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§1. Statement of results

We shall consider the p-primary components of the homotopy
groups of a cell complex

B(p) = SPuéert ettt
having the cohomology ring (®'=S¢* if p=2) mod p
(1.1) H*(B(p), Z,) = Aw, O'w),  ueH(B(p), Z,).

The existence of such a complex B(p) is provided by an S*-
bundle over a (2p+1)-sphere S*’*' with a characteristic class
a, €n,,(S*) of a non-trivial mod p Hopf invariant [12].

Denote by X, the 3-connective fibre space over B(p) Then

(1.2) 7(X,) =~ n(B(p))  for i>3
and we have

Theorem 1. H*(X,, Z,)=A(a, ®?a)RQZ,[b], where a¢c H***'
(X,, Z,) and the relation Ab=®?a holds (A=Sq' and ®?=Sq' if
p=2).

Denote by C the class of the finite abelian groups without

p-torsion, then by use of Serre’s C-theory [9], it follows from the
theorem the following

Corollary. There is a mapping g:S**"' — B(p) which induces
C—isomorphisms gy : w(S***") — =,(B(p)) for 3<_i< 2p*—1.
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As a space of paths in the mapping-cylinder of g, we have a
space Y, which is a fibre of a fibering equivalent to g and also
which is the total space of a fibering »:Y,— S**' of a fibre
Q(B(p)). Then we have an exact sequence

(1.3) o = (BB — (¥ T mi(50+) E5 m(B(p)) — - .

Let f:5"—>S", n=2p"—1, be a mapping of degree p and let
Z,=S"uS8"x(0,1] be the mapping-cylinder of f. By shrinking
St=S"x(1) to a point, we have a mapping-cone C,=Z//S} of f.
Let p:Z;— C; be the shrinking map.

Theorem 2. There exists a mapping h of Csinto Y, satisfying
the following conditions. The composition hop induces C—isomorphisms
(hop)y: nZs, S N> al(Y,) for 3<i<2p*—2. A mapping-cone
of woh is a cell complex S**' e e with non-trivial A and
®?, and the restriction woh|S**~* represents an element of order p in

C
”2p2—1(82p+1) ~ Zp'

Denote by ,7.(B(p)) the p-primary component of =;(B(p)), then
the explicit value of it is given as follows.

Theorem 3. 7,5 ,-0(B(DO)=Z, for 1=i<2p and i=+p,
pC2prap p—n(B(p)) ~ sz ,

p”2ﬂ+2(p+j)(p—1>—1(B(p))%Zp f07’ 2§]<P ’
SB(P)=0 otherwise for k< 2p+4p(p—1)—3.

These results can be applied to compute the homotopy groups
of Lie groups by use of the following C-isomorphisms:

C
(L4 7(SUP+1) = (S DTSN - B TS ) DB
- p+1 g . E —_ (S - 2p-3
(1.5) w(Sp(L11)) = mASOp+2) = mASIBTAS ) - B(S)
Br(Bp)  for odd p,

C
(1.6) 7/(G,) = 7(B(5)) for p=35.
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§2. Proof of Theorem 1
We have two fiberings :

p:X,— B(p) with fibre K(Z, 2)
and P B(p)— K(Z, 3) with fibre X,,

where K(Z, n) denotes Eilenberg-MacLane space of type (Z, #n) and
B’(p) has the same homotopy type as B(p).

Let (Ei*) be the cohomological spectral sequence with the
coefficient Z, [7] associated with the first fibering, then

E¥ =~ H¥B(p), Z,) @HXZ,2; Z,) ~ Au, Cu)R@Z,[v],
veHYZ,2; Z,).

By concerning the dimensions of the elements of A(u, ®'u),
we have that the coboundary d, is trivial except for r=3, 2p+1,
2p+4. Thus Ef=E}, E¥=E%.,, Ef..=E%,, and ES,s=E¥*.

