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I. Introduction

The aim of the present paper is to characterize increasing
Markov processes on the line under certain conditions. A Markov
process is called increasing if its sample functions are almost always
non-decreasing. We shall consider a class DE of increasing Markov
processes all of whose states are instantaneous, and whose Green's
operator Ga, maps bounded continuous functions vanishing near + 00
into continuous functions, so that these Markov processes are strong
M arkov. Let us recall that the Green's operator is the Laplace
transform of the semi-group H „ determined by the transition pro-
babilities of the process. We shall show (Theorem 5. 1) that to
each process in jrC corresponds in a 1-1 way a family n(a, db) of
measures with the following properties :

1) n(a, (— o c ,  a))-- 0, and n(a, db) has no point masses ;

2) n(a, db)f(b) is continuous in a , whenever f  is continuous and

vanishes near + 00 (i.e. in an interval of the form EN, + 00)) ;
3 ) n(a, db) has the maximum property ; namely, if f  is continuous

and vanishes near + 00, and u(a)= n(a, db)f (b), has a  maxi-

mum at a= a o , then f (a0)>0 .

W e sh a ll show t h a t  i f  th e  p ro c e s s  is  in addition, additive, then
n(a, db) has an explicit representation (Theorem 8. 1). In section
9 we shall show that an increasing strong Markov process with
continuous paths is deterministic.

It does not seem to be easy to obtain an adequate characteriza-
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tion o f DTI by a direct appeal to the Hille-Yosida theorem, since
we know nothing more about the domain o f th e  infinitesimal
generator than the fact that it is dense. We shall, however, show
by using Dynkin's formula [3, Section 2] that the infinitesimal
generator exists and has a dense domain, a part of which is com-
pletely determined.

A crucial step in the whole proof is the solution of the integral
equation (Lemms 5. 1) :

f d-ce n(a, db)f(b) =  g ,

where n  is the characteristic measure of the process (see § 3) which
is concentrated in a half-line. The technique for solving this con-
sists in breaking up n(a , db) into smaller measures by using Dini's
theorem on the uniform convergence of a monotone sequence of
continuous functions to a continuous function [2, p. 121].

Finally it will be obvious from the proof that the correspond-
ing results hold good in R k . In this case, one can, for instance,
define an increasing process by the property

P a (x, E K a ) — 1

for every t ,  where a— (a„ •••,a k ) , K a — (b:b i > a ) .
The problem was suggested to the author by Professor K. Ito.

His help cannot be overestimated. Thanks are due to Professor
K. Chandrasekharan for constant encouragement and to  Dr. K.
Balagangadharan for valuable discussions and a critical reading of
the manuscript.

2 .  Notations

For generalities on Markov processes see [ 3 ] .  We recall a
few notions.

M  will denote a Markov process

M =  (S , W , Pa , a E S) ,

where S  is the state spase, W the sample space consisting o f all
right continuous functions on [0, 0<p) and Pa probabilities on
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W with the Markov property

P a  EivT E B„ E B A = Ea[Px,(B2): w e 131] (2. 1)
where x t  = x(w ) = w(t) ,

w (s ) = w(t +s) , s > 0 ,
wT(s) = w(t A s) , s > 0 ,  t  A  s = min (t, s) ,

and B„ B, E B(W ), the Borel algebra on W . f E (B (W ) )  will mean
that f  is B(W)-measurable.

We shall write for f  E (B(S)),

H f (a ) =  E a [ f ( x , ) ]  =  s  P  (t, a, db) f(b)( 2 . 2 )

where P(t, a, db)=P a  [ x t E d b ].  l i t  defines a  semi-group on the set
of bounded Borel functions on S .  The Green's operator Ga (a > 0 )
is defined by

u(a) = G a  f (a )  =  o e- - atEa [f (x , ) ]d t (2. 3)

G„ satisfies the resolvent equation

G a — G  +  G  g (a — 0) = 0. (2.4)

In this paper we consider Markov processes on the real line
R  satisfying
(A. 1) alm ost all sam ple functions are right continuous and in-
creasing;
and
(A. 2 )  Go, f (a )  (a > 0 )  is continuous f o r  any bounded continuous
function f  v anishing near +00.

L et C  be the class o f all continuous functions that vanish
near + co (but might be unbounded near — 09). (A. 1) and (A. 2)
will imply

G„C (2.5)

Using the typical argument, we can easily see that (2. 5) implies
the strong Markov property  o f our process.

It is easy to see that G .: C--->Ga C is one-to-one. The infini-
tesim al generator .6' is defined by
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.gu = au —G;iu

where the domain 1 (g )  o f  .g  i s  G .C . T h is definition is inde-
pendent of a because of the resolvent equation.

L et .6) ,  b e  th e  generator o f M i f o r  i = 1 .2 . I f  then .6'1 = g 2 ,
M 1  M 2  •

Define for b G R
a-

b (w) = inf it : x (w ) >  b} .

Then 0-1, is  a  Markov time, i.e.

(o-
b >  OE /3, = (B = (w: E B ')), B 'EB (W )}

where B t i s  the stopped Borel algebra at t ,  C r i ,  increases with b.
If the paths are continuous it is the first arriving time at b if the
starting point is to  the left of b. W e shall classify points of R
in the following way.

1. a  is  a  trap  if  E a [c 'b ]= 0 ,  for every b > a ;
2. a  is  an exponential holding tim e point if

0 <  lim Ea  [e - 6 b] < 1 ;
174, ,

3. a  is  instantaneous if
lim E a [e - ' b ]  =  1.
b y a

W e shall call a  regular if it is no t a trap.

3 .  Characteristic measure of the process.

Proposition 3 . 1 .  I f  a  is  no t a  t rap , there ex ists a  neighborhood
U(a) o f  a such that E,[0 - ,,] <00 f o r c, bE U(a).

P ro o f : If fo r every  it E L'u (a )=0 then  th e  fact that
aG a  f(a )= f(a) for every f  with compact support implies that

iltf (a )=  E a [f(X t)] =  f (a )

for every t ,  i.e . a  i s  a  t r a p .  Hence there exists u E M (g), 6>0
and U(a) such that .gu(c) > 9  for CE U (a ).  From Dynkin's formula,
viz.

