J. Math. Kyoto Univ. 2-2 (1963) 193-207.

On homotopy groups of S³-bundles over spheres

By

Hirosi Toda

(Received Jan. 14, 1963)

.

§1. Statement of results

We shall consider the p-primary components of the homotopy groups of a cell complex

$$B(p) = S^3 \cup e^{2p+1} \cup e^{2p+4}$$

having the cohomology ring $(\mathcal{O}^1 = Sq^2 \text{ if } p = 2) \mod p$

(1.1)
$$H^*(B(p), \mathbb{Z}_p) = \Lambda(u, \mathcal{O}^1 u), \qquad u \in H^3(B(p), \mathbb{Z}_p).$$

The existence of such a complex B(p) is provided by an S^{3} bundle over a (2p+1)-sphere S^{2p+1} with a characteristic class $\alpha_{1} \in \pi_{2p}(S^{3})$ of a non-trivial mod p Hopf invariant [12].

Denote by X_{p} the 3-connective fibre space over B(p) Then

(1.2)
$$\pi_i(X_p) \approx \pi_i(B(p)) \quad for \quad i > 3$$

and we have

Theorem 1. $H^*(X_p, Z_p) = \Lambda(a, \mathcal{O}^p a) \otimes Z_p[b]$, where $a \in H^{2p+1}(X_p, Z_p)$ and the relation $\Delta b = \mathcal{O}^p a$ holds $(\Delta = Sq^1 \text{ and } \mathcal{O}^p = Sq^4 \text{ if } p=2)$.

Denote by C the class of the finite abelian groups without p-torsion, then by use of Serre's C-theory [9], it follows from the theorem the following

Corollary. There is a mapping $g: S^{2p+1} \to B(p)$ which induces C-isomorphisms $g_*: \pi_i(S^{2p+1}) \to \pi_i(B(p))$ for $3 \le i \le 2p^2 - 1$.

As a space of paths in the mapping-cylinder of g, we have a space Y_p which is a fibre of a fibering equivalent to g and also which is the total space of a fibering $\pi: Y_p \to S^{2p+1}$ of a fibre $\Omega(B(p))$. Then we have an exact sequence

$$(1.3) \quad \cdots \to \pi_{i+1}(B(p)) \to \pi_i(Y_p) \xrightarrow{\pi_*} \pi_i(S^{2p+1}) \xrightarrow{g_*} \pi_i(B(p)) \to \cdots$$

Let $f: S^n \to S^n$, $n=2p^2-1$, be a mapping of degree p and let $Z_f = S^n \cup S^n \times (0, 1]$ be the mapping-cylinder of f. By shrinking $S_1^n = S^n \times (1)$ to a point, we have a mapping-cone $C_f = Z_f/S_1^n$ of f. Let $p: Z_f \to C_f$ be the shrinking map.

Theorem 2. There exists a mapping h of C_f into Y_p satisfying the following conditions. The composition $h \circ p$ induces C-isomorphisms $(h \circ p)_* : \pi_i(Z_f, S_1^{2p^2-1}) \to \pi_i(Y_p)$ for $3 \leq i \leq 2p^3 - 2$. A mapping-cone of $\pi \circ h$ is a cell complex $S^{2p+1} \cup e^{2p^2} \cup e^{2p^2+1}$ with non-trivial Δ and \mathfrak{P}^p , and the restriction $\pi \circ h | S^{2p^2-1}$ represents an element of order p in $\pi_{2p^2-1}(S^{2p+1}) \stackrel{\mathbb{C}}{\approx} Z_p$.

Denote by $_{p}\pi_{i}(B(p))$ the *p*-primary component of $\pi_{i}(B(p))$, then the explicit value of it is given as follows.

Theorem 3.
$${}_{p}\pi_{2p+2i(p-1)}(B(p)) \approx Z_{p}$$
 for $1 \leq i < 2p$ and $i \neq p$,
 ${}_{p}\pi_{2p+2p(p-1)}(B(p)) \approx Z_{p^{2}}$,
 ${}_{p}\pi_{2p+2(p+j)(p-1)-1}(B(p)) \approx Z_{p}$ for $2 \leq j < p$,
 ${}_{p}\pi_{k}(B(p)) = 0$ otherwise for $k < 2p + 4p(p-1) - 3$.

These results can be applied to compute the homotopy groups of Lie groups by use of the following C-isomorphisms:

(1.4)
$$\pi_i(SU(p+1)) \stackrel{\mathbb{C}}{\approx} \pi_i(S^5) \oplus \pi_i(S^7) \oplus \cdots \oplus \pi_i(S^{2p-1}) \oplus \pi_i(B(p)),$$

(1.5) $\pi_i\left(Sp\left(\frac{p+1}{2}\right)\right) \stackrel{\mathbb{C}}{\approx} \pi_i(SO(p+2)) \stackrel{\mathbb{C}}{\approx} \pi_i(S^7) \oplus \pi_i(S^{11}) \oplus \cdots \oplus \pi_i(S^{2p-3}) \oplus \pi_i(B(p))$ for odd p ,

(1.6)
$$\pi_i(G_2) \approx \pi_i(B(5))$$
 for $p = 5$.

§2. Proof of Theorem 1

We have two fiberings:

and

 $p: X_p \to B(p)$ with fibre K(Z, 2) $p': B'(p) \to K(Z, 3)$ with fibre X_p ,

where K(Z, n) denotes Eilenberg-MacLane space of type (Z, n) and B'(p) has the same homotopy type as B(p).

