On homotopy groups of $\mathbf{S}^{\mathbf{3}}$-bundles over spheres

By
Hirosi Toda

(Received Jan. 14, 1963)

§ 1. Statement of results

We shall consider the p-primary components of the homotopy groups of a cell complex

$$
B(p)=S^{3} \cup e^{2 p+1} \cup e^{2 p+4}
$$

having the cohomology ring $\left(\mathcal{P}^{1}=S q^{2}\right.$ if $\left.p=2\right) \bmod p$

$$
\begin{equation*}
H^{*}\left(B(p), Z_{p}\right)=\Lambda\left(u, P^{1} u\right), \quad u \in H^{3}\left(B(p), Z_{p}\right) \tag{1.1}
\end{equation*}
$$

The existence of such a complex $B(p)$ is provided by an S^{3} bundle over a $(2 p+1)$-sphere $S^{2 p+1}$ with a characteristic class $\alpha_{1} \in \pi_{2 p}\left(S^{3}\right)$ of a non-trivial $\bmod p$ Hopf invariant [12].

Denote by X_{p} the 3-connective fibre space over $B(p)$ Then

$$
\begin{equation*}
\pi_{i}\left(X_{p}\right) \approx \pi_{i}(B(p)) \quad \text { for } \quad i>3 \tag{1.2}
\end{equation*}
$$

and we have
Theorem 1. $H^{*}\left(X_{p}, Z_{p}\right)=\Lambda\left(a, \mathcal{P}^{p} a\right) \otimes Z_{p}[b]$, where $a \in H^{2 p+1}$ $\left(X_{p}, Z_{p}\right)$ and the relation $\Delta b=\mathcal{P}^{p} a$ holds $\left(\Delta=S q^{1}\right.$ and $\mathcal{P}^{p}=S q^{4}$ if $p=2$).

Denote by \mathcal{C} the class of the finite abelian groups without p-torsion, then by use of Serre's C-theory [9], it follows from the theorem the following

Corollary. There is a mapping $g: S^{2 p+1} \rightarrow B(p)$ which induces C-isomorphisms $g_{*}: \pi_{i}\left(S^{2 p+1}\right) \rightarrow \pi_{i}(B(p))$ for $3<i<2 p^{2}-1$.

As a space of paths in the mapping-cylinder of g, we have a space Y_{p} which is a fibre of a fibering equivalent to g and also which is the total space of a fibering $\pi: Y_{p} \rightarrow S^{2 p+1}$ of a fibre $\Omega(B(p))$. Then we have an exact sequence

$$
\begin{equation*}
\cdots \rightarrow \pi_{i+1}(B(p)) \rightarrow \pi_{i}\left(Y_{p}\right) \xrightarrow{\pi_{*}} \pi_{i}\left(S^{2 p+1}\right) \xrightarrow{g_{*}} \pi_{i}(B(p)) \rightarrow \cdots . \tag{1.3}
\end{equation*}
$$

Let $f: S^{n} \rightarrow S^{n}, n=2 p^{2}-1$, be a mapping of degree p and let $Z_{f}=S^{n} \cup S^{n} \times(0,1]$ be the mapping-cylinder of f. By shrinking $S_{1}^{n}=S^{n} \times(1)$ to a point, we have a mapping-cone $C_{f}=Z_{f} / S_{1}^{n}$ of f. Let $p: Z_{f} \rightarrow C_{f}$ be the shrinking map.

Theorem 2. There exists a mapping h of C_{f} into Y_{p} satisfying the following conditions. The composition hop induces \mathcal{C}-isomorphisms $(h \circ p)_{*}: \pi_{i}\left(Z_{f}, S_{1}^{2 p^{2}-1}\right) \rightarrow \pi_{i}\left(Y_{p}\right)$ for $3 \leqq i \leqq 2 p^{3}-2$. A mapping-cone of $\pi \circ h$ is a cell complex $S^{2 p+1} \cup e^{2 p^{2}} \cup e^{2 p^{2}+1}$ with non-trivial Δ and \mathcal{Q}^{p}, and the restriction $\pi \circ h \mid S^{2 p^{2-1}}$ represents an element of order p in $\pi_{2 p^{2}-1}\left(S^{2 p+1}\right) \stackrel{\mathcal{C}}{\approx} Z_{p}$.

Denote by ${ }_{p} \pi_{i}(B(p))$ the p-primary component of $\pi_{i}(B(p))$, then the explicit value of it is given as follows.

Theorem 3. ${ }_{p} \pi_{2 p+2 i(p-1)}(B(p)) \approx Z_{p}$ for $1 \leqq i<2 p$ and $i \neq p$, $p^{\pi^{2 p+2 p(p-1)}}(B(p)) \approx Z_{p^{2}}$,
${ }_{p} \pi_{2 p+2(p+j)(p-1)-1}(B(p)) \approx Z_{p} \quad$ for $2 \leqq j<p$, ${ }_{p} \pi_{k}(B(p))=0 \quad$ otherwise for $k<2 p+4 p(p-1)-3$.

These results can be applied to compute the homotopy groups of Lie groups by use of the following \mathcal{C}-isomorphisms:

$$
\begin{equation*}
\pi_{i}(S U(p+1)) \stackrel{\mathcal{C}}{\approx} \pi_{i}\left(S^{5}\right) \oplus \pi_{i}\left(S^{7}\right) \oplus \cdots \oplus \pi_{i}\left(S^{2 p-1}\right) \oplus \pi_{i}(B(p)) \tag{1.4}
\end{equation*}
$$

(1.5) $\pi_{i}\left(S p\left(\frac{p+1}{2}\right)\right) \stackrel{\mathcal{C}}{\approx} \pi_{i}(S O(p+2)) \stackrel{\mathcal{C}}{\approx} \pi_{i}\left(S^{7}\right) \oplus \pi_{i}\left(S^{11}\right) \oplus \cdots \oplus \pi_{i}\left(S^{2 p-3}\right)$ $\oplus \pi_{i}(B(p)) \quad$ for odd p,
(1.6) $\pi_{i}\left(G_{2}\right) \stackrel{\mathcal{C}}{\approx} \pi_{i}(B(5))$ for $p=5$.

§ 2. Proof of Theorem 1

We have two fiberings:
and

$$
p: X_{p} \rightarrow B(p) \quad \text { with fibre } K(Z, 2)
$$

$$
p^{\prime}: B^{\prime}(p) \rightarrow K(Z, 3) \quad \text { with fibre } X_{p}
$$

where $K(Z, n)$ denotes Eilenberg-MacLane space of type (Z, n) and $B^{\prime}(p)$ has the same homotopy type as $B(p)$.

