On deformations of cross-sections of a differentiable fibre bundle

By

Toshimasa YAGYU

(Received Jan. 19, 1963)

Introduction

It is well-known that geometric structures on a topological space can be defined mostly through the notion of (B, Γ) -structure, where Γ is a pseudogroup of local homeomorphisms of a topological space B. Particularly for a differentiable manifold, when we take the euclidean space R^n as B and some pseudogroup Γ_d of local differentiable transformations of R^n as Γ , (R^n, Γ_d) -structures are objects of differential geometry. On the other hand, there are also structures defined by cross-sections of differentiable bundles over a differentiable manifold such as Riemannian metric structures. But they are not considered generally as (R^n, Γ_d) -structures. However if we take the space of germs of cross-sections of the product bundle over R^n as B and a suitable pseudogroup on it as Γ , we can regard the structures by cross-sections of the differentiable fibre bundle as (B, Γ) -structures. (§ 5.)

D. C. Spencer ([10]) has pointed out without proof that the set of germs of *m*-parameter deformations of a (B, Γ) -structure may be identified with a 1-cohomology set with coefficients on some sheaf, from the theory of A. Haefliger ([8]). Hence, we can apply this theory to deformations of a cross-section and we have a theorem on deformations of a Riemannian manifold as an example.

We give a direct formulation and proof of Spencer's proposition without such a objectionable condition for our application, that B is paracompact. Though our result (Theorem 3) can be proved more directly, we treat it from a view point of a general theory of deformations of (B, Γ) -structures, (\$\$ 1-4) and its application. (\$\$ 5-7)

§ 1. Differentiable (B, Γ) -structures

Let *B* be a topological space with a differentiable structure, i.e. there exists a neighborhood *U* of each point of *B* and a homeomorphism φ_U from *U* to an open set of *n*-dimensional euclidean space \mathbb{R}^n such that $\varphi_U \cdot \varphi_V^{-1}$ is a bidifferentiable transformation on $\varphi_V(U \cap V)$ for $U \cap V \neq \Phi$. (*B* is not necessarily separable or paracompact.)

Let Γ be some pseudogroup of local bidifferentiable transformations of B and let M be a differentiable manifold. For each open set U of M, we set

 $B(U) = \{\varphi; a \text{ diffeomorphism, in the sense of differentiable}$ structures of M and B, from U onto the domain of an element of $\Gamma\}.$

We define that $\varphi, \psi \in B(U)$ are equivalent if and only if $\varphi \cdot \psi^{-1} \in \Gamma$ and we denote the set of the equivalence classes of B(U) by $B/\Gamma(U)$. For $U \supset U'$, the restriction induces a correspondence $r_{U'}^U : B(U) \rightarrow B(U')$ such that $r_{U''}^{U'} \cdot r_{U'}^U = r_{U''}^U$ for $U \supset U' \supset U''$ and $(r_{U'}^U \varphi) (r_{U'}^U \psi)^{-1} \in \Gamma$ if $\psi \cdot \varphi^{-1} \in \Gamma$. Therefore, there exists a correspondence $r'_{U'}^U : B/\Gamma(U)$ $\rightarrow B/\Gamma(U')$ such that $r'_{U''}^{U'} \cdot r'_{U'}^U = r'_{U''}^U$ for $U \supset U' \supset U''$. and then $\{B/\Gamma(U)\}$ is a presheaf over M and induces a sheaf $[B/\Gamma]_M$ over M.

Definition. A differentiable (B, Γ) structure on M is an element s of $H^{\circ}(M, [B/\Gamma]_{M})$, which is a section of $[B/\Gamma]_{M}$ over M.

For a differentiable (B, Γ) -structure s, there exist a suitable open neighborhood U of each point x of M and $s_U \in B/\Gamma(U)$ such that the germ of s_U at x is s(x), and we have $\varphi_U \in B(U)$ such that $p_U(\varphi_U) = s_U$ where p_U is the projection $B(U) \rightarrow B/\Gamma(U)$. U and φ_U are called a *coordinate neighborhood* of s and *coordinate map* of s, respectively. For an open covering $\{U_j, j \in J\}$ of M by coordinate neighborhoods of s and coordinate maps $\varphi_j \in B(U_j), \{U_j, \varphi_j, j \in J\}$ is called a *coordinate system* of s. This definition ensures that

each element of $H^{0}(M, [B/\Gamma]_{M})$ has necessarily a coordinate system. If $\{U'_{k}, k \in K\}$ is a refinement of $\{U_{i}, j \in J\}$ (with the index injection of the refinement $\kappa; K \to J$), then $\{U'_{k}, \varphi_{\kappa(k)} | U'_{k}\}$ is also a coordinate system of s. If $\{U_{j}, \varphi_{j}, j \in J\}$ and $\{U'_{k}, \varphi'_{k}, k \in K\}$ are coordinate systems of the same element of $H^{0}(M, [B/\Gamma]_{M})$, there exists a refinement $\{U'_{i}', l \in L\}$ of $\{U_{j}\}$ and $\{U'_{k}\}$ (with the index injections of the refinement $\iota: L \to J, \kappa: L \to K$) such that $\varphi_{\iota(I)} | U'_{i'}$ and $\varphi'_{\kappa(I)} | U'_{i'}$ are equivalent in $B(U'_{i'})$.

Lemma 1. Let B'(U) be a subset of B(U) for each open set Uof M such that $r_{U'}^{U}(B'(U)) \subset B'(U')$ if $U \supset U'$, and let Γ' be a subpseudogroup of Γ such that $\varphi \cdot \psi^{-1} \in \Gamma'$ if $\varphi, \psi \in B'(U)$ and $\varphi \cdot \psi^{-1} \in \Gamma$. Then $[B'/\Gamma']_{M}$ is a sub-sheaf of $[B/\Gamma]_{M}$ and so $H^{\circ}(M, [B'/\Gamma']_{M})$ can be identified with a subset of $H^{\circ}(M, [B/\Gamma])_{M}$.

Proof. If $\varphi, \psi \in B'(U)$ are equivalent in B(U), they are equivalent in B'(U), and then $B'/\Gamma'(U) \subset B/\Gamma(U)$. Since $r_{U'}^{U}(B'(U)) \subset B'(U'), r'_{U'}^{U} : B/\Gamma(U) \to B/\Gamma(U')$ maps $B'/\Gamma'(U)$ into $B'/\Gamma'(U')$. Therefore, $\{B'/\Gamma'(U)\}$ is a sub-presheaf of $\{B/\Gamma(U)\}$ and so $[B'/\Gamma']_{M}$ is a sub-sheaf of $[B/\Gamma]_{M}$.

When W is an open set of M, we define similarly a coordinate system of a section s | W of $[B/\Gamma]_M$ over W.

Lemma 2. Let η be a diffeomorphism of W onto an open set of M. Then η induces a map $\overline{\eta}$ of sections over $\eta(W)$ into sections over W.

Proof. If $\{U_j, \varphi_j\}$ is a coordinate system of a section $s | \eta(W)$ over $\eta(W), \varphi_j \cdot \eta : \eta^{-1}(U_j) \to B$ is an element of $B(\eta^{-1}(U_j))$ and $(\varphi_i \eta) \cdot (\varphi_j \eta)^{-1} = \varphi_i \cdot \varphi_j^{-1} \in \Gamma$ for $U_i \cap U_j(=\Phi)$. Therefore $\{\varphi_j \cdot \eta, \eta^{-1}(U_j)\}$ is a coordinate system of a section over W which is denoted by $\overline{\eta}(s | W)$.

Remark. If η is a diffeomorphism of W into M such that $\varphi \cdot \eta \in B'(U) \subset B(U)$ for any $\varphi \in B'(\eta(U)) \subset B(\eta(U))$ and any open set U included in W, then Lemma 2 ensures that η induces a map $\overline{\eta}$ of sections of $[B'/I']_M$ over $\eta(W)$ into sections of $[B'/\Gamma']_M$ over W.

§ 2. Differentiable deformations of (B, Γ) -structures

Let I be the open interval (-1, 1) of real numbers. The product space $B \times I$ is naturally a topological space with a differentiable structure. Let $\Gamma \times I$ denote the pseudogroup of local bidifferentiable transformations γ of $B \times I$ such that

- 1°. $t = \gamma_t(x, t)$,
- 2°. For every fixed t, the local bidifferentiable transformation $\gamma_x(x, t)$ of B is an element of the given pseudogroup Γ of B.

where $\gamma(x, t) = (\gamma_x(x, t), \gamma_t(x, t)), x \in B, t \in (-1, 1).$ For each open set U of $M \times I$, we set

 $B \times I(U) = \{ \varphi ; \text{ diffeomorphisms of } U \text{ onto domains of elements}$ of $\Gamma \times I$ such that $\varphi_t(x, t)$ are independent of xwhere $\varphi(x, t) = (\varphi_x(x, t), \varphi_t(x, t)) \text{ and } (x, t) \in U \}.$

 $\varphi, \psi \in B \times I(U)$ are said to be equivalent if and only if $\varphi \cdot \psi^{-1} \in \Gamma \times I$. We set $B \times I/\Gamma \times I(U) = \{$ equivalence classes of $B \times I(U) \}$. Similarly as in §1, $\{B \times I/\Gamma \times I(U)\}$ is a presheaf over $M \times I$, and induces a sheaf $[B \times I/\Gamma \times I]_{M \times I}$ over $M \times I$.