Since X, is a 3-connective fibering, the generator v can be
chosen such that d,(1®v)=u®1. Then d,(xRv")=n(xuQv"")
for x € A(u, ®'u). Hence we have the following isomorphism, by
means of the cup-product,

ACPu®RL, uQ@v )QRZ[1Qv?] = HEF) = E} = E¥...
Since the transgression commutes with the operation ®' and
since ®'v=v?, we have d,,,,(1Qv")=FPu®1 and d,,.,(u@v*")€
Eit—*=0. Thus d,,.,(1®v"?)=m(®'uQv" "?) and d,,.,(uQ@v™"?"")
=(m—1)(u-®'u Qv 2", It follows that
A0, Cuuv? ") QZ,[1Qv"] = H(ES.) = Ef..\.

Finally, the triviality of d,,, is easily seen, and E*=E,, is
a graded ring associated with H*(X,, Z,). Thus we have obtained

2.1 H*(Xp’ Zp) = A(q, C)®Zp[b] ’

where a, ¢ and b correspond to u @v?~’, P'uRv* V* and 1Rv?,
respectively.

Next consider the spectral sequence (E;'‘) associated with the
second fibering p": B (p)—K(Z, 3). E¥=H*(Z, 3;Z,)QH*(X,, Z,).
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By Cartan’s results [3], H*(Z, 3; Z,)=A(%, ®'u, ®?C'u, ---) Q
Z[ACu, AR?®'u, -] for odd p and H*(Z, 3; Z,)=Z,[u, S¢’u,
Sq¢*Sq*u , ---], where u is the fundamental class.

It is easy to see that d,(1®a)=0 for »<2p+2. Then
E3 i '=0. Since H****(B(p), Z,) =0, Ei3°=E¥**°=0. The
element A®P'¥®1 is not a d,-image for r< 2p+2. Thus it has
to be a d,,.,-image. By changing the coefficient of a, if it is
necessary, we have that

A1pi(1Q®a) = APuR®1 (= SPu®1 =u*®1 for p=2).

By Adem’s relation [1], [4], ®?(A®Pu)=A®P?®'u for odd p
and Sq¢'S¢’u=Sq¢°Sq’u=(Sq’u)’. Then (®?a is transgressive and

A2, (1R BP%a) = AP?Cu®1 (d,y(1 R Sq‘a) = (S¢’u)’ R 1) .

The element A®?’®'»®1 is not a d,-image for r<2p*+2.
This shows that ®?a=4=0 and we can replace ¢ by ®?a in (2.1).

It is checked directly that d,(1 ®b6)=0 for »r<2p+2. Then
it is verified that Ef=E¥,, and that

E¥.s = A, ®'u, ®?Cu, ) QZ[ACP?Cu, - ]QAlc)  Z,[b],
(p:0dd)
E¥ = Au) @ Z[Sq°u, Sq'Sq’u, 1@ A() RZ,[b] (p = 2).
®?®'u is not a d,~image for »< 2p*+1, but it is a d,-image
for r=2p"+1 since H'(B(p), Z,)=En°=E7=0 for r=2p"+1.

By changing the coefficient of b, if it is necessary, we have
that

d,2,(1R0) = P*PuR1 (= S¢'Sq¢u®@1 for p = 2).

Since the Bockstein operation A commutes with the transgression,
we have

2. 2) Ab=c = ®?a (S¢'b=c= Sq'a for p=2),

where the elements a, b, ¢ are different only in coefficients 3=0 from
those in (2. 1).
Consequently we have proved Theorem 1.



On homotopy groups of S*-bundles over spheres 197

§3. Proof of Theorem 2

The space X, is a homology (2p+1)-sphere mod p, by
Theorem 1, for dimensions < 2p* and 3-connected. By Serre’s
C-theory, 7(S***') is C-isomorphic to 7i(X,) for i<_2p’—1, by a
homomorphism gy induced by a representative g’:S***'— X, of
an element of =,,,,(X,) not divisible by p.

Then Corollary to Theorem 1 is proved by taking g as the
composition of g’ and the 3-connective fibering : X,— B(p).

In order to prove Theosem 2, we may replace Y, by a 2-
connective fibre space Y, over Y,, whence B(p) in (1.3) may be
replaced by X,.

