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§1. Introduction. Let p be a prime number and 4 be a
field of characteristic p. Let 4’ be the separable closure of 4 and
G, be the galois group of 4'/4. We mean by a Witt vector with
coefficients in 4’ an infinite ordered set («¢,, «,, «,, ---) of elements
«a, (IJ=0’ 1, 2’ "') in 4. PUttlng 0:(0, 0’ '")» 1:(1, O: O; "')y b=
©, 1,0, ) and p”=(0, -+,0,1,0, ), we write i a,p’ instead of
(a, @, a,, --). E. Witt introduced the sum, the difference and
the product of two Witt vectors iﬁv p’ and iﬁ’v p’ by means of

v=0 V=0
a system of infinite polynomials @= , (X,, -, X\, Y, -+, Y,_))
with coefficients in the prime field GF(p) as follows: (?‘_,ay p)=x
V=0 .

(X8yp)= 2 V=D,
v=0 V=0 .
(1) Ye v = “viﬁv"‘q)i,V(ao» sy Oy /80; )a\l—l) ’

(2) Yo v = aole+av180+(p°,v(ao’ e, Gy Bo, »Bv—l) L

By mean of these operations all the Witt vectors with coeffi-
cients in 4’ forms a commutative integral domain W_,. We call
W, the ring of Witt vectors with coefficients in 4. The ring W,
of Witt vectors with coefficients in 4 is naturally embedded in
W,. Since the ring Z, of p-adic integers is canonically isomor-

1) See [1] p.p. 126-128.
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phic to the ring of Witt vectors with coefficients in the prime field
GF(p), we may consider Z, as a subring of W,. We denote by
K, (resp. K,) the quatient field of W, (resp. W,), then we may

consider K, as the field of p-series { i} a,p’lae 4} with finite
V=-—n

negative terms. The field @, of p-adic numbers is also regarded
as a subfield of K.
We shall identify the galois group of K,/K, with the galois

group G, of 4’/4 in the following mean: (i} avp”)Gzi asp®
V=-—-n Y= -1
(c€G,), and consider K, (resp. W,) as a Q,[G,]-module (resp.
Z ,[G,]-module), where we mean by galois automorphisms the
continuous automorphisms in p-adic topology. We denote by b

the meromorphism of K, defined by
(3) (3 apy =3 atp'

and mean by a b-equation with coefficients in K, (resp. W,) an
equation ?jioqu*’v=0 with coefficients «, in K, (resp. W,). The
solutions in K, of a non-zero p-equation £(X)=0 with coefficients
in K, form a @, finite-dimensional Q,[G,]-submodule V, in K,
and conversely each Q,-finite-dimensional @,[G,]-submodule V in
K, is uniquely expressed as the module of solutions V, of a
p-equation ¢(X)=0 such that 1° the coefficients belong to W,,
2° the coefficient of the highest term is 1, 3° the coefficient of X
(the lowest term) is not congruent to zero modulo pW,. The
correspondence between @,-finite-dimensional @ ,[G,]-submodules
in K, and p-equations satisfying the conditions 1°, 2°, 3° is one-
to-one (Theorem 1). For a @,-finite-dimensional @ [ G,]-submodule
V in K, we denote by (iepr", ,gpr“) a Z,-base of the
intersection VN Wy, by I'y={My(c) € GL(n, Z,)|c € G} the respre-
sentation of G, by mean of the base and by I'y(p*) the subgroup
{MeIy|M identity mod p’}. then the galois groups of the nor-

1 1 V-1
mal extensions K (&, ,, -, £, ., ,Z & ply ,2 Eup, ,Zlofup‘, e,
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v-1

;{)E”,p’)/K‘, and 4, -+, 3n0> &1 vors 5 €4 v-1)/4 are canonic-
ally isomorphic to I'y/I'y(p*). We put K (V)= C/ K (&, -, &,
1 1 Vo1 V-1 =1

IZ_O Ellpl) R 1220 EuzP’» Tty g E”pl, Tty I;-ZO EII)I)\JI{A( 1=21 fllpl’ Tty
;}Enlpl)’ A(V): \:\.;/1 A(El,(n ot :En,oy o »El,\w i ;En,\:) and call KA(V)/
K, and 4(V)/4 normal extensions of finite p-type.

If a K, [G,]-module p has a K,-base (&, -, &, such that the
coefficients of the representation {M(c)|oc € G,} defined by (&7, -,
&)=(&, - ,8)M(c) (¢€G,) belong to a finite algebraic extension
of Q,, we call B a K,[G,]-module of finite p-type. We shall
determine the structure of the K,[G,]-submodule of K, which is
the union of all semi-simple K, G,]-modules of finite p-type in
K. The results (Theorem 3) is a partial generalization of the
existence theorem of normal base for a finite normal extension.”