Let $\{U_j, \varphi_j, j \in J\}$ be a coordinate system of $s \in H^{\circ}(M \times I, [B \times I/\Gamma \times I]_{M \times I})$. By the properties of $B \times I(U)$ and $\Gamma \times I, t'$ of $(y', t') = \varphi_j(x, 0)$ is a constant for any $j \in J$ and moreover depends only on s. We call t' the *parameter* of s. We set

 $D = \{s \in H^{\circ}(M \times I, [B \times I/\Gamma \times I]_{M \times I}) \text{ whose parameter is zero}\}$

Let $\{U_j, \varphi_j, j \in J\}$ denote a coordinate system of an element s of D. Setting $V_j = U_j \cap (M \times 0)$ and identifying $M \times 0$ with M, we have $\varphi_j | V_j \in B(V_j)$ and $\varphi_i \cdot \varphi_j^{-1} | \varphi_j (V_i \cap V_j (\Rightarrow \Phi)) \in \Gamma$ since $\varphi_j (V_j) \subset B \times 0$. Therefore $\{V_j, \varphi_j, j \in J\}$ is a coordinate system of an element s_0 of $H^0(M, [B/\Gamma]_M)$ i.e. a differentiable (B, Γ) -structure. Obviously s_0 depends only on the element s of D and so we have a map $i: D \to H^0(M, [B/\Gamma]_M)$.

Lemma 3. The map i maps D onto $H^{\circ}(M, [B/\Gamma]_M)$.

Proof. Let $\{V_{\alpha}, \psi_{\alpha}, \alpha \in A\}$ be a coordinate system of an

Ź1Ż

element s_0 of $H^0(M, [B/\Gamma]_M)$ and φ_{α} denote a map of $V_{\alpha} \times I$ into $B \times I$ defined by

$$\varphi_{\alpha}(x, t) = (\psi_{\alpha}(x), t), \qquad (x \in V_{\alpha}, t \in I).$$

Hence,

$$(\varphi_{\mathfrak{a}}|(V_{\mathfrak{a}}\times I)\cap (V_{\mathfrak{b}}\times I))(\varphi_{\mathfrak{b}}|(V_{\mathfrak{a}}\times I)\cap (V_{\mathfrak{b}}\times I))^{-1}\in\Gamma\times I$$

where $V_{\alpha} \cap V_{\beta} = \Phi$, and thus $\{\varphi_{\alpha}, V_{\alpha} \times I, \alpha \in A\}$ is a coordinate system of an element of $H^{\circ}(M \times I, [B \times I/\Gamma \times I]_{M \times I})$ and determines d of D. Since $\varphi_{\alpha} | V_{\alpha} = \psi_{\alpha}$, then i(d) = s.

Definition. Differentiable deformations of a given differentiable (B, Γ)-structure s_0 are elements d of D such as $i(d) = s_0$. We denote their set by $D(s_0)$, i.e. $D(s_0) = i^{-1}(s_0)$.

Let d_{ε} be a section of $[B \times I/\Gamma \times I]_{M \times I}$ over $M \times (-\varepsilon, \varepsilon)$ where ε is an arbitrary positive number (<1). d_{ε} also determines an element of $H^{\circ}(M, [B/\Gamma]_{M})$.

Lemma 4. When $d_{\mathfrak{e}}$ determines an element s_0 , $d_{\mathfrak{e}}$ can be extended to a section of $[B \times I/\Gamma \times I]_{M \times I}$ over $M \times I$ which is an element of $D(s_0)$.

Proof. It is well-known that there exists a diffeomorphism η of $M \times I$ on $M \times (-\varepsilon, \varepsilon)$ such that $\eta \mid M \times (-\varepsilon, \varepsilon) = \text{identity}, \eta_x(x, t)$ is independent of t and $\eta_t(x, t)$ is independent of x, where $\eta(x, t) = (\eta_x(x, t), \eta_t(x, t))$. If we apply Lemma 2 and Remark of § 1, to $M \times I$ and $\Gamma \times I$, then η induces a map $\overline{\eta}$ of sections over $M \times (-\varepsilon, \varepsilon)$ into sections over $M \times I$, since $\varphi \cdot \eta \in B \times I(U)$ for each open set U of $M \times I$ and for $\varphi \in B \times I(\eta(U))$. Then $\overline{\eta}(d_{\varepsilon}) \in H^{\circ}(M \times I, [B \times I/\Gamma \times I]_{M \times I})$ and moreover $\overline{\eta}(d_{\varepsilon}) \in D(s_0)$ since $\overline{\eta}(d_{\varepsilon}) \mid M \times (-\varepsilon, \varepsilon) = d_{\varepsilon}$.

Henceforth, we suppose that M is compact.

A diffeomorphism φ from an open set V of M to an open set of B is said a *regular map* on V for a differentiable (B, Γ) -structure s_0 if $(\varphi_j | V_j \cap V)(\varphi | V_j \cap V)^{-1} \in \Gamma$ for a coordinate system $\{V_j, \varphi_j\}$ of s_0 and for any j such as $V_j \cap V = \Phi$. This definition is independent of a coordinate system of s_0 .

For each open set V of M (identified with $M \times 0$), we set $\Pi(V) = \{(\psi, \bar{\gamma})\}$ where ψ is a regular map on V for the given s_0

and $\bar{\gamma}$ is the germ of $\gamma \in \Gamma \times I$ on $\psi(V)$ where the domain of γ includes $\psi(V)$. For $(\psi^1, \bar{\gamma}^1)$, $(\psi^2, \bar{\gamma}^2) \in \Pi(V)$, let the product $(\psi^2, \bar{\gamma}^2) \cdot (\psi^1, \bar{\gamma}^1)$ be defined if and only if the regular map $(\gamma' | \psi'(V)) \cdot \psi'$ on V is equal to ψ^2 , in this case $\gamma^2 \cdot \gamma^1$ can be combined in the sense of the pseudogroup $\Gamma \times I$ by a suitable restricution of domain, and we set

 $(\psi^2, \bar{\gamma}^2) \cdot (\psi^1, \bar{\gamma}^1) = (\psi^1, \text{ germ of } \gamma^2 \cdot \gamma^1 \text{ on } \psi'(V)) \in \Pi(V),$

where germs of γ^i on $\psi^i(V)$ is $\bar{\gamma}^i$ (i=1, 2). By this product $\pi(V)$ is a groupoid. For $V \supset V'$, the restriction of ψ , $\bar{\gamma}$ defines a map $\Pi(V) \rightarrow \Pi(V')$ and $\{\Pi(V)\}$ is a presheaf over M and it induces a sheaf $[\Pi]$ of groupoid over M.

For an open covering $\mathfrak{V} = \{V_{\alpha}, \alpha \in A\}$ of M, let $\mathcal{C}^{1}(\mathfrak{V}, \Pi)$ denote the set of systems $\{\Psi_{\alpha\beta} \in \Pi(V_{\alpha} \cap V_{\beta}), (V_{\alpha} \cap V_{\beta} \neq \Phi)\}$ such that

$$\bar{\psi}_{aeta} \cdot \bar{\psi}_{eta\gamma} = \bar{\psi}_{a\gamma} \quad ext{for} \quad V_a \cap V_eta \cap V_\gamma = \Phi \,.$$