The space Y, is given as follows. Let Z,/=X,uS***'x(0,1]
be the mapping cylinder of g’. Then Y, is the set of paths:
(1,0, 1)—(Z,,S***", x). The paths: (/,0,1)—(Z,, S**"', Z,) form
a fibre space over Z,- with a fibre Y,. Consider a spectral sequence
(E¥) associated with this fibering, then E¥~H*(X,, Z,)®
H*(Y,, Z,) and EX~ H*(S***', Z,). We shall prove the following
lemma

(3.1). There exists an element w of H**"NY,, Z,) such that
HX(Y,, Z,) is isomorphic to A(w) @ Z [Aw] for dimensions less than
2p°.

By a simple computation of the spectral sequence, we have
that & and Ab=®?a are transgression images of w and Aw, i.e.,
d,1Quw)=b®1 and d,.,(1RQAw)=F?a®@1, n=2p°, for suitable
choice of w. Construct a formal spectral sequence ('E*¥) with the
above d,, d,., and ‘E¥f=H*X,, Z,)QAw)RZ,[Aw]). The
spectral sequence is well-defined for dimensions less than 2p° and
the final term is 'E*=A(a®1). Comparing 'E¥ with E¥, it
follows that (3.1) is true (cf. [16]).

By generalized Hurewicz theorem in C-theory, =, ,(Y,) is C-
isomorphic to Z, and there exists a mapping

WS Y

such that A*:H**\Y,, Z,)~H*(S***"", Z,) and the composi-



198 Hirosi Toda

tion #'of is homotopic to zero.

Let S be a space consists of pairs (/, s) of paths /:/— Y, and
points s of S?%*-'such that /(1)=#(s). S is a fibre spave over Y,
with the projection =, given by = (/, s)=Hh(s)=I/(1). By setting
i(s)=(,, s), L,I)=H(s), we have an injection i of S*’-' into S
which is a homotopy equivalence. Then

W = myoi .

Let F==3'(x) be a fibre. Since Aof is homotopic to zero,
then the injection 7 is extended to

k:Z,—~S, k|S#=i,

such that k(S#*-")CF. There exists uniquely a mapping A, such
that the diagram

(Zs, Sf‘”z“l)—k* (S, F)
11’ h, l”°
(Cy, ¥) —(Y3, %)

is commutative. /4, is an extension of /4.
We shall prove

(3.2). The restriction ky=k|S3¥-': S¥*' > F induces isomorphisms
Hi(F, Z,)~ H(S3#-', Z,) for i<2p"—1.

Consider a spectral sequence (EF*) associated with the fibering
7,:S—Y,, then Ef~H*(Y,, Z,)QH*(F, Z,) and EX~H*(S, Z,)
~ H*(S*"*"", Z,).

Let n=2p°—1. First we have easily that H{(F, Z,)=E%'=
for i<n. Since =¥ is equivalent to #*, we have that E%°
~H"Y,, Z,)~Z, is mapped isomorphically onto EZ°=H"(S, Z,).
Then it follows that H"(F, Z,) (=~ E%") is isomorphic to Z, and
generated by an element x such that d,,,(1®x)=Aw ®1. Thus
d((Bw)* @ 2)=(Aw)*"' @1 and d,,,(w-(Aw)* @ x)=w-(Aw)**' @ 1.
This shows that E&=FE>*=0 for r >n+2, s<n and n<t+s<2p"
Let y€e Hi(F, Z,) be a non-zero element of minimum ¢ >#n. If
i< 2p°—1, then it is easily seen that d,(1®Qy)=0 for all =2,
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and thus E2¢==0. But this contradicts to H(S, Z,)=0. We have
obtained H¥(F, Z,)=0 for n<i<2p°—1.

Now, it is sufficient to prove that k¥ : H*(F, Z,)— H"(S%, Z,),
n=2p’—1, is an isomorphism. k¢ :H™Y,, Z,)—>H"(C;, Z,) is equi-
valent to »*:H™Y,, Z,)—>H"(S", Z,) and it is an isomorphism.
By the naturality of A, it follows that #&¥:H"(Y,,Z,)
~H""(C,, Z,). Also we have isomorphisms p*:H{(C,, Z,)~
HiZ,, S%; Z,) and =¢:H(Y,, Z,)~H:S, F; Z,) for i=n, n+1.
Then, by the commutativity of the previous diagram, we have
isomorphisms k*: Hi(S, F; Z,)~Hi{(Z;, St; Z,) for i=n,n+1.
Since k:Z,—S is a homotopy equivalence, we have H*(S, Z,)
~H*Z;, Z,). By applying the five lemma, we have that k¥:
H*(F, Z,)— H"(S%, Z,) is an isomorphism onto. This completes
the proof of (3.2).