Let $(E_r^{s,t})$ be the cohomological spectral sequence with the coefficient Z_p [7] associated with the first fibering, then

$$E_2^* \simeq H^*(B(p), Z_p) \otimes H^*(Z, 2; Z_p) \simeq \Lambda(u, \mathcal{O}^1 u) \otimes Z_p[v],$$
$$v \in H^2(Z, 2; Z_p).$$

By concerning the dimensions of the elements of $\Lambda(u, \mathcal{O}^{1}u)$, we have that the coboundary d_r is trivial except for r=3, 2p+1, 2p+4. Thus $E_2^* = E_3^*$, $E_4^* = E_{2p+1}^*$, $E_{2p+2}^* = E_{2p+4}^*$ and $E_{2p+5}^* = E_{\infty}^*$.

Since X_p is a 3-connective fibering, the generator v can be chosen such that $d_3(1 \otimes v) = u \otimes 1$. Then $d_3(x \otimes v^n) = n(xu \otimes v^{n-1})$ for $x \in \Lambda(u, \mathcal{O}^1 u)$. Hence we have the following isomorphism, by means of the cup-product,

$$\Lambda(\mathcal{O}^{1} u \otimes 1, u \otimes v^{p-1}) \otimes Z_{p}[1 \otimes v^{p}] \cong H(E_{3}^{*}) = E_{4}^{*} = E_{2p+1}^{*}.$$

Since the transgression commutes with the operation \mathcal{O}^1 and since $\mathcal{O}^1 v = v^p$, we have $d_{2p+1}(1 \otimes v^p) = \mathcal{O}^1 u \otimes 1$ and $d_{2p+1}(u \otimes v^{p-1}) \in E_{2p+1}^{2p+4,-2} = 0$. Thus $d_{2p+1}(1 \otimes v^{mp}) = m(\mathcal{O}^1 u \otimes v^{(m-1)p})$ and $d_{2p+1}(u \otimes v^{mp-1}) = (m-1)(u \cdot \mathcal{O}^1 u \otimes v^{(m-1)p-1})$. It follows that

$$\Lambda(u \otimes v^{p-1}, \mathcal{O}^1 u \otimes v^{(p-1)p}) \otimes Z_p[1 \otimes v^{p^2}] \simeq H(E_{2p+1}^*) = E_{2p+4}^*.$$

Finally, the triviality of d_{2p+4} is easily seen, and $E_{\infty}^* = E_{2p+4}^*$ is a graded ring associated with $H^*(X_p, Z_p)$. Thus we have obtained

(2.1)
$$H^*(X_p, Z_p) = \Lambda(a, c) \otimes Z_p[b],$$

where a, c and b correspond to $u \otimes v^{p-1}$, $\mathcal{O}^1 u \otimes v^{(p-1)p}$ and $1 \otimes v^{p^2}$, respectively.

Next consider the spectral sequence $(E_r^{s,t})$ associated with the second fibering $p': B'(p) \to K(Z, 3)$. $E_2^* \cong H^*(Z, 3; Z_p) \otimes H^*(X_p, Z_p)$.

By Cartan's results [3], $H^*(Z, 3; Z_p) = \Lambda(u, \mathcal{O}^1 u, \mathcal{O}^p \mathcal{O}^1 u, \cdots) \otimes Z_p[\Delta \mathcal{O}^1 u, \Delta \mathcal{O}^p \mathcal{O}^1 u, \cdots]$ for odd p and $H^*(Z, 3; Z_2) = Z_2[u, Sq^2 u, Sq^4 Sq^2 u, \cdots]$, where u is the fundamental class.

It is easy to see that $d_r(1 \otimes a) = 0$ for r < 2p+2. Then $E_{2p+2}^{0,2p+1} \neq 0$. Since $H^{2p+2}(B(p), Z_p) = 0$, $E_{2p+3}^{2n+2,0} = E_{\infty}^{2p+2,0} = 0$. The element $\Delta \mathcal{O}^1 u \otimes 1$ is not a d_r -image for r < 2p+2. Thus it has to be a d_{2p+2} -image. By changing the coefficient of a, if it is necessary, we have that

$$d_{2p+2}(1\otimes a) = \Delta \mathfrak{P}^{1} u \otimes 1 \quad (= Sq^{3} u \otimes 1 = u^{2} \otimes 1 \quad \text{for } p = 2).$$

By Adem's relation [1], [4], $\mathcal{O}^{p}(\Delta \mathcal{O}^{1}u) = \Delta \mathcal{O}^{p}\mathcal{O}^{1}u$ for odd pand $Sq^{4}Sq^{3}u = Sq^{5}Sq^{2}u = (Sq^{2}u)^{2}$. Then $\mathcal{O}^{p}a$ is transgressive and

$$d_{2p^2+2}(1\otimes \mathcal{P}^p a) = \Delta \mathcal{P}^p \mathcal{P}^1 u \otimes 1 \quad (d_{10}(1\otimes Sq^4 a) = (Sq^2 u)^2 \otimes 1).$$

The element $\Delta \mathcal{O}^{p} \mathcal{O}^{1} u \otimes 1$ is not a d_r -image for $r < 2p^2 + 2$. This shows that $\mathcal{O}^{p} a \neq 0$ and we can replace c by $\mathcal{O}^{p} a$ in (2.1).

It is checked directly that $d_r(1 \otimes b) = 0$ for $r \leq 2p+2$. Then it is verified that $E_2^* = E_{2p+2}^*$ and that

$$E_{2p+3}^{*} = \Lambda(u, \mathcal{O}^{1}u, \mathcal{O}^{p}\mathcal{O}^{1}u, \cdots) \otimes Z_{p}[\Delta \mathcal{O}^{p}\mathcal{O}^{1}u, \cdots] \otimes \Lambda(c) \otimes Z_{p}[b],$$

$$(p: \text{odd})$$

$$E_{7}^{*} = \Lambda(u) \otimes Z_{2}[Sq^{2}u, Sq^{4}Sq^{2}u, \cdots] \otimes \Lambda(c) \otimes Z_{2}[b] \quad (p=2).$$

 $\mathcal{O}^{p}\mathcal{O}^{1}u$ is not a d_{r} -image for $r < 2p^{2}+1$, but it is a d_{r} -image for $r=2p^{2}+1$ since $H^{r}(B(p), Z_{p})=E_{\infty}^{r,0}=E_{r+1}^{r,0}=0$ for $r=2p^{2}+1$.

