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§  1 .  Statement of results

We shall consider the p-prim ary components of the homotopy
groups of a  cell complex

B (p ) =  S 3 v e2 P '  e 2 P+4

having the cohomology ring (OP' - S q 2 i f  p = 2 )  mod p

(1.1) H *(B (p), Z p ) A (u, P itt) , u G 113 (B (p), Z  p ) .

The existence of such a complex B (p )  is provided by an S 3 -
bundle over a  (2p + 1)-sphere ...S2 P+' with a  characteristic class
cei En -

2 p (S 3 )  of a non-trivial mod p  Hopf invariant [12].
Denote by X p  the 3-connective fibre space over B ( p )  Then

(1.2) 7ri (X p ) iri (B(p)) f o r  i >  3

and we have

Theorem 1 .  H *(X p , Z  p ) = A (a, 6 "a)O Z  [b ], w h e re  a E H 2P+ 1

(X p , Z )  an d  th e  re la t io n  b  a ) P a  holds ( A  S e  an d  (PP =S q 4 i f
p= 2).

Denote by C  the class o f the finite abelian  groups without
p-torsion, then by use of Serre's C-theory [9], it follows from the
theorem the following

Corollary. T here is a  m apping g: .S 2 P4 B ( p )  which induces
C-isom orphism s g * : 7r1(S 2 P±1) 7ri (B (p)) f o r 3 < i< 2 p 2 - 1.
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A s a space of paths in the mapping-cylinder of g , we have a
space Y,, which is a fibre of a fibering equivalent to g  and also
which is the to tal space o f  a  fibering 7r : Yp  S 2 P '  of a fibre
I-2(B (p)). Then we have an exact sequence

(1. 3) • • • 7ri , ( B ( p ) ) ,  n -1( Y p )  '7 1 4  7r1(S 2P+ 1) 7 r i(B (p )) •• • .

Let f n =  — 1 ,  be a  mapping o f degree p  and let
Z f = Sn v S "  x (0, 1] b e  the mapping-cylinder of f .  By shrinking
S 7= S n x  (1) to  a po int, we have a mapping-cone Cf =Z f /S 7  of f .
Let p: Z 1 - Ç - be the shrinking map.

Theorem 2. There exists a mapping h of  C f in to  Y p  satisfy ing
the following conditions. The composition hop induces C-isom orphism s
(hop)* : 7ti (Z 1 , 7 r,(Y p ) f o r 3 <  2p3— 2. A  mapping-cone
o f  7roh is  a  cell com plex  S 2 P 1 v e 2 P2  e 2 P2 '  w ith  non-triv ial A  and
(PP, and the restriction v ohlS 2 P2 - 1  represents an element o f  order p in

77.2 p  2_,(S 2 P+') g , Z .

Denote by p7r i (B ( P )) the p- primary component of 7r1 (B (p)), then
the explicit value of it is given as follows.

Theorem 3
. p7r2p-i 2i( p - i

) ( B ( p ) ) , ---  Z p f o r  1 < i  <2 p  an d  i + p ,
p n - 2 p + 2 p (  p - i ) ( B ( P ) ) Z p 2 ,

p
7r

2/5-1-2 (p+ j)(p -i)-1 (
13 ( P ) )  " -

-
"0 Zp f o r  2 < j < p ,

p7r k(B(P))=0  o therw ise f o r k <2 P +4 p (p -1 )—  3 .

These results can be applied to compute the homotopy groups
of Lie groups by use of the following C--isomorphisms:

(1.4) 7 -t i (S U (p+ 1)) z i (S 5) ED 7r,(S7) ED • • • ED 7-ri (S 2P- ')EB 7ri ( B ( p ) )  ,

(1. 5) 7-ti ( sp (  /1 + 1 ) ) Tr1(S 0 (p  +2)) 7-t- i (S7)EDz1(S " )e  • • • ED7r i (S 2 P - 3 )
2

697r i(B(P)) f or odd p,

(1.6) 7 r i (G 2) i(B (5 ))  fo r  p 5.
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§ 2 . Proof o f Theorem 1

We have two fiberings :

p : x p -> B(p) with fibre K(Z, 2)
and p ' : if(p )- K(Z, 3) with fibre X ,

where K(Z, n) denotes Eilenberg-MacLane space of type (Z, n) and
.if(p) has the same homotopy type as B(p).