By generalized J.H.C. Whitehead’s theorem in C-theory, it
follows from (3.2) that ks :7;(S%)—7,(F) is a C-isomorphism for
i<2p°—2 and a C-onto for i<<2p°—2. Since k is a homotopy
equivalence, ky : 7(Z;) ~ 7,(S) for all i. By the five lemma, we have

B.3)  (eD)x=Toxoky 1 7 Zs, SP*) > 7S, F)=~n(Y;) is a C-
isomorphism onto for i <2p°*—2.

Let h:C,— Y, be the composition of %, and the 2-connective
fibering of Y, onto Y,. Then the first assertion of Theorem 2
is proved.

The composition 7ok in Theorem 2 coincides with the com-
position of 4,:C,—~Y, and a fibering =':Y;—S** given by
7 ()=10), I€ Y. Let W=S*+yue* Ue?' be a mapping cone
of moh. Since the image of each point of C, under %, is a path
l:(1,0,1)—>(Z,, S***', x), h, defines a mapping

H:W-—2Z,
such that H|S??*' is the identity and that H induces a mapping
of paths Q(H):Q(W, S***Y—Y, with Q(H)|C,=h, where
Q(W, S ={/:(I,0,1)—>(W, S***'x)} and each point x of C, is
identified with a path xx[0,1] in W.
Then it is verified that, for dimensions less than 2p*+2p—2,
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the mappings #4,, Q(H) and H induces isomorphisms of the
cohomology groups mod p. Since X, is a deformation retract of
Zy, it follows from Theorem 1 that A==0 and ®?=-0 in W. This
proves the second assertion of Theorem 2.

Let Bem,.z_(S***") be the class of the restriction moh|S?*-’,
B is the class of the attaching map of ¢*?’. Since ¢*#*' is attached
to ¢*”* by a mapping of degree p, then pB=0.

Assume that p is odd and 8=0. Then W is homotopy equi-
valent to a complex W’'=(S?*'vS**)ue*’*!. Then ®?=0 in
W’ |S?#*=S#* =82+ y¢*#**', But this contradicts to the non-
existence of non-trivial mod p Hopf invariant in 7,,2,,(S***") [12].
Thus B==0 for odd prime p and the last assertion of Theorem 2
is proved for odd p.

The last assertion of Theorem 2 for p=2 will be proved in
the next section

§4. B(2)

In this section, we consider the case p=2.
We first consider SU(3) which is one of B(2), since the charac-

teristic class for the bundle p:SU(3)—S® is the generator 7, of
7,(S%) =~ Z,.

We shall compute the following result.

1) i = 4 5 6 7 8 9 10
7(SUB)~ 0 Z Z 0 Z, 0 Z.

This follows from the exact sequence

5 .
oy (89— SY) B e (SUE)) B (59 s
of the bundle and the following results (cf. [15]),

) = 4 5 6 7 8 9 10
7(S%) =~ z Z, Z, Zy Z, Z, Z,
7ti(Sa) =~ Zz Zz le Zz Zz 0 Zs ’
where 0 satisfies the relation d(Ea)=7n,0a for @€ = (S*). It is
sufficient to show that d:7; ,(S°) —>=,(S® is not trivial for
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i=4,5,6,7,8 In the notations of [15], we have non-trivial
d-images : (¢) =17,, My =23, 0(n2)=n3=2V, d(v,)=n,ov,=v"09,, and
d(vsom,) =n,ov,0m,=v'on?. Thus (4.1) is computed.

Next we prove

(4.2). The homotopy groups of B(2) and SU(3) are C-isomorphic to
each other.

Consider 5-skeleton S®*ueé® of B(2) which has non-trivial Sg¢
The homotopy type of S*ue® is characterized by S¢?. Thus any
B(2) has the same homotopy type of a complex

(S*vue’)u,et,
in which ¢® is attached to a representative of a class ¢ of
,(S*ued).