E, [Vb gu(x t )d t] =  E c [u(x, b )] — u(c) ,
0
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One gets
E c kd<211:11

where l!ul I s u p  u .
The set of regular poins is thus open. Let (X, P ) be one of

the component intervals.

Proposition 3. 2. I f  X < a < b <  [
6

,  then

E a[ab] <  " (3. 1)

P ro o f: We have only to use Proposition 3.1 and the fact that if
a  function is bounded in a neighbourhood of each point, then it
is bounded in a compact set.

We shall assume hereafter that there are no traps. Then we
see that the measure

n(a,db)— Vo P (t, a, db)dt( 3 . 2 )

exists in the sense that for every b,

P (t, a, ( -00 , b ld t<0G

Evidently this integral is equal to E 0  [ 0 b ] .  T h is  is the probabilistic
meaning o f  n(a, db). Note that E a  [0- b ]  is bounded fo r  a  in a
compact set.

Proposition 3. 3. I f  f  is continuous an d  has support in
( -0 0 ,N ] f o r some N, then

-
u(a) n(a, db)f(b)

a

is continuous and vanishes in  (N, +00), i.e. uEC, G a,f(a ) converges
to u(a) uniformly in  a>.—n f o r evey n.

Proof: Let M  be such that

E 0 [0 - N ] < M  ,  — N  <a , (3. 3)
Then i f  —N<J1,

P a  Ar] <  y  • (3. 4)
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I f  g(a )=E a [OEN ] ,  we see that

co N
So E a [g (x t )]dt — E a h  g (x e)d t i<  M 2 , — N < a .  ( 3 . 5 )

0

It follows, using the Markov property, that

E aPti <2M 2 , — N < a .( 3 . 6 )

Now

u(a) — Gaf(a)1= E 0 0 f(xt)dt—Gaf(a)

=  Ea ( f (xt) — e- 6 t f(x t))d ti

< E a r  f (x t )d t—  o
c r iv f ( x t )dt

< E a h o
' r x  (1—e - `")dti Ilf II
Ea Err  N  1  ea °3crN]

Also x > 1 —  e ' for x > 0  and x — (1— e- x)< x 2 for x < 1 .  We have
therefore

E a P N  a

Ea [N 1— e- "Ar
a CT N> X]-1- E0[o-N_1—e-'56N

a
:  c r N  < X ]

‹EaLŒ N: 0 -1,7> X P -E a [c rN  ea criv : G'N< X ]

< E a  Cold P aEC N >  +  E a[cr AT 1 e
a

" N : N <X ]

Choose X large so that 
2 M 3  <  E  and then choose a such thatX

a X < 1 .  We then have

E a [ a .N _1—  ea - '
]

‹  6  +E a  ra 20- 2 N  0 .N  < d ‹  6  ± a x 2
L

Therefore Ge,f (a ) converges to u(a) uniformly in a>— N  for every
N  and the continuity o f Gr, f implies that o f u.

We shall call this measure characteristic measure of the process.
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We defined Ga  on ly for a > 0 .  Now we shall define G o by

Go f (a) = E a U o-  f (x t )dt) db)f (b) .

Then Proposition 3. 3 implies that, if f E C , then Ga f (a)  converges
to Gof (a)  uniformly in  a>,- -n  for every n  and Go f  E C.

Proposition 3. 4.
= G oe ;

= —  f  for u = G o f

P ro o f : Letting 1 ,  0  in the resolvent equation

Ga f— G g f +(a-13)G a Go f  = 0 (f E C ).
We have

G. f — Go f +ceGa Gof  =  0 .( 3 .  7 )

Letting R  0  in  Gof i g =G g G„, we have

Ga Go = G oGa

and so we have, b y  (3. 7),

Go, f — Go f +ceGoGa f  =  0 . (3.8)
Thus we have

Go f  = G .(f  +aGof )( 3 . 9 )
and

Go, f  = G o ( f — ceG f) .( 3 . 1 0 )

G,,C Ga C follows from (3. 9) and Go,C C G ,C  from (3. 10), and so
we have

Goe = G C  = .

Using (3. 9) we can see that, if  u—Go f ,  then

f u  = ceu — (f  +aG o f ) = —  f  .

4 .  P roperties of n(a, db)

Proposition 4. 1. I f  M , and M, are two Markov processes with same
characteristic m easures, they  are identical.

P ro o f : Let f i  and Q , correspond to M i , i= 1, 2. We have
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G jf = G f ,  f E C

by our assumption. If u E T(.q), then u + G f  for some f  EC, and
so we have

u = Gr) f E  (.6')
and

g i u = — f  = g 2 u .

Therefore g ' is an extension of _OE. Similarly [I" is an extension
of g  and therefore L'' = .6'. Hence the processes are identical.

Proposition 4. 2. n(a, db) has the maximum property, i.e. i f

u(a) n(a, db) f (b) ,

f  vanishing in  Em, cc) has a  m a x im u m  in  — n, m] at a0 ,  then
f(a0)>O.

Proof : If

then

so that

Eaoh: f (x t )dt .i >  E

E a  ft  f (x t )dt] > E a o [E

f (X Odd , b > a o ,

f (x t)dt1

i.e.

Ea 
[5:

 f (xt)dt] > :  E a o [f (x t)]dt ,

Ea M x tn d t >0  .0

Divide by s  and let s—>0.

C o ro lla ry  1. f ( b ) n ( a ,  d b )= 0  im plies that  f O.

C o ro lla ry  2. a r o f (b)n(a, db)+ f (a) > a  . f(b)n(a, db)

a > 0 , where II II denotes the supremum norm considered in  fixed
compact set.

Proposition 4. 3. The set of functions u  of the form
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u = f (b) n(• , db)( 4 . 4 )

is  dense in  the space o f  continuous functions vanishing at +00
provided with the compact uniform topology.