L e t (E;.' t) be th e  cohomological spectral sequence with the
coefficient Z p  [7 ] associated with the first fibering, then

E :  H*(B(p), zp)®H*(Z, 2 ; Z )  A ( u ,  P u )  Z  p [v ] ,
v E H 2 (Z, 2 ; Z n ) .

By concerning the dimensions of the elements o f A(u, Pu),
we have that the coboundary dr is  trivial except for r= 3, 2 p+ 1 ,
2p+4. Thu s E: = E:, E: = E4,41, E g , ,  4 and E t + , =  .

Since X p  is  a  3-connective fibering, the generator y  can be
chosen such that d3(1 v)= u g 1. Then cl,(x 0 v") = n(xu  Ø  v" - 1 )
for x E A(u, V u ).  Hence we have the following isomorphism, by
means of the cup-product,

A(T"tt g 1, u g  vP - i) ; E l T A E :) =  E: E44-1 •

Since the transgression commutes with the operation P  and
since Pv= vP, we have d2p41(1 vP)---- Pu 0 1  and d 2 p + 1 ( u  v P - 1 )E
EP„'It- 2 = O. Thus d2 n + 1(1 0 v " )= m (P u 0 v ( m-

1)1 ')  and d21',(u0vm 1'- 1 )
= (m —1)(u • Pu v ( m- 1 ) P- 1 ). It follows that

A (u  vP ', P u  v(P- "P) Z p [l OvP 2 ] H(E4 1) =

Finally, the triviality of d2 1 ' + 4  is easily seen, and Et= E „  is
a graded ring associated with H *(X p , Z p ). Thus we have obtained

(2. 1) H*(X p , Z 1') =  A(a, c) Z  p [b] ,

where a, c  and b correspond to u  v 1'- 1 , (Piu v ( P- "P  and 1 ® v 1'2,
respectively.

Next consider the spectral sequence (E ; '')  associated with the
second fibering p' :if(p)-> K(Z, 3). E :  H * (Z ,  3; z p ) g H* (X p , Z1').
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By Cartan's results [3 ] ,  H*(Z, 3; Z p ) =A (u, (P'u, PPPu , •••)
Z p [A Pu , A PPPu , •••] fo r  odd p  a n d  H*(Z, 3; Z 2) = Z2 [u, S eu,
S eS eu  , .••], where u  is the fundamental class.

It is  e a s y  to  s e e  th a t  d r ( 1 0 a  ) =O f o r  r < 2 p + 2 . Then
E1,2:2+1 * 0 .  Since H2P±2(B(p), z) = 0, = 0. The
element A Pu  0  1  is not a  dr -im age for r < 2 p + 2 . Thus it has
to  be a  d,p ± ,- im a g e . By changing the coefficient of a ,  i f  it is
necessary, we have that

d 2 2(1 0 a ) = A iT iu  0 1  (= S e u  0 1  = u 2 0  1  for p = 2).

B y Adem's relation [1 ], [4 ], (P P (A P u )= A S "P u  for odd p
and S eS eu = S eS eu= (S eu) 2 . Then (P "a is transgressive and

d2 p2+ 2(1 O  (PPa) = A WPIPu 0 1 (d 10(1 0 S e a )  = (S eu) 2 01) .

The element ACPPPu Ø 1  is  not a  dr - im ag e  fo r  r< 2p 2 +2.
This shows that 6"a==0 and we can replace c  by CPPa in  (2. 1).

It is checked directly that d r (1 0 b )= 0  for r<  2 p  + 2 .  Then
it is verified that E = E 2 and  that

E g 9 ,3 =  A(u, CP'u, P P 19 1 u , •••) Z  p [A 6 'V itt , -..] A(c) g Z p [f l ,
(p : odd)

=  A ( u )  Z 2[Sq 2 u, SeSq 2 u , • • •] A ( c )  g  z 2 [b ] (p  =  2).

P P P u  is not a  dr -im age for r< 2p 2 + 1 , but it is a  dr -image
for r=2p 2 +1  since IF' (B (p), z  p)=E° = 0  for r= 2p2 + 1.

By changing the coefficient of b , i f  it is necessary, we have
that

d 2 p2, g  b )  =  P  lu  0 1  (  =  S e S q 2 u ® for p  = 2) .

Since the Bockstein operation A commutes with the transgression,
we have

(2. 2) A b =c = ?P  a  (S qlb = c = S e a  f o r p  = 2),

where the elements a, b, c are different only in coefficients 0  from
those in  (2. 1).