Let $\left(E_{r}^{s, t}\right)$ be the cohomological spectral sequence with the coefficient Z_{p} [7] associated with the first fibering, then

$$
E_{2}^{*} \cong H^{*}\left(B(p), Z_{p}\right) \otimes H^{*}\left(Z, 2 ; Z_{p}\right) \approx \Lambda\left(u, \mathcal{P}^{1} u\right) \otimes Z_{p}[v]
$$

$v \in H^{2}\left(Z, 2 ; Z_{p}\right)$.
By concerning the dimensions of the elements of $\Lambda\left(u, \mathscr{P}^{1} u\right)$, we have that the coboundary d_{r} is trivial except for $r=3,2 p+1$, $2 p+4$. Thus $E_{2}^{*}=E_{3}^{*}, E_{4}^{*}=E_{2 p+1}^{*}, E_{2 p+2}^{*}=E_{2 p+4}^{*}$ and $E_{2 p+5}^{*}=E_{\infty}^{*}$.

Since X_{p} is a 3-connective fibering, the generator v can be chosen such that $d_{3}(1 \otimes v)=u \otimes 1$. Then $d_{3}\left(x \otimes v^{n}\right)=n\left(x u \otimes v^{n-1}\right)$ for $x \in \Lambda\left(u, \mathcal{P}^{1} u\right)$. Hence we have the following isomorphism, by means of the cup-product,

$$
\Lambda\left(\mathcal{P}^{1} u \otimes 1, u \otimes v^{p-1}\right) \otimes Z_{p}\left[1 \otimes v^{p}\right] \cong H\left(E_{3}^{*}\right)=E_{4}^{*}=E_{2 p+1}^{*}
$$

Since the transgression commutes with the operation \mathcal{P}^{1} and since $\mathcal{P}^{1} v=v^{p}$, we have $d_{2 p+1}\left(1 \otimes v^{p}\right)=\mathcal{P}^{1} u \otimes 1$ and $d_{2 p+1}\left(u \otimes v^{p-1}\right) \in$ $E_{2 p+1}^{2 n+4,-2}=0$. Thus $d_{2 p+1}\left(1 \otimes v^{m p}\right)=m\left(\mathcal{P}^{1} u \otimes v^{(m-1) p}\right)$ and $d_{2 p+1}\left(u \otimes v^{m p-1}\right)$ $=(m-1)\left(u \cdot \mathcal{P}^{1} u \otimes v^{(m-1) p-1}\right)$. It follows that

$$
\Lambda\left(u \otimes v^{p-1}, \mathcal{P}^{1} u \otimes v^{(p-1) p}\right) \otimes Z_{p}\left[1 \otimes v^{p^{2}}\right] \cong H\left(E_{2 p+1}^{*}\right)=E_{2 p+4}^{*} .
$$

Finally, the triviality of $d_{2 p+4}$ is easily seen, and $E_{\infty}^{*}=E_{2 p+4}^{*}$ is a graded ring associated with $H^{*}\left(X_{p}, Z_{p}\right)$. Thus we have obtained

$$
\begin{equation*}
H^{*}\left(X_{p}, Z_{p}\right)=\Lambda(a, c) \otimes Z_{p}[b] \tag{2.1}
\end{equation*}
$$

where a, c and b correspond to $u \otimes v^{p-1}, \rho^{1} u \otimes v^{(p-1) p}$ and $1 \otimes v^{p^{2}}$, respectively.

Next consider the spectral sequence ($E_{r}^{s, t}$) associated with the second fibering $p^{\prime}: B^{\prime}(p) \rightarrow K(Z, 3) . \quad E_{2}^{*} \simeq H^{*}\left(Z, 3 ; Z_{p}\right) \otimes H^{*}\left(X_{p}, Z_{p}\right)$.

By Cartan's results [3], $H^{*}\left(Z, 3 ; Z_{p}\right)=\Lambda\left(u, \mathcal{P}^{1} u, \mathcal{P}^{p} \mathcal{P}^{1} u, \cdots\right) \otimes$ $Z_{p}\left[\Delta \mathscr{P}^{1} u, \Delta \bigodot^{p} \mathscr{P}^{1} u, \cdots\right]$ for odd p and $H^{*}\left(Z, 3 ; Z_{2}\right)=Z_{2}\left[u, S q^{2} u\right.$, $\left.S q^{4} S q^{2} u, \cdots\right]$, where u is the fundamental class.

It is easy to see that $d_{r}(1 \otimes a)=0$ for $r<2 p+2$. Then $E_{2 p+2}^{0,2 p+1} \neq 0$. Since $H^{2 p+2}\left(B(p), Z_{p}\right)=0, E_{2 p+3}^{2 n+2,0}=E_{\infty}^{2 p+2,0}=0$. The element $\Delta \mathcal{P}^{1} u \otimes 1$ is not a d_{r}-image for $r<2 p+2$. Thus it has to be a $d_{2 p+2}$-image. By changing the coefficient of a, if it is necessary, we have that

$$
d_{2 p+2}(1 \otimes a)=\Delta \mathcal{P}^{1} u \otimes 1 \quad\left(=S q^{3} u \otimes 1=u^{2} \otimes 1 \quad \text { for } p=2\right) .
$$

By Adem's relation [1], [4], $\mathscr{P}^{p}\left(\Delta \mathcal{P}^{1} u\right)=\Delta \mathcal{P}^{p} \mathcal{P}^{1} u$ for odd p and $S q^{4} S q^{3} u=S q^{5} S q^{2} u=\left(S q^{2} u\right)^{2}$. Then $\mathcal{P}^{p} a$ is transgressive and

$$
d_{2 p^{2}+2}\left(1 \otimes \odot^{p} a\right)=\Delta \odot^{p} \odot^{1} u \otimes 1 \quad\left(d_{10}\left(1 \otimes S q^{4} a\right)=\left(S q^{2} u\right)^{2} \otimes 1\right) .
$$

The element $\Delta \mathcal{P}^{p} \mathcal{P}^{1} u \otimes 1$ is not a d_{r}-image for $r<2 p^{2}+2$. This shows that $\mathcal{Q}^{p} a \neq 0$ and we can replace c by $\mathcal{Q}^{p} a$ in (2.1).

It is checked directly that $d_{r}(1 \otimes b)=0$ for $r \leqq 2 p+2$. Then it is verified that $E_{2}^{*}=E_{2 p+2}^{*}$ and that

$$
\begin{gathered}
E_{2 p+3}^{*}=\Lambda\left(u, \mathcal{P}^{1} u, \mathcal{P}^{p} \mathcal{P}^{1} u, \cdots\right) \otimes Z_{p}\left[\Delta \mathcal{P}^{p} \mathcal{P}^{1} u, \cdots\right] \otimes \Lambda(c) \otimes Z_{p}[b], \\
\\
\quad(p: \text { odd }) \\
E_{7}^{*}=\Lambda(u) \otimes Z_{2}\left[S q^{2} u, S q^{4} S q^{2} u, \cdots\right] \otimes \Lambda(c) \otimes Z_{2}[b] \quad(p=2) . \\
\mathcal{P}^{p} \mathcal{P}^{1} u \text { is not a } d_{r} \text {-image for } r<2 p^{2}+1, \text { but it is a } d_{r} \text {-image } \\
\text { for } r=2 p^{2}+1 \text { since } H^{r}\left(B(p), Z_{p}\right)=E_{\infty}^{r, 0}=E_{r+1}^{r, 0}=0 \text { for } r=2 p^{2}+1 .
\end{gathered}
$$

By changing the coefficient of b, if it is necessary, we have that

$$
d_{2 p^{2}+1}(1 \otimes b)=\mathcal{P}^{p}\left(\mathcal{P}^{1} u \otimes 1 \quad\left(=S q^{4} S q^{2} u \otimes 1 \quad \text { for } p=2\right) .\right.
$$

Since the Bockstein operation Δ commutes with the transgression, we have

$$
\begin{equation*}
\Delta b=c=\mathcal{P}^{p} a \quad\left(S q^{1} b=c=S q^{4} a \quad \text { for } p=2\right), \tag{2.2}
\end{equation*}
$$

where the elements a, b, c are different only in coefficients $\equiv 0$ from those in (2.1).