P r o o f :  If f  decreases and tends to  zero a t  + co, then a s  a
aGo t f  tends to f  uniformly in compact sets, by Dini's theorem
[2, p. 121]. It follows that this is true i f  f  is continuous and
tends to zero a t + c o . Let f  vanish beyond some N .  Then, as

00,

a2 Jo Ea[Ga.f(xs)]ds — a Vo  a [f  (x 3 )]ds—> f

uniformly on compact sets.

Proposition 4. 4. I f  f  van ishes a t +00 then Ea [f(xt)] is  con-
tinuous.

P r o o f :  Let A be fixed and consider the process only [A, co). Let
E  denote th e  Banach space o f  continuous functions in  [A, co)
vanishing at + co. F ro m  Proposition 4. 3 the resolvent Gas has its
range in E .  The Hille-Yosida theorem then gives a  strongly con-
tinuous semi-group of operators T : E-->E such that

e 'tT ,d t =
0

But

f  = e- `"E [f (x t fldt .
0

Since E [f (x , ) ]  is right continuous in  t  we deduce

T f (a) = E a [f (x ,)] ,

if f  vanishes at + 00 and is continuous in  [A, cc). Since A was
arbitrary the proposition is proved.

Proposition 4. 5. n(a, db) is a continuous measure i.e., has no Point
m ass, if  and only i f  there are no exponential holding time points.
P r o o f :  If a  is an exponential holding time point then

Pa [ xt a] e a t ,  0  <  X ” <  oc.
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It follows that

F0 P.[x t a ] d t .

Now suppose that
n(a, {b} ) >  0

for some b > a .  Then
f

o P. [xt b ]d t>0  .

For an uncountable number of t  we should have

P a [x  =  b ]> 0

It follows that for some t, s , t >s ,

P a  [x  =  b, _Ks = b] > 0  .

Using the Markov property

Pb[xt—., = 13] > 0 ,
i.e, b is an exponential holding time point.

5 .  The main theorem

We have seen that to a  Markov process with increasing paths
which go to + 00 with probability one there corresponds a charac-
teristic measure n(a, db), which has the maximum property.

We shall now prove a partial converse to  th is. As we have
proved above, all the following properties are true in the general
case except perhaps (4), because n(a, db) may have point masses ;
Proposition 4. 5 shows that this can happen only when there are
exponential holding time points.

T h eorem  5 . 1 .  L et n(a, db) be m esure on R  such that

(1) n(a, (— 00, a])=-0 ; n(a, (a, a+h ))>O , h >0  ;
(2) f (b)n(a, db) is continuous i f  f is continuous an d  f o r

a

a > c  f o r some c;
(3) i f  u(a)=V  f (b)n(a, db) has a m ax im u m  in  [A, c ] at a„

then f (a 0)>0  ;
0
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(4) n(a, db) is continuous, i.e . it has no point masses. Then
there ex ists an increasing process fo r  which n(a, db) is  the charac-
teristic measure.

For the proof of the theorem, the following lemma is fundamental.

Lemma 5 . 1 .  Let n(a, db) be measures on le satisfy ing condi-
tions (1), (2) and (4) of  Theorem  5. 1. Let A  be f ixed and consider
a continuous function which vanishes beyond N . L e t ce> 0  be given.
Then there ex ists a function g  continuous in  [A , o c ) and vanishing
outside [A, N ] such that

g(a) + a  N
A g(b)n(a, db) f ( a )  ,  A < a < N . ( 5 .  1 )

Proof:: Consider the function n(a, b) = n(a, (A, b)). Since n(a, db)
h as no point masses, this is continuous non-decreasing in b, for

-
fixed a. Since n(a, db)x (b) is continuous and since n(a, db) has
no point masses we see that n(a, b) is continuous in a for fixed b.
From Dini's theorem one deduces that n(a, b) is continuous in (a, b).

From Dini's theorem again it follows now that there exists a
8 > 0  such that

1  n ( a , ( b , b + h ) ) < c r + i  .  h  < 8 ,  A < a ,  b < N . (5.2)

(we use again the fact that n(a, db) has no point masses).
If for gE EN = {the set of functions continuous in [A, Do) with

support in [A, N]}, we define
b-l-h

Lg g(b)n(a, db) ,( 5 . 3 )

then the equation
g+ aLg =  h ( 5 . 4 )

has a solution for every h E EN ,  because HciL Ki.
Consider a subdivision (A + ih, 0< i < n) o f [A, n ]  into, say, n

equal parts with 2h<8.
Let f ,  E EN such that

f i (a) f ( a )  ,  A+ (n —1)h < a  <N ;
f 1 (a) = 0 , a <  A+ (n —2)h + hi < h .
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Then there exists g, E EN such that

g 1 ( a ) + a .  
A  tth

g,(b)n(a, db) = f (a) , A < a  <N . (5.5)
A - 1- (n -2 )h - 4- h1

Let LE E A+(n- oh be such that
A+(n_2)h÷h 1

f 2 =  f— f— f i — a gi(b)n(a, db) , A + (n — 2)h <a <N
A-1-(n-3)h+h 1

=  O,a < A + ( n - 3 ) h + h
1
.

We can find g2 G E A - 1 (n - 1 )h  such that

Adding (5. 5) and (5. 6) we see that
rN

g,(a)± g 2 (a) +a [gi(b)+ g 2 (b)]n(a, db)]n(a, db) = f  ,+ f„
A ' (n -3 )/ t+ h ,

A < a < N ;

since f 1 + f 2 =  f  fo r A + (n— 2) h < a < N ,  we see that g= g 1 +g 2

satisfies
fN

g (a ) g(b)n(a, db) = f  , +(n - 2)h < a  < N  (5.7)
J A1 ( n - 3 ) h  I h 1

It is clear how to complete the proof by proceeding backward in
this fashion.

Now let us fix A, N  and consider [A, N ] .  Proceeding exactly
as in  the Lemma 5. 1, we can prove that given f E  C [A , N ] (i.e.
continuous functions on [A, N ]) there exists g E C [A, N ] such that

f ( .) a N
A n(•, db)g(b)+ g(•). ( 5 . 8 )

Proposition 5. 1. The g in the above equation is unique.
The proof depends on this following lemma.