Since =, (SU(3))=0 by (4.1), then the injection of S®ueé® into
SU(3) can be extended over a mapping f:B(2)—SU(3) which
induces isomorphisms of homology groups of dimensions less than
8. By considering the ring structure mod 2 for B(2) and SU(3), it
follows that f induces isomorphisms of the cohomology groups mod

2 and thus C-isomorphisms of the homotopy groups.
Consider the exact sequence (1.3), in particular,

7 (YD) 25 wy(S%) &5 w(B@)) .

g4 is trivial since 7,(S°)~Z, and the 2-component of 7,(B(2))
vanishes by (4.1) and (4.2). Thus =, is onto. It follows from
the first assertion of Theorem 2 that the last assertion of Theorem

2 is true for p=2.

§5. Some results in unstable homotopy groups of spheres

In this section we assume that p is an odd prime. First
we recall the following results from Theorem 8.3 of [13].

(5.1) Let m be sufficiently large integer, then
pTamsaicpo(ST) =~ Z, for 1<i<2p—1and i=p,
p7r2n+2p(p—1)(szm+l) ~ sz ,
p”2m+2p(p—1)—1(szm+l) =~ Zp s
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2
p7t2m+2(p+l)(p—l)—2(s m+1) ~ Zp

and 7oy f(S*) = 0 otherwise for k< 4p(p—1)—4.

In the exact sequence
E2
(5.2) ot = m (QSTTYSTY > m(ST) T m (ST —
(Szm+1)’ Szm—x) — e

we have the following C-isomorphism, by (8.7) of [11],

c
(5.3) m(QAS™Y), S = w, (Z,, S for < 2p'm—3, where
Zy is the mapping-cylinder of a mapping f:S**7' — S of
degree P,

If i< 2mp—2, then the groups in (5.3) are finite without p-
torsions. Thus E?:7(S*"*")— =, ,(S*"*°) are C-isomorphisms onto
for i< 2(m+1)p—3, and we have

(5.1Y (5.1) is true for 2n+1">(k+2)/(p—1).
For m=p, we have

(5' 4) p”2p+2i(p—1)(82p+l) ~ Zp f07’ i = 112 yo L, b— 1,
pﬂzpz_l(szpﬂ) ~ va
ST ~ 27
apragt- (S = 2,

and 7, (ST = 0 otherwise for k< 2p°—4.
Furthermore, we shall prove

(5' 5) p7t2p+2i(p—l)(szp+l) zZ[) f07’ i = p+1) p+27 o ;217_1,
p”2p+2i(p_‘)_1(szp+1) ~ Zp f07' i = p+1’ p+2 » T 2P—1 ’
and 7y, (S*PT) = 0 otherwise for 2p°—4 < k< 4p(p—1)—4.

More generally, we shall prove the following (5.6) by decreas-
ing induction on j.

(5.6)  ,Topirjrricy-o(S*T N = Z, for p41=i<2p—1 and 0 <7,
ﬁ”2p+2j+2i(p—1)—1(82p+2j+1) ~ Zp f07' P+1 g i § 21?—1 and O g]

<i—p,

and o050 (ST = 0 otherwise for 2p*-4<k<4p(p—1)

—4 and j =0.
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(5.6) is true for sufficiently large j, for example j=p, by
(5.1). By (5.3), (5.1Y and by (5.2), we have the following exact
sequence.

2
2p+2j-1y | 2p+25+1
>0 — p”2p+2(j—1)+2i(p—l)(s bt ) p”2p+2j+2i(p—1)(s bz ) -
2
2p+2j-1 N 2p+2j+1
Sy p7r21;~+2j+2i(p—1)—1(s PHEF) — Zp -
2

Z,, - p7t2p+2(j—1)+2i(p-|)—1(

2p+25-1Y . 2p+2j5+1
p”2p+2(j—1)+zi(p—1)—2(s pr2=ty p”2p+2j+2i(p—1)—z(s ) 50— >0
2

2pr25-1 . 2p +254+1
p”zp»!z(j—l)-zch—j)(p—n(s prei-ty pﬂzl,l»zj—|-2(1,+j)(p—1:>(sp " - Zp -
2

2pt2jo1y
p”2p+z<j—1)+2(p+j)(p—1)—1(s )

@p+j>i>p+j, §>0).