Consequently we have proved Theorem 1.
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§ 3 . Proof o f Theorem 2

T h e  space X p  i s  a  homology (2p+1)-sphere mod p ,  by
Theorem 1, for dimensions < 2p2 an d  3-connected. By Serre's
C-theory, v i (S2P+1) is C-isomorphic to  r 1(X )  for i < 2 p 2 -1 ,  b y  a
homomorphism g 4', induced by a  representative g' : S 2 P+1 X  p  o f
an element of 7r2p+,(Xp) not divisible b y  P.

Then Corollary to Theorem 1 is proved by taking g  as the
composition of g ' and the 3-connective fibering : X p — B(p).

In  order to prove Theosem 2, we may replace Y  a  2-
connective fibre space Y„' over Y p ,  whence B (p )  in  (1. 3) may be
replaced by X.

The space IT,' is given as  follows. Let Z g , —X p  u,S2 P±1 x (0, 1]
b e  th e  mapping cylinder of g ' .  Then Y,; is th e  se t o f paths :
(/, 0, 1) ,  (Zg , ,S 2 P+1 , *). The paths : (I, 0, 1)—). S 2 P  1, 4 , ) form
a fibre space over Z g ,  with a fibre Y , . Consider a spectral sequence
(E , ` )  associated w ith th is fibering, then EP Z p)Ø
H *(Y „ Z p )  and H*(S2P+1, Z p ). We shall prove the following
lemma

(3. 1). T here ex ists a n  elem ent w  o f  112 P2 - 1 (n ,  Z p ) such that
Z p )  is isomorphic to A(w) ® Z,,[ w ] for dimensions less than

2p3.

B y a sim ple computation of the spectral sequence, we have
that b  and b = (PP a are transgression images of w and A w , i.e.,
d„(1 (53) w )=b (1;) 1 an d  d„,(1 010 Aw)= 63 P a  1 , n= 2p2, fo r  suitable
choice of w .  Construct a  formal spectral sequence ('E ;')  with the
a b o ve  d „ ,  d ,  a n d  'E :=H * (X p , Z p ) 0 (A (w )0 Z p [A w ]) .  The
spectral sequence is well-defined for dimensions less than 2p3 and
th e  f in a l term is 'E'ot = A(a  Ø  1). Com paring 'E ; ' with E ,` ,  it
follows that (3. 1) is true (cf . [16]).

By generalized Hurewicz theorem in  C-theory, 7r2 p 2_1( Y )  is C-
isomorphic to Z p  and  there exists a  mapping

h' : S 2 P2 - 1 Y ;

such  that h'* :11 2 P2 - 1 (Y ,'„ Z ) H 2 P2 - 1 (S 2 P2 - 1 , Z p )  and the composi-
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tion h'. f  is homo topic to zero.
Let S be a space consists of pairs (1, s) of paths 1: I  Y ,' and

points s  o f ,S2P '  such that 1(1)= h' (s). S  is a  fibre spave over Y .;
with the projection v o given by ir o (/, s) -  h' (s) =41). By setting
i(s)=(4, 1 , ( 1 ) =  h '( s ) ,  w e have an injection i  o f S2P2 - 1  in to  S
which is a  homotopy equivalence. Then

h ' = v o oi

Let F= nV(*) be a  f ib re . Since h 'o f  is homotopic to zero,
then the injection i  is extended to

kl.S2P2 '  =

such that k(SP 2 - ') F .  There exists uniquely a  mapping ho  such
that the diagram

(Z f , F)(S,

IP ho

(C *) *)

is commutative, h o is  an extension of h'.
We shall prove

(3. 2). The restriction k 0 =leiS P 2 - ' : S P 2 - '—).F induces isom orphism s
Hi(F, Z,,) f o r i< 2 p 3 -1 .

Consider a spectral sequence (E,.*) associated with the fibering
: S—> Y,'„ then E ? H *(Y ,", Z  p ) OH*(F, Z  p )  and E  H * ( S ,  Z p )
H*(SzP' - ', Z,,).

Let n=2p 2 — 1. First we have easily that Hi(F, Z p )=. .E2' =0
for i< n .  Since 74,' is equivalent to V ,  w e  h ave that .02"
----e1/"(r„ Z p ) ,----, Z p  is mapped isomorphically onto E :.°  H n (S , Z p ).
Then it follows that Hfl(F, Z,,) a n )  is isomorphic to Z p  and
generated by an  element x  such that d 1(1 x)=A w  01 . Thus
6/ 1((Aw) k  0x) = (Aw)k+1 0 1  a n d  d a - F i ( w • ( A w ) k  x) = w • (Aw)k±' 1.
This shows that E 2 = Ef.• 8 = 0 for r>n  + 2, s  ‹ n  and n<t + s<2p 3 .
Let yE Hi(F, Z,,) b e  a non-zero element of minimum i > n .  If
i < 2 p 3 -1 ,  then it is easily seen that d r (1  0y)= 0 for all r
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and thus P.: i * 0 .  But this contradicts to H i(S , Z 0 ) = 0 .  We have
obtained H i(F , Z )= 0  for n < i< 2 p 3 - 1 .