By changing the coefficient of b, if it is necessary, we have that

$$d_{2p^{2}+1}(1\otimes b) = \mathcal{P}^{p}\mathcal{P}^{1}u \otimes 1 \quad (= Sq^{4}Sq^{2}u \otimes 1 \quad \text{for } p = 2).$$

Since the Bockstein operation Δ commutes with the transgression, we have

(2.2)
$$\Delta b = c = \mathcal{O}^{p}a$$
 (Sq¹b = c = Sq⁴a for $p = 2$),

where the elements a, b, c are different only in coefficients $\equiv 0$ from those in (2.1).

Consequently we have proved Theorem 1.

§3. Proof of Theorem 2

The space X_p is a homology (2p+1)-sphere mod p, by Theorem 1, for dimensions $\langle 2p^2 \rangle$ and 3-connected. By Serre's C-theory, $\pi_i(S^{2p+1})$ is C-isomorphic to $\pi_i(X_p)$ for $i \langle 2p^2 - 1$, by a homomorphism g'_* induced by a representative $g': S^{2p+1} \to X_p$ of an element of $\pi_{2p+1}(X_p)$ not divisible by p.

Then Corollary to Theorem 1 is proved by taking g as the composition of g' and the 3-connective fibering: $X_p \rightarrow B(p)$.

In order to prove Theosem 2, we may replace Y_p by a 2connective fibre space Y'_p over Y_p , whence B(p) in (1.3) may be replaced by X_p .

The space Y'_p is given as follows. Let $Z_{g'} = X_p \cup S^{2p+1} \times (0, 1]$ be the mapping cylinder of g'. Then Y'_p is the set of paths: $(I, 0, 1) \rightarrow (Z_{g'}, S^{2p+1}, *)$. The paths: $(I, 0, 1) \rightarrow (Z_{g'}, S^{2p+1}, Z_{g'})$ form a fibre space over $Z_{g'}$ with a fibre Y'_p . Consider a spectral sequence (E_r^*) associated with this fibering, then $E_2^* \approx H^*(X_p, Z_p) \otimes$ $H^*(Y'_p, Z_p)$ and $E_\infty^* \approx H^*(S^{2p+1}, Z_p)$. We shall prove the following lemma

(3.1). There exists an element w of $H^{2p^{2}-1}(Y'_{p}, Z_{p})$ such that $H^{*}(Y'_{p}, Z_{p})$ is isomorphic to $\Lambda(w) \otimes Z_{p}[\Delta w]$ for dimensions less than $2p^{3}$.

By a simple computation of the spectral sequence, we have that b and $\Delta b = \mathcal{O}^{p}a$ are transgression images of w and Δw , i.e., $d_n(1 \otimes w) = b \otimes 1$ and $d_{n+1}(1 \otimes \Delta w) = \mathcal{O}^{p}a \otimes 1$, $n = 2p^2$, for suitable choice of w. Construct a formal spectral sequence (E_r^*) with the above d_n , d_{n+1} and $E_2^* = H^*(X_p, Z_p) \otimes (\Lambda(w) \otimes Z_p[\Delta w])$. The spectral sequence is well-defined for dimensions less than $2p^3$ and the final term is $E_\infty^* = \Lambda(a \otimes 1)$. Comparing E_r^* with E_r^* , it follows that (3.1) is true (cf. [16]).

By generalized Hurewicz theorem in C-theory, $\pi_{2p^2-1}(Y'_p)$ is Cisomorphic to Z_p and there exists a mapping

$$h': S^{2p^{2}-1} \to Y'_p$$

such that $h'^*: H^{2p^2-1}(Y'_p, Z_p) \approx H^{2p^2-1}(S^{2p^2-1}, Z_p)$ and the composi-

tion $h' \circ f$ is homotopic to zero.

Let S be a space consists of pairs (l, s) of paths $l: I \to Y'_p$ and points s of $S^{2p^{2}-1}$ such that l(1) = h'(s). S is a fibre spave over Y'_p with the projection π_0 given by $\pi_0(l, s) = h'(s) = l(1)$. By setting $i(s) = (l_s, s), l_s(I) = h'(s)$, we have an injection *i* of $S^{2p^{2}-1}$ into S which is a homotopy equivalence. Then

$$h'=\pi_0\circ i$$

Let $F = \pi_0^{-1}(*)$ be a fibre. Since $h' \circ f$ is homotopic to zero, then the injection *i* is extended to

$$k: Z_f \to S, \qquad k \mid S^{2p^2-1} = i,$$

such that $k(S_1^{2p^{2-1}}) \subset F$. There exists uniquely a mapping h_0 such that the diagram

$$(Z_f, S_1^{2p^2-1}) \xrightarrow{k} (S, F)$$

$$\downarrow p \qquad \qquad \downarrow \pi_0$$

$$(C_f, *) \xrightarrow{h_0} (Y'_p, *)$$

is commutative. h_0 is an extension of h'.

We shall prove

(3.2). The restriction $k_0 = k | S_1^{2p^{2-1}} : S_1^{2p^{2-1}} \to F$ induces isomorphisms $H^i(F, \mathbb{Z}_p) \approx H^i(S_1^{2p^{2-1}}, \mathbb{Z}_p)$ for $i < 2p^3 - 1$.