Lemma 5. 2 . Let X  be a compact Hausdorff space, f „, fE C (X )
anb f„--> f  uniform ly . L e t A  be the set of maximum points of f
and U be an open set containing A .  T hen there ex ists at least one
n  such that f „ has at least one maximum point in U.

P ro o f : Let A n be the set of maximum points of f „,  and K
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the closure of A „. It is obviously enough to show that Kr\ A=1-(b.
Suppose that Kr■ A= (I). Let

0 < 0  = Stm f ( x )  •

Since / - f ( x )> O  on K  we should h a v e  -  f (x )>6  for some 6 and
for all x E K .  Choose n  w ith  J f n i — f11<-8- fo r m > n .  Then if
x EA n , y eA ,

26 26f(x) > h ( x ) - -
3

>f n ( Y ) - -
3

>f(Y )—  
3 

4— 
3

This is  a contradiction.

Proof  of Proposition 5. 1. Suppose that

a g(b)n(a, db)+g(a) O.
A

Let u(a)=a g(b)n(a, db) and suppose that sup u>0, and that the
A

supremum is attained at a , .  Then since u(N )=0 we should have
a, < N  an d  then  g(a 0) < 0 .  Choose g n  s u c h  th a t  g n = g  for
a < N  w ith support in [A, N+—n

1-] and decreasing to g. Then
.fN -F  1 in

a gn(b)n(a, db) a  g(b)n(a, db). The convergence is there-
A A

fore uniform . Let A  b e  the set of maximum points of u. A  is
compact and N Ø A .  Further g(a)<0  for a E A .  According to the
above lemma there is at least one g„ such that

un = a g„(b)n(a, db)
A

has at least one maximum point in U .  It then follows the positive
maximum property of n(a, db) that g (a)>O  at least a t one point
of U .  Since gn = g in  U th is is a contradiction.

Replacing g b y  —g and arguing in the same fashion we see
that u O. H ence

For every f  EC[A , N ] define

Gn, f  = ,
N
A n(a, db)g o,(b),( 5 . 9 )

where go, is given, by virtue of Lemma 5. 1, by (5. 1) :
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f  (a) = 1\r
i i n (a, d b ) g .(b )+ g .(a ) .

Proposition 5. 2. G .f  thus defined satisfies the resolvent equation

G.—G0 +(a—g)G.G 0 = O,
and IlaG.11 < 1 ,  G . f > 0  f > 0 .

P r o o f :  Integrating the equation defining g . ,  we get
r N

f ( b )n (a , d b )  =  c eh n (a , d b )S A n (b , d c ) g .( c )+  h g .(b )n (a , d b ) ,A
so that,

r r N

Ga [  f ( b )n ( • ,  d b d[  = db) n (b ,  d c ) g . ( c ) ,

proving thereby that

G .U A  f(b )n (• , d b d =  SA  n (• , d b )G .f(b ) .

Further, if

f =  gSn (a , d b )g g (b )+ g g (a ),A
then operating on both sides by G ., we see that

G .f =  g i v
A n (a , db )G .g g (b)+ G .g g (a ),

so that

G0 G .f = n (a , db )G .g g (b) =  G .[ L n (a , d b )g g (b)]= G.G g f .

But

G0 G.f = G g h  A  n (• , d b )g .(b ) ]= n(a, db)G g g„ (b ).

Hence G .g g —Gg g . .
Finally,

G .f =  g4 A n(a, d b )g g (b d + G .g g

= OG.Gg f+ G .g g ,
and

Gg f =  a G .G g f+ G gg ,
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so that we have the resolvent equation

Go,f  —Go f + (a --R)G,,Gg f  -= 0.

Let u  = G  f . Suppose that sup u > 0 .  Then it must be attained
in [A, N ) and at least at one such point a, g (a)>0 . Thus f > a s u p u
i.e., ijf 11> a  sup u.

If inf G,„ f < 0 ,  at some such point, g(a) <0 so that f < 0 . T h e
proposition is completely proved.

Proof  o f  Theorem 5. 1. Define for f  E C [A , N ],

R„f(a) Go, f (a) + f (N )[ — G e (a) ] ,  A <  a < N  , (5 .1 0 )

1where e(a)_-- 1 , A <a < N .  Since 0 <G„e(a) < T x  a n d  G„ f > 0  for

f > 0 ,  we see that 0 < a R „ f < 1 , i f  0 < f < 1  and R„1=-1-c-e . One
easily verifies that

Ri3 ±  (a— le) R A  0 .

It is trivial to see that the set

{u: u  = R ,f , f > 0 }

separate points of [A, N ] .  Now from a result of Ray [5, Theorem
1] we see that there exists a transition function Q t:

Q t f(x ) Q t ( x ,  d Y ) f ( Y ) ,  t > 0 , ( 5 . 1 1 )
[A,N)

where Q, f(x) is right continuous in  t  for t > 0  and

e'Q ,  f  (a) dt R a, f (a) .
0

Also lim aR „f =g  exists fo r every f  E C[A, N ]  an d  if  tba =p , is

defined by

g(a) 1-1, (a, db) f (b) , (5. 12)
CA,Nl

then

g(b)— f(b)1 IL (a, db) 0, (5.13)
[A,N1
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and

(Ma, db) f (b) 111, 11. Q t (a, db)aR„ f(b)
LA,N1[ A N ]

= Qt(a, db)g(b) = Qt(a, db) f (c) (b , dc) .
,[A,N1 [ A N ] [ A N ]

The last equation holding for every f  E C[A, N ] implies that

Qt (a, db) If (0 - 0 ) 1 =  0 ,  f  E C[A, N ] ,
[ A,N1

with g(b)=1im  aR„f(b).

Suppose that f (N ) = O . If

f (a) n (a, db)g„(b)+ g„ (a) ,
A

and
a [  sup n (a, [A , N ])] <1  ,

"E t A N ]

then evidently
f —

 f  + al; f— • • • ,
where

L f  (a) =  i‘T
A  n (a, db)f(b) .