Now, it is sufficient to prove that kg̀  : H"(F, Z ) —>Hn(S7, Z ) ,
n= 2p2 — 1, is an isomorphism. 14 Z,) - -> lin (C f,Z p ) is equi-
valent to h'* : H n(Y ;) , Z ) —> fin(Sn, Zp )  and it is an isomorphism.
B y  th e  n a tu r a l i t y  o f  A , it  fo l lo w s  th a t  ht : H n '( 1 7 1„Z p )
7---Hn+1(C f ,  Z p ). A lso  w e  h av e  isomorphisms p*:H i(c f , 4 ) ,

Hi(Zf , s7; z p ) and zt F; Z p ) for i= n , n  +  1.
Then, by the commutativity of the previous diagram , we have
isomorphisms k *  H i(S , F; Z ) H i(Z f ,  S ;  Z )  f o r  i = n ,  n + 1.
Since k : Zf —>S is  a homotopy equivalence, we have H *(S, Z p )

H *(Z f ,  Z p ). By applying th e  five lemma, we have that k t
H"(F, Z p ) ,  Hn(57, Z )  is  a n  isomorphism on to . T h is completes
the proof of (3.2).

By generalized J.H .C. Whitehead's theorem in C-theory, it
follows from (3.2) that ko *  7 r ( F )  is a C-isomorphism for
j<2p3-2 and a C -onto for j <2p3-2. Since k  is a homotopy
equivalence, k* :7r i (Z f )r-t-.17ri (S ) for all i. By the five lemma, we have

(3. 3) (ho°P)*= 7ro*°k*: z a p  7r1(n )  is a  C-
isomorphism onto f o r i 2p 3 - 2 .

Let h : Cf —> Yp be the composition of h o and the 2-connective
fibering of onto Yi ,. Then the first assertion of Theorem 2
is proved.

The composition 7roh in Theorem 2  coincides with the com-
position of Cf—>17,; and a fibering -->S2P+1 given by
ir'( l)= l(0 ), 1  E  17 ‘ .  L et W = S 2 P+1 v e 2P2 v e 2P2 +1 b e  a  mapping cone
of 7roh. Since the im age of each point of C f under ho is  a  path
1 :  (I, 0 ,1 ) ,  S 2 P+ 1 ,  * ) ,  h o defines a  mapping

H:W — >Zg
,

such that HI S 2 P+1 is  the identity and  that H  induces a  mapping
o f  paths c i(H ) : S '1 )- . Y ,,' w i t h  f2(H)1 C f =  h o , where

s2p+1) (I, 0 , 1)__„( w, s 2 p + 1

,* )}  and each point x  o f C f  is
identified with a  path x  x [0, 1] in W.

Then it is verified that, for dimensions less than 2p2 + 2p —2,
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th e  mappings 110 ,  (2 (H ) and H  induces isomorphisms o f th e
cohomology groups mod p .  Since X p  is  a  deformation retract of
4 , ,  it follows from Theorem 1 that A * 0  and C P"==0 in  W . Th is
proves the second assertion of Theorem 2.

Let 1r22,(S2P-") be the class of the restriction TrohlS 2 P2 - - %
13 is the class of the attaching map o f e2 P2 . Since e2 P2 -'- '  is attached
to e2 P2 b y  a  mapping o f degree p, then p,8= 0.

Assume that p is odd and 4 - 0 .  Then W  is homotopy equi-
va len t to  a  complex W'= (S 2 P±1 vS 2 n u e 2 P2 ' '. Then 6)  P  0  in
W 1S 2 P2 =5 2 P2 =5 2 P-" v e 2 P2  1 . B ut th is contradicts to th e  non-
existence of non-trivial mod p Hopf invariant in 

7 r 2 p 2 + 1 ( S 2 P + 1 )  [12 ].
Thus R * 0  for odd prime p  and the last assertion of Theorem 2
is proved for odd p .