Consider a spectral sequence (E_r^*) associated with the fibering $\pi_0: S \to Y'_p$, then $E_2^* \approx H^*(Y'_p, Z_p) \otimes H^*(F, Z_p)$ and $E_\infty^* \approx H^*(S, Z_p) \approx H^*(S^{2p^2-1}, Z_p)$.

Let $n=2p^2-1$. First we have easily that $H^i(F, Z_p)=E_2^{0,i}=0$ for i < n. Since π_0^* is equivalent to h'^* , we have that $E_2^{n,0} \approx H^n(Y'_p, Z_p) \approx Z_p$ is mapped isomorphically onto $E_{\infty}^{n,0} \simeq H^n(S, Z_p)$. Then it follows that $H^n(F, Z_p) \ (\approx E_2^{0,n})$ is isomorphic to Z_p and generated by an element x such that $d_{n+1}(1 \otimes x) = \Delta w \otimes 1$. Thus $d_{n+1}((\Delta w)^k \otimes x) = (\Delta w)^{k+1} \otimes 1$ and $d_{n+1}(w \cdot (\Delta w)^k \otimes x) = w \cdot (\Delta w)^{k+1} \otimes 1$. This shows that $E_{n+2}^{t,s} = E_r^{t,s} = 0$ for r > n+2, $s \le n$ and $n < t + s < 2p^3$. Let $y \in H^i(F, Z_p)$ be a non-zero element of minimum i > n. If $i < 2p^3 - 1$, then it is easily seen that $d_r(1 \otimes y) = 0$ for all $r \ge 2$,

and thus $E_{\infty}^{0,i} \neq 0$. But this contradicts to $H^{i}(S, Z_{p}) = 0$. We have obtained $H^{i}(F, Z_{p}) = 0$ for $n \leq i \leq 2p^{3} - 1$.

Now, it is sufficient to prove that $k_0^*: H^n(F, Z_p) \to H^n(S_1^n, Z_p)$, $n=2p^2-1$, is an isomorphism. $h_0^*: H^n(Y'_p, Z_p) \to H^n(C_f, Z_p)$ is equivalent to $h'^*: H^n(Y'_p, Z_p) \to H^n(S^n, Z_p)$ and it is an isomorphism. By the naturality of Δ , it follows that $h_0^*: H^{n+1}(Y'_p, Z_p) \approx H^{n+1}(C_f, Z_p)$. Also we have isomorphisms $p^*: H^i(C_f, Z_p) \approx H^i(Z_f, S_1^n; Z_p)$ and $\pi_0^*: H^i(Y'_p, Z_p) \approx H^i(S, F; Z_p)$ for i=n, n+1. Then, by the commutativity of the previous diagram, we have isomorphisms $k^*: H^i(S, F; Z_p) \approx H^i(Z_f, S_1^n; Z_p)$ for i=n, n+1. Since $k: Z_f \to S$ is a homotopy equivalence, we have $H^*(S, Z_p) \approx H^*(Z_f, Z_p)$. By applying the five lemma, we have that $k_0^*:$ $H^n(F, Z_p) \to H^n(S_1^n, Z_p)$ is an isomorphism onto. This completes the proof of (3.2).

By generalized J.H.C. Whitehead's theorem in C-theory, it follows from (3.2) that $k_{0*}:\pi_i(S_1^n)\to\pi_i(F)$ is a C-isomorphism for $i<2p^3-2$ and a C-onto for $i\leq 2p^3-2$. Since k is a homotopy equivalence, $k_*:\pi_i(Z_f)\approx\pi_i(S)$ for all i. By the five lemma, we have

(3.3) $(h_0 \circ p)_* = \pi_{0*} \circ k_* : \pi_i(Z_f, S_1^{2p^2-1}) \to \pi_i(S, F) \approx \pi_i(Y_p')$ is a Cisomorphism onto for $i \leq 2p^3 - 2$.

Let $h: C_f \to Y_p$ be the composition of h_0 and the 2-connective fibering of Y'_p onto Y_p . Then the first assertion of Theorem 2 is proved.

The composition $\pi \circ h$ in Theorem 2 coincides with the composition of $h_0: C_f \to Y'_p$ and a fibering $\pi': Y'_2 \to S^{2p+1}$ given by $\pi'(l) = l(0), \ l \in Y'_p$. Let $W = S^{2p+1} \cup e^{2p^2} \cup e^{2p^{2+1}}$ be a mapping cone of $\pi \circ h$. Since the image of each point of C_f under h_0 is a path $l: (I, 0, 1) \to (Z_{g'}, S^{2p+1}, *), \ h_0$ defines a mapping

$$H: W \to Z_{\sigma}'$$

such that $H|S^{2p+1}$ is the identity and that H induces a mapping of paths $\Omega(H): \Omega(W, S^{2p+1}) \to Y'_p$ with $\Omega(H)|C_f = h_0$, where $\Omega(W, S^{2p+1}) = \{l: (I, 0, 1) \to (W, S^{2p+1}, *)\}$ and each point x of C_f is identified with a path $x \times [0, 1]$ in W.

Then it is verified that, for dimensions less than $2p^2+2p-2$,

the mappings h_0 , $\Omega(H)$ and H induces isomorphisms of the cohomology groups mod p. Since X_p is a deformation retract of $Z_{g'}$, it follows from Theorem 1 that $\Delta \neq 0$ and $\mathcal{O}^p \neq 0$ in W. This proves the second assertion of Theorem 2.

Let $\beta \in \pi_{2p^2-1}(S^{2p+1})$ be the class of the restriction $\pi \circ h | S^{2p^2-1}$. β is the class of the attaching map of e^{2p^2} . Since e^{2p^2+1} is attached to e^{2p^2} by a mapping of degree p, then $p\beta = 0$.

