in \tilde{B} \times I(U) \quad \text { and } \quad \rho \cdot \psi^{-1}=\gamma \in \widetilde{\Gamma \times I}
$$

then $\gamma \in \tilde{\Gamma} \times I$ and therefore $\tilde{B} \times I / \tilde{\Gamma} \times I(U) \subset \widetilde{B \times I} / \widetilde{\Gamma \times I}(U)$ by Lemma 1. Therefore, $[\tilde{B} \times I / \tilde{\Gamma} \times I]_{M \times I} \subset[\overparen{B \times I} / \widetilde{\Gamma \times I}]_{M \times I}$ since $r_{U^{\prime}}^{U}(\widetilde{B} \times I(U)) \subset \widetilde{B} \times I\left(U^{\prime}\right)$ for $U>U^{\prime}$.

If we apply Lemma 7 to the set $\{\tilde{c}\}$ of differentiable crosssections of $\mathscr{B} \times I$ and $H^{0}\left(M \times I,[\widetilde{B \times I} / \widetilde{\Gamma \times I}]_{M \times I}\right)$, we have a bijection

$$
\{\tilde{c}\} \underset{\tilde{S}}{\stackrel{\tilde{C}}{\rightleftarrows}} H^{0}\left(M \times I,[\widetilde{B \times I} / \widetilde{\Gamma \times I}]_{M \times I}\right) .
$$

Definition. Locally trivial deformations $\widetilde{d^{1}}$ and $\widetilde{d^{2}}$ of c_{0} are locally equivalent if there exist a positive number number $\varepsilon<1$ and a diffeomorphism ξ from $M \times(-\varepsilon, \varepsilon)$ into $M \times I$ such that

1. $\xi_{t}(x, t)$ is independent of x for $(x, t) \in M \times(-\varepsilon, \varepsilon)$,
2. $\xi(x, 0)=$ identity,
3. $\tilde{d}^{1} \mid \xi(x, t)=\xi^{*}\left(\widetilde{d^{2}}(x, t)\right)$,
where $\xi(x, t)=\left(\xi_{x}(x, t), \xi_{t}(x, t)\right)$ and ξ^{*} is a bundle map induced by ξ.
If we set $\tilde{s}_{0}=C\left(c_{0}\right)$ where c_{0} is a given cross-section of \mathscr{B}, then \tilde{S} maps bijectively $D\left(\tilde{s}_{0}\right)$ onto a sub-set $E\left(c_{0}\right)$ of the set of locally trivial deformations of c_{0}.

Lemma 9. For each locally trivial deformation \tilde{d} of c_{0}, there exists an element $\tilde{d^{\prime}}$ of $E\left(c_{0}\right)$ such that \tilde{d} and $\tilde{d^{\prime}}$ are locally equivalent.

Proof. Let $\left\{U_{j}, \mathscr{P}_{j}, j \in J\right\}$ be a coordinate system of \mathscr{B}. Since \tilde{d} is a locally trivial deformation of c_{0} and since M is compact, there are a finite covering $\left\{U_{k}^{\prime}, k \in K\right\}$ of $M \times 0$ by open sets of $M \times I$ and diffeomorphisms ξ_{k} of U_{k} into $M \times I$ for each $k \in K$, such that the covering $\left\{U_{k}^{\prime}\right\}$ is a refinement of the covering $\left\{U_{j} ; U_{j} \cap(M \times 0) \neq \Phi, j \in J^{\prime}\right\}$ of $M \times 0$ (with the index injection of the refinement $\left.\kappa: K \rightarrow J^{\prime}\right), \xi_{k}^{*} \tau_{0}=\tilde{d}$ on U_{k}^{\prime} and $\xi_{k}\left(U_{k}^{\prime}\right) \subset U_{k}$. Then

$$
\begin{aligned}
& \left.\mathcal{P}_{\left.\kappa^{\prime} k\right)}^{*} \tilde{d}(x, t)=\mathscr{P}_{\kappa^{(k)}}^{*}\left(\xi_{k} \tilde{c}_{0}\right)(x, t)=\mathcal{P}_{\kappa^{\prime}(k) k}^{*} \tilde{c}_{0}^{*} \widetilde{c}_{0}\left(\xi_{k, x}\left(\xi_{k}(x, t)\right)=\mathcal{P}_{\kappa_{\kappa}(k)}^{*} \tilde{c}_{0}\left(\xi_{k, x}(x, t)\right), t\right)\right) \subset\left(\tilde{s}_{\kappa^{(k)}}\left(\xi_{k, x}(x, t)\right)\right) \times I \subset \tilde{B} \times I
\end{aligned}
$$

where $(x, t) \in U^{\prime}$ and $\xi_{k}(x, t)=\left(\xi_{k, x}(x, t), t\right)$, hence $\widetilde{C}\left(\tilde{d} \mid U_{k}^{\prime}\right)$ is a section of $[\tilde{B} \times I / \tilde{\Gamma} \times I]_{M \times I}$ over U_{k}^{\prime} by Lemark in $\S 5$. If we take a positive number ε such as $M \times(-\varepsilon, \varepsilon) \subset \bigcup_{k \in K} U_{k}^{\prime}$, then $\tilde{C}(\tilde{d} \mid M \times(-\varepsilon, \varepsilon))$ is a section of $[\widetilde{B} \times I / \widetilde{\Gamma} \times I]_{M \times I}$ over $M \times(-\varepsilon, \varepsilon)$. By Lemma 4, this section can be extended over $M \times I$ which is an element d of $D\left(s_{0}\right)$. Then $\widetilde{S} \cdot d \in E\left(c_{0}\right)$ and