Consequently we have proved Theorem 1.

§ 3. Proof of Theorem 2

The space X_{p} is a homology $(2 p+1)$-sphere $\bmod p$, by Theorem 1, for dimensions $<2 p^{2}$ and 3-connected. By Serre's C-theory, $\pi_{i}\left(S^{2 p+1}\right)$ is \mathcal{C}-isomorphic to $\pi_{i}\left(X_{p}\right)$ for $i<2 p^{2}-1$, by a homomorphism g_{*}^{\prime} induced by a representative $g^{\prime}: S^{2 p+1} \rightarrow X_{p}$ of an element of $\pi_{2 p+1}\left(X_{p}\right)$ not divisible by p.

Then Corollary to Theorem 1 is proved by taking g as the composition of g^{\prime} and the 3-connective fibering : $X_{p} \rightarrow B(p)$.

In order to prove Theosem 2, we may replace Y_{p} by a 2connective fibre space Y_{p}^{\prime} over Y_{p}, whence $B(p)$ in (1.3) may be replaced by X_{p}.

The space Y_{p}^{\prime} is given as follows. Let $Z_{g^{\prime}}=X_{p} \cup S^{2 p+1} \times(0,1]$ be the mapping cylinder of g^{\prime}. Then Y_{p}^{\prime} is the set of paths: $(I, 0,1) \rightarrow\left(Z_{g^{\prime}}, S^{2 p+1}, *\right)$. The paths : $(I, 0,1) \rightarrow\left(Z_{g^{\prime}}, S^{2 p+1}, Z_{g^{\prime}}\right)$ form a fibre space over $Z_{g^{\prime}}$ with a fibre Y_{p}^{\prime}. Consider a spectral sequence $\left(E_{r}^{*}\right)$ associated with this fibering, then $E_{2}^{*} \approx H^{*}\left(X_{p}, Z_{p}\right) \otimes$ $H^{*}\left(Y_{p}^{\prime}, Z_{p}\right)$ and $E_{\infty}^{*} \approx H^{*}\left(S^{2 p+1}, Z_{p}\right)$. We shall prove the following lemma
(3.1). There exists an element w of $H^{2 p^{2-1}}\left(Y_{p}^{\prime}, Z_{p}\right)$ such that $H^{*}\left(Y_{p}^{\prime}, Z_{p}\right)$ is isomorphic to $\Lambda(w) \otimes Z_{p}[\Delta w]$ for dimensions less than $2 p^{3}$.

By a simple computation of the spectral sequence, we have that b and $\Delta b=\mathcal{\rho}^{p} a$ are transgression images of w and Δw, i.e., $d_{n}(1 \otimes w)=b \otimes 1$ and $d_{n+1}(1 \otimes \Delta w)=\mathcal{P}^{p} a \otimes 1, n=2 p^{2}$, for suitable choice of w. Construct a formal spectral sequence (${ }^{\prime} E_{r}^{*}$) with the above $\quad d_{n}, d_{n+1}$ and $\quad E_{2}^{*}=H^{*}\left(X_{p}, Z_{p}\right) \otimes\left(\Lambda(w) \otimes Z_{p}[\Delta w]\right)$. The spectral sequence is well-defined for dimensions less than $2 p^{3}$ and the final term is ${ }^{\prime} E_{\infty}^{*}=\Lambda(a \otimes 1)$. Comparing ' E_{r}^{*} with E_{r}^{*}, it follows that (3.1) is true (cf. [16]).

By generalized Hurewicz theorem in \mathcal{C}-theory, $\pi_{2 p^{2}-1}\left(Y_{p}^{\prime}\right)$ is \mathcal{C} isomorphic to Z_{p} and there exists a mapping

$$
h^{\prime}: S^{2 p^{2}-1} \rightarrow Y_{p}^{\prime}
$$

such that $h^{\prime *}: H^{2 p^{2-1}}\left(Y_{p}^{\prime}, Z_{p}\right) \approx H^{2 p^{2-1}}\left(S^{2 p^{2-1}}, Z_{p}\right)$ and the composi-
tion $h^{\prime} \circ f$ is homotopic to zero.
Let S be a space consists of pairs (l, s) of paths $l: I \rightarrow Y_{p}^{\prime}$ and points s of $S^{2 p^{2-1}}$ such that $l(1)=h^{\prime}(s) . \quad S$ is a fibre spave over Y_{p}^{\prime} with the projection π_{0} given by $\pi_{0}(l, s)=h^{\prime}(s)=l(1)$. By setting $i(s)=\left(l_{s}, s\right), l_{s}(I)=h^{\prime}(s)$, we have an injection i of $S^{2 p^{2-1}}$ into S which is a homotopy equivalence. Then

$$
h^{\prime}=\pi_{0} \circ i
$$

Let $F=\pi_{0}^{-1}(*)$ be a fibre. Since $h^{\prime} \circ f$ is homotopic to zero, then the injection i is extended to

$$
k: Z_{f} \rightarrow S, \quad k \mid S^{2 p^{2}-1}=i
$$

such that $k\left(S_{1}^{2 p^{2-1}}\right) \subset F$. There exists uniquely a mapping h_{0} such that the diagram

is commutative. h_{0} is an extension of h^{\prime}.
We shall prove
(3.2). The restriction $k_{0}=k \mid S_{1}^{2 p^{2-1}}: S_{1}^{2 p^{2-1}} \rightarrow F$ induces isomorphisms $H^{i}\left(F, Z_{p}\right) \approx H^{i}\left(S_{1}^{2 p^{2}-1}, Z_{p}\right)$ for $i<2 p^{3}-1$.

Consider a spectral sequence $\left(E_{r}^{*}\right)$ associated with the fibering $\pi_{0}: S \rightarrow Y_{p}^{\prime}$, then $E_{2}^{*} \approx H^{*}\left(Y_{p}^{\prime}, Z_{p}\right) \otimes H^{*}\left(F, Z_{p}\right)$ and $E_{\infty}^{*} \approx H^{*}\left(S, Z_{p}\right)$ $\approx H^{*}\left(S^{2 p^{2-1}}, Z_{p}\right)$.

