# On $\mathfrak{p}$-equations and normal extensions of finite $\mathfrak{p}$-type $I$ 

To Yasuo Akizuki on his 60th Birthday

By<br>Hisasi Morikawa

(Communicated by Prof. Nagata, June 12, 1963)
§ 1. Introduction. Let $p$ be a prime number and $\Delta$ be a field of characteristic $p$. Let $\Delta^{\prime}$ be the separable closure of $\Delta$ and $G_{\Delta}$ be the galois group of $\Delta^{\prime} / \Delta$. We mean by a Witt vector with coefficients in $\Delta^{\prime}$ an infinite ordered set ( $\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots$ ) of elements $\alpha_{\nu}(\nu=0,1,2, \cdots)$ in $\Delta^{\prime}$. Putting $0=(0,0, \cdots), \mathbf{1}=(1,0,0, \cdots), \boldsymbol{p}=$ $(0,1,0, \cdots)$ and $\boldsymbol{p}^{\nu}=(0, \cdots, 0,1,0, \cdots)$, we write $\sum_{\nu=0}^{\infty} \alpha_{\nu} \boldsymbol{p}^{\nu}$ instead of $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots\right)$. $E$. Witt introduced the sum, the difference and the product of two Witt vectors $\sum_{\nu=0}^{\infty} \beta_{\nu} p^{\nu}$ and $\sum_{\nu=0}^{\infty} \beta_{\nu} p^{\nu}$ by means of a system of infinite polynomials $\Phi_{ \pm, \nu}\left(X_{0}, \cdots, X_{\nu-1}, Y_{0}, \cdots, Y_{\nu-1}\right)$ with coefficients in the prime field $G F(p)$ as follows: $\left(\sum_{\nu=0}^{\infty} \alpha_{\nu} p^{\nu}\right) \pm$. $\left(\sum_{\nu=0}^{\infty} \beta_{\nu} \boldsymbol{p}^{\nu}\right)=\sum_{\nu=0}^{\infty} \gamma_{ \pm . \nu} \boldsymbol{p}^{\nu}$,

$$
\begin{gather*}
\gamma_{ \pm, \nu}=\alpha_{\nu} \pm \beta_{\nu}+\Phi_{ \pm, \nu}\left(\alpha_{0}, \cdots, \alpha_{\nu-1} ; \beta_{0}, \cdots, \alpha_{\nu-1}\right)  \tag{1}\\
\gamma_{\bullet, \nu}=\alpha_{0} \beta_{\nu}+\alpha_{\nu} \beta_{0}+\Phi \Phi_{\cdot, \nu}\left(\alpha_{0}, \cdots, \alpha_{\nu-1} ; \beta_{0}, \cdots, \beta_{\nu-1}\right) .^{1)} \tag{2}
\end{gather*}
$$

By mean of these operations all the Witt vectors with coefficients in $\Delta^{\prime}$ forms a commutative integral domain $\boldsymbol{W}_{A^{\prime}}$. We call $\boldsymbol{W}_{A^{\prime}}$ the ring of Witt vectors with coefficients in $\Delta^{\prime}$. The ring $W_{\Delta}$ of Witt vectors with coefficients in $\Delta$ is naturally embedded in $\boldsymbol{W}_{\Delta^{\prime}}$. Since the ring $\boldsymbol{Z}_{p}$ of $p$-adic integers is canonically isomor-

1) See [1] p.p. 126-128.
phic to the ring of Witt vectors with coefficients in the prime field $G F(p)$, we may consider $\boldsymbol{Z}_{p}$ as a subring of $\boldsymbol{W}_{\Delta^{\prime}}$. We denote by $\boldsymbol{K}_{\Delta^{\prime}}$ (resp. $\boldsymbol{K}_{\Delta}$ ) the quatient field of $\boldsymbol{W}_{\boldsymbol{A}^{\prime}}$ (resp. $\boldsymbol{W}_{\Delta}$ ), then we may consider $K_{\Delta^{\prime}}$ as the field of $\boldsymbol{p}$-series $\left\{\sum_{\nu=-n}^{\infty} \alpha_{\nu} \boldsymbol{p}^{\nu} \mid \alpha \in \Delta^{\prime}\right\}$ with finite negative terms. The field $\boldsymbol{Q}_{p}$ of $p$-adic numbers is also regarded as a subfield of $\boldsymbol{K}_{\Delta^{\prime}}$.

We shall identify the galois group of $\boldsymbol{K}_{\Delta^{\prime}} / \boldsymbol{K}_{\Delta}$ with the galois group $\boldsymbol{G}_{\Delta}$ of $\Delta^{\prime} / \Delta$ in the following mean: $\left(\sum_{\nu=-n}^{\infty} \alpha_{\nu} \boldsymbol{p}^{\nu}\right)^{\sigma}=\sum_{\nu=-n}^{\infty} \alpha_{\nu}^{\sigma} \boldsymbol{p}^{\nu}$ $\left(\sigma \in \boldsymbol{G}_{4}\right)$, and consider $\boldsymbol{K}_{4^{\prime}}$ (resp. $\boldsymbol{W}_{A^{\prime}}$ ) as a $\boldsymbol{Q}_{p}\left[\boldsymbol{G}_{A}\right]$-module (resp. $\boldsymbol{Z}_{p}\left[\boldsymbol{G}_{A}\right]$-module), where we mean by galois automorphisms the continuous automorphisms in $\boldsymbol{p}$-adic topology. We denote by $\mathfrak{p}$ the meromorphism of $\boldsymbol{K}_{\Delta^{\prime}}$ defined by

$$
\begin{equation*}
\left(\sum_{\nu=-n}^{\infty} \alpha_{\nu} \boldsymbol{p}^{\nu}\right)^{p}=\sum_{\nu=-n}^{\infty} \alpha_{\nu}^{p} \boldsymbol{p}^{\nu} \tag{3}
\end{equation*}
$$