$$
\tilde{S} \cdot d|M \times(-\varepsilon, \varepsilon)=\widetilde{S} \cdot \tilde{C}(\tilde{d} \mid M \times(-\varepsilon, \varepsilon))=\tilde{d}| M \times(-\varepsilon, \varepsilon)
$$

i.e. $\tilde{S} \cdot d$ and \tilde{d} are equal on $M \times(-\varepsilon, \varepsilon)$.

On deformations of cross-sections of a differentiable fibre bundle 225
By definitions, the local equivalence of locally trivial deformations of c_{0} applied to $E\left(c_{0}\right)$ and local equivalence of $D\left(\tilde{s}_{0}\right)$ are compatible with the bijection $E\left(c_{0}\right) \rightarrow D\left(\tilde{s}_{0}\right)$. Then, by Lemma 9 we have

Proposition 4. The set of local equivalence clases of all locally trivial deformations of c_{0} can be identified with the set $\tilde{D}\left(\tilde{s}_{0}\right)$ of local equivalence classes of $D\left(\tilde{s}_{0}\right)$.

A local diffeomorphism ξ_{V} of an open set V of M into M is said to be a local automorphism of V for the cross-section c_{0}, if $c_{0}\left|\xi_{V}(x)=\xi_{V}^{*} \cdot c\right| x$ where ξ_{V}^{*} is a local bundle map induced by ξ_{V}.

Definition. A local diffeomorphism ζ of an open set $V \times(-\varepsilon, \varepsilon)$ of $M \times I$ into $M \times I$ is a local automorphism on V depending differentiably on 1-parameter for the cross-section c_{0} if $\zeta_{t}(x, t)=t$, and for each fixed $t, \zeta_{x}(x, t)$ is a local automorphism of V for c_{0}, where $\zeta(x, t)=\left(\zeta_{x}(x, t), \zeta_{t}(x, t)\right)$.

From the definition of the map $C(\S 5$.$) , local automorphisms$ on V depending differentiably on 1-parameter for c_{0} are local automorohisms on V depending differentiably on 1-parameter for the $(\widetilde{B}, \tilde{\Gamma})$-structure $\tilde{s}_{0}=C\left(c_{0}\right)$. Then, the sheaf [$\left.\mathfrak{M}\right]$ of germs of local automorphisms depending differentiably for the given crosssection c_{0} of \mathscr{B} is isomorphic to the sheaf [$\left.A\right]$ for $C\left(c_{0}\right)$.

Therefore, from Proposition 3 and Proposition 4, we have
Theorem 3. There is a one-to-one correspondence between the set of local equivalence classes of locally trivial deformations of the cross-section c_{0} of \mathscr{B} and the cohomology set $H^{1}(M,[\mathcal{M}])$.

§ 7. Remarks

1. The fibre bundle of positive definite symmetric tensors of the differentiable manifold M is a fibre bundle associated to the differentiable structure of M and its cross-sections are Riemannian metrices on M. In this case, our sheaf [$M M$] is the sheaf of germs of motions depending differentiably on 1-parameter for the given Riemannian metric g_{0}.
2. Though we have discussed "1-parameter" to simplify the
exposition, our theory is valid for " m-parameter" by taking I^{m} as the parameter space.

REFERENCES

[1] Chern, S. S. Pseudo-groupes continus infinis, Colloques de géométrie différentielle, Strasbourg, C.N.R.S. (1953) p.p. 119-136.
[2] Dedecker, P. Introduction aux structures locales, Colloques de géométrie différentielle globale, Bruxelles, C.B.R.M. (1958) p.p. 103-135.
[3] Ehresmann, C. Structures locales et structures infinitésimales, Comptes Rendus, 234 (1952) p.p. 587-589.
[4] , Introduction à la théorie des structures infinitésimales et des pseudogroupes de Lie, Colloque de géométrie différentielle, Strasbourg, C.N.R.S. (1953), p.p. 97-110.
[5] ——, Catégories topologique et catégories différentiables, Colloque de géométrie différentielle globale, Bruxelles, C.B.R.M. (1958) p.p. 137-150.
[6] Gray, J. W. Abstract theory of preudo-grougs. Reports seminor in topology, part II. (X), Univ. of Chicago. (1957).
[7] . Some global properties of contact structures. Ann. of Math., 69 (1959), p.p. 421-329.
[8] Haefliger, A. Structures feuilletées et cohomologie à valeur dans un faiceau de groupoïdes. Comment. Math. Helv., 32 (1957-1958), p.p. 248-329.
[9] Spencer, D. C. Some remarks on perturbation of structure. "Analytic function" Princeton Univ. press, (1960).
[10] - . Homological analysis and structures. Differential Geometry, Proceedings of Symposia in pure mathematics, III (1961) p.p. 56-86.