Let $n=2 p^{2}-1$. First we have easily that $H^{i}\left(F, Z_{p}\right)=E_{2}^{0,4}=0$ for $i<n$. Since π_{0}^{*} is equivalent to h^{*}, we have that $E_{2}^{n, 0}$ $\approx H^{n}\left(Y_{p}^{\prime}, Z_{p}\right) \approx Z_{p}$ is mapped isomorphically onto $E_{\infty}^{n, 0} \cong H^{n}\left(S, Z_{p}\right)$. Then it follows that $H^{n}\left(F, Z_{p}\right)\left(\approx E_{2}^{0, n}\right)$ is isomorphic to Z_{p} and generated by an element x such that $d_{n+1}(1 \otimes x)=\Delta w \otimes 1$. Thus $d_{n+1}\left((\Delta w)^{k} \otimes x\right)=(\Delta w)^{k+1} \otimes 1$ and $d_{n+1}\left(w \cdot(\Delta w)^{k} \otimes x\right)=w \cdot(\Delta w)^{k+1} \otimes 1$. This shows that $E_{n+2}^{t, s}=E_{r}^{t, s}=0$ for $r>n+2, s \leqq n$ and $n<t+s<2 p^{3}$. Let $y \in H^{i}\left(F, Z_{p}\right)$ be a non-zero element of minimum $i>n$. If $i<2 p^{3}-1$, then it is easily seen that $d_{r}(1 \otimes y)=0$ for all $r \geqq 2$,
and thus $E_{\infty}^{0, i} \neq 0$. But this contradicts to $H^{i}\left(S, Z_{p}\right)=0$. We have obtained $H^{i}\left(F, Z_{p}\right)=0$ for $n<i<2 p^{3}-1$.

Now, it is sufficient to prove that $k_{0}^{*}: H^{n}\left(F, Z_{p}\right) \rightarrow H^{n}\left(S_{1}^{n}, Z_{p}\right)$, $n=2 p^{2}-1$, is an isomorphism. $h_{0}^{*}: H^{n}\left(Y_{p}^{\prime}, Z_{p}\right) \rightarrow H^{n}\left(C_{f}, Z_{p}\right)$ is equivalent to $h^{\prime *}: H^{n}\left(Y_{p}^{\prime}, Z_{p}\right) \rightarrow H^{n}\left(S^{n}, Z_{p}\right)$ and it is an isomorphism. By the naturality of Δ, it follows that $h_{0}^{*}: H^{n+1}\left(Y_{p}^{\prime}, Z_{p}\right)$ $\approx H^{n+1}\left(C_{f}, Z_{p}\right)$. Also we have isomorphisms $p^{*}: H^{i}\left(C_{f}, Z_{p}\right) \approx$ $H^{i}\left(Z_{f}, S_{1}^{n} ; Z_{p}\right)$ and $\pi_{0}^{*}: H^{i}\left(Y_{p}^{\prime}, Z_{p}\right) \approx H^{i}\left(S, F ; Z_{p}\right)$ for $i=n, n+1$. Then, by the commutativity of the previous diagram, we have isomorphisms $k^{*}: H^{i}\left(S, F ; Z_{p}\right) \approx H^{i}\left(Z_{f}, S_{1}^{n} ; Z_{p}\right)$ for $i=n, n+1$. Since $k: Z_{f} \rightarrow S$ is a homotopy equivalence, we have $H^{*}\left(S, Z_{p}\right)$ $\approx H^{*}\left(Z_{f}, Z_{p}\right)$. By applying the five lemma, we have that k_{0}^{*} : $H^{n}\left(F, Z_{p}\right) \rightarrow H^{n}\left(S_{1}^{n}, Z_{p}\right)$ is an isomorphism onto. This completes the proof of (3.2).

By generalized J.H.C. Whitehead's theorem in \mathbb{C}-theory, it follows from (3.2) that $k_{0 *}: \pi_{i}\left(S_{1}^{n}\right) \rightarrow \pi_{i}(F)$ is a \mathcal{C}-isomorphism for $i<2 p^{3}-2$ and a \mathcal{C}-onto for $i \leqq 2 p^{3}-2$. Since k is a homotopy equivalence, $k_{*}: \pi_{i}\left(Z_{f}\right) \approx \pi_{i}(S)$ for all i. By the five lemma, we have

$$
\begin{equation*}
\left(h_{0} \circ p\right)_{*}=\pi_{0 *} \circ k_{*}: \pi_{i}\left(Z_{f}, S_{1}^{2 p^{2-1}}\right) \rightarrow \pi_{i}(S, F) \approx \pi_{i}\left(Y_{p}^{\prime}\right) \quad \text { is a } \quad \text { C- } \tag{3.3}
\end{equation*}
$$ isomorphism onto for $i \leqq 2 p^{3}-2$.

Let $h: C_{f} \rightarrow Y_{p}$ be the composition of h_{0} and the 2 -connective fibering of Y_{p}^{\prime} onto Y_{p}. Then the first assertion of Theorem 2 is proved.

The composition $\pi \circ h$ in Theorem 2 coincides with the composition of $h_{0}: C_{f} \rightarrow Y_{p}^{\prime}$ and a fibering $\pi^{\prime}: Y_{2}^{\prime} \rightarrow S^{2 p+1}$ given by $\pi^{\prime}(l)=l(0), l \in Y_{p}^{\prime}$. Let $W=S^{2 p+1} \cup e^{2 p^{2}} \cup e^{2 p^{2}+1}$ be a mapping cone of $\pi \circ h$. Since the image of each point of C_{f} under h_{0} is a path $l:(I, 0,1) \rightarrow\left(Z_{g^{\prime}}, S^{2 p+1}, *\right), h_{0}$ defines a mapping

$$
H: W \rightarrow Z_{g},
$$

such that $H \mid S^{2 p+1}$ is the identity and that H induces a mapping of paths $\Omega(H): \Omega\left(W, S^{2 p+1}\right) \rightarrow Y_{p}^{\prime} \quad$ with $\quad \Omega(H) \mid C_{f}=h_{0}$, where $\Omega\left(W, S^{2 p+1}\right)=\left\{l:(I, 0,1) \rightarrow\left(W, S^{2 p+1}, *\right)\right\}$ and each point x of C_{f} is identified with a path $x \times[0,1]$ in W.

Then it is verified that, for dimensions less than $2 p^{2}+2 p-2$,
the mappings $h_{0}, \Omega(H)$ and H induces isomorphisms of the cohomology groups $\bmod p$. Since X_{p} is a deformation retract of $Z_{g^{\prime}}$, it follows from Theorem 1 that $\Delta \neq 0$ and $\mathcal{P}^{p}=1=0$ in W. This proves the second assertion of Theorem 2.

Let $\beta \in \pi_{2 p^{2}-1}\left(S^{2 p+1}\right)$ be the class of the restriction $\pi \circ h \mid S^{2 p^{2-1}}$. β is the class of the attaching map of $e^{2 p^{2}}$. Since $e^{2 p^{2}+1}$ is attached to $e^{2 p^{2}}$ by a mapping of degree p, then $p \beta=0$.