Assume that p is odd and $\beta=0$. Then W is homotopy equivalent to a complex $W'=(S^{2p+1}\vee S^{2p^2})\cup e^{2p^2+1}$. Then $\mathcal{O}^p \neq 0$ in $W'/S^{2p^2}=S^{2p^2}=S^{2p+1}\cup e^{2p^2+1}$. But this contradicts to the non-existence of non-trivial mod p Hopf invariant in $\pi_{2p^2+1}(S^{2p+1})$ [12]. Thus $\beta\neq 0$ for odd prime p and the last assertion of Theorem 2 is proved for odd p.

The last assertion of Theorem 2 for p=2 will be proved in the next section

§4. B(2)

In this section, we consider the case p=2.

We first consider SU(3) which is one of B(2), since the characteristic class for the bundle $p: SU(3) \to S^5$ is the generator η_3 of $\pi_4(S^3) \approx Z_2$.

We shall compute the following result.

This follows from the exact sequence

$$\cdots \to \pi_{i+1}(S^5) \xrightarrow{\partial} \pi_i(S^3) \xrightarrow{i_*} \pi_i(SU(3)) \xrightarrow{p_*} \pi_i(S^5) \to \cdots$$

of the bundle and the following results (cf. [15]),

i	=	4	5	6	7	8	9	10
$\pi_{i+1}(S^5)$	\approx	Ζ	Z_{2}	Z_2	$Z_{{}_{24}}$	Z_{2}	Z_2	Z_2
$\pi_i(S^3)$	\approx	Z_{2}	Z_2	$Z_{_{12}}$	Z_{2}	Z_{2}	0	$Z_{\scriptscriptstyle 3}$,

where ∂ satisfies the relation $\partial(E\alpha) = \eta_3 \circ \alpha$ for $\alpha \in \pi_i(S^4)$. It is sufficient to show that $\partial: \pi_{i+1}(S^5) \to \pi_i(S^3)$ is not trivial for

i = 4, 5, 6, 7, 8. In the notations of [15], we have non-trivial ∂ -images: $\partial(\iota_5) = \eta_3$, $\partial(\eta_5) = \eta_3^2$, $\partial(\eta_5^2) = \eta_3^3 = 2\nu'$, $\partial(\nu_5) = \eta_3 \circ \nu_4 = \nu' \circ \eta_6$, and $\partial(\nu_5 \circ \eta_8) = \eta_3 \circ \nu_4 \circ \eta_7 = \nu' \circ \eta_6^2$. Thus (4.1) is computed.

Next we prove

(4.2). The homotopy groups of B(2) and SU(3) are C-isomorphic to each other.

Consider 5-skeleton $S^3 \cup e^5$ of B(2) which has non-trivial Sq^2 . The homotopy type of $S^3 \cup e^5$ is characterized by Sq^2 . Thus any B(2) has the same homotopy type of a complex

$$(S^3 \cup e^5) \cup_{\gamma} e^8$$
,

in which e^s is attached to a representative of a class γ of $\pi_{\gamma}(S^{\mathfrak{z}} \cup e^{\mathfrak{z}})$.

Since $\pi_{\tau}(SU(3)) = 0$ by (4.1), then the injection of $S^3 \cup e^5$ into SU(3) can be extended over a mapping $f: B(2) \to SU(3)$ which induces isomorphisms of homology groups of dimensions less than 8. By considering the ring structure mod 2 for B(2) and SU(3), it follows that f induces isomorphisms of the cohomology groups mod 2 and thus C-isomorphisms of the homotopy groups.

Consider the exact sequence (1.3), in particular,

$$\pi_{7}(Y_{2}) \xrightarrow{\pi_{*}} \pi_{7}(S^{5}) \xrightarrow{g_{*}} \pi_{7}(B(2)).$$

 g_* is trivial since $\pi_7(S^5) \approx Z_2$ and the 2-component of $\pi_7(B(2))$ vanishes by (4.1) and (4.2). Thus π_* is onto. It follows from the first assertion of Theorem 2 that the last assertion of Theorem 2 is true for p=2.

§5. Some results in unstable homotopy groups of spheres

In this section we assume that p is an odd prime. First we recall the following results from Theorem 8.3 of [13].

(5.1) Let *m* be sufficiently large integer, then ${}_{p}\pi_{2m+2i(p-1)}(S^{2m+1}) \approx Z_{p}$ for $1 \leq i \leq 2p-1$ and $i \neq p$

$$p^{\pi_{2m+2i(p-1)}(S^{-1})} \approx Z_{p} \qquad for \quad 1 \leq i \leq 2p-1 \text{ and } i \neq p,$$

$$p^{\pi_{2m+2p(p-1)}(S^{2m+1})} \approx Z_{p}^{2},$$

$$p^{\pi_{2m+2p(p-1)-1}(S^{2m+1})} \approx Z_{p},$$

In the exact sequence

$$(5.2) \quad \dots \to \pi_{i+1}(\Omega^{2}(S^{2m+1}), S^{2m-1}) \to \pi_{i}(S^{2m-1}) \xrightarrow{E^{2}} \pi_{i+2}(S^{2m+1}) \to \pi_{i}(\Omega^{2m+1}), S^{2m-1}) \to \dots,$$

we have the following C-isomorphism, by (8.7)' of [11],

(5.3) $\pi_i(\Omega^2(S^{2m+1}), S^{2m-1}) \stackrel{\mathbb{C}}{\approx} \pi_{i+1}(Z_f, S^{2pm-1})$ for $i < 2p^2m-3$, where Z_f is the mapping-cylinder of a mapping $f: S^{2pm-1} \to S^{2pm-1}$ of degree p,

If i < 2mp-2, then the groups in (5.3) are finite without p-torsions. Thus $E^2: \pi_i(S^{2m+1}) \to \pi_{i+2}(S^{2m+3})$ are C-isomorphisms onto for i < 2(m+1)p-3, and we have

(5.1)' (5.1) is true for 2n+1 > (k+2)/(p-1).