 $\{\bar{\psi}_{\alpha\beta}\}, \{\bar{\psi}'_{\alpha\beta}\} \in \mathcal{C}^{1}(\mathfrak{B}, \Pi)$ are said to be *cohomologous* if there exists $\bar{\psi}_{\alpha} \in \Pi(V_{\alpha})$ for each α such as $\psi_{\alpha} \cdot \bar{\psi}_{\alpha\beta} = \bar{\psi}'_{\alpha\beta} \bar{\psi}_{\beta}$ for $V_{\alpha} \cap V_{\beta}(=\Phi)$ and we denote by $\mathfrak{P}^{1}(\mathfrak{B}, \Pi)$ the set of cohomologous classes of $\mathcal{C}^{1}(\mathfrak{B}, \Pi)$. For a refinement $\mathfrak{B}' = \{V'_{\alpha'}, \alpha' \in A'\}$ of \mathfrak{B} , (with the index injection of the refinement $\mathfrak{a} : A' \to A$),

$$\{\overline{\psi}_{\mathfrak{a}(\mathfrak{a}')\mathfrak{a}(\beta')} \mid V'_{\mathfrak{a}'} \cap V'_{\beta'}(\neq \Phi)\} \in \mathcal{C}^{1}(\mathfrak{B}', \Pi)$$

and if $\{\bar{\psi}_{\alpha,\beta}\}$, $\{\bar{\psi}'_{\alpha,\beta}\}$ are cohomologous, then $\{\bar{\psi}_{\alpha(\alpha')\alpha(\beta')} | V'_{\alpha'} \cap V'_{\beta'}\}$, $\{\bar{\psi}'_{\alpha(\alpha')\alpha(\beta')} | V'_{\alpha'} \cap V'_{\beta'}\}$ are cohomologous in $C^{i}(\mathfrak{V}, \mathfrak{U})$. Therefore we have a correspondence

$$\bar{\gamma}_{\mathfrak{B}'}^{\mathfrak{B}'}: \mathfrak{H}^{1}(\mathfrak{V}, \Pi) \to \mathfrak{H}^{1}(\mathfrak{V}', \Pi)$$

such that $\overline{r}_{\mathfrak{B}'}^{\mathfrak{B}'}\overline{r}_{\mathfrak{B}''}^{\mathfrak{B}''} = \overline{r}_{\mathfrak{B}''}^{\mathfrak{B}''}$ for $\mathfrak{B} > \mathfrak{B}' > \mathfrak{B}''$ (>; refinement of coverings) and the system { $\mathfrak{D}^{1}(\mathfrak{B}, \Pi)$, $\mathfrak{B} \in$ the systems of open coverings of M} forms a direct system. We denote its inductive limit by $H^{1}(M, [\Pi])$. (The Čech cohomology set of 1-dim with coefficients in the sheaf $[\Pi]$). An element { $\overline{\psi}_{\alpha\beta}$ } of $\mathcal{C}^{1}(\mathfrak{B}, \Pi)$ is called a *cocycle* of $\overline{\psi}$ for \mathfrak{B} if $\overline{\psi}$ is the element of $H^{1}(M, [\Pi])$ determined by the inductive limit of cohomologous class of { $\overline{\psi}_{\alpha\beta}$ }.

Lemma 5. There exists a map δ from $D(s_0)$ onto $H^1(M, [11])$. Proof. If $\{U_j, \varphi_j, j \in J\}$ is a coordinate system of $d \in D(s_0)$,

 $\hat{2}14$

then $\varphi_j | V_j : V_j \to B \times 0$ (identified with *B*) are regular maps for s_0 where V_j denote $U_j \cap (M \times 0)$ (:]- Φ), and $(\varphi_i \cdot \varphi_j^{-1}) \in \Gamma \times I(U_i \cap U_j : |=\Phi)$. Therefore if we denote by $\overline{\varphi}_{ij}$

 $(\varphi_i | V_i, \text{ germ of } \varphi_i \varphi_i^{-1} \text{ on } \varphi_i (V_i \cap V_i))$

then $\overline{\varphi}_{ij} \in \Pi(V_i \cap V_j)$ and $\overline{\varphi}_{ij} \cdot \overline{\varphi}_{jk} = \overline{\varphi}_{ik}$ on $V_i \cap V_j \cap V_k \neq \Phi$. Since $\{V_j = U_j \cap (M \times 0)\}$ is a covering of M, $\{\overline{\varphi}_{ij}\}$ is a cocycle of an element $\overline{\varphi}$ of $H^1(M, [\Pi])$. If we take other coordinate system $\{U'_k, \varphi'_k, k \in K\}$ of d, there exists a refinement covering $\{U'_i, l \in L\}$ of the coverings $\{U_j, j \in J\}$ and $\{U'_k, k \in K\}$ (with index injections of refinement $\iota: L \to J, \kappa: L \to K$), then

$$(\varphi_{\iota(I)}|U_{\iota}^{\prime\prime})(\varphi_{\kappa(I)}^{\prime}|U_{\iota}^{\prime\prime})^{-1} \in \Gamma \times I$$

and

$$\begin{aligned} (\varphi_{\iota(l)} | U_{l}' \cap U_{m}'') \bullet (\varphi_{\kappa(l)}' | U_{l}' \cap U_{m}'')^{-1} \bullet (\varphi_{\kappa(m)}' | U_{l}' \cap U_{m}'') \bullet (\varphi_{\kappa(m)}' | U_{l}' \cap U_{m}'')^{-1} \\ &= (\varphi_{\iota(m)} | U_{l}' \cap U_{m}'') \bullet (\varphi_{\iota(m)} | U_{l}' \cap U_{m}'')^{-1} \bullet (\varphi_{\iota(m)} | U_{l}' \cap U_{m}'') \bullet (\varphi_{\kappa(m)}' | U_{l}' \cap U_{m}'')^{-1} \\ &= 0 \quad U_{l}' \cap U_{m}'' = \Phi. \quad \text{If we set} \end{aligned}$$

$$\begin{split} \bar{\psi}_{l} &= (\varphi'_{\kappa(l)} | V'_{l}', \text{ germ of } \varphi_{\iota(l)} \cdot (\varphi'_{\kappa(l)})^{-1} \text{ on } \varphi'_{\kappa(l)}(V'_{l}')) \\ \text{where } V'_{l} = U'_{l}' \cap (M \times 0) \ (= \Phi), \text{ then } \bar{\psi}_{l} \in \Pi(V'_{l}) \text{ and} \\ (\psi_{l} | V'_{l} \cap V''_{m}) \cdot (\bar{\varphi}'_{\kappa(l)\kappa(m)} | V'_{l} \cap V''_{m}) = (\bar{\varphi}_{\iota(l)\iota(m)} | V'_{l} \cap V''_{m}) \cdot (\bar{\psi}_{m} | V'_{l} \cap V''_{m}). \\ \text{Since } \{V'_{l}'\} \text{ is a refinement of the coverings } \{V_{j} \equiv U_{j} \cap (M \times 0)\} \text{ and} \\ \{V'_{k} \equiv U'_{k} \cap (M \times 0)\} \text{ of } M \times 0 \ (\equiv M), \text{ then } \{\bar{\varphi}'_{kn}\} \text{ is a cocycle of the} \\ \text{same element } \bar{\varphi} \text{ and the correspondence } d \to \bar{\varphi} \text{ defines a map} \\ \delta : D(s_{0}) \to H^{1}(M, [\Pi]). \end{split}$$

Next, if $\{\psi_{\alpha\beta}\} = \{(\psi_{\alpha\beta}, \bar{\gamma}_{\alpha\beta})\}$ is a cocycle of an element $\psi \in H^1(M, [\Pi])$ for an open finite covering $\{V_{\alpha}, \alpha \in A\}$ of M, there exists a finite covering $\{U_j, j \in J\}$ of $M \times 0$ by open sets of $M \times I$ satisfying following conditions:

1) $\{U_j \cap (M \times 0)\}$ considered as a covering of M, is a refineof $\{V_{\alpha}\}$ (with the index injection of the refinement $\alpha: J \to A$)

2) there exist $\varphi_{ij} \in B \times I(U_i \cap U_j(\pm \Phi))$ and $\gamma_{\alpha\beta} \in \Gamma \times I$ such that (domain of $\gamma_{\alpha(i)\alpha(j)}) \supset \varphi_{ij}(U_i \cap U_j)$, $\varphi_{ij}(V_j) \subset B \times 0$ and

$$|\psi_{\mathfrak{a}(i)\mathfrak{a}(j)}| \, V_i' \cap V_j' = arphi_{ij} | \, V_i' \cap V_j' \, ,$$

where $V'_j = U_j \cap (M \times 0)$ and

 $\bar{\gamma}_{\mathfrak{a}(i)\mathfrak{a}(j)}|\varphi_{ij}(V_i' \cap V_j') = (\text{germ of } \gamma_{ij} \text{ on } \varphi_{ij}(V_i' \cap V_j')).$

Since $\bar{\psi}_{\alpha\beta}\bar{\psi}_{\beta\gamma}=\bar{\psi}_{\alpha\gamma}$ on $V_{\alpha} \cap V_{\beta} \cap V_{\gamma}(\pm \Phi)$ and by the definition of the product in $\Pi(V)$, we can choose these objects such that $\varphi_{ii}\varphi_{jj}^{-1}=\gamma_{ij}\in\Gamma \times I$ for $U_i \cap U_j + \Phi$ and $\gamma_{ij}\gamma_{jk}=\gamma_{jk}$ for $U_i \cap U_j \cap U_k(\pm \Phi)$. Since $\{U_j\}$ is a finite covering, we can take a positive number $\varepsilon(<1)$ such that $M \times (-\varepsilon, \varepsilon) \subset \bigcup_{j \in J} U_j$. If we set $\varphi_j = \varphi_{jj} | U_j \cap (M \times (-\varepsilon, \varepsilon)), \ \{\varphi_j, U_j \cap (M \times (-\varepsilon, \varepsilon), j \in J\}$ is a coordinate system of a section d_ε of $[M \times I/\Gamma \times I]_{M \times I}$ over $M \times (-\varepsilon, \varepsilon)$. By Lemma 4 there is a $d \in D(s_0)$ such that $d | M \times (-\varepsilon, \varepsilon) = d_\varepsilon$. Since $\gamma_{ij} = \varphi_i \varphi_j^{-1}$ for $(U_i \cap M \times (-\varepsilon, \varepsilon)) \cap (U_j \cap (M \times (-\varepsilon, \varepsilon))) = \Phi$ and so