Assume that p is odd and $\beta=0$. Then W is homotopy equivalent to a complex $W^{\prime}=\left(S^{2 p+1} \vee S^{2 p^{2}}\right) \cup e^{2 p^{2}+1}$. Then $\mathcal{P}^{p} \neq 0$ in $W^{\prime} / S^{2 p^{2}}=S^{2 p^{2}}=S^{2 p+1} \cup e^{2 p^{2}+1}$. But this contradicts to the nonexistence of non-trivial mod p Hopf invariant in $\pi_{2 p^{2}+1}\left(S^{2 p+1}\right)$ [12]. Thus $\beta \neq 0$ for odd prime p and the last assertion of Theorem 2 is proved for odd p.

The last assertion of Theorem 2 for $p=2$ will be proved in the next section

§4. $B(2)$

In this section, we consider the case $p=2$.
We first consider $S U(3)$ which is one of $B(2)$, since the characteristic class for the bundle $p: S U(3) \rightarrow S^{5}$ is the generator η_{3} of $\pi_{4}\left(S^{3}\right) \approx Z_{2}$.

We shall compute the following result.

$$
\begin{array}{ccccccccc}
i & = & 4 & 5 & 6 & 7 & 8 & 9 & 10 \tag{4.1}\\
\pi_{i}(S U(3)) \approx & 0 & Z & Z_{6} & 0 & Z_{12} & 0 & Z_{6} .
\end{array}
$$

This follows from the exact sequence

$$
\cdots \rightarrow \pi_{i+1}\left(S^{5}\right) \xrightarrow{\partial} \pi_{i}\left(S^{3}\right) \xrightarrow{i_{*}} \pi_{i}(S U(3)) \xrightarrow{p_{*}} \pi_{i}\left(S^{5}\right) \rightarrow \cdots
$$

of the bundle and the following results (cf. [15]),

$$
\begin{array}{ccccccccc}
i & = & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\pi_{i+1}\left(S^{5}\right) & \approx & Z & Z_{2} & Z_{2} & Z_{24} & Z_{2} & Z_{2} & Z_{2} \\
\pi_{i}\left(S^{3}\right) & \approx & Z_{2} & Z_{2} & Z_{12} & Z_{2} & Z_{2} & 0 & Z_{3},
\end{array}
$$

where ∂ satisfies the relation $\partial(E \alpha)=\eta_{3} \circ \alpha$ for $\alpha \in \pi_{i}\left(S^{4}\right)$. It is sufficient to show that $\partial: \pi_{i+1}\left(S^{5}\right) \rightarrow \pi_{i}\left(S^{3}\right)$ is not trivial for
$i=4,5,6,7,8$. In the notations of [15], we have non-trivial ∂-images: $\partial\left(\iota_{5}\right)=\eta_{3}, \partial\left(\eta_{5}\right)=\eta_{3}^{2}, \partial\left(\eta_{5}^{2}\right)=\eta_{3}^{3}=2 \nu^{\prime}, \partial\left(\nu_{5}\right)=\eta_{3} \circ \nu_{4}=\nu^{\prime} \circ \eta_{6}$, and $\partial\left(\nu_{5} \circ \eta_{8}\right)=\eta_{3} \circ \nu_{4} \circ \eta_{7}=\nu^{\prime} \circ \eta_{6}^{2}$. Thus (4.1) is computed.

Next we prove
(4.2). The homotopy groups of $B(2)$ and $S U(3)$ are \mathcal{C}-isomorphic to each other.

Consider 5-skeleton $S^{3} \cup e^{5}$ of $B(2)$ which has non-trivial $S q^{2}$. The homotopy type of $S^{3} \cup e^{5}$ is characterized by $S q^{2}$. Thus any $B(2)$ has the same homotopy type of a complex

$$
\left(S^{3} \cup e^{5}\right) \cup_{\gamma} e^{8},
$$

in which e^{8} is attached to a representative of a class γ of $\pi_{7}\left(S^{3} \cup e^{5}\right)$.

Since $\pi_{7}(S U(3))=0$ by (4.1), then the injection of $S^{3} \cup e^{5}$ into $S U(3)$ can be extended over a mapping $f: B(2) \rightarrow S U(3)$ which induces isomorphisms of homology groups of dimensions less than 8. By considering the ring structure $\bmod 2$ for $B(2)$ and $S U(3)$, it follows that f induces isomorphisms of the cohomology groups mod 2 and thus \mathcal{C}-isomorphisms of the homotopy groups.

Consider the exact sequence (1.3), in particular,

$$
\pi_{7}\left(Y_{2}\right) \xrightarrow{\pi_{*}} \pi_{7}\left(S^{5}\right) \xrightarrow{g_{*}} \pi_{7}(B(2)) .
$$

g_{*} is trivial since $\pi_{7}\left(S^{5}\right) \approx Z_{2}$ and the 2 -component of $\pi_{7}(B(2))$ vanishes by (4.1) and (4.2). Thus π_{*} is onto. It follows from the first assertion of Theorem 2 that the last assertion of Theorem 2 is true for $p=2$.

§5. Some results in unstable homotopy groups of spheres

In this section we assume that p is an odd prime. First we recall the following results from Theorem 8.3 of [13].
(5.1) Let m be sufficiently large integer, then

$$
\begin{aligned}
& { }_{p} \pi_{2 m+2 i(p-1)}\left(S^{2 m+1}\right) \approx Z_{p} \quad \text { for } 1 \leqq i \leqq 2 p-1 \text { and } i \neq p, \\
& p^{2} \pi_{2 n+2 p(p-1)}\left(S^{2 m+1}\right) \approx Z_{p}, \\
& { }_{p} \pi_{2 m+2 p(p-1)-1}\left(S^{2 m+1}\right) \approx Z_{p},
\end{aligned}
$$

${ }_{p} \pi_{2 m+2(p+1)(p-1)-2}\left(S^{2 m+1}\right) \approx Z_{p}$
and $\quad{ }_{p} \pi_{2 m+1+k}\left(S^{2 m+1}\right)=0 \quad$ otherwise for $k<4 p(p-1)-4$.
In the exact sequence
$\cdots \rightarrow \pi_{i+1}\left(\Omega^{2}\left(S^{2 m+1}\right), S^{2 m-1}\right) \rightarrow \pi_{i}\left(S^{2 m-1}\right) \xrightarrow{E^{2}} \pi_{i+2}\left(S^{2 m+1}\right) \rightarrow \pi_{i}\left(\Omega^{2}\right.$ $\left.\left(S^{2 m+1}\right), S^{2 m-1}\right) \rightarrow \cdots$,
we have the following \mathcal{C}-isomorphism, by (8.7)' of [11],
(5.3) $\pi_{i}\left(\Omega^{2}\left(S^{2 m+1}\right), S^{2 m-1}\right) \stackrel{\mathcal{C}}{\approx} \pi_{i+1}\left(Z_{f}, S^{2 p m-1}\right)$ for $i<2 p^{2} m-3$, where Z_{f} is the mapping-cylinder of a mapping $f: S^{2 p m-1} \rightarrow S^{2 p m-1}$ of degree p,

If $i<2 m p-2$, then the groups in (5.3) are finite without $p-$ torsions. Thus $E^{2}: \pi_{i}\left(S^{2 m+1}\right) \rightarrow \pi_{i+2}\left(S^{2 m+3}\right)$ are C-isomorphisms onto for $i<2(m+1) p-3$, and we have
(5.1) \quad (5.1) is true for $2 n+1>(k+2) /(p-1)$.