Hence lim f  uniformly. This implies that

,rA n (a, db) go,(b) n (a, db)f(b) ,
A

uniformly in  [A , N ].
Since from (5. 10), R „p=G„cp if  cp(N )=0 we have if f > 0 ,

lirn c 't ( 2 ,f d t  = lim Go, f  =  lim n(a, db)g„(b)
(4 -).° J A

n(a, db)f (b) .
A

This proves that if f (N ) =O  and f  E C[A, N ],

Q t fdt = A  n ( • ,  d b ) f (b )  = A  n(•, db)f (b) .

W e shall now prove that lim “G „f = f  fo r every f  E C[A , N ]
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with f [1\1] = O . Note that from the results of Ray [5, Theorem 1]
quoted above, if

g  = lim  aG o,p ,

then

n (a, db) g (b) = n (a , db)p (b) .
A

Hence if

then from (5. 12),

IN
g(a) = n (a , db) f (b) ,

A

1-6 „(db) g (b) = g (a) .

Fix ao E [A , IV ]. Choose f  such that f h (a)= 1 for a < a o +Oh where
0 <  I, and f  h (a)— 0 for a> ao + h. W e have

tbo o (db) f h (c)n(b, dc) = f h (c)n(ao , dc) ,
A

rA,N]

so that
1a o + h(d b )

n(ao ,(ao , ao+h)) Iza° ao 

f h ( c ) n ( b ,  d c )

IA ,N ]

1 f a o + h

n(ao ,(a o , ao+h)) a o 
f  h (c)n(a„ dc) .

n(ao , (ao , 0 The right side exceeds ifi s  close to  1.n(ao , (ao , ao +h)) 2
I t  is clear that by choosing suitable f h ,  0  etc., we can show that

P ao (a0) 0 .

It fo l lo w s  th a t  f o r  eve ry  a, E  [A , N ],  tb a o (a0) >  O. Hencs
lim aG„ f(a)— f(a) for every a E [A , N ); since by (5. 13)

Pa (db)lf(b)—  g(b)1= O, g  = lim

By routine patching methods one gets a system P(t, a, db) such
that

1. O <P(t, a, db) < 1 ;

2. P ( t+ s , a, dc) = P(t, a, db)P(s,b, dc);
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3. P (t, a, ( -0 0 , b ])d t = n (a , (-0 0 , b ]) for every b;

4. lim P (t , a, db) f (b) = f (a) ;

5. e' d t P (t , a, db)f(b) e.on(a, db)g c,(b);

6. P (t , a, ( -0 0 , a ))=  0  for every t.

In the next article we shall construct the process and this will
complete the proof of Theorem 5. 1.

6 .  Construction of the process

We shall prove the following

Theorem 6. 1. L et P(t, a, d b )<1  be measures on R  such that

P (t, a, ( — 00, a)) =  O;

P (t, a, db)P (s, b , dc)=  P (t+s, a, dc);

a, db) P (t, a, db)f(b)— V _P(t, b, dc)f(c)

as 0 f o r every t, i f  f  is continuous and v anishes at +00.
Then there exists a Markov process with increasing paths having

P(t, a, db) f o r its  transition measures.

Proof : Add + 00 to R  and say 00>a for every a E R .  Let 1̀ =
{the set of all functions on the set of non-negative rationals into
Ry 00} . Using routine methods one can get probabilities on
such that if  X, is the co-ordinate at r,

P a [ X r i E  E i l l < i < n ] P(ri, a, da)..-p ( r„— r„_ ,,  a 1 , dan) •
E n

From (1) and the Markov property we see that

P a [ r > s ,  for every r, s with r > s ] =  1 .

Putting t =  0  in  (3), we get

P(8, a, db)l.f(b) —  f(a)1— . 0

0

From (3'), we have
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P aE lga— a l>q—  0  a s  a , o.
Since

-130[ IX1+8 Xt I > 6 ]  =  P (t, a ,  d a ,) P ( 8 , (11, da2) Ra1, a2) ,

with F(a„ a 2 ) =  O, i f a2 < E ,

=  1 if la1— a21> 8 ,
we have

1-t,-1.8— Xr1>q  — >  0  a s  a , o. (6. 1)

One cannot conclude from (6. 1) in  general that Y . is right con-
tinuous at r  with probability 1. (6 . 1 ) only shows that given a
sequence r r , x r „ — ) . - g r  a.e. for some subsequence of rn . Since in
our case "gr > .t s a.e., r> s , we should have right continuity at every
rational r. Thus

Pa  [W =  { : t a  is increasing, right continuous at every 0 ] =  1 .

Given any right continuous increasing function X,. on the rationals
w e get a  right continuous function on [0, 00) into R i  o c  i f  we
define

xt = inf X..
r>t

L et W be the set of all right continuous increasing functions
on [0, 00) into Ry 00 • T h e  map

- ›  X.

gives a  1-1 map of W  onto W . This is cleary measurable and we
get a  probability Pa  o n  W . We shall show that this satisfies the
Markov property.

Let f1, ••, f , , ,  f  be bounded continuous functions. W e  have

E a [f . (X t i ) . f a ( X t . ) f ( X t ) ]  =  l i m  E a U i ( x , )  f .(x r.) f (x ,-)]

where
ti < r i < t i + „  t n < r a < t < r .

And
E a [ f i (x r i ) ••• f a (x,a )f(x,.)] = E a rf,(x,.,)••• fn (xr „)Ker a (f(x,. „ ) ) ] .

Letting r i --->ti , 1< i< n -1 , r ---> t, we get
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E a [ f i (x i i ) ••• fn (x ,„)f (x ,)]= E a [ f i (x e i ) ••• fn(x,„)Exr„(f(xt-r.))] -

Now the proof is completed by using (3).

Rem arks. If P (t, a, db)f (b) is continuous in a as in our case, then

(3) follows from (3').

(2) One can also use Doob's theorem on paths of a semi-martingale
[ 1, Theorem 11. 5], for constructing the process.

(3) The idea of the proof above can be combined with a modifica-
tion of certain results of Nelson [4 , §  4 ]  to  g ive  more general
constructions.

It is very natural to expect that if

n(a, db) f (b) = n(db) f (b + a) , (6.2)

then the process is additive. We have

Theorem  6. 2. The process is additiv e if  and only i f

n(a, db) f(b) n(db) f(b + a) .