 $\varphi\{(\varphi_{ij} | V'_i \cap V'_j, \text{ germ of } \gamma_{ij} \text{ on } \varphi_{ij}(V'_i \cap V'_j))\} = \psi_{\mathfrak{a}^{(i)}\mathfrak{a}^{(j)}} | V'_i \cap V'_j,$ then we have $\delta(d) = \bar{\gamma}.$

\S 3. Classes of locally equivalent deformations

Elements d of $D(s_0)$ being sections of the sheaf $[B \times I/\Gamma \times I]_{M \times I}$, let $d \mid W$ denote their restrictions on an open set W of $M \times I$ and set $D(s_0) \mid W = \{d \mid W; d \in D(s_0)\}$. If η is a diffeomorphism from an open set W of $M \times I$ into $M \times I$ such that

[1] $\eta_t(x, t)$ is independent of x where $\eta(x, t) = (\eta_x(x, t), \eta_i(x, t)), ((x, t) \in W, x \in M, t \in I),$ then η induce a map $\overline{\eta}$ from $D(s_0) | \eta(W)$ into $D(s_0) | W$.

Definition. Two differentiable deformation d^1 and d^2 of s_0 are locally equivalent if there exist a positive number $\varepsilon > 1$ and a diffeomophism η from $M \times (-\varepsilon, \varepsilon)$ into $M \times I$ such that η satisfies [1] and also the following two conditions,

[2] $\eta(x, 0)$ is identity,

 $\lceil 3 \rceil = \overline{\eta} \left(d^2 \right| \eta \left(M \times (-\varepsilon, \varepsilon) \right) = d^1 \right| M \times (-\varepsilon, \varepsilon) \,.$

The local equivalence of deformations satisfies the equivalence relation and their equivalence classes are called *classes of locally* equivalent deformations and the set of these classes is denoted by $\overline{D}(s_0)$.

Proposition 1. The map $\delta : D(s_0) \to H^1(M, [11])$ induces a bijection $\overline{\delta} : \overline{D}(s_0) \to H^1(M, [11])$.

Proof. Let $\{U_j, \varphi_j^1, j \in J\}$, $\{U_j, \varphi_j^2, j \in J\}$ denote coordinate systems of deformations d^1 , d^2 , respectively, for a suitable common covering $\{U_j, j \in J\}$ of $M \times I$. If d^1 , d^2 are locally equivalent, there exists a covering $\{W_i, l \in L\}$ of $M \times 0$ (identified with M) by open sets of $M \times I$, such that

- {W_i} is a refinement of {U_j; U_j ∩ (M×0) + Φ} as a covering of M×0 by open sets of M×I (with the index injection of the refinement μ: L→J'⊂J),
- (2) $W_l \subset M \times (-\varepsilon, \varepsilon)$ for each $l \in L$,
- (3) $\eta(W_l) \subset U_{\mu(l)}$

where η is the diffeomorphism from $M \times (-\varepsilon, \varepsilon)$ into $M \times I$ which gives the local equivalence of d^1 , d^2 . Since $\{\eta(W_l), \varphi_{(l)}^2 | \eta(W_l)\}$ is a coordinate system of $d^2 | \eta(\bigcup_{l \in L} W_l) \subset d^2 | \eta(M \times (-\varepsilon, \varepsilon))$, we see that $\{W_l, \varphi_{\mu(l)}^2 \cdot \eta | W_l\}$ is a coordinate system of $\overline{\eta}(d^2 | \eta(\bigcup_{l \in L} W_l))$. On the other hand, $\{W_l, \varphi_{\mu(l)}^1 | W_l\}$ is a coordinate system of $d^1 | \bigcup_{l \in L} W_l$ and $\overline{\eta} \cdot d^2 | \bigcup_{l \in L} W_l = d^1 | \bigcup_{l \in L} W_l$. Therefore, for each $l \in L$, the local diffeomorphism $\varphi_{\mu(l)}^2 \cdot \eta \cdot (\varphi_{\mu(l)}^1)^{-1} | \varphi_{\mu(l)}^1(W_l)$ of $B \times I$ is an element of $\Gamma \times I$, and is denoted by γ_l . The image $\varphi_{\mu(l)}^1(W_l)$ is the domain of γ_l and $\varphi_{\mu(l)}^1(W_l) \supset \varphi_{\mu(l)}^1(V_l)$ where $V_l = W_l \cap (M \times 0)$. Then $(\varphi_{\mu(l)}^1 | V_l,$ germ of γ_l on $\varphi_{\mu(l)}^1(V_l) \in \Pi(V_l)$. Since

$$\mathcal{P}^{1}_{\mu(I)}(\mathcal{P}^{1}_{\mu(m)})^{-1} | \mathcal{P}^{1}_{\mu(m)}(W_{I} \cap W_{m}) \in \Gamma \times I,$$

$$\eta(W_{I} \cap W_{m}) = (\mathcal{P}^{2}_{\mu(I)})^{-1} \cdot \gamma_{I} \cdot \mathcal{P}^{1}_{\mu(I)} | W_{I} \cap W_{m} = (\mathcal{P}^{2}_{\mu(m)})^{-1} \cdot \gamma_{m} \cdot \mathcal{P}^{1}_{\mu(m)} | W_{I} \cap W_{m}$$

and the range of γ_I is $\varphi^2_{\mu(I)}$, then

$$\gamma_{l} \bullet \varphi^{1}_{\mu(l)} \bullet (\varphi^{1}_{\mu(m)})^{-1} = \varphi^{2}_{\mu(l)} \bullet (\varphi^{2}_{\mu(m)})^{-1} \bullet \gamma_{m} \quad \text{on} \quad \varphi^{1}_{\mu(m)} (W_{l} \cap V_{m})$$

and so $\bar{\psi}_l \cdot \bar{\varphi}_{lm}^1$, $\bar{\varphi}_{lm}^2 \cdot \bar{\psi}_m$ are defined on $V_l \cap V_m \neq \Phi$ and are equal, where

$$\begin{split} \bar{\psi}_{l} &= (\varphi_{\mu(l)}^{1} | V_{l}, \text{ germ of } \gamma_{l} \text{ on } \varphi_{\mu(l)}^{1}(V_{l}), \\ \bar{\varphi}_{lm}^{1} &= (\varphi_{\mu(m)}^{1} | V_{m}, \text{ germ of } \varphi_{\mu(l)}^{1} \cdot (\varphi_{\mu(m)}^{1})^{-1} \text{ on } \varphi_{\mu(m)}^{1}(V_{m})), \\ \varphi_{lm}^{2} &= (\varphi_{\mu(m)}^{2} \cdot \eta | V_{m}, \text{ germ of } \varphi_{\mu(l)}^{2}(\varphi_{\mu(m)}^{2})^{-1} \text{ on } \varphi_{\mu(m)}^{2}(V_{m})). \end{split}$$

Therefore, $\{\bar{\varphi}_{im}^1\}$ and $\{\bar{\varphi}_{im}^2\}$ are cohomologous in $C^1(\{V_i\}, \Pi)$, where the former determines $\delta(d^1)$ and the latter determines $\delta(d^2)$ because η is identity on $M \times 0$, that is $\delta(d^1) = \delta(d^2)$.