The last assertion of Theorem 2 for p = 2 will be proved in
the next section

§4. B (2 )

In this section, we consider the case p=2.
We first consider S U(3) which is one of B(2), since the charac-

teristic class for the bundle p:su(3)-->S' is  the generator n, of
7r4(S3 ) ~Z2.

We shall compute the following result.

(4.1)i ----- 4 5 6 7 8 9 10

7ri(SU(3))~ 0 z z, 0 Z „  0 Z,.

This follows from the exact sequence

Li * P*
7r1} z i(S 3) --÷  i(S U(3)) i(S5)

of the bundle and the following results (cf. [15]),

i = 4 5 6 7 8 9 10

zi+i(S 5 ) Z Z2 Z 2 Z24 Z. Z2 Z.

n- i(S 3 ) Z2 Z. Z „  Z 2 Z 20 Z „

where a satisfies the relation a(E a)=9 7 3 0 a  fo r  a E 7-t i (S 4). It is
sufficient to show  th a t a:n.,,_,(s5) , ,ri ( s 3 )  is  n o t  trivial for
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i = 4, 5, 6, 7, 8. In the notations of [1 5 ],  w e  have non-trivial
a--images : a(to= 973 , a(7,5) = a(n )=  = 2 V ,  a(v5)= 7/3° / ) 4 1 / 0 9 1 6 ,  and
30., 5 0,18 ) =7/ 3 .1.,4 0,7 7 = 1./ o 9 A Thus (4.1) is computed.

Next we prove

(4. 2). The homotopy groups of B(2) and SU(3) are C-isomorphic to
each other.

Consider 5- skeleton S3 v e5 o f  B(2) which has non-trivial Sq2.
The homotopy type of S3 \..) es is characterized by Sq2 . Thus any
B(2) has the same homotopy type of a complex

(S 3 e 5) u ,e 8 ,

in  which e8 is  a ttached  to  a  representative o f  a  class 7  of
71- 7(S 3 v e5).

Since n-
7 (SU(3))— 0  b y  (4. 1), then the injection of S3 ve 5 into

SU(3) can be extended over a  mapping f :  B(2) ,  SU (3) which
induces isomorphisms o f homology groups of dimensions less than
8. By considering the ring structure mod 2 for B(2) and SU(3), it
follows that f  induces isomorphisms of the cohomo logy groups mod
2 and thus C-isomorphisms of the homotopy groups.

Consider the exact sequence (1. 3), in particular,

7r
* g*

7r7(17 2) 7 r 7 ( S )
7 r7(B(2 ))

g *  is  trivial since 7r7 (S 5) Z .,  and the 2-component o f 7r7(B(2 ))
vanishes by (4. 1) and (4. 2). Thus 7r*  is  onto. It follows from
the first assertion of Theorem 2  that the last assertion of Theorem

2  is true for p=2.

§  5 . Some results in  unstable homotopy groups o f  spheres

In  this section w e  assume that p  is  an  odd prim e. First
we recall the following results from Theorem 8. 3 o f [13].

(5. 1 )  Let m  be sufficiently large integer, then
p 7C  2M +  2 i(  p  1 )(S 2 rn  ± Z

p 71.2 n i 2 p (p -1 )(S 2 m + 1 ) Z p 2  5

p 7 r2 m + 2 p (p -1 )-1 (S 2 m + i) Z  p

fo r  1 < i  < 2 p -1  a n d  i
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p n .  2m+ 2( p +  p  - 1 ) - 2 ( 5 2 m  4 - 1 Z

a n d  p 7 r  2122+1+ k(S 2 m  " )  =  0 otherw ise f or k <4 p ( p - 1 ) —  4 .

In the exact sequence

( 5 .  2 ) 1 4 - 2 2 ( s 2 m + i ) , s 2 m _ z i ( s  2rn - 1) 7 r i + 2 ( s  2rn+i) 7ri(1-22

(s2 tn + 1 ) ,  S 2 m  -

we have the following C-isomorphism, by (8 . 7)' of [11 ],

(5.3) n - i (S22(S 2m-" ) , S 2' ) 7r1 , ( Z f , S 2 Pm- i) f o r  i < 2 p 2 m— 3 ,  where
Z f  i s  t h e  mapping-cylinder o f  a  m apping f S 'Pm -' of
degree p,

If i <2m p—  2 , then the groups in  (5. 3) are finite without p-
torsions. Thus E 2 : zi(S 2 '"-")—> 7 r iq  2(S 2 m + 3 )  are C.-isomorphisms onto
for i < 2(m +  i)p  — 3, and we have

(5. 1)' ( 5 .1 )  is  tru e  f o r 2n  +1> (k  ±2)/(p —1).

