On p-equations and normal extensions of finite p-type I

To Yasuo Akizuki on his 60th Birthday

By

Hisasi Morikawa

(Communicated by Prof. Nagata, June 12, 1963)

§1. Introduction. Let p be a prime number and Δ be a field of characteristic p. Let Δ' be the separable closure of Δ and G_{Δ} be the galois group of Δ'/Δ . We mean by a Witt vector with coefficients in Δ' an infinite ordered set $(\alpha_0, \alpha_1, \alpha_2, \cdots)$ of elements $\alpha_v \ (\nu=0, 1, 2, \cdots)$ in Δ' . Putting $\mathbf{0} = (0, 0, \cdots)$, $\mathbf{1} = (1, 0, 0, \cdots)$, $p = (0, 1, 0, \cdots)$ and $\mathbf{p}^{\nu} = (0, \cdots, 0, 1, 0, \cdots)$, we write $\sum_{\nu=0}^{\infty} \alpha_{\nu} \mathbf{p}^{\nu}$ instead of $(\alpha_0, \alpha_1, \alpha_2, \cdots)$. E. Witt introduced the sum, the difference and the product of two Witt vectors $\sum_{\nu=0}^{\infty} \beta_{\nu} \mathbf{p}^{\nu}$ and $\sum_{\nu=0}^{\infty} \beta_{\nu} \mathbf{p}^{\nu}$ by means of a system of infinite polynomials $\Phi_{\pm,\nu} \ (X_0, \cdots, X_{\nu-1}, Y_0, \cdots, Y_{\nu-1})$ with coefficients in the prime field GF(p) as follows: $(\sum_{\nu=0}^{\infty} \alpha_{\nu} \mathbf{p}^{\nu}) \pm (\sum_{\nu=0}^{\infty} \beta_{\nu} \mathbf{p}^{\nu}) = \sum_{\nu=0}^{\infty} \gamma_{\pm,\nu} \mathbf{p}^{\nu}$,

(1)
$$\gamma_{\pm,\nu} = \alpha_{\nu} \pm \beta_{\nu} + \Phi_{\pm,\nu}(\alpha_0, \cdots, \alpha_{\nu-1}; \beta_0, \cdots, \alpha_{\nu-1}),$$

(2)
$$\gamma_{\bullet,\nu} = \alpha_0 \beta_{\nu} + \alpha_{\nu} \beta_0 + \Phi_{\bullet,\nu} (\alpha_0, \cdots, \alpha_{\nu-1}; \beta_0, \cdots, \beta_{\nu-1})^{1}$$

By mean of these operations all the Witt vectors with coefficients in Δ' forms a commutative integral domain $W_{\Delta'}$. We call $W_{\Delta'}$ the ring of Witt vectors with coefficients in Δ' . The ring W_{Δ} of Witt vectors with coefficients in Δ is naturally embedded in $W_{\Delta'}$. Since the ring Z_p of *p*-adic integers is canonically isomor-

¹⁾ See [1] p.p. 126-128.

phic to the ring of Witt vectors with coefficients in the prime field GF(p), we may consider \mathbb{Z}_p as a subring of $W_{d'}$. We denote by $K_{d'}$ (resp. K_d) the quatient field of $W_{d'}$ (resp. W_d), then we may consider $K_{d'}$ as the field of *p*-series $\{\sum_{\nu=-n}^{\infty} \alpha_{\nu} p^{\nu} | \alpha \in d'\}$ with finite negative terms. The field Q_p of *p*-adic numbers is also regarded as a subfield of $K_{d'}$.

We shall identify the galois group of $K_{d'}/K_d$ with the galois group G_d of d'/d in the following mean: $(\sum_{\nu=-n}^{\infty} \alpha_{\nu} p^{\nu})^{\sigma} = \sum_{\nu=-n}^{\infty} \alpha_{\nu}^{\sigma} p^{\nu}$ $(\sigma \in G_d)$, and consider $K_{d'}$ (resp. $W_{d'}$) as a $Q_p[G_d]$ -module (resp. $Z_p[G_d]$ -module), where we mean by galois automorphisms the continuous automorphisms in *p*-adic topology. We denote by \mathfrak{p} the meromorphism of $K_{d'}$ defined by