and mean by a $\mathfrak{p}$-equation with coefficients in $\boldsymbol{K}_{\Delta}\left(\right.$ resp. $\left.\boldsymbol{W}_{\Delta}\right)$ an equation $\sum_{\nu=0}^{n} \boldsymbol{a}_{\nu} \boldsymbol{X}^{p^{\nu}}=\mathbf{0}$ with coefficients $\alpha_{\nu}$ in $\boldsymbol{K}_{\Delta}$ (resp. $\boldsymbol{W}_{\Delta}$ ). The solutions in $\boldsymbol{K}_{\boldsymbol{A}^{\prime}}$ of a non-zero $\mathfrak{p}$-equation $\boldsymbol{f}(\boldsymbol{X})=\mathbf{0}$ with coefficients in $\boldsymbol{K}_{\Delta}$ form a $\boldsymbol{Q}_{\boldsymbol{p}}$-finite-dimensional $\boldsymbol{Q}_{\boldsymbol{p}}\left[\boldsymbol{G}_{\Delta}\right]$-submodule $\boldsymbol{V}_{\boldsymbol{f}}$ in $\boldsymbol{K}_{\boldsymbol{A}^{\prime}}$ and conversely each $\boldsymbol{Q}_{\boldsymbol{p}}$-finite-dimensional $\boldsymbol{Q}_{p}\left[\boldsymbol{G}_{\Delta}\right]$-submodule $\boldsymbol{V}$ in $\boldsymbol{K}_{\Delta^{\prime}}$ is uniquely expressed as the module of solutions $\boldsymbol{V}_{\boldsymbol{\varphi}}$ of a $\mathfrak{p}$-equation $\varphi(\boldsymbol{X})=0$ such that $1^{\circ}$ the coefficients belong to $W_{\Delta}$, $2^{\circ}$ the coefficient of the highest term is $1,3^{\circ}$ the coefficient of $\boldsymbol{X}$ (the lowest term) is not congruent to zero modulo $\boldsymbol{p} \boldsymbol{W}_{\Delta}$. The correspondence between $\boldsymbol{Q}_{\boldsymbol{p}}$-finite-dimensional $\boldsymbol{Q}_{p}\left[\boldsymbol{G}_{\Delta}\right]$-submodules in $\boldsymbol{K}_{4^{\prime}}$ and $\mathfrak{p}$-equations satisfying the conditions $1^{\circ}, 2^{\circ}, 3^{\circ}$ is one-to-one (Theorem 1). For a $\boldsymbol{Q}_{\boldsymbol{p}}$-finite-dimensional $\boldsymbol{Q}_{p}\left[\boldsymbol{G}_{\Delta}\right]$-submodule $\boldsymbol{V}$ in $\boldsymbol{K}_{\Delta^{\prime}}$ we denote by $\left(\sum_{\nu=0}^{\infty} \xi_{n \nu} \boldsymbol{p}^{\nu}, \cdots, \sum_{\nu=0}^{\infty} \xi_{n \nu} \boldsymbol{p}^{\nu}\right)$ a $\boldsymbol{Z}_{p}$-base of the intersection $\boldsymbol{V} \cap \boldsymbol{W}_{\Delta^{\prime}}$, by $\boldsymbol{\Gamma}_{\boldsymbol{V}}=\left\{\boldsymbol{M}_{\boldsymbol{V}}(\sigma) \in G L\left(n, \boldsymbol{Z}_{p}\right) \mid \sigma \in \boldsymbol{G}_{\boldsymbol{A}}\right\}$ the respresentation of $\boldsymbol{G}_{\Delta}$ by mean of the base and by $\boldsymbol{\Gamma}_{\boldsymbol{V}}\left(\boldsymbol{p}^{\nu}\right)$ the subgroup $\left\{\boldsymbol{M} \in \boldsymbol{\Gamma}_{\boldsymbol{V}} \mid \boldsymbol{M}\right.$ identity $\left.\bmod \boldsymbol{p}^{2}\right\}$. then the galois groups of the normal extensions $\boldsymbol{K}_{\Delta}\left(\xi_{1,0}, \cdots, \xi_{n, 0}, \sum_{l=0}^{1} \xi_{1} \boldsymbol{p}^{l}, \cdots, \sum_{l=0}^{1} \xi_{n l} \boldsymbol{p}^{l}, \cdots, \sum_{l=0}^{\nu-1} \xi_{1 l} \boldsymbol{p}^{l}, \cdots\right.$,
$\left.\sum_{l=0}^{\nu-1} \xi_{n l} \boldsymbol{p}^{l}\right) / \boldsymbol{K}_{\Delta}$ and $\Delta\left(\xi_{10}, \cdots, \xi_{n 0}, \cdots, \xi_{1, v-1}, \cdots, \xi_{n, v-1}\right) / \Delta$ are canonically isomorphic to $\boldsymbol{\Gamma}_{\boldsymbol{V}} / \boldsymbol{\Gamma}_{\boldsymbol{V}}\left(\boldsymbol{p}^{\nu}\right)$. We put $\boldsymbol{K}_{\Delta}(\boldsymbol{V})=\bigcup_{\nu=1}^{\infty} \boldsymbol{K}_{\Delta}\left(\xi_{10}, \cdots, \xi_{n 0}\right.$, $\left.\sum_{l=0}^{1} \xi_{1 l} \boldsymbol{p}^{l}, \cdots, \sum_{l=0}^{1} \xi_{n l} \boldsymbol{p}^{l}, \cdots, \sum_{l=0}^{l-1} \xi_{1 l} \boldsymbol{p}^{l}, \cdots, \sum_{l=0}^{v-1} \xi_{l} \boldsymbol{p}^{l}\right) \cup \boldsymbol{K}_{\Delta}\left(\sum_{l=1}^{\infty} \xi_{1 l} \boldsymbol{p}^{l}, \cdots\right.$, $\left.\sum_{l=0}^{\infty} \xi_{n l} \boldsymbol{p}^{l}\right), \Delta(\boldsymbol{V})=\bigcup_{\nu=1}^{\infty} \Delta\left(\xi_{1,0}, \cdots, \xi_{n, 0}, \cdots, \xi_{l, v}, \cdots, \xi_{n, v}\right)$ and call $\boldsymbol{K}_{\Delta}(\boldsymbol{V}) /$ $\boldsymbol{K}_{\Delta}$ and $\Delta(\boldsymbol{V}) / \Delta$ normal extensions of finite $\mathfrak{p}$-type.

If a $\boldsymbol{K}_{\Delta}\left[\boldsymbol{G}_{\Delta}\right]$-module $\mathfrak{p}$ has a $\boldsymbol{K}_{\Delta}$-base $\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ such that the coefficients of the representation $\left\{\boldsymbol{M}(\sigma) \mid \sigma \in \boldsymbol{G}_{\boldsymbol{A}}\right\}$ defined by ( $\boldsymbol{\xi}_{1}^{\boldsymbol{\tau}}, \cdots$, $\left.\boldsymbol{\xi}_{n}^{\tau}\right)=\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right) \boldsymbol{M}(\sigma)\left(\sigma \in \boldsymbol{G}_{\boldsymbol{A}}\right)$ belong to a finite algebraic extension of $\boldsymbol{Q}_{p}$, we call $\mathfrak{B}$ a $\boldsymbol{K}_{\Delta}\left[\boldsymbol{G}_{\Delta}\right]$-module of finite $\mathfrak{p}$-type. We shall determine the structure of the $\boldsymbol{K}_{\Delta}\left[\boldsymbol{G}_{\Delta}\right]$-submodule of $\boldsymbol{K}_{\Delta^{\prime}}$ which is the union of all semi-simple $\boldsymbol{K}_{\Lambda}\left[\boldsymbol{G}_{\Delta}\right]$-modules of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{\Delta^{\prime}}$. The results (Theorem 3) is a partial generalization of the existence theorem of normal base for a finite normal extension. ${ }^{2)}$

## § 2. p-Wronskians.

As an analogy in theory of differential equation we shall define Wronskian and give a criterion of linearly independency over $\boldsymbol{Q}_{\boldsymbol{p}}$. We means by the $\mathfrak{p}$-Wronskian of a system $\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ of quantities $\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}$ the determinant

$$
\boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)=\left(\begin{array}{cc}
\boldsymbol{\xi}_{1} & , \cdots, \boldsymbol{\xi}_{n} \\
\xi_{1}^{p} & , \cdots, \boldsymbol{\xi}_{n}^{p} \\
\vdots \\
\xi_{1}^{p-1} & , \cdots, \xi_{n}^{p-1}
\end{array}\right) .
$$

Proposition 1. Let $\xi_{1}, \cdots, \xi_{n}$ be elements in $\boldsymbol{K}_{\Delta^{\prime}}$. Then $\xi_{1}, \cdots$, $\boldsymbol{\xi}_{n}$ are linearly independent over $\boldsymbol{Q}_{p}$ if and only if $\boldsymbol{W}_{p}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)=1=\mathbf{0}^{3)}$.

Proof. From the definition of $\mathfrak{p}$ it follows that an element in $\boldsymbol{K}_{A^{\prime}}$ is fixed by $\mathfrak{p}$ if and only if it belongs to $\boldsymbol{Q}_{\boldsymbol{p}}$. This shows that if $\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}$ are linearly dependent over $\boldsymbol{Q}_{p}$ the $\mathfrak{p}$-Wronskian $\boldsymbol{W}_{p}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ is zero. We shall prove the converse by the induction

[^0]on $n$. Assume the result for $n-1$ and $\xi_{1} \neq 0$. Suppose $\boldsymbol{W}_{p}\left(\boldsymbol{\xi}_{1}, \cdots\right.$, $\left.\xi_{n}\right)=0$. Then it follows
\[

$$
\begin{aligned}
& \boldsymbol{W}_{\mathfrak{p}}\left(\xi_{1}, \cdots, \xi_{n}\right)=\boldsymbol{\xi}_{1}^{1+\mathfrak{p}+\cdots+p^{n-1}}\left(\begin{array}{ll}
1, \xi_{2} \xi_{1}^{-1} & , \cdots, \xi_{n} \xi_{1}^{-1} \\
\left.\mathbf{1}, \xi_{2} \xi_{1}^{-1}\right)^{p} & , \cdots,\left(\xi_{n} \xi_{1}^{-1}\right)^{p} \\
1,\left(\xi_{2} \xi_{1}^{-1}\right)^{p n-1} & , \cdots,\left(\xi_{n} \xi_{1}^{-1}\right)^{p^{n-1}}
\end{array}\right) \\
& =\xi_{1}^{1+\mathfrak{p}+\cdots+p^{n-1}}\left(\begin{array}{ll}
\mathbf{1}, \xi_{2} \xi_{1}^{-1} & , \cdots, \xi_{n} \xi_{1}^{-1} \\
0,\left(\xi_{2} \xi_{1}^{-1}\right)^{p}-\xi_{2} \xi_{1}^{-1} & , \cdots,\left(\xi_{n} \xi_{1}^{-1}\right)^{p}-\xi_{n} \xi_{1}^{-1} \\
\left.0,\left(\xi_{2} \xi_{1}^{-1}\right)^{\mathfrak{p}}-\xi_{2} \xi_{1}^{-1}\right)^{\mathfrak{p}} & \left., \cdots,\left(\xi_{n} \xi_{1}^{-1}\right)^{p}-\xi_{n} \xi_{1}^{-1}\right)^{p} \\
\vdots \\
0,\left(\left(\xi_{2} \xi_{1}^{-1}\right)^{p}-\xi_{2} \xi_{1}^{-1}\right)^{p^{n-2}}, \cdots,\left(\left(\xi_{n} \xi_{1}^{-1}\right)^{p}-\xi_{n} \xi_{1}^{-1}\right)^{p n-2}
\end{array}\right) \\
& =\mathbf{0} .
\end{aligned}
$$
\]