For m =p , we have

(5. 4) 2 p + 2 i( p - 1 ) ( S 2 P + 1 ) Z f o r  i  =  1, 2 , ••• , p— 1,
2p2 - i ( S 2 P + 1 ) Z  P  '

7t 2 p2(S2P+1) zp2

p7 r  2 p - 4 (S 2 + I ) Z

a n d  p7 r2p-Fi+k(S 2 P + 1 )  = 0 otherwise f o r  k < 2 p 2 - 4.

Furthermore, we shall prove

(5 . 5) p a -  2 p+2i( p -1)(S 2 P +1 ) Z f o r  i  =  p + 1 ,  p + 2 , • • - ,2 p - 1 ,

p7r2,,±2i(p-i),(S 2 P+1) Z p f o r  i p +1 , p +2 , , 2p —  1 ,
a n d  p7r2p-F1-1 k(S 2 P + 1 )  =  0  otherwise f or 2p2- 4 < k <4 p (p -1 )—  4 .

More generally, we shall prove the following (5. 6) by decreas-
ing induction on j .

(5.6)  0 7 r2 p  2 J + 2 i ( p - i ) ( S
2 P + 2 1 + 1 )Z ,, f o r 1 <  2 p - 1  and 0

7 rp 2 p + 2 .1 -1 2 i(p - -1 ) -1 (S
2

+ 1
P 1-25 ‘

) p f o r p + i i  < 2p-1  an d  0 < j
< i — P
and p 7 r 2p I 2 j II I

—4 and j
k1S 2 P  1 2»  1)  =  0

.
otherwise f o r  2 p 2 - 4 < k < 4 p (p - 1 )
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(5. 6) is true fo r  sufficiently large j ,  fo r  example j  > p ,  by
(5. 1)'. By (5. 3), (5. 1)' and by (5. 2), we have the following exact
sequence.

E2
•• • —> O —> p  2  p +2 ( p - - 1 ) ( S 2 P +2 j p7r 2 p-F2j +2iC p - i ) ( S 2 P + 2 5 + 1 )

E 2

Z p 7 V  2 p +2 (  -1 )+2 i(  p -  i)  -1 (S 2 P  + 2 j  1 ) p7r 2 p+2; p -  1) - i (S 2 P + 2 j  + 1 )  — >  Z  — >

E 2

p7r2p+2c; -0+2i( p-i),(S 2 P + 2 - 1 - 1 ) p 7 r2 p -1 -2 j-F 2 i(p -1 ) -2 (S  
p2 +2j+1) _>

E 2

p7r2p I-2j 1-2 (p + P (p -1 )(  S 2 - - - >

p7V2p+2(i- 1)+2(p +ixp-1) _1 (S 2 P + 2 - 1 - 1 )
E2

p7V2 p +2 j+ 2(p+ j ) ( p  -1 ) - 1 (S  2 P + 2 5 + 1 ) 0 1

(2P + > > P + j >0) .

We know [14] that there exists an element ,  G- ziC  p - 0+2( S 3 )

o f order p  for each integer 1>0 such that Eia i d= 0 for a ll j  0.
It follows that E 2 : p7r2p F2(j - 1)-E2i(p - 1)(S  2 P  I - 2 i p 7 r 2 p + 2 j 1 - 2 i ( p - 1 ) ( S 2 P + 2 i + 1 )

is not trivial. Then, by the above exact sequence, we have that
the assertion of (5. 6) for j>0 implies the assertion of (5. 6) for
j -1. Thus (5. 6) and (5. 5) are proved.

§  6 .  Proof o f  Theorem 3

For the case p = 2 , Theorem 3 is proved by (4. 1) and (4. 2).
In  the following, we assume that p  is  an  odd prim e. By

Theorem 2 and (5. 1)', we have that 7-t i ( Y p )  is finite for 3<1 <2 p 3 —2
and

(6. 1) t 2p)-2i( p - 1) -1( Y  p ) Z f o r  i  =  p, p + 1, ••• , 2p - 1 ,
p 7 r  2p+2i( p -1) - 2( Y  p) Z  p f o r  i  =  p + i,p + 2 , • • •  , 2p —1 ,

a n d  p n  k (
Y

p )  = otherwise f o r  k  < 2p + 4 p ( p - 1 ) -  3 .