For $m=p$, we have

$$
\begin{align*}
& { }_{p} \pi_{2 p+2 i(p-1)}\left(S^{2 p+1}\right) \approx Z_{p} \quad \text { for } \quad i=1,2, \cdots, p-1, \tag{5.4}\\
& { }_{p} \pi_{2 p^{2}-1}\left(S^{2 p+1}\right) \approx Z_{p} \text {, } \\
& { }_{p} \pi_{2 p}{ }^{2}\left(S^{2 p+1}\right) \approx Z_{p}{ }^{2} \text {, } \\
& { }_{p} \pi_{2 p+2 p^{2}-4}\left(S^{2 p+1}\right) \approx Z_{p} \\
& { }_{p} \pi_{2 p+1+k}\left(S^{2 p+1}\right)=0 \quad \text { otherwise for } k<2 p^{2}-4 .
\end{align*}
$$

Furthermore, we shall prove

$$
\begin{array}{ll}
p_{2 p+2 i(p-1)}\left(S^{2 p+1}\right) \approx Z_{p} & \text { for } i=p+1, p+2, \cdots, 2 p-1 \tag{5.5}\\
{ }_{p} \pi_{2 p+2 i(p-1)-1}\left(S^{2 p+1}\right) \approx Z_{p} & \text { for } \quad i=p+1, p+2, \cdots, 2 p-1
\end{array}
$$ and ${ }_{p} \pi_{2 p+1+k}\left(S^{2 p+1}\right)=0 \quad$ otherwise for $2 p^{2}-4 \leqq k<4 p(p-1)-4$.

More generally, we shall prove the following (5.6) by decreasing induction on j.

$$
\begin{equation*}
{ }_{p} \pi_{2 p+2 j+2 i(p-1)}\left(S^{2 p+2 j+1}\right) \approx Z_{p} \quad \text { for } p+1 \leqq i \leqq 2 p-1 \text { and } 0 \leqq j \tag{5.6}
\end{equation*}
$$ ${ }_{p} \pi_{2 p+2 j+2 i(p-1)-1}\left(S^{2 p+2 j+1}\right) \approx Z_{p}$ for $p+1 \leqq i \leqq 2 p-1$ and $0 \leqq j$ $<i-p$,

and $\quad{ }_{p} \pi_{2 p+2 j+1+k}\left(S^{2 p+2 j+1}\right)=0 \quad$ otherwise for $\quad 2 p^{2}-4 \leqq k<4 p(p-1)$ -4 and $j \geqq 0$.
(5.6) is true for sufficiently large j, for example $j \geqq p$, by (5.1)'. By (5.3), (5.1) and by (5.2), we have the following exact sequence.

$$
\begin{aligned}
& \cdots \rightarrow 0 \rightarrow{ }_{p} \pi_{2 p+2(j-1)+2 i(p-1)}\left(S^{2 p+2 j-1}\right) \xrightarrow{E^{2}}{ }_{p} \pi_{2 p+2 j+2 i(p-1)}\left(S^{2 p+2 j+1}\right) \rightarrow \\
& Z_{p} \rightarrow{ }_{p^{2}} \pi_{p^{p+2(j-1)+2 i}(p-1)-1}\left(S^{2 p+2 j-1}\right) \xrightarrow{E^{2}}{ }_{p^{2}} \pi_{p^{p+2 j+2 i(p-1)-1}}\left(S^{2 p+2 j+1}\right) \rightarrow Z_{p} \rightarrow \\
& { }_{p^{2}} \pi_{2 p+2(j-1)+2 i(p-1)-2}\left(S^{2 p+2 j-1}\right) \xrightarrow{E^{2}}{ }_{p} \pi_{2 p+2 j+2 i(p-1)-2}\left(S^{2 p+2 j+1}\right) \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow \\
& { }_{p} \pi_{2 p+2(j-1)+2(p+j)(p-1)}\left(S^{2 p+2 j-1}\right) \xrightarrow{E^{2}}{ }_{p} \pi_{2 p+2 j+2(p+j)(p-1)}\left(S^{2 p+2 j+1}\right) \rightarrow Z_{p} \rightarrow \\
& { }_{p} \pi_{2 p+2(j-1)+2(p+j)(p-1)-1}\left(S^{2 p+2 j-1}\right) \quad \xrightarrow{E^{2}}{ }_{p^{2 p+2 j+2(p+j)(p-1)-1}}\left(S^{2 p+2 j+1}\right) \rightarrow 0, \\
& (2 p+j>i>p+j, j>0) \text {. }
\end{aligned}
$$

We know [14] that there exists an element $\alpha_{i} \in \pi_{2 i(p-1)+2}\left(S^{3}\right)$ of order p for each integer $i>0$ such that $E^{j} \alpha_{i} \neq 0$ for all $j \geqq 0$. It follows that $E^{2}:{ }_{p^{2}} \pi_{2 p+2(j-1)+2 i(p-1)}\left(S^{2 p+2 j-1}\right) \rightarrow{ }_{p^{2}} \pi_{2 p+2 j+2 i(p-1)}\left(S^{2 p+2 j+1}\right)$ is not trivial. Then, by the above exact sequence, we have that the assertion of (5.6) for $j>0$ implies the assertion of (5.6) for $j-1$. Thus (5.6) and (5.5) are proved.