Hence, by virtue of the assumption of the induction, there are elements $\boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}$ of $\boldsymbol{Q}_{p}$ which are not all zero such that $\sum_{i=2}^{n} \boldsymbol{a}_{i}\left(\left(\xi_{i} \xi_{1}^{-1}\right)^{p}-\xi_{i} \xi_{1}^{-1}\right)=0$, and thus $\left(\sum_{i=2}^{n} a_{i} \xi_{i} \xi_{1}^{-1}\right)^{p}=\sum_{i=2}^{n} \boldsymbol{a}_{i} \xi_{i} \xi_{1}^{-1}$. This shows that $\sum_{i=2}^{n} \boldsymbol{a}_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{1}^{-1}$ equals to element, say $-\boldsymbol{a}_{1}$, in $\boldsymbol{Q}_{p}$. Namely these we $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ in $\boldsymbol{Q}_{p}$ which are not all zero $\sum_{i=1}^{n} \boldsymbol{a}_{i} \boldsymbol{\varepsilon}_{\boldsymbol{i}}=\mathbf{0}$. For $n=1$ the result is obviously true, hence we complete the proof of Proposition 1.

We mean by the $p$-Wronskian of a system $\left(\xi_{1}, \cdots, \xi_{n}\right)$ of elements $\xi_{1}, \cdots, \xi_{n}$ the determinant:

$$
\boldsymbol{W}_{p}\left(\xi_{1}, \cdots, \xi_{n}\right)=\left(\begin{array}{ll}
\xi_{1} & , \cdots, \xi_{n} \\
\xi_{1}^{n} & , \cdots, \xi_{n}^{n} \\
\xi_{1}^{n-1} & , \cdots, \xi_{n}^{n-1}
\end{array}\right)
$$

Then by replacing $\mathfrak{p}$ by $p$ we have the following the analogious results as Proposition 1 by the completely same reason.

Proposition 1'. Let $\xi_{1}, \cdots, \xi_{n}$ be elements in $4^{\prime}$. Then $\xi_{1}, \cdots, \xi_{n}$ are linearly independent over the prime field $G F(p)$ if and only if $W_{p}\left(\xi_{1}, \cdots, \xi_{n}\right) \neq 0$.
§ 3. Non-commutative $\mathfrak{p}$-polynomials and $\boldsymbol{Q}_{p}\left[G_{d}\right]$ submodules in $K_{d^{\prime}}$.

We denote by $\boldsymbol{K}_{\boldsymbol{A}}\langle\boldsymbol{t}\rangle\left(\right.$ resp. $\left.\boldsymbol{W}_{\boldsymbol{J}}\langle\boldsymbol{t}\rangle\right)$ the ring of non-commuta-
tive polynomials in $\boldsymbol{t}$ with coefficients in $\boldsymbol{K}_{\Delta}$ (resp. $\boldsymbol{W}_{\Delta}$ ) with the law of multiplication: ta=a, $\boldsymbol{a ^ { \nu }} \boldsymbol{t}, \boldsymbol{t}^{\mu} \boldsymbol{t}^{\nu}=\boldsymbol{t}^{\mu_{+} \nu}\left(\boldsymbol{a} \in \boldsymbol{K}_{\Delta} ; \mu, \nu>0\right)$. We call elements in $\boldsymbol{K}_{\boldsymbol{A}}\langle\boldsymbol{t}\rangle$ non-commutative $\mathfrak{p}$-polynomials with coefficients in $\boldsymbol{K}_{\Delta}$ and mean by the rank of a non-commutative $\mathfrak{p}$-polynomials $\mathfrak{p}$-polynomial $\boldsymbol{f}$ the highest degree in $\boldsymbol{t}$ in $\boldsymbol{f}$. We denote by rank $\boldsymbol{f}$ the rank of $\boldsymbol{f}$. Each element $\boldsymbol{f}=\sum_{\nu=0}^{n} \boldsymbol{a}_{\nu} \boldsymbol{t}^{\nu}$ in $\boldsymbol{K}_{\nu}\langle\boldsymbol{t}\rangle$ acts on $\boldsymbol{K}_{\Delta^{\prime}}$ in the following way: $\boldsymbol{f}(\boldsymbol{\xi})=\left(\sum_{\nu=0}^{n} \boldsymbol{a}_{\nu} \boldsymbol{t}\right)(\boldsymbol{\xi})=\sum_{\nu=0}^{n} \boldsymbol{a} \boldsymbol{\xi}^{\mu^{\nu}}$. For each $\mathfrak{p}$-equation $\boldsymbol{f}(\boldsymbol{X})=\sum_{\nu=0}^{n} \boldsymbol{a}_{v} \boldsymbol{X}^{\mathfrak{p}^{\nu}=0}$ we mean by $\boldsymbol{f}$ the noncommutative $\mathfrak{p}$-polynormial $\sum_{\nu=0}^{n} a_{\nu} t^{\nu}$.

Lemma 1. Let $\boldsymbol{V}$ be a $\boldsymbol{Q}_{p}$-finite-dimensional $\boldsymbol{Q}_{\boldsymbol{p}}$-vector subsace in $\boldsymbol{K}_{A^{\prime}}$ and $\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ be a $\boldsymbol{Z}_{p}$-base of the intersection $\boldsymbol{V} \cap \boldsymbol{W}_{\Delta^{\prime}}$ regarded as a $\boldsymbol{Z}_{p}$-module. Then $\boldsymbol{W}_{p}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ is a unit in $\boldsymbol{W}_{A^{\prime}}{ }^{4}$.

Proof. Assume $\xi_{1}, \cdots, \xi_{r}$ are linearly independent modulo $\boldsymbol{p}\left(\boldsymbol{W}_{\boldsymbol{A}^{\prime}} \cap \boldsymbol{V}\right)$ and $\boldsymbol{\xi}_{r+1}, \cdots, \boldsymbol{\xi}_{n}$ are linearly dependent on $\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}$ modulo $\boldsymbol{p}\left(\boldsymbol{W}_{A^{\prime}} \cap \boldsymbol{V}\right)$. Obviousely $1 \leq r \leq n$ Suppose for a monent $r \nsupseteq n$. Then there exist elements $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{r}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ in $\boldsymbol{Z}_{p}$ such that $\boldsymbol{a} \boldsymbol{\xi}_{1}+\cdots+\boldsymbol{a}_{r} \boldsymbol{\xi}_{r}-\boldsymbol{\xi}_{n}=\boldsymbol{p}\left(\boldsymbol{b}_{1} \xi_{1}+\cdots+\boldsymbol{b}_{r} \boldsymbol{\xi}_{n}\right)$. Since $\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}$ are linearly independent over $\boldsymbol{Z}_{\boldsymbol{p}}$, we have $\boldsymbol{a}_{1}=\boldsymbol{p} \boldsymbol{b}_{1}, \cdots, \boldsymbol{a}_{r}=\boldsymbol{p} \boldsymbol{b}_{r}, \boldsymbol{b}_{r+1}=$ $\cdots=\boldsymbol{b}_{n-1}=0$ and $\mathbf{1}+\boldsymbol{p} \boldsymbol{b}_{n}=\mathbf{0}$. This is contradiction, because $\mathbf{1} \neq \mathbf{0}$ $\bmod \boldsymbol{p}$. This shows $\xi_{1}, \cdots, \xi_{n}$ are linearly independent modulo $\boldsymbol{p}\left(\boldsymbol{W}_{\boldsymbol{A}^{\prime}} \cap \boldsymbol{V}\right)$. Since $\boldsymbol{p}\left(\boldsymbol{W}_{\Delta} \cap \boldsymbol{V}\right)=\boldsymbol{p} \boldsymbol{W}_{\Delta^{\prime}} \cap \boldsymbol{V}$ and $\boldsymbol{W}_{\boldsymbol{A}^{\prime}} / \boldsymbol{p} \boldsymbol{W}_{\boldsymbol{A}^{\prime}}$ is canonically isomorphic to $\Delta^{\prime}$, by virtue of Proposition $1^{\prime}$ we have $\boldsymbol{W}_{\mathrm{p}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right) \neq \mathbf{0} \bmod \boldsymbol{p} \boldsymbol{W}_{\boldsymbol{A}^{\prime}}$. This proves Lemma 1 .