Conversely, we suppose $\delta(d^1) = \delta(d^2)$. Since M is compact, there exists a finite covering $\{V_k, k \in K\} = \mathfrak{V}$ of M by open sets of M which is a refinement of $\{U_j \cap M \times 0(\neq \Phi)\}$ as an open covering of M (with the index injection of the refinement $\lambda: K \rightarrow J$), such that

$$\{\varphi_{kl}^{1}\} = \{(\varphi_{\lambda(l)}^{1} | V_{k} \cap V_{l}(\exists \neg \Phi), \text{ germ of } \varphi_{\lambda(k)}^{1} \bullet (\varphi_{\lambda(l)}^{1})^{-1} \text{ on } \varphi_{\lambda(l)}^{1}(V_{k} \cap V_{l}))\}$$

and

 $\{\overline{\varphi}_{kl}^2\} = \{(\varphi_{\lambda(l)}^2 | V_k \cap V_l, \text{ germ of } \varphi_{\lambda(k)}^2 \cdot (\varphi_{\lambda(l)}^2)^{-1} \text{ on } \varphi_{\lambda(l)}^2 (V_k \cap V_l))\}$ are cohomologous in $\mathcal{C}^1(\{V_k\}, \pi)$. Then we have a element $\overline{\gamma}_k$ of $\Pi(V_k)$ for each $k \in K$ such as

$$ar{\gamma}_k \cdot ar{\varphi}_{kl}^1 = ar{\varphi}_{kl}^2 \cdot ar{\gamma}_l \qquad ext{for} \quad V_k \cap V_l = \Phi \,.$$

From the definition of $\pi(V_k)$ and the product in it,

$$\bar{\gamma}_{k} = (\varphi_{\lambda(k)}^{1} | V_{k}, \text{ germ of } \gamma_{k} \text{ on } \varphi_{\lambda(k)}^{1}(V_{k}))$$

where $\gamma_k \in \Gamma \times I$, (the domain of γ_k) $\cap (B \times 0) = \varphi_{\lambda(k)}^1(V_k)$, (the range of γ_k) $\cap (B \times 0) = \varphi_{\lambda(k)}^2(V_k)$, and $\gamma_k \varphi_{\lambda(k)}^1 | V_k = \varphi_{\lambda(k)}^2 | V_k$. If we set

$$\begin{split} W_k &= (\varphi_{\lambda(k)}^1)^{-1} \cdot (\text{the domain of } \gamma_k) \cap (\varphi_{\lambda(k)}^2)^{-1} \cdot (\text{the range of } \gamma_k) \\ &\subset M \times I \,, \end{split}$$

then $W_k \cap (M \times 0) = V_k$, $\{W_k, k \in K\}$ is a finite covering of $M \times 0$ by open sets of $M \times I$, and $(\mathcal{P}^2_{\lambda(k)})^{-1} \cdot \gamma_k \cdot \mathcal{P}^1_{\lambda(k)}$ can be defined on W_k . Since

 $\bar{\gamma}_{k} \cdot \bar{\varphi}^{1}_{\lambda(k)\lambda(l)} = \bar{\varphi}^{2}_{\lambda(k)\lambda(l)} \cdot \bar{\gamma}_{l}$

then

$$(\varphi_{\lambda(k)}^2)^{-1} \cdot \gamma_k \cdot \varphi_{\lambda(k)}^1 = (\varphi_{\lambda(k)}^2)^{-1} \cdot \gamma_l \cdot \varphi_{\lambda(l)}^1 \quad \text{on} \quad W_k \cap W_l (= \Phi) \,.$$

Therefore, there exist a positive number \mathcal{E} and a homeomorphism η from $M \times (-\mathcal{E}, \mathcal{E})$ into $M \times I$ such that $M \times (-\mathcal{E}, \mathcal{E}) \subset \bigcup_{k} W_{k}$,

$$\eta \mid M imes (-\varepsilon, \varepsilon) \cap W_{k} = (\varphi_{\lambda(k)}^{2})^{-1} \cdot \gamma_{k} \cdot \varphi_{\lambda(k)}^{1} \mid (M imes (-\varepsilon, \varepsilon)) \cap W_{k},$$

 $\gamma_{k} \cdot \varphi_{\lambda(k)}^{1} \mid M imes (-\varepsilon, \varepsilon) \cap W_{k} = \varphi_{\lambda(k)}^{2} \eta \mid M imes (-\varepsilon, \varepsilon) \cap W_{k}$

and $\eta_t(x, t)$ is independent of x where $\eta(x, t) = (\eta_x(x, t), \eta_t(x, t))$. Here, $\{\gamma_k \cdot \varphi_{(k)}, (M \times (-\varepsilon, \varepsilon)) \cap W_k\}$ and $\{\varphi^2_{\lambda(k)} \cdot \eta, (M \times (-\varepsilon, \varepsilon) \cap W_k)\}$ are coordinate systems of $d^1 | M \times (-\varepsilon, \varepsilon)$ and $\overline{\eta} d^2 | M \times (-\varepsilon, \varepsilon)$, respectively, i.e. $d^1 | M \times (-\varepsilon, \varepsilon) = \overline{\eta} d^2$. Since $\varphi^2_{\lambda(k)} \cdot \gamma_k \cdot \varphi^1_{\lambda(k)} =$ identity

on V_k , then $\eta | M \times 0 =$ identity. Therefore, η gives the local equivalence of d^1 and d^2 .

§4. Germs of local automorphisms depending differentiably on 1-parameter for the differentiable (B, Γ) -structure

A diffeomorphism ξ of an open set V of M to an open set of M is called a *local automorphism for the differentiable* (B, Γ) -structure s_0 if $\xi \cdot s_0 = s_0$ on V, i.e. for a regular map φ of s_0 on a neighborhood of each point $x \in \xi(V)$, $\varphi \cdot \xi$ is a regular map on a neighborhood of $\xi^{-1}(x)$.

A diffeomorphism ζ of $V \times (-\varepsilon, \varepsilon)$ into $M \times (-\varepsilon, \varepsilon)$ is said a local automorphism of V depending differentiably on 1-parameter for s_0 , if

$$\zeta(x, 0) = \text{identity } (x \in V), \ \zeta_t(x, t) = t$$

and if $\zeta_x(x, t)$ is local automorphism of M for each fixed t where

 $\zeta(x, t) = (\zeta_x(x, t), \zeta_t(x, t)), \qquad x \in V, t \in (-\varepsilon, \varepsilon).$

For each open set V of M, we set

 $A(V) = \{\text{germ of } \zeta \text{ on } V \times 0\}$.

which is a group. By the restriction $A(V) \rightarrow A(V')$ for $V \supset V'$, $\{A(V)\}$ is a presheaf of group over M and induces a sheaf [A] over M.

Definition. The sheaf [A] is the sheaf of germs of local automorphisms depending differentiably on 1-parameter for (B, Γ) -structure s_0 .

Lemma 6. For each open set V of M where V has a regular map ψ of s_0 , there exists an onto-map $\pi : \Pi(V) \to A(V)$.

Proof. For $\bar{\psi} = (\psi, \text{ germ of } \gamma \text{ on } \psi(V)) \in \Pi(V), (\gamma \in \Gamma \times I)$, if we set $\tilde{\psi}(x, t) = (\psi(x), t), (x \in V, t \in I)$ and $\tilde{\gamma}(y, t) = (\gamma(y, 0), t),$ $(y \in \psi(V), t \ni I)$, then $\tilde{\psi} \in B \times I(V \times I), \tilde{\gamma} \in \Gamma \times I$ and $(\tilde{\gamma})^{-1} \cdot \gamma \in \Gamma \times I$. Hence, there exists an open set W of $M \times I$ such that $W \cap (M \times 0) = V$, $\tilde{\psi}(W) \subset (\text{domain of } \gamma)$ and $\tilde{\psi}^{-1} \cdot \tilde{\gamma}^{-1} \cdot \gamma \cdot \tilde{\psi}$ can be defined on W. Since $\tilde{\gamma}^{-1} \cdot \gamma | \psi(V) = \text{identity and since } \tilde{\psi}^{-1} \cdot \tilde{\gamma}^{-1} \cdot \gamma \cdot \tilde{\psi}$ is a local automorphism of V depending differentiably 1-parameter for s_0 , we see that (germ of $\tilde{\psi}^{-1} \cdot \tilde{\gamma}^{-1} \cdot \gamma \cdot \tilde{\psi}$ on V) is an element $\pi \bar{\psi}$ of A(V) and the correspondence $\bar{\psi} \to \pi \cdot \bar{\psi}$ gives a map $\pi : \Pi(V) \to A(V)$.

Conversely, let (germ of ζ on V) be an element $\overline{\zeta}$ of A(V)where ζ is a local diffeomorphism of an open set of $M \times I$ including V such that ζ gives a local automorphism of V depending 1-parameter. For a regular map φ of s_0 on V,

(φ , germ of $\tilde{\varphi}\zeta\tilde{\varphi}^{-1}$ on $\varphi(V)$) where $\tilde{\varphi}(x, t) = (\varphi(x), t)$ is an element $\bar{\psi}$ of A(V) such as $\pi\bar{\psi}=\zeta$, that is, π is onto.

We define $H^{1}(M, [A])$ from the presheaf $\{A(V)\}$ in the same manner as we did for $H^{1}(M, [\Pi])$, and we have

Proposition 2. The map π induces a bijection π^* : $H^1(M, [II]) \rightarrow H^1(M, [A])$.