Proof :  We see from the hypothesis that

f l(a +b, dc)f (c) = n(a, dc) f(b+c) ,
a

i.e., aL f , = a  f ,

where L f (b)— n(b, dc)f (c) a n d  a f ( b )  f ( a +  b ) .  I f  f  = eeLg„+ g o,,

then
f  = cebr a g o s + T a

so that Gdra f= T a G .f ,  i.e.

e 't d t P(t, b, dc)f (a+c) e 't d t 1 P ( t ,  a + b, dc)f(c) .
0

we get P(t,b , d c ) f (a+c )—  P(t, a+b , d c ) f (c ) ,

i.e., V ( t ,  a, dc)f(c) P(t, o, dc)f (a+c) .

This together with the Markov property implies that
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P(t + s, o, dc) = P(t, o, dc)* P(s, o, dc) . (6. 3)

Suppose that t, < t , < • • • < t n •  We have only to prove that

P [x t , E Ei , x 2 —  Xt i E E2, •.. xtn — xt„_,E
=  P a [x t i — xt i ,E .

One easily gets this using the M arkov property and (6. 3).

7. Examples

Example 1. Let M  be a strictly increasing function and

f(b)n(a, db) = f(b )d M (b ) .

I f  u is differentiable with respect to M  then uE  T (g) and

du 

Example 2. Let M  and N  be strictly increasing and M  bounded.
Define

u(a) = n(a, db) f(b) =  d M  (y ) d N (z )f (z )  .
C.,v)

If for every b>a o ,
u(ao) > u(b) ,

then

dM(y) d N (z )f (z )—  d M (y )  d N (z ) f ( z )  >  0
Cao,Y)

i.e. dM(y) d N (z ) f (z ) +  [ dN(z)f(z)]dM(b, 00)>  O.
[ao,V)

If f(a 0) <O , for b near a „ f(b )<0  so that the term on the left side
The conditions of the main theorem are thus satisfied.

Example 3 .  For the Poisson process with mean X > 0 , it can be
easily seen that the characteristic measure is concentrated on the
non-negative integers, the mass at the point n being X- " , n > 0 .

8. Additive increasing processes

The characterization o f a  M arkov process given by a  Lévy
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process is much simpler and in this case the characteristic measure
has, in a sense, an explicit representation. In fact we have

Theorem 8. 1. A n additiv e increasing Markov process is charac-
terised by  a  measure m f o r which

b 1 m (d b ) <  , ( 8 . 1 )

in  the sense that if  P(t, db)=Po(x, G db), then
-

P(t db)e - - "  exp [—Kta— (1— e- "b)m(db)]( 8 . 2 )
0

where K > 0  is  a  constant ; and conversely, and K > 0  and m satisfy-
ing (8. 1) give rise to a Markov increasing additiv e process. Further,
i f  n is  the corresponding characteristic m easure (§ 3 ), w e have, i f
K =0

(m(u, 00)du) * n(du) = d u ,( 8 .  3 )

Proof : W e prove the last statement. Consider equation (8. 2)
with K=O ; then integrating both sides,

"  P(t , db)dt = F s (1— e - ")m (dud i

0 0 0

and by Fubini's theorem

e- "n (db ) = [ceV  e - "m(u, 00)dull

i.e. e-"n (db)] F  e - "m (u ,  0 0 )d d =  e - "du ,
0 0 0

i.e.
-

e- "Em(u, 00)du n(du)] =  e - "du ,
0

which is equivalent to (8. 3).
Now we turn to the proof of the theorem. Suppose first P(t, db)

that corresponds to an additive increasing Markov process. Since

e- "P (t  +  s , d b ) = [ e - "P(t, db) e - 6 bP (s, db)] ,0 0
we see that

1.
 -

"bP(t, db) = e - t F ( m )

O 0
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where F (a )> 0  and continuous. We have

S
-  1— e db) e - t F (0 3 )

bt t •

db)This shows that the family of measures 
b P ( t ,

i s  u n i f o r m l y

bounded o n  [0 , 0 0 ). There exists then, by H e lly 's  theorem, a
measure M  such that M(db)<00 and for every continuous func-

tion with compact support in  [0, 00),

M ( d b ) f ( b )  =  l i m
bP(t„, d b )

 f ( b )  ,
0

[0, 0 0 )

e-"for some subsequence t 1 —  b

„. Since —.0 at +00, we see that

1—e
 M ( d b )  —  l i m

P(t  d b ) l— e F ( a )  ,- ”b n' — 
ta

i.e. a M ( 0 ) +  
1 —  c "

M(db) F (a )  .
(Ooo)

Put 
M ( d b )

 —m(db), then

aM (0 )+  (1—  e 'b )m (d b ) =  F (a ).

(1— e- "b)m (db) <00 is equivalent to b +
b m(db) <00 .

(0,-)

Now we shall prove the converse. This part of the proof is
modelled on K. Ito's proof [3 , Section 4 ]  of the structure theorem
for Levy processes.

Let a measure n(du) on (0, 00) be given and a constant m > 0

that such -  "
1 + u

n(du)<0 0. Then we shall determine a  temporally

homogeneous Levy process x t such that

E(e t) =  exp [—amt—t Ç (1— e - - " )n  (du)]
(0,-)

S  =  {(s , u ): s>  0, u  >  ,

S N  {(s, u ):  N >  s >  0, u >  0} ,

Let
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and cr(dsdu) the product measure on B(S) of the L ebesgue  measure
and n (d u ). Consider the space 1-2= [0, ()o] B ( s ) and  let A  be the
algebra o f  a l l  sets  o f th e  form  ((x (E 1) , • • - , x (E ) )  E .13" ) where
B" E B (R "), for a ll n and a ll n - tu p le s  of sets E 1 , •••, E .  We shall
now define an elementary probability measure on A , which for fixed
E„ •••, E  a  probability on B (R " ) .  We then appeal to Kol-
m o g o ro ff 's  existence theorem to get a  probability on [0, 0.0]B ( s).
We give the details below.