Proposition 2. Let $\boldsymbol{V}$ be a $\boldsymbol{Q}_{p}$-finite-dimensional $\boldsymbol{Q}_{p}\left[\boldsymbol{G}_{A}\right]$-module in $\boldsymbol{K}_{\Delta^{\prime}}$ and $\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ be a $\boldsymbol{Q}_{p}$-base of $\boldsymbol{V}$. Put $\boldsymbol{f}_{\boldsymbol{V}}(\boldsymbol{X})=(-\mathbf{1})^{n}$ $\boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)^{-1} \boldsymbol{W}_{\mathrm{p}}\left(\boldsymbol{X}, \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$. Then the non-commutative $\mathfrak{p}$ polynomial $\boldsymbol{f}_{\boldsymbol{V}}{ }^{5\rangle}$ is an element in $\boldsymbol{W}_{\Delta}\langle\boldsymbol{t}\rangle$ with the properties $1^{\circ} \boldsymbol{f}_{\boldsymbol{V}}$ does not depend on the choic of $\boldsymbol{Q}_{p}$-base, $2^{\circ}$ the highest coefficient equals $1,3^{\circ}$ the consiant term is $\left.(-\mathbf{1})^{n} \boldsymbol{W}_{p} \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)^{p-1}$ and $\equiv \mathbf{\#}$ $\bmod \boldsymbol{p} \boldsymbol{W}_{\Delta}{ }^{6)}$.

Proof. First we shall prove the independence of $\boldsymbol{f}_{\boldsymbol{V}}$ on the

[^1]choice of the $\boldsymbol{Q}_{\boldsymbol{p}}$-base of $\boldsymbol{V}$. Let $\boldsymbol{A}$ be any non-singular $n \times n$ matrix with coefficients in $\boldsymbol{Q}_{p}$ and put $\left(\boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{n}\right)=\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right) \boldsymbol{A}$. Then it follows
\[

$$
\begin{aligned}
& (-\mathbf{1})^{n} \boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{n}\right)^{-1} \boldsymbol{W}_{p}\left(\boldsymbol{X}, \boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{n}\right) \\
= & (-\mathbf{1})^{n}\left|\boldsymbol{A}^{-1}\right| \boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)^{-1} \boldsymbol{W}_{\mathrm{p}}\left(\boldsymbol{X}, \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)\left|\left(\begin{array}{ll}
1 & 0 \\
0 & \boldsymbol{A}
\end{array}\right)\right| \\
= & (-\mathbf{1})^{n} \boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)^{-1} \boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{X}, \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)
\end{aligned}
$$
\]

This proves the independence of $f_{\boldsymbol{V}}$ on the choice of the $\boldsymbol{Q}_{\boldsymbol{p}}$-base. Since for every $\sigma$ in $G_{\Delta}\left(\boldsymbol{\xi}_{1}^{\sigma}, \cdots, \boldsymbol{\xi}_{n}^{\sigma}\right)$ is also a $\boldsymbol{Q}_{p}$-base of $\boldsymbol{V}$ and $\boldsymbol{K}_{\Delta}$ is the subfield of $\boldsymbol{K}_{\boldsymbol{A}^{\prime}}$ consisting of all the elements fixed by every element in $G_{\Delta}$, we can conclude that the coefficients in $\boldsymbol{f}_{\boldsymbol{V}}$ belong to $\boldsymbol{K}_{\boldsymbol{U}}$. From the definition of $\boldsymbol{f}_{\boldsymbol{V}}$ the highest coefficient in $\boldsymbol{f}_{\boldsymbol{V}}$ equals to 1 . Let $\left(\zeta_{1}, \cdots, \zeta_{n}\right)$ be a $Z_{p}$-base of the intersection $\boldsymbol{V} \cap \boldsymbol{W}_{\boldsymbol{A}^{\prime}}$. Then by virtue of Lemma 1 we have $\boldsymbol{W}_{\mathrm{p}}\left(\zeta_{1}, \cdots, \zeta_{n}\right) \equiv \mathbf{0}$ $\bmod \boldsymbol{p} \boldsymbol{W}_{\Delta^{\prime}}$. Since the coefficient of $\boldsymbol{X}^{\boldsymbol{n}}$ in $\boldsymbol{W}_{\mathfrak{p}}\left(\boldsymbol{X}, \boldsymbol{\zeta}_{1}, \cdots, \boldsymbol{\zeta}_{n}\right)$ is $\boldsymbol{W}_{\mathfrak{p}}\left(\zeta^{\mathfrak{p}}, \cdots, \zeta_{n}^{p}\right)=\boldsymbol{W}_{\mathfrak{p}}\left(\zeta_{1}, \cdots, \zeta_{n}\right)^{p}$, this shows that the constant term in $\boldsymbol{f}_{\boldsymbol{V}}$ is $(-\mathbf{1})^{n} \boldsymbol{W}_{\mathfrak{p}}\left(\zeta_{1}, \cdots, \zeta_{n}\right)^{p-1}$ and is not congruent to zero modulo $\boldsymbol{p} \boldsymbol{W}_{\Delta}$. On the other hand, since $\zeta_{1}, \cdots, \zeta_{n} \in \boldsymbol{W}_{A^{\prime}}$, the coefficients in $\boldsymbol{W}_{p}\left(\boldsymbol{X}, \boldsymbol{\zeta}_{1}, \cdots, \zeta_{n}\right)$ with respect to $\boldsymbol{X}$ are elements in $\boldsymbol{W}_{\boldsymbol{A}^{\prime}}$. Therefore we can conclude $\boldsymbol{f}_{\boldsymbol{V}}$ belongs to $\boldsymbol{W}_{\Delta}\langle\boldsymbol{t}\rangle$, because $\boldsymbol{W}_{p}\left(\zeta_{1}, \cdots, \zeta_{n}\right)$ is a unit in $\boldsymbol{W}_{\Delta^{\prime}}$ and $\boldsymbol{f}_{\boldsymbol{V}}$ belongs to $\boldsymbol{K}_{\Delta}\langle\boldsymbol{t}\rangle$.

For any element $\boldsymbol{f}(\neq \boldsymbol{0})$ in $\boldsymbol{K}_{\Delta}\langle\boldsymbol{t}\rangle$ we mean by $\boldsymbol{V}_{\boldsymbol{f}}$ the subset in $\boldsymbol{K}_{\Delta^{\prime}}$ consisting of all the solutions $\boldsymbol{\xi}$ of the $\mathfrak{p}$-equation $\boldsymbol{f}(\boldsymbol{X})=0$. Then we have

Proposition 3. (i) $\boldsymbol{V}_{\boldsymbol{f}}$ is a $\boldsymbol{Q}_{p}\left[G_{\Delta}\right]$-submodule in $\boldsymbol{K}_{\Delta^{\prime}}$ such that $\operatorname{dim}_{\boldsymbol{Q}_{p}} \boldsymbol{V}_{\boldsymbol{f}} \leqq \operatorname{rank} \boldsymbol{f}$. (ii) $\boldsymbol{V}=\boldsymbol{V}_{\boldsymbol{f}_{\boldsymbol{V}}}$. (iii) If $\boldsymbol{V}^{\prime}$ is a $\boldsymbol{Q}_{p}\left[G_{\Delta}\right]$-submodule . of $\boldsymbol{V}_{\boldsymbol{f}}$, then there exists $\boldsymbol{g}$ in $\boldsymbol{K}_{\Delta}\langle\boldsymbol{t}\rangle$ such that $\boldsymbol{f}=\boldsymbol{g} \boldsymbol{f}_{\boldsymbol{V}^{\prime}}$.