For m = p, we have

 $\begin{array}{ll} (5.4) & {}_{p}\pi_{2p+2i(p-1)}(S^{2p+1}) \approx Z_{p} & for \quad i=1,2\,,\cdots\,,p-1\,, \\ & {}_{p}\pi_{2p^{2}-1}(S^{2p+1}) \approx Z_{p}\,, \\ & {}_{p}\pi_{2p}(S^{2p+1}) \approx Z_{p^{2}}\,, \\ & {}_{p}\pi_{2p+2p^{2}-4}(S^{2p+1}) \approx Z_{p} \\ and & {}_{p}\pi_{2p+1+k}(S^{2p+1}) = 0 & otherwise \ for \quad k < 2p^{2}-4\,. \end{array}$

Furthermore, we shall prove

More generally, we shall prove the following (5.6) by decreasing induction on j.

$$(5.6) \quad {}_{p}\pi_{2p+2j+2i(p-1)}(S^{2p+2j+1}) \approx Z_{p} \quad for \ p+1 \leq i \leq 2p-1 \ and \ 0 \leq j,$$

$${}_{p}\pi_{2p+2j+2i(p-1)-1}(S^{2p+2j+1}) \approx Z_{p} \quad for \ p+1 \leq i \leq 2p-1 \ and \ 0 \leq j$$

$$< i-p,$$

$$and \quad {}_{p}\pi_{2p+2j+1+k}(S^{2p+2j+1}) = 0 \quad otherwise \ for \ 2p^{2}-4 \leq k < 4p(p-1)$$

$$-4 \ and \ j \geq 0.$$

(5.6) is true for sufficiently large j, for example $j \ge p$, by (5.1)'. By (5.3), (5.1)' and by (5.2), we have the following exact sequence.

$$\cdots \to 0 \to {}_{p}\pi_{2p+2(j-1)+2i(p-1)}(S^{2p+2j-1}) \xrightarrow{E^{2}}{}_{p}\pi_{2p+2j+2i(p-1)}(S^{2p+2j+1}) \to Z_{p} \to Z_{p} \to {}_{p}\pi_{2p+2(j-1)+2i(p-1)-1}(S^{2p+2j-1}) \xrightarrow{E^{2}}{}_{p}\pi_{2p+2j+2i(p-1)-1}(S^{2p+2j+1}) \to Z_{p} \to Z_{p} \to Z_{p+2(j-1)+2i(p-1)-2}(S^{2p+2j-1}) \xrightarrow{E^{2}}{}_{p}\pi_{2p+2j+2i(p-1)-2}(S^{2p+2j+1}) \to 0 \to \cdots \to 0 \to Z_{p}\pi_{2p+2(j-1)+2(p+j)(p-1)}(S^{2p+2j-1}) \xrightarrow{E^{2}}{}_{p}\pi_{2p+2j+2(p+j)(p-1)}(S^{2p+2j+1}) \to Z_{p} \to Z_{p} \to Z_{p+2(j-1)+2(p+j)(p-1)-1}(S^{2p+2j-1}) \xrightarrow{E^{2}}{}_{p}\pi_{2p+2j+2(p+j)(p-1)-1}(S^{2p+2j+1}) \to 0,$$

We know [14] that there exists an element $\alpha_i \in \pi_{2i(p-1)+2}(S^3)$ of order p for each integer i > 0 such that $E^j \alpha_i \neq 0$ for all $j \ge 0$. It follows that $E^2: {}_p \pi_{2p+2(j-1)+2i(p-1)}(S^{2p+2j-1}) \rightarrow {}_p \pi_{2p+2j+2i(p-1)}(S^{2p+2j+1})$ is not trivial. Then, by the above exact sequence, we have that the assertion of (5.6) for j > 0 implies the assertion of (5.6) for j-1. Thus (5.6) and (5.5) are proved.

§6. Proof of Theorem 3

For the case p=2, Theorem 3 is proved by (4.1) and (4.2).

In the following, we assume that p is an odd prime. By Theorem 2 and (5.1)', we have that $\pi_i(Y_p)$ is finite for $3 \le i \le 2p^3 - 2$ and

 $\begin{array}{lll} (6.1) & {}_{p}\pi_{{}_{2p+2i(p-1)-1}}(Y_{p}) \approx Z_{p} & for \quad i=p, \ p+1, \cdots, 2p-1, \\ & {}_{p}\pi_{{}_{2p+2i(p-1)-2}}(Y_{p}) \approx Z_{p} & for \quad i=p+1, p+2, \cdots, 2p-1, \\ and & {}_{p}\pi_{k}(Y_{p}) = 0 & otherwise \ for \quad k < 2p+4p(p-1)-3. \end{array}$

Apply the results (6.1), (5.4) and (5.5) to the exact sequence (1.3), then we see that Theorem 3 is a consequence of the following lemma

(6.2). The homomorphisms $\pi_*: \pi_k(Y_p) \rightarrow \pi_k(S^{2p+1})$ for k=2p+2i(p-1)-1, $i=p, p+1, \dots, 2p-1$ and for $k=2p+2p^2-4$ are isomorphisms of the p-components.

i): The case $k=2p+2p(p-1)-1=2p^2-1$. In this case, a generator of ${}_{p}\pi_{k}(Y_{p})$ is represented by $h|S^{k}$. By the last assertion of Theorem 2, we have that (6.2) is true for this case.

ii): The case $k=2p+2p^2-4$. In this case, the image of π_* contains the composition $\beta \circ \alpha$ of the class $\beta \in \pi_{2p^2-1}(S^{2p+1})$ of $\pi \circ h | S^{2p^2-1}$ and a generator α of ${}_p\pi_k(S^{2p^2-1}) \simeq Z_p$. In the stable range, we know in [13] that the composition $E^{\infty}(\beta \circ \alpha) = E^{\infty}(\beta) \circ E^{\infty}(\alpha)$ is not zero, Thus π_* is not trivial for *p*-components and (6.2) is true for this case.

iii): The cases k=2p+2(p+j)(p-1)-1 and $j=1, 2, \dots, p-1$.