Proof. For an element $\{\psi_{\alpha\beta}\} = \{\psi_{\alpha\beta}, \text{ germ of } \gamma_{\alpha\beta} \text{ on } \psi_{\alpha\beta}(V_{\alpha} \cap V_{\beta}))\} \in C^{1}(\mathfrak{B}, \mathfrak{U}) \text{ where } \mathfrak{B} = \{V_{\alpha}\} \text{ and } \gamma_{\alpha\beta} \in \mathfrak{l} \times I, \text{ we have }$

and

$$\tilde{\psi}_{\alpha\beta} = \tilde{\psi}_{\beta} | V_{\alpha} \cap V_{\beta} \rangle \times I \quad \text{where} \quad \tilde{\psi}_{\alpha} = (\psi_{\alpha\alpha}(x), t) \ (x \in V_{\alpha})$$

because $\psi_{\alpha\alpha} \cdot \psi_{\alpha\beta} = \psi_{\alpha\beta} \cdot \psi_{\beta\beta}$. Since

$$\begin{split} & (\tilde{\psi}_{\alpha\beta}^{-1} \bullet (\tilde{\gamma}_{\alpha\beta})^{-1} \bullet \gamma_{\alpha\beta} \bullet \tilde{\psi}_{\alpha\beta}) \bullet (\tilde{\psi}_{\beta\gamma}^{-1} \bullet (\tilde{\gamma}_{\beta\gamma})^{-1} \bullet \gamma_{\beta\gamma} \bullet \tilde{\psi}_{\beta\gamma}) = \tilde{\psi}_{\alpha}^{-1} \bullet \gamma_{\alpha\beta} \bullet \gamma_{\beta\gamma} \bullet \tilde{\psi}_{\gamma} \\ & = \tilde{\psi}_{\gamma}^{-1} \bullet \tilde{\psi}_{\gamma} \bullet \tilde{\psi}_{\alpha}^{-1} \bullet \gamma_{\alpha\gamma} \bullet \tilde{\psi}_{\gamma} = \tilde{\psi}_{\alpha\gamma}^{-1} \bullet (\tilde{\gamma}_{\alpha\beta})^{-1} \bullet \gamma_{\alpha\gamma} \bullet \tilde{\psi}_{\alpha\gamma} \end{split}$$

then $\{\pi\bar{\psi}_{\alpha\beta}\}$ is an element of $C^{1}(\mathfrak{V}, A)$ and moreover this correspondence $\{\bar{\psi}_{\alpha\beta}\} \rightarrow \{\pi\bar{\psi}_{\alpha\beta}\}$ gives a map from $C^{1}(\mathfrak{V}, \Pi)$ onto $C^{1}(\mathfrak{V}, A)$ by Lemma 5. If two elements $\{\bar{\psi}_{\alpha\beta}^{1}\}$ and $\{\bar{\psi}_{\alpha\beta}^{2}\}$ of $C^{1}(\mathfrak{V}, \Pi)$ are cohomologous, then there exists an element $\bar{\psi}_{\alpha} = (\psi_{\alpha\alpha}^{1}, \text{ germ of } \gamma_{\alpha} \text{ on } \psi_{\alpha\alpha}^{1}(V_{\alpha}))$ of $\Pi(V_{\alpha})$ for each V_{α} , such that $\bar{\psi}_{\alpha} \cdot \bar{\psi}_{\alpha\beta}^{1} = \bar{\psi}_{\alpha\beta}^{2} \cdot \bar{\psi}_{\beta}$ and $\gamma_{\alpha} \cdot \gamma_{\alpha\beta}^{1} = \gamma_{\alpha\beta}^{2} \cdot \gamma_{\beta}$ on a suitable domain including $\psi_{\alpha\beta}^{1}(V_{\alpha} \wedge V_{\beta})$. Then

$$\begin{aligned} &((\tilde{\psi}^2_{\alpha})^{-1}\gamma_{\alpha}\tilde{\psi}^1_{\alpha}) \bullet ((\tilde{\psi}^1_{\beta})^{-1} \bullet (\tilde{\gamma}^1_{\alpha\beta})^{-1} \cdot \gamma^1_{\alpha\beta} \bullet \tilde{\psi}^1_{\beta}) = (\tilde{\psi}^2_{\alpha})^{-1} \cdot \gamma_{\alpha} \bullet \gamma^1_{\alpha\beta} \tilde{\psi}^1_{\beta} \\ &= (\tilde{\psi}^2_{\alpha})^{-1} \cdot \gamma^2_{\alpha\beta} \bullet \gamma_{\beta} \bullet \tilde{\psi}^1_{\beta} = ((\tilde{\psi}^2_{\beta})^{-1} \bullet (\tilde{\gamma}^2_{\alpha\beta})^{-1} \bullet \gamma^2_{\alpha\beta} \bullet \tilde{\psi}^2_{\beta}) \bullet ((\tilde{\psi}^2_{\beta})^{-1} \cdot \gamma_{\beta} \bullet \tilde{\psi}^1_{\beta}) \end{aligned}$$

on a suitable open set of $M \times I$ including $V_{\omega} \cap V_{\beta}(\pm \Phi)$. Therefore, if we set

 $\bar{\zeta}_{\alpha} = (\text{germ of } (\tilde{\psi}_{\alpha}^2)^{-1} \cdot \gamma_{\alpha} \cdot \tilde{\psi}_{\alpha}^1 \text{ on } V_{\alpha}) \in A(V_{\alpha}),$

we have $\bar{\zeta}_{\alpha}(\pi\bar{\psi}^{1}_{\alpha\beta}) = (\pi\bar{\psi}^{1}_{\alpha\beta})\bar{\zeta}_{\beta}$ on $V_{\alpha} \cap V_{\beta}$, i.e. $\{\pi\bar{\psi}^{1}_{\alpha\beta}\}, \{\pi\bar{\psi}^{2}_{\alpha\beta}\}$ are

cohomologous.

Conversely, if $\{\pi\bar{\psi}_{\alpha\beta}^{1}\}\$ and $\{\pi\bar{\psi}_{\alpha\beta}^{2}\}\$ are cohomologous in $\mathcal{C}^{1}(\mathfrak{B}, A)$, then there exists, for each α , a local diffeomorphism ζ_{α} on an open set W_{α} of $M \times I$ including V_{α} such that $\bar{\zeta}_{\alpha}(\pi\bar{\psi}_{\alpha\beta}^{1}) = (\pi\bar{\psi}_{\alpha\beta}^{2})\bar{\zeta}_{\beta}$ where $\bar{\zeta}_{\alpha}$ is the germ of ζ_{α} on V_{α} , and such that $\zeta_{\alpha}((\tilde{\psi}^{1})^{-1} \cdot (\tilde{\gamma}^{1})^{-1} \cdot \gamma_{\alpha\beta}^{1} \cdot \tilde{\psi}_{\beta}^{1})$ and $((\tilde{\psi}_{\beta}^{2})^{-1} \cdot (\tilde{\gamma}_{\alpha\beta}^{2})^{-1} \cdot \gamma_{\alpha\beta}^{2} \cdot \tilde{\psi}^{2})\zeta_{\beta}$ can be defined and are equal on $W_{\alpha} \cap W_{\beta}(==\Phi)$. If we set $\gamma_{\alpha} = \tilde{\psi}_{\alpha}^{2}\zeta_{\alpha}(\tilde{\psi}_{\alpha}^{1})^{-1}$ on W_{α} , then

$$\gamma_{lpha}\gamma^1_{lphaeta}\,=\,\gamma_{lpha}\widetilde{\psi}^1_{lpha}(\widetilde{\psi}^1_{eta})^{-1}(\widetilde{\gamma}^1_{lphaeta})\gamma^1_{lphaeta}\,=\,\widetilde{\psi}^2_{lpha}(\psi^2_{eta})^{-1}(\widetilde{\gamma}^2_{lphaeta})^{-1}\gamma^2_{lphaeta}\gamma_{eta}\,=\,\gamma^2_{lphaeta}\gamma_{eta}\,.$$

Therefore, $(\psi_{\alpha}, \text{ germ of } \gamma_{\alpha} \text{ on } \psi_{\alpha}(V_{\alpha})) \cdot \bar{\psi}_{\alpha\beta}^{1} = \bar{\psi}_{\alpha}^{2} \cdot (\psi_{\beta}, \text{ germ of } \gamma_{\beta} \text{ on } \psi_{\beta}(V_{\beta}(V_{\beta}))$, that is, $\{\bar{\psi}_{\alpha\beta}^{1}\}$ and $\{\bar{\psi}_{\alpha\beta}^{2}\}$ are cohomologous in $\mathcal{C}^{1}(\mathfrak{B}, \Pi)$. From Proposition 1 and Proposition 2, we have

Theorem 1. There exists a bijection $\overline{D}(s_0) \to H^1(M, \lceil A \rceil)$.