Proof. Since $(\boldsymbol{a} \boldsymbol{\xi}+\boldsymbol{b} \boldsymbol{\eta})^{\mathfrak{p}}=\boldsymbol{a} \xi^{\mathfrak{p}}+\boldsymbol{b} \boldsymbol{\eta}^{\mathfrak{p}}$ for $\boldsymbol{a}, \boldsymbol{b}$ in $\boldsymbol{Q}_{p}$ and $\boldsymbol{\xi}, \boldsymbol{\eta}$ in $\boldsymbol{K}_{\Delta^{\prime}}$, we have $\boldsymbol{f}(\boldsymbol{a} \hat{\boldsymbol{\xi}}+\boldsymbol{b} \boldsymbol{\eta})=\boldsymbol{a} \boldsymbol{f}(\boldsymbol{\xi})+\boldsymbol{b} \boldsymbol{f}(\boldsymbol{\eta})$ for $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{Q}_{\boldsymbol{p}}$. This shows $\boldsymbol{V}_{\boldsymbol{f}}$ is a $\boldsymbol{Q}_{p}$-module. On the other hand all the coefficients in $\boldsymbol{f}$ belong $\boldsymbol{K}_{\Delta}$ and $\mathfrak{p}$ commutes with every element $\sigma \in G_{\Delta}$, hence $\boldsymbol{\xi}^{\sigma}\left(\sigma \in G_{\Delta}\right)$ belongs to $\boldsymbol{V}_{\boldsymbol{f}}$ if and only if $\boldsymbol{\xi} \in \boldsymbol{V}_{\boldsymbol{f}}$. This means $\boldsymbol{V}_{\boldsymbol{f}}$ is a $\boldsymbol{Q}_{p}\left[G_{\Delta}\right]-$ module. Let $\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{m}$ be linearly independent elements in $\boldsymbol{V}_{\boldsymbol{f}}$ over $\boldsymbol{Q}_{\boldsymbol{p}}$. Then by virtue of Proposition 1 we have $\boldsymbol{W}_{\mathrm{p}}\left(\boldsymbol{\xi}_{1}, \cdots, \xi_{m}\right) \neq \mathbf{0}$. On the other hand, if we write $\boldsymbol{f}=\sum_{v=0}^{n} \boldsymbol{a}_{v} \boldsymbol{p}^{\nu}$, we have

$$
\left(\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right)\left(\begin{array}{c}
\xi_{1}, \cdots, \boldsymbol{\xi}_{m} \\
\xi_{1}^{p}, \cdots, \xi_{m}^{p_{n}} \\
\xi_{1}^{p_{n}}, \cdots, \xi_{m}^{p_{n}}
\end{array}\right)=(0,0, \cdots, 0)
$$

This shows $m \leqq n$, and thus (i) has been proved. From Proposition 2 it follows rank $\boldsymbol{f}_{\boldsymbol{V}}=\operatorname{dim}_{\boldsymbol{Q}_{p}} \boldsymbol{V}$, hence by virtue of (i) we have $\operatorname{dim}_{\boldsymbol{Q}_{\boldsymbol{p}}} \boldsymbol{V}_{\boldsymbol{f}_{\boldsymbol{V}}}<\operatorname{rand} \boldsymbol{f}_{\boldsymbol{V}}=\operatorname{dim}_{\boldsymbol{Q}_{\boldsymbol{p}}} \boldsymbol{V}$. On the other hand $\boldsymbol{V} \subset \boldsymbol{V}_{\boldsymbol{f}_{\boldsymbol{V}}}$, hence $\boldsymbol{V}=\boldsymbol{V}_{\boldsymbol{f}_{\boldsymbol{V}}}$. From (i) and (ii) we know that $\boldsymbol{f}_{\boldsymbol{V}^{\prime}}$ is the element $\boldsymbol{h}$ in $\boldsymbol{K}_{\Delta}\langle\boldsymbol{t}\rangle$ with the smallest rank such that $\left.\boldsymbol{V}_{\boldsymbol{h}}\right\rangle \boldsymbol{V}^{\prime}$. We can choose $\boldsymbol{g}$ and $\boldsymbol{\theta}$ in $\boldsymbol{K}_{\Delta}\langle\boldsymbol{t}\rangle$ such that $\boldsymbol{f}=\boldsymbol{g} \boldsymbol{f}_{\boldsymbol{V}^{\prime}}+\boldsymbol{\theta}$ and rank $\boldsymbol{\theta}<\operatorname{rank} \boldsymbol{f}_{\boldsymbol{V}^{\prime}}$, because rank $\boldsymbol{f}_{\boldsymbol{V}^{\prime}} \leqq$ rank $\boldsymbol{f}$. Since $\boldsymbol{V}_{\boldsymbol{f}}>\boldsymbol{V}^{\prime}$ and $\boldsymbol{V}_{\boldsymbol{g} \boldsymbol{f}_{\boldsymbol{V}}}>\boldsymbol{V}^{\prime}$, we have $\boldsymbol{V}_{\theta}>\boldsymbol{V}^{\prime}$. Thus rank $\theta \geqq \operatorname{dim}_{\theta_{p}} \boldsymbol{V}_{\theta}>\operatorname{dim}_{Q_{p}} \boldsymbol{V}^{\prime}=\boldsymbol{f}_{\boldsymbol{V}^{\prime}}$. Therefore, if $\boldsymbol{\theta} \neq \mathbf{0}$, this is a contradiction. This proves $\boldsymbol{\theta}=\mathbf{0}$.

We shall now show the reverse of Proposition 2.
Proposition 4. Let $\boldsymbol{f}$ be an element of $\boldsymbol{W}_{\Delta}\langle\boldsymbol{t}\rangle$ such that the highest coefficient is 1 and the constant term is not congruence to zero modulo $\boldsymbol{p} \boldsymbol{W}_{\Delta}$. Then $\operatorname{dim}_{\boldsymbol{Q}_{\boldsymbol{p}}} \boldsymbol{V}_{\boldsymbol{f}}=\operatorname{rank} \boldsymbol{f}$ and $f=f_{\boldsymbol{V}_{\boldsymbol{f}}}$.

Proof. Let $n$ be the rank of $\boldsymbol{f}$ and put $\boldsymbol{f}=\sum_{v=0}^{n} \boldsymbol{a}_{v} \boldsymbol{t}^{\nu}$. Let $x_{0}, x_{1}, x_{2}, \cdots$ be indeterminates and put $\boldsymbol{X}=\sum_{\nu=0}^{\infty} x_{\nu} \boldsymbol{p}^{\nu}, \boldsymbol{f}(\boldsymbol{X})=$ $\sum_{\nu=0}^{\infty} \rho_{\nu}\left(x_{0}, x_{1}, \cdots, x_{\nu}\right) \boldsymbol{p}^{\nu}$. It is sufficient to show that the number of solutions of $\mathcal{P}_{0}\left(x_{0}\right)=0, \mathcal{P}_{1}\left(x_{0}, x\right)=0, \cdots, \mathcal{P}_{\nu-1}\left(x_{0}, x_{1}, \cdots, x_{\nu-1}\right)=0$ in $\Delta^{\prime}$ is exactly $p^{\nu n}$. Since $\boldsymbol{a}_{n}=1$ and $\boldsymbol{a}_{0} \neq \mathbf{0} \bmod \boldsymbol{p} \boldsymbol{W}_{\Delta}$, by virtue of (1), (2), (3) we have $\frac{\partial}{\partial x_{\mu}} \mathcal{P}_{\mu}\left(x_{0}, \cdots, x_{\mu}\right) \equiv=$, and thus $\mathcal{P}_{\mu}\left(\xi_{0}, \cdots\right.$, $\left.\xi_{\mu-1}, x_{\mu}\right)=0$ has no multiple root for given value $\xi_{0}, \cdots, \xi_{\mu-1}$ in $\Delta^{\prime}$. On the other hand the degree of $\mathcal{\rho}_{\mu}\left(\xi_{0}, \cdots, \xi_{\mu-1}, x_{\mu}\right)$ in $x_{\mu}$ is $p^{n}$, hence we conclude the number of solutions of $\mathcal{P}_{0}\left(x_{0}\right)=0, \mathcal{P}_{1}\left(x_{0}, x_{1}\right)=$ $0, \cdots, \mathscr{P}_{\nu-1}\left(x_{0}, \cdots, x_{\nu-1}\right)=0$ in $\Delta^{\prime}$ is exactly $p^{\nu n}$. This proves Proposition 4.

We now sum up the results in Proposition 2, 3, 4.
Theorem 1. The correspondence $\boldsymbol{V} \leftrightarrow \boldsymbol{f}_{\boldsymbol{V}}(X)=0$ gives a bijective map between the set of $\boldsymbol{Q}_{p}$-finite-dimensional $\boldsymbol{Q}_{p}\left[G_{A}\right]$-submodules in $\boldsymbol{K}_{A^{\prime}}$ and the set of $\mathfrak{p}$-equations with the propertics $1^{\circ}$ the coefficients belong to $\boldsymbol{W}_{4}, 2^{\circ}$ the highest coefficient is $1,3^{\circ}$ the coefficient of $\boldsymbol{X}$
is not congruent to zero modulo $\boldsymbol{p} \boldsymbol{W}_{\Delta}$. By this correspondence $\boldsymbol{Q}_{p}\left[G_{A}\right]-$ modules correscpond to irreducible $\mathfrak{p}$-equaiions and conversely.
§4. $K_{\Delta}\left[G_{A}\right]$-modules of finite $\mathfrak{p}$-type in $K_{A^{\prime}}$.
Definition. If a $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-module $\mathfrak{B}$ in $\boldsymbol{K}_{\Delta^{\prime}}$ has a $\boldsymbol{K}_{\Delta}$-base $\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ such that the coefficients of the representation $\left\{\boldsymbol{M}(\sigma) \mid \sigma \in G_{\Delta}\right\}$ defined by $\left(\boldsymbol{\xi}_{1}^{\sigma}, \cdots, \xi_{n}^{\sigma}\right)=\left(\xi_{1}, \cdots, \xi_{n}\right) \boldsymbol{M}(\sigma)$ belong to a finite algebraic extension of $\boldsymbol{Q}_{p}$, then we call $\mathfrak{B}$ a $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-module of finiie $\mathfrak{p}$-type.