Let $K = S^{2p^2-4} \cup e^{2p^2-3}$ be the mapping-cone of a mapping of degree p. We may assume that C_f is a three fold iterated suspension E^3K of K. Then $\pi \circ h$ defines a mapping $\Omega^3(\pi \circ h) : K \to \Omega^3(S^{2p+1})$. Set $Q = \Omega(\Omega^2(S^{2p+1}), S^{2p-1})$, then the homomorphism $\pi_{i+2}(S^{2p+1}) \to \pi_i(\Omega^2(S^{2p+1}), S^{2p-1})$ in (5.2) is equivalent to a homomorphism $i_*: \pi_{i-1}(\Omega^3(S^{2p+1})) \to \pi_{i-1}(Q)$ induced by the natural injection i.

Since the class of $\pi \circ h | S^{2p^{2}-1}$ is an E^{2} -image, $\Omega^{3}(\pi \circ h) | S^{2p^{2}-4}$ is homotopic to zero. Thus $\Omega^{3}(\pi \circ h)$ is factorized to $K \to S^{2p^{2}-3} \to Q$. Next we have

(6.3). $H^*(Q, Z_p)$ is spanned by 1, w and Δw for dimensions less than $4p^2-5$, $w \in H^{2p^2-3}(Q, Z_p)$.

This follows from the results on $H_*(\Omega^2(S^{2p+1}), Z_p)$ in [6].

Then $\pi_{2p-3}(Q)$ is C-isomorphic to Z_p . Thus $\Omega^3(\pi \circ h)$ is homotopic to the composition of a mapping $q: K \to EK$ and a mapping $g: EK \to Q$ such that $q(S^{2p^2-4}) = *$ and $q^*: H^n(EK, Z_p) \approx H^n(K, Z_p)$ for $n=2p^2-3$. We prove

(6.4). g induces isomorphism of cohomology groups mod p and thus C-isomorphisms of homotopy groups for dimensions less than $4p^2-6$.

It is sufficient to prove that $g | S^{2p^{2}-3}$ is not homotopic to zero. Assume that $g | S^{2p^{2}-3}$ is homotopic to zero. Then $\Omega^{3}(\pi \circ h)$ is homotopic to zero in Q. It follows that $\Omega^{2}(\pi \circ h) : EK \to \Omega^{2}(S^{2p+1})$ is homotopic to a mapping into S^{2p-1} . Let $L = S^{2p-1} \cup e^{2p^{2}-2} \cup e^{2p^{2}-1}$ be the mapping-cone of the last mapping. Then the mapping-cone $S^{2p+1} \cup e^{2p^{2}} \cup e^{2p^{2}+1}$ of $\pi \circ h$ in Theorem 2 is homotopy equivalent to

 $E^{2}L$. Then $\mathcal{O}^{p} \neq 0$ in $E^{2}L$ and thus $\mathcal{O}^{p} \neq 0$ in L. But $\mathcal{O}^{p}H^{2p-1}$ (, $Z_{p})=0$ in general. We have a contradiction, hence $g|S^{2p^{2}-2}$ is not homotopic to zero and (6.4) is proved.

Now consider an element γ of $\pi_{k-3}(K)$ such that, by shrinking $S^{2p^{2}-4}$ to a point, γ is carried to a generator of ${}_{p}\pi_{k-3}(S^{2p^{2}-3})$. Then $q_{*}(\gamma) \neq 0$. By (6.4), $\Omega^{3}(\pi \circ h)_{*}(\gamma) = g_{*}q_{*}(\gamma) \neq 0$ in $\pi_{k-3}(Q)$. Then $\Omega^{3}(\pi \circ h)_{*}(\gamma) = 0$ in $\pi_{k-3}(\Omega^{3}(S^{2p+1}))$. It follows that $(\pi \circ h)_{*}E^{3}\gamma \neq 0$ in $\pi_{k}(S^{2p+1})$. Thus π_{*} in (6.2) is not trivial for the case iii) and it is an isomorphism of the *p*-components.

Consequenty, Theorem 3 has been proved.

\S 7. Remarks on homotopy groups of Lie groups

Since $\pi_{2n}(S^{2k+1})$ is finite and has no *p*-torsion if k < n < p, it follows from the exact sequence for the bundle $SU(k+1) \rightarrow S^{2k+1} = SU(k+1)/SU(k)$ that $\pi_{2n}(SU(k+1))$ is finite and has no *p*-torsion. From the exactness of the sequence $\pi_{2n+1}(SU(n+1)) \xrightarrow{\pi_*} \pi_{2n+1}(S^{2n+1}) \rightarrow \pi_{2n}(SU(n))$, we have that if p < n then there exists a mapping $f_n: S^{2n+1} \rightarrow SU(n+1)$ such that the mapping degree of the composition $\pi \circ f_n: S^{2n+1} \rightarrow S^{2n+1}$ is prime to *p*. The multiplication in SU(n+1) and the mappings f_1, f_2, \cdots, f_n define a mapping

$$f: S^{3} \times S^{5} \times \cdots \times S^{2^{n+1}} \to SU(n+1).$$

Then it is verified that f induces isomorphisms of the cohomology groups mod p and thus C-isomorphisms

(7.1) $f^*: \pi_i(S^3) \oplus \pi_i(S^5) \oplus \cdots \oplus \pi_i(S^{2n+1}) \to \pi_i(SU(n+1))$ for all *i* and for n < p.