We know [14] that there exists an element «; €y, ,,.,(S°)
of order p for each integer i >0 such that E’a;<4=0 for all j=0.
It follows that E*: ,7,, 0 ;-1r12icp- (S ") = 7o piaiinic,-n(STPTHY)
is not trivial. Then, by the above exact sequence, we have that
the assertion of (5.6) for j >0 implies the assertion of (5.6) for
j—1. Thus (5.6) and (5.5) are proved.

2p+2j41
p”2p+2j+2(p+j)(p—l)—l(s P — 0,

§6. Proof of Theorem 3

For the case p=2, Theorem 3 is proved by (4.1) and (4.2).

In the following, we assume that p is an odd prime. By
Theorem 2and (5. 1), we have that #z,(Y,) is finite for 3<i<<2p*—2
and

(6- 1) p”2p+2i(p—1)—1(Yp) ~ Zp fOi’ { = b, P+1 y "ty 2P—1 >
p”2p+2i(p—1)—2(Yp)%Zp for i :p+1)p+2) "'>2p—1)
and ,w (Y,) =0 otherwise for k<_2p+4p(p—1)—3.

Apply the results (6.1), (5.4) and (5.5) to the exact sequence
(1. 3), then we see that Theorem 3 is a consequence of the follow-
ing lemma

(6.2). The homomorphisms 7y : w (Y ,)—m(S*+) for k=2p+2i(p—1)
=1, i=p, p+1,--,2p—1 and for k=2p+2p°—4 are isomorphisms
of the p-components.
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iy: The case k=2p+2p(p—1)—1=2p—1. In this case, a

generator of ,7,(Y,) is represented by #|S*. By the last assertion
of Theorem 2, we have that (6.2) is true for this case.
iil): The case k=2p+2p*—4. In this case, the image of =, con-
tains the composition Boa of the class B¢ 7,,2_,(S**") of moh|S**!
and a generator « of pﬂk(S“’z");zZp. In the stable range, we
know in [13] that the composition E~(Boa)=E=(3)oE~(«) is not
zero, Thus =, is not trivial for p-components and (6.2) is true
for this case.

iii): The cases k=2p+2(p+)(p—1)—1 and j=1,2,-,p—1.

Let K=S*’-*Ue*~* be the mapping-cone of a mapping of
degree p. We may assume that C,is a three fold iterated suspen-
sion E°K of K. Then moh defines a mapping Q*(weoh) : K— Q3(S*?),
Set Q=0(Q*S*#*"), S?#7'), then the homomorphism =, (S*?*")—
7 (QX(S?**), S?»7") in (5.2) is equivalent to a homomorphism i, :
7;_(Q¥(S**")) - 7;_,(Q) induced by the natural injection i.

Since the class of mok|S**-' is an E’*-image, Q(moh)|S**~*
is homotopic to zero. Thus Q*woh) is factorized to K— S****— Q.

Next we have

(6.3). H*®Q, Z,) is spanned by 1, w and dw for dimensions less
than 4p°—5, we€ H***%Q, Z,).

This follows from the results on H,(Q*S**"), Z,) in [6].

Then =,, (Q) is C-isomorphic to Z,. Thus Q*=chk) is homo-
topic to the composition of a mapping ¢: K— EK and a mapping
g:EK—Q such that ¢(S***-)=x and ¢*: H"EK, Z,)~ H"(K, Z,)
for n=2p’—3. We prove

(6.4). g induces isomorphism of cohomology groups mod p and thus
C-isomor phisms of homotopy groups for dimensions less than 4p°—6.

It is sufficient to prove that g|S?*-* is not homotopic to zero.
Assume that g|S*”’~* is homotopic to zero. Then Q*=oh) is homo-
topic to zero in Q. It follows that Q*=oh): EK— Q*S*?*") is
homotopic to a mapping into S??-'. Let L=S%"'ue??*-2ue** ! be
the mapping-cone of the last mapping. Then the mapping-cone
S+t ety of moh in Theorem 2 is homotopy equivalent to
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E?L. Then ®?=0 in E?’L and thus ®?4=0 in L. But ®?H?**"!
( ,Z,)=0 in general. We have a contradiction, hence g|S**** is
not homotopic to zero and (6. 4) is proved.