In the present paragraph we shall be concerned with $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]-$ modules of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{\Lambda^{\prime}}$, especially semi-simple $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]-$ modules of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{d^{\prime}}$.

Lemma 1. If $\mathfrak{B}$ is a $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-module of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{A^{\prime}}$, then there exists a $\boldsymbol{Q}_{p}$-finite-dimensional $\boldsymbol{Q}_{p}\left[G_{\Delta}\right]$-module $\boldsymbol{V}$ in $\boldsymbol{K}_{A^{\prime}}$ such that $\mathfrak{B}=\boldsymbol{K}_{\Delta} \boldsymbol{V}$. If $\mathfrak{B}$ is simple, we can choose a simple $\boldsymbol{Q}_{p}\left[G_{\Delta}\right]-$ module as $\boldsymbol{V}$.

Proof. Let $\mathfrak{b}$ be a $\boldsymbol{K}_{A}\left[G_{A}\right]$-module in $\boldsymbol{K}_{A^{\prime}}$ with a $K_{\Delta}$-base $\left(\boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{n}\right)$ such that the field $\Lambda$ generated by the coefficients of the representation $\left\{\boldsymbol{M}(\sigma) \mid\left(\boldsymbol{\xi}_{1}^{\sigma}, \cdots, \boldsymbol{\xi}_{n}^{\sigma}\right)=\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right) \boldsymbol{M}(\sigma), \sigma \in G_{\Delta}\right\}$ is a finite algebraic extension of $\boldsymbol{Q}_{p}$. Let $\left(\boldsymbol{\varepsilon}_{1}, \cdots, \boldsymbol{\beta}_{r}\right)$ be a $\boldsymbol{Q}_{\boldsymbol{p}}$-base of $\boldsymbol{\Lambda}$ and put $\boldsymbol{\eta}_{i j}=\beta_{i} \xi_{j}(1 \leqq i \leqq r ; 1 \leqq j \leqq n)$. Then we have a $\boldsymbol{Q}_{\boldsymbol{p}}[G]-$ module $\boldsymbol{V}=\boldsymbol{Q}_{p} \boldsymbol{\eta}_{11}+\cdots+\boldsymbol{Q}_{p} \boldsymbol{\eta}_{r n}=\Lambda \boldsymbol{\xi}_{1}+\cdots+\Lambda \xi_{n}$ in $\boldsymbol{K}_{\Delta^{\prime}}$ such that $\boldsymbol{K} \boldsymbol{V}=$ $\mathfrak{B}$. Assume $\mathfrak{B}$ is simple. Then the enveloping algebra of $\{\boldsymbol{M}(\sigma) \mid \sigma \in G\}$ over $\boldsymbol{\Lambda}$ is a simple $\boldsymbol{\Lambda}$-algebra. Hence $\boldsymbol{V}$ is a direct sum $\boldsymbol{V}_{1} \oplus \cdots \oplus \boldsymbol{V}_{r}$ of simple $\boldsymbol{Q}_{\boldsymbol{p}}[G]$-submodules. Since $\boldsymbol{K}_{\Delta} \boldsymbol{V}=\mathfrak{W}$ and $\mathfrak{B}$ is simple there exists as $\boldsymbol{V}_{\boldsymbol{i}}$ such that $\boldsymbol{K}_{\Delta} \boldsymbol{V}_{\boldsymbol{i}}=\mathfrak{B}$.

Theorem 2. Let $\mathfrak{B}$ be a $\boldsymbol{K}_{A}\left[G_{A}\right]$-module of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{A^{\prime}}$ and $\Lambda$ be a suffield of $\boldsymbol{K}_{\Delta}$ in which the coefficients of a representation $\left\{\boldsymbol{M}(\sigma) \mid\left(\boldsymbol{\xi}_{1}^{\sigma}, \cdots, \boldsymbol{\xi}_{n}^{\sigma}\right)=\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right) \boldsymbol{M}(\sigma), \sigma \in G_{4}\right\}$ of $G_{\Delta}$ by the $\boldsymbol{K}_{\Delta}$-base $\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}\right)$ are contained. Let $r$ be the degree of $\boldsymbol{\Lambda}$ over $\boldsymbol{Q}_{\boldsymbol{p}}$. Then every $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-module in $\boldsymbol{K}_{\Delta^{\prime}}$ isomorphic to $\boldsymbol{V}$ is contained in the sum $\tilde{\mathfrak{B}}=\mathfrak{B}+\boldsymbol{K}_{4} \mathfrak{1 b}^{\mathfrak{p} r}+\cdots+\boldsymbol{K}_{4} \mathfrak{S}^{\mathfrak{P}^{p r(n-1)}}$ in $\boldsymbol{K}_{A^{\prime}}$.

Proof. We notice that $\Lambda / \boldsymbol{Q}_{p}$ is cyclic and the galois automorphisms are induced by $\left\{1, \mathfrak{p}, \cdots, \mathfrak{p}^{r-1}\right\}$, because $\boldsymbol{\Lambda} \subset \boldsymbol{K}_{A}$ and $\boldsymbol{K}_{A}$ is
unramified for $p$. Let $\mathfrak{U}$ be a $K_{\Delta}\left[G_{\Delta}\right]$-module in $\boldsymbol{K}_{\Delta^{\prime}}$ isomorphic to $\mathfrak{B}$ and $\varphi$ be the isomorphism of $\mathfrak{B}$ onto $\mathfrak{U}$. Then, putting $\boldsymbol{M}(\sigma)=$ $\left(m_{i j}(\sigma)\right)\left(\sigma \in G_{\mu}\right)$, we have $\left(\mathcal{P}\left(\boldsymbol{\xi}^{\top}\right)^{\sigma}, \cdots, \mathcal{P}\left(\boldsymbol{\xi}_{n}\right)^{\sigma}\right)=\left(\mathcal{P}\left(\boldsymbol{\xi}_{1}^{\sigma}\right), \cdots, \mathcal{P}\left(\boldsymbol{\xi}_{n}^{\sigma}\right)\right)=$ $\left(\mathcal{P}\left(\sum_{l=1}^{n} m_{l 1}(\sigma) \boldsymbol{\xi}_{l}\right), \cdots, \mathcal{P}\left(\sum_{l=1}^{n} m_{l n}(\sigma) \boldsymbol{\xi}_{l}\right)\right)=\left(\sum_{l=1}^{n} m_{l 1}(\sigma) \varphi\left(\boldsymbol{\xi}_{l}\right), \cdots, \sum_{l=1}^{n} m_{l n}(\sigma) \mathcal{P}\left(\boldsymbol{\xi}_{l}\right)\right)=$ $\left(\mathscr{P}\left(\boldsymbol{\xi}_{1}\right), \cdots, \mathscr{P}\left(\boldsymbol{\xi}_{n}\right)\right) \boldsymbol{M}(\sigma)$. RepIacing $\mathfrak{p}$ by $\mathfrak{p}^{r}$ in Proposition 1, by the same reason as for $\mathfrak{p}$, we have

$$
W_{p^{r}}\left(\xi_{1}, \cdots, \xi_{n}\right)=\left|\begin{array}{ll}
\boldsymbol{\xi}_{1} & , \cdots, \boldsymbol{\xi}_{n} \\
\boldsymbol{\xi}_{1}^{p^{r}} & , \cdots, \boldsymbol{\xi}_{n}^{p^{r}} \\
\vdots & \\
\xi_{1}^{p_{1}^{r(n-1)}} & , \cdots, \boldsymbol{\xi}_{n}^{p^{r(n-1)}}
\end{array}\right| \neq 0
$$

Hence putting

we get a matrix with coefficients $\boldsymbol{a}_{i j}(1 \leqq i, j \leqq n)$ in $\boldsymbol{K}_{\Delta}$. Since $\mathcal{P}\left(\boldsymbol{\xi}_{i}\right)=\sum_{l=1}^{n} \boldsymbol{a}_{i l} \xi^{\mathfrak{p}^{r(l-1)}}(1 \leqq i \leqq m) \quad$ with $\quad \boldsymbol{a}_{i j} \in \boldsymbol{K}_{\Delta}$ and $\boldsymbol{\mathcal { P }}\left(\boldsymbol{\xi}_{1}\right), \cdots, \mathcal{P}\left(\boldsymbol{\xi}_{n}\right)$ generate $\mathfrak{U}$ over $\boldsymbol{K}_{\Delta}$, we conclude $\left.\boldsymbol{K}_{\Delta} \mathfrak{\mathcal { B }}+\boldsymbol{K}_{4} \mathfrak{Y B}^{\mathfrak{p}^{r}}+\cdots+\boldsymbol{K}_{\Delta} \mathfrak{B}^{\mathfrak{p}(n-1)}\right) \mathfrak{u}$.