§2. p-Wronskians.

As an analogy in theory of differential equation we shall
define Wronskian and give a criterion of linearly independency
over Q,. We means by the p-Wronskian of a system (§,, - ,§,)
of quantities &, -+, §, the determinant

Wp(en Tty en) = el y 't )en
e‘f , oo, D
&
Proposition 1. Let &, .-, &, be elements in Ky. Then &, -,
&, are linearly independent over Q, if and only if Wy, - ,§,):-0".

Proof. From the definition of p it follows that an element in
K, is fixed by p if and only if it belongs to @,. This shows that
if &,--,§, are linearly dependent over @, the p-Wronskian
Wy(é,, -+, §,) is zero. We shall prove the converse by the induction

2) In Part II we shall treat the analogy for p-equations of Riemann’s-problem for
linear differential equations and shall determine the structure of the union of all simi-
simple K 4[ G s]-submodules of finite p-type in K.

3) Replacing p by p” and @, by the unramified extension of degree » over @,
we have the same result for p’—~Wronskian as p-Wronskians.
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on n. Assume the result for n—1 and & =0. Suppose Wy(§,, :--,
§,)=0. Then it follows

Wp(el’ R en) = $}+p+-~-+p"-1 l) ezefl y "' enel—l
1) ezel_l)p y **t, (enel_l)p
1’ (ezel_l)p”_1 y "y (enel—l)p""‘

= e%+p+-~«{ et 1 ezel_l y "t enel_l
0’ (e2el_l)p_ezel_1 y "y (enel_l)p_enel_l
9’ (ezel—l)p —ezefl)” y» "t (enel—l)P_e”el—l)P

0, (BAT Y —&&7)" ", -+, (BT — 86"
= 0.

Hence, by virtue of the assumption of the induction, there are
elements a,,--,a, of Q, which are not all zero such that

S a (667 —€£r)=0, and thus (3l afér)l = Dlabe'. This

i=2 =2 =2

shows that > a8 equals to element, say —a,, in Q,. Namely
i=2

these we a,, -+, a, in @, which are not all zero z":a,-e,-:o. For

i=1

n=1 the result is obviously true, hence we complete the proof of
Proposition 1.

We mean by the p-Wronskian of a system (&, --,§,) of

elements &, -+, &, the determinant:
W&, E) = (& - &,
f{' y Ut ,g;;
&,l,"—l’ oo ’52”4

Then by replacing p by p we have the following the analogious
results as Proposition 1 by the completely same reason.

Proposition 1. Let & ,.-- &, be elements in 4. Then &,, --- &,
are linearly independent over the prime field GF(p) if and only if
WP(EU tt En)=|;0°

§3. Non-commutative p-polynomials and Q,[G,]-
submodules in K.

We denote by K, <{t> (resp. W, <{t>) the ring of non-commuta-
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tive polynomials in ¢ with coefficients in K, (resp. W,) with the
law of multiplication : ta=dPt, t't'=¢""" (ac K,; p, v >0). We
call elements in K, <> non-commutative p-polynomials with
coefficients in K, and mean by the rank of a non-commutative
p-polynomials p-polynomial f the highest degree in # in £. We

denote by rank £ the rank of £. Each element f= ga\,t" in
K,{¢> acts on K in the following way : f(é)=(§avt)(6)—= g‘;.oué"u.
For each p-equation £(X)= gavXpV=0 we me_an by the_ non-
commutative p-polynormial vii]o:tvt“.

Lemma 1. Let V be a Q,finite-dimensional Q ,~vector subsace

in Ky and (§,,--+,§,) be a Z,base of the intersection VN Wy
regarded as a Z,-module. Then Wy&,, -, §,) is a unit in Wy,

Proof. Assume §,,---,§ are linearly independent modulo
p(WynV) and §,,,,--,§, are linearly dependent on §,---,§,
modulo p(W,n V). Obviousely 1<r<n Suppose for a monent

r==n. Then there exist elements a,,-,a,, b, ,b, in Z, such
that a& +:-+a,é, —&,=pbé +--+b8,). Since §&,---,§, are
linearly independent over Z,, we have a,=pb,, -, a,=pb,, b,.,=

<. =b,.,=0 and 1+ pb,=0. This is contradiction, because 1==0
mod p. This shows §,,:--,&, are linearly independent modulo
p(WynV). Since p(W,NV)=pW,NV and W,/pW is canonic-
ally isomorphic to A’, by virtue of Proposition 1° we have
Wp(&,, -+, &,)3=0 mod pW,. This proves Lemma 1.