For any EE B(S), define

P [x (E ) =  n ] c ` r
(
E )E

OE(E)11"
n ! '

=  O,
P [x (E ) =  0 0 ]  1 ,

Let E = E i v • • • E t. where E 1 , ••• , E r  are disjoint. Then

p Ex  (E )  = n ]  =  e _cr(E i U ...0 Er ) P (E 1 \-1 • • • E r) ]"  
n!

n!

e
-rcrcE,)+•••+,(E r )]

E (n!)°-(E i)il°-(E 2)12  • • • u(E r )i ,

n! il! i2! ••• r
E  P(x(E,) = i1) P(x(E2) i2) ••• P(x(Er) = ir )  •

Let now E „  • ,  E E B (S ) .  We have

E,\J • •• En =  (E i—  E 5 ) \J [E ir\Ei —  E d  V  [ E i n E i n E k

E 1  • • • U  (El  r\ E 2 • • • 'm E,,)

=  P l \ - 1 • •• \-J É K ,I)  ,  say.

In general r(n) = 2 " .  Then E l , •••, r ( „ ) ,  are disjoint and each set
E i  i s  the disjoint union of some of the sets Ê .  Let

P ( i )  =  i ,  i f  E r \ Ê 1 is non-empty ;

=  0  otherwise. (8. 5)

Let B E  B (R ") and define
17 [(x(E), • •• , x(E„))E B] =

E n P [x (P i )  =  k i]X B E ( f  (i)ki •••, f  n(i)ki)] , (8.6)

if u(E) <00 ;

if c (E )  =  0 0 ;
if 0- (E )  = .

e
-ro-cE,)+•••+,(E r )]

 [ T ( E 1)  +  + O E ( E r ) ] "
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where X i,  is  the characteristic function of B .  From this definition
of P  it is clear that i f  T  is  a permutation of 1, 2, •••, n  then

P[(x(E,„), • • • , x (E )) E T B ]  =  P[(x(E,), • • • , x(E„)) E B ] ,

where T B  is defined in the obvious w ay . L e t F„ • • , Fm  be such
that F i —E1 ,  1 < i  < n .  Define the sets P „  • .• , P ,„ „  in the same
way as in (8. 4). We have

•  , x (E n )) E B ] [(x(F,), • • • , x(F, n )) E B '] ,
where B ' •••, R „ • ••, „) E B} ,
and XB' = x [ (e1 , •

From formula (8. 6) above, we have, if
 g ( j )

 is defined  in a
sim ilar way as in (8. 5), then

P[(x(F,), • • • , x(Fm )) E

11,— .1(r)", j=1

r (,n)
PE(x(P; )  =  i i ] ; , E(Eg/(i)/ i , E gm(i)/2)] •

Also each of the P i 's can be expressed as a union of the t k 's and
since the P i 's are disjoint each t  k  can occur in at most one of the
unions. Let h i ( j ) =1  i f  F 1  occurs in the union for E i and zero
otherwise. Then since P 1 = some union of sets Pk ,

r(m )
P[x (P i ) k i ] E I I  P [x (P ; ) = .

k i— E  h (.1 ) 1 .i

Therefore noting that each t k  can occur in at most one expression
or, equivalently, h i( j)  for fixed j  is not zero for at most one i

r (n )

E  H P(x(Pi) = k i)x B U E E f  "(Oki)]
.,k  (,,>  j= 1

E
k1=E h ' ( j,••• ,k r(n )= E  hr ( ' )( j ) l j

II 1 3  EX j )  =  l j ]  X  B  [ (  f E h'(j)1 3, • • • f
 n ( )  E

t== ,

=  E
k r ( " ) ( i ) l i

IT P [x ( F ; ) J ] X  [(E  g  ( j)1 ;  , • • , E g  ( j ) ,
i=1

=  E I I  PE(x(F;) =  f ] ; '[ ( E g '( j ) E en(i)01

c—,1(r)j 1
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since ' fP(i)hi(j) = gP.(j),
i =1

r ( m)E AP[x (F J ) 1 s i ]X ,E(E g/(j)1 , • • • , E gn(j)k i ] ,

i.e. PE(x(E1), x(En)) E =  P [(x (F i ), x(F„,)) E .

Now suppose that ((x (E,), • , x(En )) E ((x(Fi), x (F,J) E B2)
and consider Q ., q, • • • , G , ,  with G', =E i , 1 < i  < n  and G + ; = F ;  ,
1 < j m .  A lso  consider G, • •-, G ,, w ith F i ,  1 < i < m  and

1< j < n .  Define

=  0 1 ,  • • • , : • • •, c ,
= L un): E B2) •

From the above it then follows that

PE(x(E,), • • • , x(E n )) E B 1 ] PE (x (Q ), • , x (C „,,)) G ,

PUx(F 1 ), • • •, x(F,,,)) G B 2 ] --= PE(x(G), • • • , x(G,2
7,+ „)) E .

Since (x(G1), • •-, G  B 1) =  ((x(E,), • • • , x(En )) E
((x(F,), • , x (F„,)) E = ((x (GT.), • , x (G„,„)) E B ) ,

and GT =G ( i )  w h e re  T  is  the permutation T O = n +  j ,  1 < j < m ;
7-(m + j)=j, it follows that 7..51= M  and hence

PE(x(E,), • • • , x(E n )) E B1]  =  Plax(F,), • • • , E B 2 ] .

P  is thus uniquen tly  defined on A  and defines a  probability
measure on B (R ") for fixed E„ • • • , E n . We can then extend P  to
B ( A ) .  From the formula (8 . 6 ), then, i f  E„ • • • , E n are disjoint,
x (E,), • • • , x (E n ) a re  independent. F u r th e r ,  if E =  E i u • • • E n ,
E„ • • • , E„ being disjoint, then x (E) = x (E i ) + • • • + x(En )  with pro-
bability 1.