We shall now culculate the multiplicity of simple $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]-$ module in the union $\boldsymbol{K}_{4^{\prime}, s}$ of semi-simple $\boldsymbol{K}_{\Delta}\left[G_{4}\right]$-modules of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{\boldsymbol{A}^{\prime}}$.

Theorem 3. Let $\mathfrak{B}$ be a simple $\boldsymbol{K}_{4}\left[G_{4}\right]$-module of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{A^{\prime}}$ and $\left\{\boldsymbol{M}(\sigma) \mid \sigma \in G_{\Delta}\right\}$ be a representation of $G_{\Delta}$ by a $\boldsymbol{K}_{\Delta}$-base of $\mathfrak{W}$ such that the coefficients in $\left\{\boldsymbol{M}(\sigma) \mid \sigma \in G_{\Delta}\right\}$ belong to a finite algebraic extension $\boldsymbol{\Lambda}$ of $\boldsymbol{Q}_{p}$ in $\boldsymbol{K}_{\Delta}$. If the envelopeng algebra of $\left\{\boldsymbol{M}(\sigma) \mid \sigma \in G_{4}\right\}$ over $\Lambda$ is a full matrix ring of degree $d_{0}$ over $a$ division ring and $r$ is the degree of $\boldsymbol{\Lambda}$ over $\boldsymbol{Q}_{p}$, then the sum $\tilde{\mathfrak{G}}=\mathfrak{V}+\boldsymbol{K}_{\Delta} \mathfrak{B P}^{\mathfrak{p}}+\cdots+\boldsymbol{K}_{\Delta} \mathfrak{B}^{\mathfrak{p}^{r(d}\left(d_{0}-1\right)}$ in $\boldsymbol{K}_{\Delta^{\prime}}$ is a direct sum such that every $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-module in $\boldsymbol{K}_{\Delta^{\prime}}$ isomorphic to $\mathfrak{F}$ is contained in $\tilde{\mathfrak{B}}$. Namely the multiplicity of $\mathfrak{B}$ in the union $\boldsymbol{K}_{4^{\prime}, \text { s }}$ of semi-simple $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-moules of finit $\mathfrak{p}$ type is $d_{0}$.

Proof. Let $\left(\xi_{p}, \cdots, \xi_{n}\right)$ be a $\boldsymbol{K}_{\Delta}$-base of $\mathfrak{B}$ such that $\left(\xi_{1}^{\boldsymbol{\varepsilon}}, \cdots\right.$, $\left.\xi_{n}^{\sigma}\right)=\left(\boldsymbol{\xi}_{1} \cdots, \boldsymbol{\xi}_{n}\right) \boldsymbol{M}(\sigma)\left(\sigma \in G_{4}\right)$ and put $\boldsymbol{V}=\boldsymbol{\Lambda} \xi_{1}+\cdots+\boldsymbol{\Lambda} \xi_{n}$. Since $\boldsymbol{\Lambda}$ is
algebraic subfield in $\boldsymbol{K}_{\Delta}$ of degree $r$ over $\boldsymbol{Q}_{p}, \boldsymbol{\Lambda} / \boldsymbol{Q}_{p}$ is a cyclic extension and the galois automorphisms are induced by $\{1, \mathfrak{p}, \cdots$, $\left.\mathfrak{p}^{r-1}\right\}$. Since $\boldsymbol{V}$ is a simple $\Lambda\left[G_{4}\right]$-module, $\boldsymbol{V}^{\mathfrak{p r}^{\gamma \nu}}(\nu=1,2, \cdots)$ are also simple $\Lambda\left[G_{\Delta}\right]$-modules isomorphic to $\boldsymbol{V}$, and thus $\boldsymbol{K}_{\Delta} \boldsymbol{V}^{\text {pr }}$ $(\nu=1,2, \cdots)$ are simple $\boldsymbol{K}_{\Delta}\left[G_{\Delta}\right]$-modules isomorphic to $\mathfrak{B}=\boldsymbol{K}_{\Delta} \boldsymbol{V}$. This shows that the sum $\mathfrak{B}=\boldsymbol{K}_{\Delta} \boldsymbol{V}+\cdots+\boldsymbol{K}_{\Delta} \mathfrak{W}^{\mathrm{p}(n-1) r}$ in $\boldsymbol{K}_{\Delta^{\prime}}$ is a direct sum $\boldsymbol{K}_{\Delta} \boldsymbol{V} \oplus \boldsymbol{K}_{\Delta} \boldsymbol{V}^{\mathfrak{p} r} \oplus \cdots \oplus \boldsymbol{K}_{\Delta} \boldsymbol{V}^{\mathrm{p}(\boldsymbol{t - 1 ) r}}$ with a positive integer $\boldsymbol{t}$. The purpose of the proof is to show $t=d_{0}$. Let $\boldsymbol{A}_{\Lambda}$ be the enveloping algebra of $\left\{M(\sigma) \mid \sigma \in G_{\Delta}\right\}$ over $\boldsymbol{\Lambda}$ and $\boldsymbol{D}$ be the division algebra of $\boldsymbol{A}_{\Lambda}$. Then $\left[\boldsymbol{A}_{\Lambda}: \boldsymbol{D}\right]=d_{0}^{2}$. Let $\Omega$ be the center of $\boldsymbol{A}_{\Lambda}$ and $\boldsymbol{T}$ be the minimal extension of $\Omega$ such that $\boldsymbol{D} \otimes_{\boldsymbol{Q}} \boldsymbol{T}$ splits. Then we have $\left[\boldsymbol{A}_{\Lambda}: \boldsymbol{\Lambda}\right]=d_{0}^{2}[\boldsymbol{T}: \Omega]^{2}[\boldsymbol{\Omega}: \boldsymbol{\Lambda}]$ and $\boldsymbol{T} \cap \boldsymbol{K}_{\Delta}=\boldsymbol{\Lambda}$. We put $d=d_{0}[\boldsymbol{T}: \Omega]$. We introduce the endomorphism $\mathfrak{q}$ of $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Lambda^{\prime}}$ by by $(\boldsymbol{a} \otimes \boldsymbol{\xi})^{q}=\boldsymbol{a} \otimes \boldsymbol{\xi}^{\boldsymbol{p}^{p r}}\left(\alpha \in T, \boldsymbol{\xi} \in \boldsymbol{K}_{\Delta^{\prime}}\right)$. Since $\boldsymbol{\Lambda}$ is the subfield of $\boldsymbol{K}_{\Delta^{\prime}}$ consisting of all the elements fixed by $\mathfrak{p}^{r}$, the endomorphism $\mathfrak{q}$ is well defined. There exists an absolutely simple $\boldsymbol{T}\left[G_{\Delta}\right]$-module $\boldsymbol{U}$ in $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{V}$, because $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{A}_{\Lambda}$ is a full matrix algebra over $\boldsymbol{T}$. We choose a $\boldsymbol{T}$-base $\left(\boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{d}\right)$ of $\boldsymbol{U}$. Then, since

$$
\left(\begin{array}{ll}
\boldsymbol{\eta}_{1} & , \cdots, \boldsymbol{\eta}_{d} \\
\boldsymbol{\eta}_{1}^{\mathfrak{q}} & , \cdots, \boldsymbol{\eta}_{d}^{\text {q}} \\
\vdots \\
\boldsymbol{\eta}_{1}^{q_{1-1}} & , \cdots, \boldsymbol{\eta}_{d}^{\mathrm{q}^{d-1}}
\end{array}\right) \neq \mathbf{0},
$$