Proposition 2. Let V be a Q ,~finite-dimensional Q | G, ]-module
in Ky and (&, ,§,) be a Q,~base of V. Put f(X)=(—1)"
W&, -, 8,) ' WyX, &, ,8,). Then the mnon-commutative p-
polynomial £, is an element in W, &> with the properties 1° fy
does not depend on the choic of Q,-base, 2° the highest coefficient
equals 1, 3° the consiant term is (—1)"Wpé,, - , &) and =0
mod pW ,®.

Proof. First we shall prove the independence of £, on the

4),6) The situation is the same as 3).
5) fypis the non-commutative p-polynomial associated with the p-equation f3(X)=0.
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choice of the @,-base of V. Let A be any non-singular zxn
matrix with coefficients in @, and put (n,, -, n,)=(&, - ,§,)A.
Then it follows

(_1)”WD("1; LEEN "n)—IWP(X’ L/ JU ”’n) 10
= (_l)”|A_l|Wp(en"'»en)_IWP(X> el)"',en) 0 A>|
= (_1)”WP(61) Ty en)_le(X) 61’ e yen)

This proves the independence of fy on the choice of the @,-base.
Since for every o in G, (&, -, §;) is also a Q,-base of V and K,
is the subfield of K, consisting of all the elements fixed by every
element in G,, we can conclude that the coefficients in £y belong
to K,. From the definition of £, the highest coefficient in £y
equals to 1. Let (¢,,--,{, be a Z,base of the intersection
VAW,. Then by virtue of Lemma 1 we have Wy(¢,, -, {,)==0
mod pW,. Since the coefficient of X" in WyX,¢,, -+, is

Wp(EP, -, &) =Wy(&,, -, £,)°, this shows that the constant term
in fy is (—1)" Wy, -+,¢,)°" and is not congruent to zero
modulo pW,. On the other hand, since ¢, ---,&,€ W, the co-
efficients in Wy(X, &,, -+, ,) with respect to X are elements in

W,. Therefore we can conclude fy belongs to W, <{¢>, because
Wp(&,, -+, &) is a unit in W, and fy belongs to K, {¢t).

For any element f (==0) in K,<{t> we mean by V, the sub-
set in K, consisting of all the solutions § of the p-equation
f(X)=0. Then we have

Proposition 3. (i) V,is a Q,[G,]-submodule in K, such that
dimg » Verank f. (ii) V="V;,. (iii) If V' is a Q| G.]-submodule
of Vg, then there exists g in K, <t)> such that f=gfy.

Proof. Since (a§+bn)’=a+bn" for a,b in Q, and & 5 in
K, we have f(a§+bn)=af(§)+bf(n) for a, b€Q,. This shows V,
is a @ ,~module. On the other hand all the coefficients in £ belong
K, and p commutes with every element o€ G,, hence §° (0 €G,)
belongs to V, if and only if é€ V,. This means V. is a Q,[G.,]-
module. Let &, .-+, &, be linearly independent elements in V, over
Q,. Then by virtue of Proposition 1 we have Wy, -+, §,)==0.
On the other hand, if we write = VZ"Ouv p’, we have
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(uma’l"”)un) el r"')em :(0,0,"‘,0)-
&, 8
SRR 4

This shows m<#n, and thus (i) has been proved. From Proposi-
tion 2 it follows rank fy=dimg, V, hence by virtue of (i) we have
dimg, Vs, < rand fy=dime,V. On the other hand VC V. , hence
V=V, From (i) and (ii) we know that £y’ is the element k in
K, <{t> with the smallest rank such that V,> V’. We can choose
g and 6 in K, <{t)> such thdt f=gfy,+6 and rank < rank fy,
because rank fy’<rank f. Since V,>V’ and V,.,h > V’, we have
Vo> V’. Thus rank 6=dimg,V,_>dimq,V'=fy. Therefore, if
6==0, this is a contradiction. This proves 6=0.
We shall now show the reverse of Proposition 2.

Proposition 4. Let f be an element of W, <{t> such that the
highest coefficient is 1 and the constant term is not congruence to
zero modulo pW,. Then dimg, Vi/=vankf and f=fv,.