Apply the results (6. 1), (5. 4) and (5. 5) to the exact sequence
(1. 3), then we see that Theorem 3 is a consequence of the follow-
ing lemma

(6. 2). The homomorphisms  7r : 7 V k (Y p ) — >  k (S 2 P+1 ) for k= 2p + 2 i ( p - 1 )
-1 ,  i= p , p + 1 ,• • •  ,  2p -1 and for k = 2p + 2p2- 4 are isomorphisms
of the p-com ponents.

p7r2p -I j -  1) -! p-1-11( p- 1)(S 2 P 1 2 j  - 1 )
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i): T h e  c ase  k = 2 p 4 2 p ( p - 1 ) - 1 - 2 p 2 — 1. In  th is case, a
generator o f p 7rk (Y p )  is represented by h lS k .  By the last assertion
o f Theorem 2, we have that (6. 2) is true for this case.
ii) : T he case k=2p+2p 2 -  4. In this case, the image of z *  con-
tains the composition /30a of the class /3e 7r2 p

2 _1(S 2P+ 1 )  o f z oh jS 2 P2 '
and a generator a  o f  p7z- k( S2 P2 - 1 )------' Z p . In  th e stable range, we
know in  [1 3 ] that the composition E - (0 .a)=E ( /8 )0 E - ( a )  is not
zero, Thus 71- *  is  n o t trivial for p-components and (6. 2) is true
for this case.

iii) : T he cases k = 2 p + 2 ( p + j ) ( p - 1 ) - 1  and  j=1 ,  2 , ••• , p -1 .
L e t  K =S 2 P2 - 4 v e 2 1 2 '  be the mapping-cone o f a  mapping of

degree p .  We may assume that C f  is a three fold iterated suspen-
sion E 3K  of K .  Then 7 r o h  defines a mapping S f (roh) : K -÷02(S 2 P+').
Set Q=S2(f2 2 (S 2 P+1) ,  S 2 P- 1 ), then the homomorphism 7ri + 2(S2 P+')-->
7ri (S22 (S 2 P+1), S 2 P- 1 )  in  (5. 2) is equivalent to a  homomorphism i * :
Tri _1(123 (S 2 P"))— .7 1(Q ) induced by the natural injection i.

Since the class o f  7roh I S2 P2 - 1  i s  an  E 2-image, S23 (7-roh)l S 2 P2 - - 4

is homotopic to zero . Thus 123 (7r0h) is factorized to K  S 2 P2 - 3

Next we have

(6. 3). H*(Q, Z )  is  sp an n e d  b y  1 ,  w  and  ..Sw for dim ensions less
than  02 5, w E H 2 P2 - 3 (Q, Z ) .

This follows from the results on H * (S22 (S 2 P+1), Z )  in  [6].
Then n- 3 (Q) is C-isomorphic to Z .  T h u s  Se(nroh) is homo-

topic to the composition of a mapping q :K - - › E K  and a mapping
g :E K , Q  such that q(S 2 P2 - 4 ) — * and q* : H "(E K , Z ) H "(K , Z )
for n =2 p 2 — 3. We prove

(6. 4). g  induces isomorphism o f  cohomology groups m od p and thus
C isom orphism s o f  homotopy groups for dimensions less than 0 2 -6 .

It is sufficient to prove that g  S 2 P2 '  is not homotopic to zero.
Assume that glS 2 P2 - 3 is homotopic to zero . Then 123 (7roh) is homo-
top ic to zero  in  Q .  It follows that  f 1 2 (7roh) : EK —> ,f22 (S 2 P ' )  is
homotopic to a  mapping into S 2 P- '. Let L  S 2 P-  1  u e 2 P2 - 2  e 2 P2 '  be
the mapping-cone of the last mapping. Then the mapping-cone
S 2 P+lv e 2 P2 v e 2 P2 ' 1 o f  7roh in  Theorem 2 is homotopy equivalent to
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E 2 L .  T hen  (P P  0  in  E 'L  and thus OPP d= 0 in L .  But CPPH 2 P- 1

(  ,  Z p ) =0 in  general. W e have a contradiction, hence g  S2P 2 - 2  is
not homotopic to zero and (6. 4) is proved.

Now consider an element 7 o f 7rk 3 (K )  such that, by shrinking
S2

1
2 - 4  to  a point, 7  is carried to a generator of p 7rk _3(S 2 P2 ' ) .  Then

q,(7) P- O. B y  (6. 4), S23 (7r. h) * (7)= g * q * (7) rd= 0  in  7 3(Q ) .  Then
I-23(7r oh)* (7) - k-  0  in  7r k _3(123 (S 2 P + 1 )). It fo llow s that (7roh) *E 3 7 4-0

in 7rk (S 2 P ' ) .  Thus 7r*  in (6. 2) is not trivial for the case iii) and
it  is  an isomorphism of the p--components.