§5. Cross-sections of a differentiable bundle

Let F be a differentiable manifold and G be an effective differentiable transformation group on F and let Γ_0 be the pseudogroup of all local diffeomorphisms of \mathbb{R}^n . For each element γ_0 of Γ_0 whose domain is U, we define a diffeomorphism $\tau(\gamma_0): F \times U \rightarrow$ $F \times \gamma_0(U)$ such that $\tau(\gamma_0)(x, f) = (\gamma_0(x), \tau_F(x, f))$ and for each fixed x, τ_F is a transformation of F by G. Differentiable cross-sections of $F \times \mathbb{R}^n$ over U can be transformed to differentiable cross-sections over $\gamma_0(U)$ by $\tau(\gamma_0)$. If we denote by \tilde{B} the space of germs of differentiable cross-sections of $F \times \mathbb{R}^n$ over \mathbb{R}^n , then \tilde{B} is a topological space with a differentiable structure and $\tau(\gamma_0)$ induces a local diffeomorphism of \tilde{B} . Then Γ_0 defines a pseudogroup $\tilde{\Gamma}$ of local diffeomorphisms of \tilde{B} associated to τ . Hence we can consider differentiable $(\tilde{B}, \tilde{\Gamma})$ -structures.

On the other hand, let $\{U_i, \varphi_i\}$ be a coordinate system of the differentiable structure of M, then $\{U_i, \varphi_i\}$, F, G, and τ define a differentiable fibre bundle \mathcal{B} with the fibre F, the structure group G, the base space M, the bundle space X and the projection p. We say \mathcal{B} an *F*-bundle τ -associated to the differentiable structure of M (or a differentiable *F*-bundle) and $\{U_i, \varphi_i\}$ a coordinate system of \mathcal{B} . The diffeomorphism $\varphi_i: U_i \to R^n$ induces a fibre-preserving diffeomorphism $\varphi_i^*: p^{-1}(U_i) \to \varphi_i(U_i) \times F$ and

 $\varphi_j^*(\varphi_i^*)^{-1}|\varphi_i(U_i \cap U_j) \times F = \tau(\varphi_j \varphi_i^{-1}|\varphi_i(U_i \cap U_j))$ for $U_i \cap U_j \neq \Phi$. If c is a differentiable cross-section of \mathcal{B} over M, the map $\varphi_i^* \cdot c | U_i$ can be regarded as a diffeomorphism c_i of U_i into \tilde{B} and $c_j \cdot c_i^{-1}|c_i(U_i \cap U_j) \in \tilde{\Gamma}$, then $\{U_i, c_i\}$ is a coordinate system of a differentiable $(\tilde{B}, \tilde{\Gamma})$ -structure s and s is independent of the coordinate system $\{\varphi_i, U_i\}$ of \mathcal{B} . Therefor we have a map $C: \{c\} \to H^o(M, [\tilde{B}/\tilde{\Gamma}]_M)$ where $\{c\}$ is the set of all differentiable cross-sections of \mathcal{B} over M.

Lemma 7. The map C is a bijection.

Proof. We can take a coordinate system $\{U_i, \overline{\varphi}_i\}$ for $s \in H^0(M, [\tilde{B}/\tilde{\Gamma}]_M)$ such that $\{U_i, \varphi_i\}$ is a coordinate system of \mathfrak{B} where $\varphi_i = p_0 \cdot \overline{\varphi}_i, p_0$ is the projection of sheaf $\tilde{B} \to R^n$ and $\varphi_i^* : p^{-1}(U_i) \to \varphi_i(U_i) \times F$ is a coordinate function induced from φ_i . Then $(\varphi_i^*)^{-1}\overline{\varphi}_i(U)$ is a cross-section s_i over U_i for \mathfrak{B} and

$$(\varphi_j^*)(\varphi_i^*)^{-1}|\bar{\varphi}_i(U_i \cap U_j) = \tau(\varphi_j \cdot \varphi_i^{-1})|\bar{\varphi}_i(U_i \cap U_j) = \bar{\varphi}_j \bar{\varphi}_i^{-1}|\bar{\varphi}_i(U_i \cap U_j)$$

for $U_i \cap U_j \neq \Phi$ and so

$$\begin{split} s_i | U_i \cap U_j) &= (\varphi_i^*)^{-1} \overline{\varphi}_i | (U_i \cap U_j) = (\varphi_j^*)^{-1} \varphi_j^* (\varphi_i^*)^{-1} \overline{\varphi}_i \overline{\varphi}_j^{-1} \overline{\varphi}_j | U_i \cap U_j \\ &= (\varphi_j^*)^{-1} \overline{\varphi}_j | U_i \cap U_j = s_j | U_i \cap U_j , \end{split}$$

hence $\{s_i\}$ is a cross-section c over M. The correspondence $s \to c$ defines a correspondence $S: H^{\circ}(M, [\tilde{B}/\tilde{\Gamma}]_M) \to \{c\}$ and $S \cdot C = \text{identity}$, $C \cdot S = \text{identity}$.

Then we have

Theorem 2. Differentiable cross-sections of the differentiable F-bundle are differentiable $(\tilde{B}, \tilde{\Gamma})$ -structures.

Remark. The proof of Lemma 7 ensures that C gives a bijection of the set of differentiable cross-sections over an open set U of M onto the set of sections of $[\tilde{B}/\tilde{\Gamma}]_M$ over U.

§ 6. Deformations of differentiable cross-sections of the differentiable bundle

From the differentiable *F*-bundle $\mathcal{B}(X, M, F, G)$, a differentiable *F*-bundle $\mathcal{B} \times I(X \times I, M \times I, F, G)$ is naturally defined. As for the coordinate system $\{U_i, \varphi_i\}$ of $\mathcal{B} \times I, \varphi_i$ can be taken to be diffeo-

morphisms of U_i into $\mathbb{R}^n \times I$ such as $\varphi_{i,t}(x, t) = t$ where $\varphi_i = (\varphi_{i,x}(x, t), \varphi_{i,t}(x, t)), (x, t) \in U$. Differentiable cross-sections \tilde{d} of $\mathcal{B} \times I$ define cross-sections c of \mathcal{B} by the restriction on $M \times 0$, and \tilde{d} is called a (*differentiable*) deformation of c.

Definition. A deformation \tilde{d} of a given cross-section c_0 of \mathfrak{B} is locally trivial if there exist an open neighborhood U relative to $M \times I$ for each point of M and a diffeomorphism ξ from U into $M \times I$ such as

$$\xi_t(x, t) = t$$
, $\xi(x, 0) = identity$ and $d = \xi^* c_0$,

where ξ^* is a local bundle-automorphism induced by ξ , $\tilde{c}_0(x, t) = (c_0(x), t)$ and $\xi(x, t) = (\xi_x(x, t), \xi_t(x, t)), ((x, t) \in U).$

Now, we take \tilde{B} , $\tilde{\Gamma}$ as B, Γ in §§ 2-3, then $\tilde{B} \times I$, $\tilde{\Gamma} \times I$, $[\tilde{B} \times I/\tilde{\Gamma} \times I]_{M \times I}$, $D(\tilde{s}_0) (\tilde{s}_0 \in H^{\circ}(M, [\tilde{B}/\tilde{\Gamma}]_M))$, $[\Pi]$, $\tilde{D}(s_0)$ and $[\tilde{A}]$ take the place of $B \times I$, $\Gamma \times I$, $[B \times I/\Gamma \times I]_{M \times I}$, $D(s_0)$, $[\Pi]$, $\bar{D}(s_0)$ and [A], respectively. If we apply Theorem 1 to this case, we have

Proposition 3. We have a bijection $\widetilde{D}(s_0) \to H^1(M, [A])$. Let $\widetilde{B \times I}$ be the space of germs of differentiable cross-sections of the product bundle $F \times (\mathbb{R}^n \times I)$ over $\mathbb{R}^n \times I$ and let $\widetilde{\Gamma \times I}$ be the pseudogroup of local diffeomorphisms of $\widetilde{B \times I}$ induced by local diffeomorphisms of $\mathbb{R}^n \times I$ as in §5. Then

Lemma 8. $H^{\circ}(M \times I, [\widetilde{B} \times I/\widetilde{\Gamma} \times I]_{M \times I})$ is a sub-set of $H^{\circ}(M \times I, [\widetilde{B} \times I/\widetilde{\Gamma} \times I]_{M \times I})$.

Proof. $\widetilde{B} \times I$ is a sub-space of $B \times I$ and $\widetilde{\Gamma} \times I$ is a sub-pseudoproup of $\widetilde{\Gamma \times I}$. The set $\widetilde{B} \times I(U)$ is a sub-set of $\widetilde{B \times I}(U)$ for each open set U of $M \times I$. If

$$\varphi, \psi \in \widetilde{B} imes I(U)$$
 and $\varphi \cdot \psi^{-1} = \gamma \in \widetilde{\Gamma imes I}$,

then $\gamma \in \tilde{\Gamma} \times I$ and therefore $\tilde{B} \times I/\tilde{\Gamma} \times I(U) \subset \widetilde{B \times I}/\tilde{\Gamma} \times I(U)$ by Lemma 1. Therefore, $[\tilde{B} \times I/\tilde{\Gamma} \times I]_{M \times I} \subset [\tilde{B} \times I/\tilde{\Gamma} \times I]_{M \times I}$ since $r_{U'}^{U}(\tilde{B} \times I(U)) \subset \tilde{B} \times I(U')$ for $U \supset U'$.