Proof. Let n be the rank of £ and put fziuut*. Let

Xy, X,, X,, -~ be indeterminates and put X= ixvp”, f(X)=
v=0

S pu(x,, x,, -, x,)p". It is sufficient to show that the number of

v=0

solutions of @,(x,)=0, @,(x,, x)=0, -, P, (%, %, =+, %-,)=0 in

4’ is exactly p*". Since a,=1 and a,3=0 mod pW,, by virtue of
1), @), 3) we have ai%(xo,-'-,xn)$0, and thus @u&, -,
e

£._., 2,)=0 has no multiple root for given value &,, -+, &._, in 4.
On the other hand the degree of @.(&, -+, &u-y, %) in x, is p%,
hence we conclude the number of solutions of @,(x,)=0, @,(x,, x,)=
0, ,p,_(x,,%,.,)=0 in 4’ is exactly p'*. This proves Pro-
position 4.

We now sum up the results in Proposition 2, 3, 4.

Theorem 1. The correspondence V< fy (X)=0 gives a bijective
map between the set of Q,-finite-dimensional Q|G ]-submodules in
K, and the set of p-equations with the propertics 1° the coefficients
belong to W,, 2° the highest coefficient is 1, 3° the coefficient of X
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is not congruent to zero modulo pW,. By this correspondence Q | G,]-
modules correscpond to irreducible p-equaiions and conversely.

8§4. K, [G,/]-modules of finite p-type in K.

Definition. If a K,G,]-module B in K, has a K,base
(&,,+++, &,) such that the coefficients of the representation {M(c)|o € Gz}
defined by (&7, ,&)=(&,, - ,§,)M(o) belong to a finite algebraic
extension of Q,, then we call B a K,[G,]-module of finiie p-type.

In the present paragraph we shall be concerned with K,[G,]-
modules of finite p-type in K, especially semi-simple K,[G,]-
modules of finite p-type in K .

Lemma 1. If B is a K[G,]-module of finite p-type in Ky,
then there exists a Q,~finite-dimensional Q,|G,]-module V in K,
such that B=K,V. If B is simple, we can choose a simple Q,[G,]-
module as V.

Proof. Let ¥ be a K,/|G,]-module in K,y with a K,-base
(m,, -+, m,) such that the field 4 generated by the coefficients of
the representation {M(c)| (S, - ,&5)=(&,, - ,§)M(0), c€G,} is a
finite algebraic extension of @,. Let (&,,-,8,) be a @,-base of
Aand put 7u;=B%; 1<i<r; 1<j<n). Then we have a @, [G]-
module V=@ m,+ - +Qm,,~ 48+ - + 4§, in K, such that KV=
8. Assume B is simple. Then the enveloping algebra of
{M(c)|c€G} over A is a simple A-algebra. Hence V is a direct
sum V,@-@V, of simple @ [ G]-submodules. Since K,V="23 and
B is simple there exists as V; such that K,V;=%.

Theorem 2. Let B be a K,[G,/|-module of finite p-type in
K, and A be a suffield of K, in which the coefficients of a repre-
sentation {M(c)| (&7, - ,&60)=(&, - ,8)M(0), o€G} of G, by the
K, -base (&, ,8&,) are contained. Let r be the degree of A over
Q,. Then every K, [G ]-module in K, isomorphic to V is contained
in the sum B=V+ K, B+ + K" " in K.

Proof. We notice that 4/Q, is cyclic and the galois automor-
phisms are induced by {1,p,:,p""'}, because AC K, and K, is
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unramified for p. Let U be a K, G, ]-module in K, isomorphic
to B and @ be the isomorphism of 6 onto . Then, putting M(s)=
(m;()) (c€G,), we have (p(), ,PE))=(PED, -, PE))=
(P(Ema(@)) -, PR mun(o)8)) = (X ma(@)P(E) o) Ly munlo)P(€) =
(@(8), -+, p(&,)M(c). Replacing p by p” in Proposition 1, by the
same reason as for p, we have

é , e, 8,
Wrlf, o, £) = | & o080 a0
épr(n—l) . epr(n—])
1 ’ yon
Hence putting

?(el) y °°° y@(en) el y Ut ,e” -1 a e a
?(el)pr L ?(en)pr %?r L, eﬁr _ ;11 ’ » Eln
O I Ao | I TGS B

we get a matrix with coefficients a;;(1<¢, j<#) in K,. Since
(i)(et)= i a”ep’(l—‘) (1 gigm) with aije Kd and (p(el) y» "t ¢(en)
=1

generate U over K,, we conclude K, 8+ K, 8" +...+ K, 8" " >1,

We shall now culculate the multiplicity of simple K [G,]-
module in the union K, ; of semi-simple K,[G,]-modules of finite
p-type in K .