Consequenty, Theorem 3 has been proved.

§ 7. Remarks on homotopy groups of L ie groups

Since 7r2„(S 2 k") is finite and has no p-torsion if k < n < p ,  it
follows from the exact sequence for the bundle SU(k +1)—. S 2 '
= SU(k +1)1 SU(k) that 7r2„(SU(k +1 )) is finite and has no p-torsion.

From the exactness of the sequence 7r2.-E1(SU(n +1)) -
2

- *-1<7 r  7 r 2 (S 2 n + 1 )
7r2 n (S tA n )) , we have that if p < n  then there exists a mapping

f„: S 2  "  S U (n  + 1 )  such  th at the mapping degree o f th e com-
position 7 r o f a  s 2 . + 1  i s  prime to  p .  The multiplication in
SU(n+ 1) and the mappings f „  f 2 , ••• , ft, define a mapping

f :  .S3 x .S 5 x • • • x S 2 n+1 —> SU(n + 1) .

Then it is verified that f  induces isomorphisms of the coho-
mology groups mod p  and thus C isomorphisms

(7.1) f *  :  n -
i (S 3 ) n- i (S 5 )  ED • • • ED 7r i ( s 2 n + i ) 77-

i (SU (n  +1 )) f o r  a l l  i
and f o r n  <  p

We have also that 9r2p(SU(P)) is finite and the injection homo-
morphism : 7r2 p (SU(2))-->7r2 p (S U (p ) )  i s  a n  onto  m ap  o f th e  p -
components. This injection homomorphism is equivalent to  the
projection homomorphism : 7r2p+1(Bs 0 c2) - - > 7r 2 p-Fl(B  SU( p ) .  Let g : S 2 P+'
— B s u (  p )  b e  a mapping which induces the S U (p ) - bundle : SU(p+1)
—.S2 P 1. T h en  th ere  ex is ts  a  mapping q: S 2 P+l . .S 2 P±1 o f th e
degree prime to p  such that the composition goq i s  homotopic to
a  mapping into Bs u c2 ) . L e t  q :X -->S U(p+1) b e  a  bundle map



206 Hirosi T oda

induced by a. Then X  is equivalent to a  SU(p)- bundle, whose
group of structure can be reduced into S  U(2). Thus there exists
a  SU(2)-bundle B (p) over S 2 ' such that the diagram

gt
B(p).-- S U ( p  +1 )

qs2 p + 1 _ _ _ _>2 p + 1

is commutative, for a mapping g'. By use of g '  and f 2 , • • • , f 1 ,
construct a  mapping

f ' : S 5 x  ••• x  S 2 P- ' x B(p) SU(p +1)

as above, then f '  induces isomorphisms of the cohomology groups
mod p  and thus C-isomorphisms

(1.4)f ' , „  :  2 r (S 5 ) ED • • • e 7ri (s2P-i) e Tri (B (p ) ) 7r.
 i (SU(p +1))

for all i. By [2 ], CP1 _L- 0 in SU(p + 1 ).  Thus B (p) satisfies (1. 1).
Similarly, we have mappings

f  :  S 3 x S 7 x • • • x S'n - 1 S p ( n )

andf ' : S 7 x •-• x S 2P- 3 x B(p) Sp(P  2
+ 1 )( p  :  odd)

which induce C-isomorphisms

(7. 2)f : e zi(s7) e  e z i ( s p (n ) )

for all i  and for p  2n and

(1 .5 )  f : i( S 7 ) e 7ri(S2P - 3) e  7 7 . i(B(P)) 7 r i (SP( P
2
+ 1

) )

for all i  and for odd p.
By [5 ], we have C-isomorphisms

i( sp (n  +  1) )(1. 5)' zi(Spin(n +2)) n-
i (S0(n + 2))

2  P
for odd n , odd p and for all i.

There is a  G2-bundle : Spin(7)—  S 7 w ith a  characteristic class
of c rder 2. Then we have C-isomorphisms

n t (G2 ) n ,(S 7 ) i(SPin(7)) 7r (S 7 )  e Tr,(B(5))
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for all i  and for p = 5. It fo llow s

(1.6)7 t i ( G 2 ) 7ri(B(5 )) (p  = 5)
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