§ 6. Proof of Theorem 3

For the case $p=2$, Theorem 3 is proved by (4.1) and (4.2). In the following, we assume that p is an odd prime. By Theorem 2 and (5.1), we have that $\pi_{i}\left(Y_{p}\right)$ is finite for $3 \leqq i \leqq 2 p^{3}-2$ and

$$
\begin{array}{llr}
\text { (6.1) } & { }_{p} \pi_{2 p+2 i(p-1)-1}\left(Y_{p}\right) \approx Z_{p} & \text { for } i=p, p+1, \cdots, 2 p-1, \tag{6.1}\\
& p_{p} \pi_{2 p+2 i(p-1)-2}\left(Y_{p}\right) \approx Z_{p} & \text { for } i=p+1, p+2, \cdots, 2 p-1, \\
\text { and } & { }_{p} \pi_{k}\left(Y_{p}\right)=0 & \text { otherwise for } k<2 p+4 p(p-1)-3 .
\end{array}
$$

Apply the results (6.1), (5.4) and (5.5) to the exact sequence (1.3), then we see that Theorem 3 is a consequence of the following lemma
(6.2). The homomorphisms $\pi_{*}: \pi_{k}\left(Y_{p}\right) \rightarrow \pi_{k}\left(S^{2 p+1}\right)$ for $k=2 p+2 i(p-1)$ $-1, i=p, p+1, \cdots, 2 p-1$ and for $k=2 p+2 p^{2}-4$ are isomorphisms of the p-components.
i): The case $k=2 p+2 p(p-1)-1=2 p^{2}-1$. In this case, a generator of ${ }_{p} \pi_{k}\left(Y_{p}\right)$ is represented by $h \mid S^{k}$. By the last assertion of Theorem 2, we have that (6.2) is true for this case.
ii) : The case $k=2 p+2 p^{2}-4$. In this case, the image of π_{*} contains the composition $\beta \circ \alpha$ of the class $\beta \in \pi_{2 p^{2}-1}\left(S^{2 p+1}\right)$ of $\pi \circ h \mid S^{2 p^{2-1}}$ and a generator α of ${ }_{p} \pi_{k}\left(S^{2 p^{2-1}}\right) \cong Z_{p}$. In the stable range, we know in [13] that the composition $E^{\infty}(\beta \circ \alpha)=E^{\infty}(\beta) \circ E^{\infty}(\alpha)$ is not zero, Thus π_{*} is not trivial for p-components and (6.2) is true for this case.
iii) : The cases $k=2 p+2(p+j)(p-1)-1$ and $j=1,2, \cdots, p-1$.

Let $K=S^{2 p^{2}-4} \cup e^{2 p^{2}-3}$ be the mapping-cone of a mapping of degree p. We may assume that C_{f} is a three fold iterated suspension $E^{3} K$ of K. Then $\pi \circ h$ defines a mapping $\Omega^{3}(\pi \circ h): K \rightarrow \Omega^{3}\left(S^{2 p+1}\right)$. Set $Q=\Omega\left(\Omega^{2}\left(S^{2 p+1}\right), S^{2 p-1}\right)$, then the homomorphism $\pi_{\imath+2}\left(S^{2 p+1}\right) \rightarrow$ $\pi_{i}\left(\Omega^{2}\left(S^{2 p+1}\right), S^{2 p-1}\right)$ in (5.2) is equivalent to a homomorphism i_{*} : $\pi_{i-1}\left(\Omega^{3}\left(S^{2 p+1}\right)\right) \rightarrow \pi_{i-1}(Q)$ induced by the natural injection i.

Since the class of $\pi \circ h \mid S^{2 p^{2-1}}$ is an E^{2}-image, $\Omega^{3}(\pi \circ h) \mid S^{2 p^{2-4}}$ is homotopic to zero. Thus $\Omega^{3}(\pi \circ h)$ is factorized to $K \rightarrow S^{2 p^{2}-3} \rightarrow Q$.

Next we have
(6.3). $H^{*}\left(Q, Z_{p}\right)$ is spanned by $1, w$ and Δw for dimensions less than $4 p^{2}-5, w \in H^{2 p^{2-3}}\left(Q, Z_{p}\right)$.

This follows from the results on $H_{*}\left(\Omega^{2}\left(S^{2 p+1}\right), Z_{p}\right)$ in [6].
Then $\pi_{2 p-3}(Q)$ is \mathcal{C}-isomorphic to Z_{p}. Thus $\Omega^{3}(\pi \circ h)$ is homotopic to the composition of a mapping $q: K \rightarrow E K$ and a mapping $g: E K \rightarrow Q$ such that $q\left(S^{2 p^{2-4}}\right)=*$ and $q^{*}: H^{n}\left(E K, Z_{p}\right) \approx H^{n}\left(K, Z_{p}\right)$ for $n=2 p^{2}-3$. We prove
(6.4). g induces isomorphism of cohomology groups mod p and thus C-isomorphisms of homotopy groups for dimensions less than $4 p^{2}-6$.

It is sufficient to prove that $g \mid S^{2 p^{2}-3}$ is not homotopic to zero. Assume that $g \mid S^{2 p^{2-3}}$ is homotopic to zero. Then $\Omega^{3}(\pi \circ h)$ is homotopic to zero in Q. It follows that $\Omega^{2}\left(\pi^{\circ} h\right): E K \rightarrow \Omega^{2}\left(S^{2 p+1}\right)$ is homotopic to a mapping into $S^{2 p-1}$. Let $L=S^{2 p-1} \cup e^{2 p^{2}-2} \cup e^{2 p^{2-1}}$ be the mapping-cone of the last mapping. Then the mapping-cone $S^{2 p+1} \cup e^{2 p^{2}} \cup e^{2 p^{2}+1}$ of $\pi \circ h$ in Theorem 2 is homotopy equivalent to
$E^{2} L$. Then $\mathcal{P}^{p} \neq 0$ in $E^{2} L$ and thus $\mathcal{P}^{p} \neq 0$ in L. But $\mathcal{P}^{p} H^{2 p-1}$ $\left(, Z_{p}\right)=0$ in general. We have a contradiction, hence $g \mid S^{2 p^{2-2}}$ is not homotopic to zero and (6.4) is proved.

Now consider an element γ of $\pi_{k-3}(K)$ such that, by shrinking $S^{2 p^{2-4}}$ to a point, γ is carried to a generator of ${ }_{p} \pi_{k-3}\left(S^{2 p^{2-3}}\right)$. Then $q_{*}(\gamma): \vDash 0$. By $(6.4), \quad \Omega^{3}(\pi \circ h)_{*}(\gamma)=g_{*} q_{*}(\gamma) \neq 0$ in $\pi_{k-3}(Q)$. Then $\Omega^{3}(\pi \circ h)_{*}(\gamma)=1-0$ in $\pi_{k-3}\left(\Omega^{3}\left(S^{2 p+1}\right)\right)$. It follows that $(\pi \circ h)_{*} E^{3} \gamma \neq 0$ in $\pi_{k}\left(S^{2 p+1}\right)$. Thus π_{*} in (6.2) is not trivial for the case iii) and it is an isomorphism of the p-components.

Consequenty, Theorem 3 has been proved.

§ 7. Remarks on homotopy groups of Lie groups

Since $\pi_{2 n}\left(S^{2 k+1}\right)$ is finite and has no p-torsion if $k<n<p$, it follows from the exact sequence for the bundle $S U(k+1) \rightarrow S^{2 k+1}$ $=S U(k+1) / S U(k)$ that $\pi_{2 n}(S U(k+1))$ is finite and has no p-torsion.