If we apply Lemma 7 to the set $\{\tilde{c}\}$ of differentiable crosssections of $\mathscr{B} \times I$ and $H^0(M \times I, [\widetilde{B \times I}/\widetilde{\Gamma \times I}]_{M \times I})$, we have a bijection

$$\{\tilde{c}\}\underset{\tilde{S}}{\overset{\tilde{C}}{\rightleftharpoons}} H^{\circ}(M \times I, \ [\widetilde{B \times I}/\widetilde{\Gamma \times I}]_{M \times I}).$$

Definition. Locally trivial deformations $\tilde{d^1}$ and $\tilde{d^2}$ of c_0 are locally equivalent if there exist a positive number number $\varepsilon < 1$ and a diffeomorphism ξ from $M \times (-\varepsilon, \varepsilon)$ into $M \times I$ such that

- 1. $\xi_t(x, t)$ is independent of x for $(x, t) \in M \times (-\varepsilon, \varepsilon)$,
- 2. $\xi(x, 0) = identity$,
- 3. $\tilde{d}^{1}|\xi(x, t) = \xi^{*}(\tilde{d}^{2}(x, t)),$

where $\xi(x, t) = (\xi_x(x,t), \xi_t(x, t))$ and ξ^* is a bundle map induced by ξ .

If we set $\tilde{s}_0 = C(c_0)$ where c_0 is a given cross-section of \mathcal{B} , then \tilde{S} maps bijectively $D(\tilde{s}_0)$ onto a sub-set $E(c_0)$ of the set of locally trivial deformations of c_0 .

Lemma 9. For each locally trivial deformation \tilde{d} of c_0 , there exists an element $\tilde{d'}$ of $E(c_0)$ such that \tilde{d} and $\tilde{d'}$ are locally equivalent.

Proof. Let $\{U_j, \varphi_j, j \in J\}$ be a coordinate system of \mathcal{B} . Since \tilde{d} is a locally trivial deformation of c_0 and since M is compact, there are a finite covering $\{U'_k, k \in K\}$ of $M \times 0$ by open sets of $M \times I$ and diffeomorphisms ξ_k of U_k into $M \times I$ for each $k \in K$, such that the covering $\{U'_k\}$ is a refinement of the covering $\{U_j; U_j \cap (M \times 0) \neq \Phi, j \in J'\}$ of $M \times 0$ (with the index injection of the refinement $\kappa: K \to J'$), $\xi_k^* \tilde{c}_0 = \tilde{d}$ on U'_k and $\xi_k(U'_k) \subset U_k$. Then $\varphi_{\epsilon'(k)}^* \tilde{d}(x, t) = \varphi_{\epsilon'(k)}^* (\xi_k \tilde{c}_0)(x, t) = \varphi_{\epsilon'(k)}^* \tilde{c}_0(\xi_k(x, t)) = \varphi_{\epsilon'(k)}^* \tilde{c}_0(\xi_k(x, t), t)$

$$= \varphi_{\kappa(k)}^* \tilde{c}_0(\xi_{k,x}(x,t)), t)) \subset (\tilde{s}_{\kappa(k)}(\xi_{k,x}(x,t))) \times I \subset \tilde{B} \times I$$

where $(x, t) \in U'$ and $\xi_k(x, t) = (\xi_{k,x}(x, t), t)$, hence $\tilde{C}(\tilde{d} \mid U'_k)$ is a section of $[\tilde{B} \times I/\tilde{I} \times I]_{M \times I}$ over U'_k by Lemark in §5. If we take a positive number ε such as $M \times (-\varepsilon, \varepsilon) \subset \bigcup_{k \in K} U'_k$, then $\tilde{C}(\tilde{d} \mid M \times (-\varepsilon, \varepsilon))$ is a section of $[\tilde{B} \times I/\tilde{\Gamma} \times I]_{M \times I}$ over $M \times (-\varepsilon, \varepsilon)$. By Lemma 4, this section can be extended over $M \times I$ which is an element d of $D(s_0)$. Then $\tilde{S} \cdot d \in E(c_0)$ and

$$\widetilde{S} \cdot d \mid M \times (-\varepsilon, \varepsilon) = \widetilde{S} \cdot \widetilde{C}(\widetilde{d} \mid M \times (-\varepsilon, \varepsilon)) = \widetilde{d} \mid M \times (-\varepsilon, \varepsilon)$$

i.e. $\tilde{S} \cdot d$ and \tilde{d} are equal on $M \times (-\varepsilon, \varepsilon)$.

By definitions, the local equivalence of locally trivial deformations of c_0 applied to $E(c_0)$ and local equivalence of $D(\tilde{s}_0)$ are compatible with the bijection $E(c_0) \rightarrow D(\tilde{s}_0)$. Then, by Lemma 9 we have

Proposition 4. The set of local equivalence clases of all locally trivial deformations of c_0 can be identified with the set $\tilde{D}(\tilde{s}_0)$ of local equivalence classes of $D(\tilde{s}_0)$.

A local diffeomorphism ξ_V of an open set V of M into M is said to be a *local automorphism* of V for the cross-section c_0 , if $c_0 |\xi_V(x) = \xi_V^* \cdot c | x$ where ξ_V^* is a local bundle map induced by ξ_V .

Definition. A local diffeomorphism ζ of an open set $V \times (-\varepsilon, \varepsilon)$ of $M \times I$ into $M \times I$ is a local automorphism on V depending differentiably on 1-parameter for the cross-section c_0 if $\zeta_t(x, t) = t$, and for each fixed t, $\zeta_x(x, t)$ is a local automorphism of V for c_0 , where $\zeta(x, t) = (\zeta_x(x, t), \zeta_t(x, t)).$

From the definition of the map $C(\S 5.)$, local automorphisms on V depending differentiably on 1-parameter for c_0 are local automorphisms on V depending differentiably on 1-parameter for the $(\tilde{B}, \tilde{\Gamma})$ -structure $\tilde{s}_0 = C(c_0)$. Then, the sheaf [\mathfrak{M}] of germs of local automorphisms depending differentiably for the given crosssection c_0 of \mathfrak{B} is isomorphic to the sheaf [A] for $C(c_0)$.

Therefore, from Proposition 3 and Proposition 4, we have

Theorem 3. There is a one-to-one correspondence between the set of local equivalence classes of locally trivial deformations of the cross-section c_0 of \mathcal{B} and the cohomology set $H^1(M, [\mathfrak{M}])$.

§7. Remarks

1. The fibre bundle of positive definite symmetric tensors of the differentiable manifold M is a fibre bundle associated to the differentiable structure of M and its cross-sections are Riemannian metrices on M. In this case, our sheaf $[\mathfrak{M}]$ is the sheaf of germs of motions depending differentiably on 1-parameter for the given Riemannian metric g_0 .

2. Though we have discussed "1-parameter" to simplify the

exposition, our theory is valid for "*m*-parameter" by taking I^m as the parameter space.

REFERENCES

- [1] Chern, S. S. Pseudo-groupes continus infinis, Colloques de géométrie différentielle, Strasbourg, C.N.R.S. (1953) p.p. 119-136.
- [2] Dedecker, P. Introduction aux structures locales, Colloques de géométrie différentielle globale, Bruxelles, C.B.R.M. (1958) p.p. 103-135.
- [3] Ehresmann, C. Structures locales et structures infinitésimales, Comptes Rendus, 234 (1952) p.p. 587-589.
- [4] _____, Introduction à la théorie des structures infinitésimales et des pseudogroupes de Lie, Colloque de géométrie différentielle, Strasbourg, C.N.R.S. (1953), p.p. 97-110.
- [5] _____, Catégories topologique et catégories différentiables, Colloque de géométrie différentielle globale, Bruxelles, C.B.R.M. (1958) p.p. 137-150.
- [6] Gray, J. W. Abstract theory of preudo-grougs. Reports seminor in topology, part II. (X), Univ. of Chicago. (1957).
- [7] _____, Some global properties of contact structures. Ann. of Math., 69 (1959), p.p. 421-329.
- [8] Haefliger, A. Structures feuilletées et cohomologie à valeur dans un faiceau de groupoïdes. Comment. Math. Helv., 32 (1957-1958), p.p. 248-329.
- [9] Spencer, D. C. Some remarks on perturbation of structure. "Analytic function" Princeton Univ. press, (1960).
- [10] _____, Homological analysis and structures. Differential Geometry, Proceedings of Symposia in pure mathematics, III (1961) p.p. 56-86.