We have also that $\pi_{2p}(SU(p))$ is finite and the injection homomorphism: $\pi_{2p}(SU(2)) \rightarrow \pi_{2p}(SU(p))$ is an onto map of the pcomponents. This injection homomorphism is equivalent to the projection homomorphism: $\pi_{2p+1}(B_{SU(2)}) \rightarrow \pi_{2p+1}(B_{SU(p)})$. Let $g: S^{2p+1}$ $\rightarrow B_{SU(p)}$ be a mapping which induces the SU(p)-bundle: SU(p+1) $\rightarrow S^{2p+1}$. Then there exists a mapping $q: S^{2p+1} \rightarrow S^{2p+1}$ of the degree prime to p such that the composition $g \circ q$ is homotopic to a mapping into $B_{SU(2)}$. Let $\bar{q}: X \rightarrow SU(p+1)$ be a bundle map

induced by q. Then X is equivalent to a SU(p)-bundle, whose group of structure can be reduced into SU(2). Thus there exists a SU(2)-bundle B(p) over S^{2p+1} such that the diagram

is commutative, for a mapping g'. By use of g' and f_2, \dots, f_{p-1} , construct a mapping

$$f': S^5 \times \cdots \times S^{2p-1} \times B(p) \to SU(p+1)$$

as above, then f' induces isomorphisms of the cohomology groups mod p and thus C-isomorphisms

$$(1.4) f'_*: \pi_i(S^5) \oplus \cdots \oplus \pi_i(S^{2p-1}) \oplus \pi_i(B(p)) \to \pi_i(SU(p+1))$$

for all *i*. By [2], $\mathcal{O}^1 \neq 0$ in SU(p+1). Thus B(p) satisfies (1.1). Similarly, we have mappings

 $f : S^3 \times S^7 \times \cdots \times S^{4^{n-1}} \to Sp(n)$

and
$$f': S' \times \cdots \times S^{2p-3} \times B(p) \to Sp\left(\frac{p+1}{2}\right) \quad (p: \text{ odd})$$

which induce C-isomorphisms

(7.2)
$$f_*: \pi_i(S^3) \oplus \pi_i(S^7) \oplus \cdots \oplus \pi_i(S^{4n-1}) \to \pi_i(Sp(n))$$

for all *i* and for $p \ge 2n$ and

$$(1.5) \quad f'_*: \quad \pi_i(S') \oplus \cdots \oplus \pi_i(S^{2p-3}) \oplus \pi_i(B(p)) \to \pi_i\left(Sp\left(\frac{p+1}{2}\right)\right)$$

for all i and for odd p.

By [5], we have C-isomorphisms

$$(1.5)' \qquad \pi_i(Spin(n+2)) \stackrel{\mathbf{C}}{\approx} \pi_i(SO(n+2)) \stackrel{\mathbf{C}}{\approx} \pi_i\left(Sp\left(\frac{n+1}{2}\right)\right)$$

for odd n, odd p and for all i.

There is a G_2 -bundle: $Spin(7) \rightarrow S^7$ with a characteristic class of crder 2. Then we have C-isomorphisms

$$\pi_i(G_2) \oplus \pi_i(S^{\gamma}) \stackrel{\mathcal{C}}{\approx} \pi_i(Spin(7)) \stackrel{\mathcal{C}}{\approx} \pi_i(S^{\gamma}) \oplus \pi_i(B(5))$$

for all *i* and for p=5. It follows

(1.6)
$$\pi_i(G_2) \approx \pi_i(B(5)) \quad (p = 5).$$

REFERENCES

- [1] J. Adem, The relations on Steenrod powers of cohomology classes, Algebraic geometry and topology, Princeton.
- [2] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math., 75 (1953), 409-448.
- [3] H. Cartan, Séminaire de topologie, E. N. S., 1954-55.
- [4] H. Cartan, Sur l'itérations des opérations de Steenrod, Comm. Math. Helv., 29 (1955), 40-58.
- [5] B. Harris, On the homotopy groups of the classical groups, Ann. of Math., 74 (1961), 407-413.
- [6] J. C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.
- J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
- [8] J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-231.
- [9] J.-P. Serre, Groupes d'homotopie et classes des groupes abéliens, Ann. of Math., 58 (1953), 258-294.
- [10] N. E. Steenrod, Topology of fibre bundles, Princeton 1951.
- [11] H. Toda, On double suspension E², J. Inst. Poly. Osaka City Univ., 7 (1956), 103-145.
- H. Toda, p-primary components of homotopy groups II, mod p Hopf invariant, Mem. Coll. Sci. Kyoto Univ., 31 (1958), 143-160.
- [13] H. Toda, p-primary components of homotopy groups IV, Compositions and toric constructions, Mem. Coll. Sci. Kyoto Univ., 32 (1959), 297-332.
- [14] H. Toda, On unstable homotopy groups of spheres and classical groups, Proc. Nat. Acad. Sci. U.S. A., 46 (1960), 1102-1105.
- [15] H. Toda, Composition methods in homotopy groups of spheres, Princeton 1962.
- [16] E. C. Zeeman, A proof of the Comparison theorem for spectral sequences, Proc. Camb. Phil. Soc., 53 (1957), 57-62.