putting

$$
\left.\left.\boldsymbol{f}_{\boldsymbol{U}}(\boldsymbol{X})=(-1)^{d}\left(\begin{array}{cc}
\boldsymbol{X}, \boldsymbol{\eta}_{1} & , \cdots, \boldsymbol{\eta}_{d} \\
\boldsymbol{X}^{\mathfrak{q}}, \boldsymbol{\eta}_{1}^{\mathfrak{q}} & , \cdots, \boldsymbol{\eta}_{d}^{\mathfrak{q}} \\
\vdots \\
\boldsymbol{X}^{\mathfrak{q}^{d}}, \boldsymbol{\eta}_{1}^{\boldsymbol{\eta}^{d}}, \cdots, \boldsymbol{\eta}_{d}^{\boldsymbol{q}^{d}}
\end{array}\right) \right\rvert\, \begin{array}{cc}
\boldsymbol{\eta}_{1} & , \cdots, \boldsymbol{\eta}_{d} \\
\boldsymbol{\eta}_{1}^{\mathfrak{q}} & , \cdots, \boldsymbol{\eta}_{d}^{\mathfrak{q}} \\
\vdots \\
\boldsymbol{\eta}_{1}^{q^{d-1}} & , \cdots, \boldsymbol{\eta}_{d}^{q_{d-1}}
\end{array}\right)^{-1}
$$

we know that $\boldsymbol{f}_{\boldsymbol{U}}(\boldsymbol{X})=\mathbf{0}$ is an irreduducible $\mathfrak{q}$-equation ${ }^{7}$ with coefficients in $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}$ and $\boldsymbol{U}$ coincides with the $\boldsymbol{T}\left[G_{\Delta}\right]$-module of of solutions of $\boldsymbol{f}_{\boldsymbol{U}}(\boldsymbol{X})=\mathbf{0}$ in $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta^{\prime}}$. Next we write the $(i, i)$-th unit ( $1 \leqq i \leqq d$ ) in the full matrix ring $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{A}_{\Lambda}$ as follows $\sum_{l=1}^{t} \boldsymbol{\gamma}_{i l} \boldsymbol{N}\left(\sigma_{l}\right)^{8)}$ $(1 \leq i \leq d)$ with $\boldsymbol{\gamma}_{i l}$ in $\boldsymbol{T}$ and $\sigma_{l}$ in $G_{\Delta}$. Assume $\sum^{d} \sum^{n} \sum_{i j} \boldsymbol{\lambda}_{1}^{\mathrm{q}}{ }_{1}^{j-1}=0$
7) The situation is the same as 2).
8) $\left\{N(\sigma) \mid \sigma \in G_{\Delta}\right\}$ is the representation by the base $\left(\eta_{1}, \cdots, \eta_{d}\right)$.
with $\boldsymbol{\lambda}_{i j}$ in $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}$. Then, since $\sum_{l=1}^{t} \boldsymbol{\gamma}_{i l} \boldsymbol{\eta}_{j l}^{\boldsymbol{\sigma}}=\boldsymbol{\eta}_{i} \delta_{i j} \stackrel{i=1}{(j=1}(1 \leqq i \leqq d)$ and $\sigma_{l}(1 \leqq l \leqq t) \quad$ commute with $\mathfrak{q}$, we have $\sum_{l=1}^{t} \boldsymbol{\gamma}_{i l}\left(\sum_{h, k} \boldsymbol{\lambda}_{h k} \boldsymbol{\eta}_{l l}^{\mathrm{q} k-1}\right)^{\sigma_{l}}=$ $\sum_{k=1}^{n} \lambda_{i k} \eta^{q k-1}=0 \quad(1 \leqq i \leqq d)$. On the other hand by virtue of the irreducibility of the q-equation $\boldsymbol{f}_{\boldsymbol{U}}(\boldsymbol{X})=\mathbf{0}$ we know that $\boldsymbol{\eta}_{\boldsymbol{i}}, \boldsymbol{\eta}_{i}^{q}, \cdots$, $\boldsymbol{\eta}_{i}^{\mathrm{q}^{d-1}}$ are linearly independent over $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}$ and $\boldsymbol{\eta}_{i}^{\mathrm{q}^{d}}$ is a linear combination of $\boldsymbol{\eta}_{i}, \boldsymbol{\eta}_{i}^{q}, \cdots, \boldsymbol{\eta}_{i}^{\text {q }}-1$ with coefficients in $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}$. Thefore we can conclude that ( $\boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{d}, \boldsymbol{\eta}_{1}^{\mathrm{q}}, \cdots, \boldsymbol{\eta}_{d}^{\mathrm{q}}, \cdots, \boldsymbol{\eta}_{1}^{\mathrm{q}^{d-1}}, \cdots, \boldsymbol{\eta}_{d}^{\mathrm{q}^{d-1}}$ ) is a $\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right)$-base of $\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right)\left[G_{\Delta}\right]$-module $\tilde{\mathfrak{u}}=\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U}+$ $\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U}^{\mathfrak{q}}+\cdots+\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U}^{\mathfrak{q}^{n-1}}$, and thus $\tilde{\mathfrak{u}}=\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U} \oplus$ $\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U}^{\mathrm{q}} \oplus \cdots \oplus\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U}^{\mathrm{q}^{d-1}}$. By virtue of Theorem 2 every $\left[\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Lambda}\right]\left(G_{\Delta}\right)$-module in $\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta^{\prime}}$ isomorphic to $\left(\boldsymbol{T} \otimes_{\Lambda} \boldsymbol{K}_{\Delta}\right) \boldsymbol{U}$ is contained in $\mathfrak{u}$. We shall return to the culculation of $t$. Since $\Omega$ is the center of $\boldsymbol{A}_{\Lambda}, \boldsymbol{\Omega} \otimes_{\Lambda} \boldsymbol{V}$ is isomorphic to the direct sum $\boldsymbol{V}_{1}+\boldsymbol{V}_{2}+\cdots+\boldsymbol{V}_{\omega}(\omega=[\boldsymbol{\Omega}: \Lambda])$ of mutually inequivalent $G_{\Delta}$-modules $\boldsymbol{V}_{1}, \cdots, \boldsymbol{V}_{\omega}$ such that $\boldsymbol{V}_{1}$ is a simple $\Omega\left[G_{\Delta}\right]$-module and other $\boldsymbol{V}_{\boldsymbol{i}}$ are conjugate of $\boldsymbol{V}_{1}$ over $\boldsymbol{\Lambda}$. Moreover $\boldsymbol{T} \otimes_{\mathbf{\Omega}} \boldsymbol{A}_{\boldsymbol{\Lambda}}$ is the full matrix ring over $\boldsymbol{T}, \boldsymbol{T} \otimes_{\mathbf{a}} \boldsymbol{V}_{\mathbf{1}}$ is the $[\boldsymbol{T}: \boldsymbol{\Omega}]$-times direct sum of an absolutely simple $\boldsymbol{T}\left[G_{\Delta}\right]$-module $\boldsymbol{U}$. This shows that $\left(\boldsymbol{T} \otimes_{\Omega} \boldsymbol{K}_{\Delta}\right)$ $\left(\boldsymbol{V}_{1}^{\mathfrak{q}}+\cdots+\boldsymbol{V}_{1}^{\mathrm{q}^{n-1}}\right)=\tilde{\mathfrak{U}}$ and $d^{2}=\operatorname{dim} \boldsymbol{T}_{\Lambda} \otimes_{\boldsymbol{K}_{\boldsymbol{A}}} \tilde{\mathfrak{U}}=i[\boldsymbol{T}: \Omega] \operatorname{dim}_{\boldsymbol{T}} \boldsymbol{U}$. Since $d=d_{0}[\boldsymbol{T}: \Omega]$ and $d=\operatorname{dim}_{\boldsymbol{T}} \boldsymbol{U}$, we conclude $t=d_{0}$. This completes the proof of Theorem 3.

Mathematical Institute of Nagoya University

## REFERENCE

[1] E. Witt, Zyklische Körper und Algebren der Charakteristik $p$ vom Grad $p^{n}$, J. Reine Angew. Math. 76, 126-140 (1936).


[^0]:    2) In Part II we shall treat the analogy for $\mathfrak{p}$-equations of Riemann's-problem for linear differential equations and shall determine the structure of the union of all simisimple $\boldsymbol{K}_{\Delta}\left[\boldsymbol{G}_{\Delta}\right]$-submodules of finite $\mathfrak{p}$-type in $\boldsymbol{K}_{\boldsymbol{L}^{\prime}}$.
    3) Replacing $\mathfrak{p}$ by $\mathfrak{p}^{r}$ and $\boldsymbol{Q}_{p}$ by the unramified extension of degree $r$ over $\boldsymbol{Q}_{p}$, we have the same result for $\mathfrak{p}^{r}$-Wronskian as $\mathfrak{p}$-Wronskians.
[^1]:    4),6) The situation is the same as 3 ).
    5) $f_{V}$ is the non commutative $\mathfrak{p}$-polynomial associated with the $\mathfrak{p}$-equation $f_{V}(X)=0$.