Theorem 3. Let B be a simple K, [ G, l-module of finite p-type
in Ky and {M(c)|oc€G,} be a representation of G, by a K ,~base
of B such that the coefficients in {M(c)|oce€ G} belong to a finite
algebraic extension A of Q, in K,. If the envelopeng algebra of
{M(o)|oe G} over A is a full matrix ving of degree d, over a
division ving and v is the degree of A over Q,, then the sum
B=B+K B+ + KB iy K, is a direct sum such that
every K, [G, ]-module in K, isomorphic to B is contained in B.
Namely the multiplicity of B in the union K, , of semi-simple
K G ]-moules of finit p type is d,.

Proof. Let (&,, - ,¢,) be a K,~base of B such that (¢7, -,
§)=(&,,§)M(0)(c€G,) and put V=4§+---+45,. Since 4 is
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algebraic subfield in K, of degree r over Q,, 4/Q, is a cyclic
extension and the galois automorphisms are induced by {1, p, -,
p~'}. Since V is a simple A[G,]-module, V*" (v=1,2,...) are
also simple A[G,]-modules isomorphic to V, and thus K,V*"’
(»=1,2, ) are simple K,[G,]-modules isomorphic to B=K,V.
This shows that the sum L=K,V+ -+ K8 in K, is a
direct sum K, VOK, V¥ ®---PK,V* ™" with a positive integer t.
The purpose of the proof is to show f#=d,. Let A, be the en-
veloping algebra of {M(c)|c€ G, } over A4 and D be the division
algebra of A,. Then [A,:D]=d%. Let Q be the center of A,
and 7 be the minimal extension of & such that Do T splits.
Then we have [A,: A]=d}[T: Q)[Q:4] and TNK,=4. We put
d=d[T:Q] We introduce the endomorphism q of T®,K, by
by (aR§)'=a®éE” (ac T, §c K,). Since 4 is the subfield of K,
consisting of all the elements fixed by p”, the endomorphism q is
well defined. There exists an absolutely simple T[G,]-module U
in T®,V, because T®, A, is a full matrix algebra over T. We

choose a T-base (n,, ---,n,) of U. Then, since
7, » s Ma
moo w0,
: d- d-
U i
putting
X, 7 y 2t Mg ' 7 y s My -
fU(X) = (—1)d AX.'qy ’lql ,“',773 ’!(1] )"')ng
: d d d : d— d -
Xﬂ:’ﬂy"')’lﬂ 7’% 1)"'»"2 ' ’

we know that Fy(X)=0 is an irreduducible q-equation™ with co-
efficients in T®,K, and U coincides with the T[G,]-module of
of solutions of fy(X)=0 in TRQ,K,. Next we write the (7, /)-th

unit (1<<i{ < d) in the full matrix ring T® A, as follows Sy NP
=1
(1<i<d) with ¥, in T and o, in G,. Assume S\ S1A, 7" '=0

7) The situation is the same as 2).
8) {N(0)|6€ Gy} is the representation by the base (7, -+, 74)-
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i=1j=1

with A;; in T®\K,. Then, since IZ_‘, yimji=n9;; 1=<i<d) and
o, (1<!<t) commute with q, we have 271,(27&,,,,113”")“1:

I=1 ik
SINm¥* =0 (1<i<d). On the other hand by virtue of the
=1

irreducibility of the q-equation fy(X)=0 we know that =n;, #7, -+,
7}""" are linearly independent over T®,K, and =% is a linear

combination of #n;, 1%, -, n}* " with coefficients in T®,K,. The-
fore we can conclude that (m,, -, my, nd, -, 0%, -, 93", <, 93"

is a (T®jK,)-base of (T®\K,)[G,]-module U=(TQ,K,)U+
(TRAK YU+ +(TQ K )U™,  and  thus  U=(TR\K,)UD
(TRAK)U'D - B(TRAK,)U™'. By virtue of Theorem 2 every
[TRAK, (G )-module in T®, K, isomorphic to (T®,K,)U is con-
tained in U. We shall return to the culculation of #. Since & is
the center of A,, Q®,V 1is isomorphic to the direct sum
V,.+V,+-+V, (e=[Q:4]) of mutually inequivalent G ,modules
V,,--,V, such that Vv, is a simple Q[G, ]-module and other V;
are conjugate of V, over 4. Moreover T®gA, is the full matrix
ring over T, TQRqV, is the [T:Q]-times direct sum of an ab-
solutely simple T[G,]-module U. This shows that (7T®gK,)
(V§++V{" )=1 and d’=dimr,@x 1=i[7T:Q]dim,U. Since
d=d|[T:0] and d=dim, U, we conclude ¢=d,. This completes
the proof of Theorem 3.
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