Let us understand by an elementary figure, a finite disjoint
union of closed rectangles with rational vertices and contained in
S .  An elementary figure is a lw ays compact an d  is contained in
S N  for some N .  I f  E ,S c °  and is  a t a positive distance from the
t-ax is,

1 1, - s r 0 , 0  :7= 1

(dsdu) dsn(u : (s, u) E E ) < 00  ,

since u ±
u

 1  n (d u )<0 . 0 . Therefore, E [x ( E ) ]- =  0 - (d s d u ) <  0 .  i.e.
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x (E )<0 0  with probability 1. The set of all elementary figures is
countable so that

P [x (E )<  0 0  for all elementary figures E ] = 1 .

Also i f  E, E„ •••, En are elementary figures E„ •••, E n disjoint and

E = 0  E i  th en  x (E)= x(E 1)  with probability 1, the set of pro-,-1
bability 0 depending on the tuple (E, E„ •••, En ). The set o f all
such finite n-tuples being again countable we have

P(S20) 1,
where

: w  E [0, 00] B ( s ) , such that x ( E ) < 0 0  an d  x(E)
is  additive on all elementary figures)} .

Define for U  open u Cs,
p (u, w)— sup x(E, w ),

U c E

E  running over all elementary figures ; and for BE B(S)

p(B , w ) = inf p (u, w)
(ID  B ,U  open

We can then show that for w E 14, p(B , w ) is  a measure on B(S)
which is finite on compact sets (since x (E , w )<09 for E  an ele-
mentary figure). Since the class of all elementary figure is counta-
ble p (u , w )  is measurable in  q , for every open set U .  Then by
the usual monotone-class argument and the fact that p (• , w ) is  a
measure on  B (S ), we can prove that p (B , w ) is measurable for
every BE B(S).

Since x ( E )  i s  a Poisson process, w e  c a n  prove, using
E(x (E))=0 - (E ), that i f  E n E B (S), En  E ,  then

P[lirn x(E n )  = x (E )] = 1 .

Let U  be open. For every elementary figure

PE -x (U )>-  x(E)] = 1,

so that P [x (U )>x (E )  for every elementary figure E U ] = 1 .  It
follows that P[x(u) >p (u )i=  1. Let E n  U be elementary figures,
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Then
P[lim x(E n )  =  x (U ) ]  =  1.

But lim x ( E ) < p ( U )  for a ll w . Therefore

P [x (U )  =  p(u)] = 1 .

Again by using the monotone class argument, we can prove that

P [x (B )  =  p (B ) ]  1, f o r  e v e ry  BE B(S) .

T he finite dimensional distributions, therefore, o f  {p(B, w )} are
identical with those of {x (B , w )} . By considering simple functions,
etc., we can show that

—E[ea f  u p ( d s d u ) ] [0 ,N ]  (0 ,co) exp [— (1 — e ')  Cr (dSdU)1
[0,1q] x ( 0 , 0 0 )

exp [ —  N  (1—  e - au)n(du)]
0

Since the right hand side is positive,

P [ up (d sdu) < 00] >  0  .
[0 ,N1 >,(0 ,-)

W e can  see  (by considering  sim ple functions etc.) that y„

up (d s d u ) are independent random  variables. From
0 1 ,1 1 ÷ 1 )  x tO,N]

the above E y„ up (dsdu)<00, on a set of positive pro-
I 0,N ] x ( o,c . )

bability. Hence

P [ up (dsdu ) <001=  1,
[0 a snx (0,-)

so  th a t  P [ up (d sdu) < 0 0  fo r  every t> 0 ]  1 .  Finally
EOM x

define,

x(w ) = m t + up (dsdu) .
[0,0 x

It is not difficult to verify that xe(w) is  a  Lévy process and
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E (e t )  =  exp (— mtce— t (1— e )n(du))

9 .  Continuous increasing processes

In this case the problem is relatively sim p le . We have

Theorem 9. 1. I f  a  process w ith increasing continuous paths is
strongly  Markovian then it is determ inistic, i.e.

Pa[lw al] =1 ,

where the paths wa  are  such that

wwa ct)(s) = wa (t+s ).

P ro o f : Let, a s  before, Crb = inf it : xt > b } .  Then, by continuity
x(r„) = b , if

 0 b
 < 0 0  . W e w ill prove that P a Er b <  =  1  or 0

Suppose that P a  [0- ,<D0] =O. Then for large t„

P a [x t  > ,b ]> 0  ,  f o r  t >  to .

Since the paths increase, if  a<b, then

P a E x t> q=  P a [xt >c, x t>  1 )]  P a [Œe < t, X t >  b ]

<  Pa Ea- c< o o ,  x t > ld <  [c r ,< 0 ° ,  x > b ]
= P a [0  < P ,[x t > b ] .

Thus
P a E x t > f l< P a [x t > b ] ,  a < c < b .

We have

P a [X , s > b ] = Pa[Xt>b]+Ea[xe <b: Px t (xs > b ) ]
> PaExt> bli+P a [X t < b ] P a [X t >  b ].

Letting .5 —> 0 0  we see that

Pa EOEb < C a l > Pa [xt > b ]+ P a [x t< b ]P a  Co- b< c A ,
i.e., Pa [0  <  00 ] =  1  o r  O.

We can prove that [3, Section 6]"if [ rb <00] =1, then

E a EOE <  "

From this we see that (see proposition 3. 4)
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Ea [Œb ] < "  •

Again, if  a < c i < c ,< • • • < c n =b,

P o rrc, < t„  0 - c 2 -0 - e 1 < t 2 , •••, cre n — o- a n _i < t n ]

= P a  [ o
[ a„ <  t 2] ••• P r%  <  tn ]

= P a EOE el <  t i  P a  c C r c l < t 2] • • • P a [crc,i —Œe < t n ] .

Thus c c ,  a < c < b ,  is an additive process. It is easily seen to be
continuous. A n  appeal to L é v y 's  representation theorem or to
Theorem 1, Section 4  in [ 3 ]  shows tha cr a is  a constant. This is
what we set out to prove.

R em ark . In general in this case

Go,  does not map C into C .

I f  this is the case and Xa ( t )  is defined by

P a Ex t X  JO] =  1

then n(a, db) is the measure induced on [a, 00) by the mapping of

[0 , 00) [a , 00) ,

given by t Xa (t).

Tata Institute o f Fundamental Research Bombay
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