From the exactness of the sequence $\pi_{2 n+1}(S U(n+1)) \xrightarrow{\pi_{*}} \pi_{2 n+1}\left(S^{2 n+1}\right)$ $\rightarrow \pi_{2 n}(S U(n))$, we have that if $p<n$ then there exists a mapping $f_{n}: S^{2 n+1} \rightarrow S U(n+1)$ such that the mapping degree of the composition $\pi \circ f_{n}: S^{2 n+1} \rightarrow S^{2 n+1}$ is prime to p. The multiplication in $S U(n+1)$ and the mappings $f_{1}, f_{2}, \cdots, f_{n}$ define a mapping

$$
f: S^{3} \times S^{5} \times \cdots \times S^{2 n+1} \rightarrow S U(n+1)
$$

Then it is verified that f induces isomorphisms of the cohomology groups mod p and thus \mathcal{C} isomorphisms
(7. 1) $f^{*}: \pi_{i}\left(S^{3}\right) \oplus \pi_{i}\left(S^{5}\right) \oplus \cdots \oplus \pi_{i}\left(S^{2 n+1}\right) \rightarrow \pi_{i}(S U(n+1))$ for all i and for $n<p$.

We have also that $\pi_{2 p}(S U(p))$ is finite and the injection homomorphism : $\pi_{2 p}(S U(2)) \rightarrow \pi_{2 p}(S U(p))$ is an onto map of the $p-$ components. This injection homomorphism is equivalent to the projection homomorphism : $\pi_{2 p+1}\left(B_{S U(2)}\right) \rightarrow \pi_{2 p+1}\left(B_{S U(p)}\right)$. Let $g: S^{2 p+1}$ $\rightarrow B_{S U(p)}$ be a mapping which induces the $S U(p)$-bundle: $S U(p+1)$ $\rightarrow S^{2 p+1}$. Then there exists a mapping $q: S^{2 p+1} \rightarrow S^{2 p+1}$ of the degree prime to p such that the composition $g \circ q$ is homotopic to a mapping into $B_{S U(2)}$. Let $\bar{q}: X \rightarrow S U(p+1)$ be a bundle map
induced by q. Then X is equivalent to a $S U(p)$-bundle, whose group of structure can be reduced into $S U(2)$. Thus there exists a $S U(2)$-bundle $B(p)$ over $S^{2 p+1}$ such that the diagram

is commutative, for a mapping g^{\prime}. By use of g^{\prime} and f_{2}, \cdots, f_{p-1}, construct a mapping

$$
f^{\prime}: S^{5} \times \cdots \times S^{2 p-1} \times B(p) \rightarrow S U(p+1)
$$

as above, then f^{\prime} induces isomorphisms of the cohomology groups $\bmod p$ and thus \mathcal{C}-isomorphisms

$$
\begin{equation*}
f_{*}^{\prime}: \pi_{i}\left(S^{5}\right) \oplus \cdots \oplus \pi_{i}\left(S^{2 p-1}\right) \oplus \pi_{i}(B(p)) \rightarrow \pi_{i}(S U(p+1)) \tag{1.4}
\end{equation*}
$$

for all i. By [2], $\mathcal{P}^{1}=0$ in $S U(p+1)$. Thus $B(p)$ satisfies (1.1).
Similarly, we have mappings
and

$$
f: S^{3} \times S^{7} \times \cdots \times S^{4 n-1} \rightarrow S p(n)
$$

$$
f^{\prime}: S^{7} \times \cdots \times S^{2 p-3} \times B(p) \rightarrow S p\left(\frac{p+1}{2}\right) \quad(p: \text { odd })
$$

which induce \mathcal{C}-isomorphisms

$$
\begin{equation*}
f_{*}: \pi_{i}\left(S^{3}\right) \oplus \pi_{i}\left(S^{7}\right) \oplus \cdots \oplus \pi_{i}\left(S^{4 n-1}\right) \rightarrow \pi_{i}(S p(n)) \tag{7.2}
\end{equation*}
$$

for all i and for $p \geqq 2 n$ and

$$
\begin{equation*}
f_{*}^{\prime}: \quad \pi_{i}\left(S^{7}\right) \oplus \cdots \oplus \pi_{i}\left(S^{2 p-3}\right) \oplus \pi_{i}(B(p)) \rightarrow \pi_{i}\left(S p\left(\frac{p+1}{2}\right)\right) \tag{1.5}
\end{equation*}
$$

for all i and for odd p.
By [5], we have \mathcal{C}-isomorphisms

$$
\begin{equation*}
\pi_{i}(S p i n(n+2)) \stackrel{\mathrm{C}}{\approx} \pi_{i}(S O(n+2)) \stackrel{\mathrm{C}}{\approx} \pi_{i}\left(S p\left(\frac{n+1}{2}\right)\right) \tag{1.5}
\end{equation*}
$$

for odd n, odd p and for all i.
There is a G_{2}-bundle : $\operatorname{Spin}(7) \rightarrow S^{7}$ with a characteristic class of c rder 2. Then we have \mathcal{C}-isomorphisms

$$
\pi_{i}\left(G_{2}\right) \oplus \pi_{i}\left(S^{7}\right) \stackrel{\mathcal{C}}{\approx} \pi_{i}(\operatorname{Spin}(7)) \stackrel{\mathcal{C}}{\approx} \pi_{i}\left(S^{7}\right) \oplus \pi_{i}(B(5))
$$

for all i and for $p=5$. It follows

$$
\begin{equation*}
\pi_{i}\left(G_{2}\right) \stackrel{\mathcal{C}}{\approx} \pi_{i}(B(5)) \quad(p=5) \tag{1.6}
\end{equation*}
$$

REFERENCES

[1] J. Adem, The relations on Steenrod powers of cohomology classes, Algebraic geometry and topology, Princeton.
[2] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math., 75 (1953), 409-448.
[3] H. Cartan, Séminaire de topologie, E. N. S., 1954-55.
[4] H. Cartan, Sur l'itérations des opérations de Steenrod, Comm. Math. Helv., 29 (1955), 40-58.
[5] B. Harris, On the homotopy groups of the classical groups, Ann. of Math., 74 (1961), 407-413.
[6] J. C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.
[7] J.-P. Serre, Homologie singuliere des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
[8] J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-231.
[9] J.-P. Serre, Groupes d'homotopie et classes des groupes abéliens, Ann. of Math., 58 (1953), 258-294.
[10] N. E. Steenrod, Topology of fibre bundles, Princeton 1951.
[11] H. Toda, On double suspension E^{2}, J. Inst. Poly. Osaka City Univ., 7 (1956), 103-145.
[12] H. Toda, p-primary components of homotopy groups II, mod pHopf invariant, Mem. Coll. Sci. Kyoto Univ., 31 (1958), 143-160.
[13] H. Toda, p-primary components of homotopy groups IV, Compositions and toric constructions, Mem. Coll. Sci. Kyoto Univ., 32 (1959), 297-332.
[14] H. Toda, On unstable homotopy groups of spheres and classical groups, Proc. Nat. Acad. Sci. U. S. A., 46 (1960), 1102-1105.
[15] H. Toda, Composition methods in homotopy groups of spheres, Princeton 1962.
[16] E. C. Zeeman, A proof of the Comparision theorem for spectral sequences, Proc. Camb. Phil. Soc., 53 (1957), 57-62.