Now consider an element v of =, ,(K) such that, by shrinking
S*7*~¢ to a point, v is carried to a generator of ,7,_,(S***-*). Then
gx(7)-F0. By (6.4), Q(moh)x(v)=gxq+(v)=-0 in 7z, (Q). Then
Q¥ (zok)y (v)~4:0 in 7, (Q%(S***")). It follows that (woh)y E*y=-0
in 7,(S**"). Thus 7, in (6.2) is not trivial for the case iii) and
it is an isomorphism of the p-components.

Consequenty, Theorem 3 has been proved.

§7. Remarks on homotopy groups of Lie groups

Since 7,,(S%**") is finite and has no p-torsion if k<n<[p, it
follows from the exact sequence for the bundle SU(k+1)— S*+
=SU(k+1)/SU(k) that =,,(SU(k+1)) is finite and has no p-torsion.

From the exactness of the sequence 7r2,,+1(SU(n+1))7f—"i>7r2,,+1(S"‘”+‘)
—,,(SU(n)), we have that if p<n then there exists a mapping
fn:S™"—-SUm+1) such that the mapping degree of the com-
position zof, : S — S**! is prime to p. The multiplication in
SU(n+1) and the mappings f,, f., , f, define a mapping

F1SIXS X - xS s SUn+1) .

Then it is verified that f induces isomorphisms of the coho-
mology groups mod p and thus C-isomorphisms

(7.1) f*:72(SYP7(S)D -+ B7(S*") - 7#(SUm+1)) for all i
and for n< p.

We have also that =,,(SU(p)) is finite and the injection homo-
morphism : 7,,(SU(2)) - =,,(SU(p)) is an onto map of the p-
components. This injection homomorphism is equivalent to the
projection homomorphism : 7,,,,(Bsu) = 72p:(Bsucy). Let g: S*+
— Bsyc,y be a mapping which induces the SU(p)-bundle: SU(p+1)
—S§**% Then there exists a mapping g¢:S***'—S?*' of the
degree prime to p such that the composition goq is homotopic to
a mapping into Bsy,,. Let g: X—>SU(p+1) be a bundle map
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induced by ¢. Then X is equivalent to a SU(p)-bundle, whose
group of structure can be reduced into SU(2). Thus there exists
a SU(2)-bundle B(p) over S*?*' such that the diagram

B(p)-2—SU(p+1)
7T
q

Szp+1 Szp+l

is commutative, for a mapping g’. By use of g’ and f,, -, f,-1,
construct a mapping

fri18°% o xS X B(p) — SU(p+1)

as above, then f’ induces isomorphisms of the cohomology groups
mod p and thus C-isomorphisms

L.4) iSSP - DS D 7AB(D)) = m{SU(p+1))

for all i. By [2], ®10in SU(p+1). Thus B(p) satisfies (1.1).
Similarly, we have mappings

F i SPXSTX e X S > Sp(n)
and  f/: STX - ><S“”3><B(p)—>5p<1’zil) (p: odd)
which induce C-isomorphisms
(1.2)  fe: m(SHDTAS)B - BASH) — wASp(n)
for all 7 and for p=2x and
15) fii mS)B - @SB B ~ wi(sH(25))

2

for all 7 and for odd p.

By [5], we have C-isomorphisms

Cc Cc

(1.5) 7 (Spin(n+2)) =~ 7(SO(n+2)) ~ n;(Sp(%l-))
for odd #, odd p and for all i.

There is a G,-bundle: Spin(7)— S’ with a characteristic class
of crder 2. Then we have C-isomorphisms

C C
7(G,) @ w«S") = 7 (Spin(7)) =~ w(S") & 7{B(5))
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for all 7 and for p=5. It follows

1. 6)

L1]
[2]

£3]
[4]

Ls]
£e]
L7]
[8]
Lol

[10]
[11]

[12]
[13]
[14]

[15]
[16]

(C) = = (BB) (p=5).
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