(3)
$$(\sum_{\nu=-n}^{\infty} \alpha_{\nu} \boldsymbol{p}^{\nu})^{\mathfrak{p}} = \sum_{\nu=-n}^{\infty} \alpha_{\nu}^{\rho} \boldsymbol{p}^{\nu}$$

and mean by a \mathfrak{p} -equation with coefficients in $K_{\mathcal{A}}$ (resp. $W_{\mathcal{A}}$) and equation $\sum_{\nu=0}^{n} \boldsymbol{a}_{\nu} \boldsymbol{X}^{\mathfrak{p}^{\nu}} = \mathbf{0}$ with coefficients α_{ν} in \boldsymbol{K}_{d} (resp. \boldsymbol{W}_{d}). The solutions in $K_{\Delta'}$ of a non-zero \mathfrak{p} -equation f(X)=0 with coefficients in K_{d} form a Q_{p} -finite-dimensional $Q_{p}[G_{d}]$ -submodule V_{f} in $K_{d'}$ and conversely each Q_{p} -finite-dimensional $Q_{p}[G_{d}]$ -submodule V in $K_{a'}$ is uniquely expressed as the module of solutions V_{φ} of a \mathfrak{p} -equation $\varphi(X) = 0$ such that 1° the coefficients belong to W_{a} , 2° the coefficient of the highest term is 1, 3° the coefficient of X (the lowest term) is not congruent to zero modulo pW_{d} . The correspondence between Q_p -finite-dimensional $Q_p[G_d]$ -submodules in $K_{a'}$ and p-equations satisfying the conditions 1° , 2° , 3° is oneto-one (Theorem 1). For a Q_p -finite-dimensional $Q_p[G_d]$ -submodule V in $K_{d'}$ we denote by $(\sum_{\nu=0}^{\infty} \xi_{n\nu} p^{\nu}, \cdots, \sum_{\nu=0}^{\infty} \xi_{n\nu} p^{\nu})$ a Z_p -base of the intersection $V \cap W_{d'}$, by $\Gamma_{V} = \{M_{V}(\sigma) \in GL(n, \mathbb{Z}_{p}) | \sigma \in G_{d}\}$ the respresentation of $G_{\mathcal{A}}$ by mean of the base and by $\Gamma_{\mathcal{V}}(p^{\nu})$ the subgroup $\{M \in \Gamma_{V} | M \text{ identity mod } p^{\vee}\}$. then the galois groups of the normal extensions $K_{\mathcal{A}}(\xi_{1,0},\cdots,\xi_{n,0},\sum_{l=0}^{1}\xi_{1}p^{l},\cdots,\sum_{l=0}^{1}\xi_{nl}p^{l},\cdots,\sum_{l=0}^{\nu-1}\xi_{1l}p^{l},\cdots,\sum_{l=0}^{\nu-1}\xi_{ll}p^{l},\cdots,$

 $\sum_{l=0}^{\nu-1} \xi_{nl} \mathbf{p}^{l} / \mathbf{K}_{\mathcal{A}} \text{ and } \mathcal{A}(\xi_{10}, \cdots, \xi_{n0}, \cdots, \xi_{1,\nu-1}, \cdots, \xi_{n,\nu-1}) / \mathcal{A} \text{ are canonic$ $ally isomorphic to } \mathbf{\Gamma}_{\mathbf{V}} / \mathbf{\Gamma}_{\mathbf{V}}(\mathbf{p}^{\nu}). \text{ We put } \mathbf{K}_{\mathcal{A}}(\mathbf{V}) = \bigcup_{\nu=1}^{\infty} \mathbf{K}_{\mathcal{A}}(\xi_{10}, \cdots, \xi_{n0}, \sum_{l=0}^{1} \xi_{1l} \mathbf{p}^{l}, \cdots, \sum_{l=0}^{1} \xi_{nl} \mathbf{p}^{l}, \cdots, \sum_{l=0}^{\nu-1} \xi_{nl} \mathbf{p}^{l}, \cdots, \sum_{l=0}^{\nu-1} \xi_{nl} \mathbf{p}^{l}, \cdots, \sum_{l=0}^{\nu-1} \xi_{nl} \mathbf{p}^{l}, \cdots, \xi_{n,\nu}) \text{ and call } \mathbf{K}_{\mathcal{A}}(\mathbf{V}) / \mathbf{K}_{\mathcal{A}} \text{ and } \mathcal{A}(\mathbf{V}) / \mathcal{A} \text{ normal extensions of finite $\mu-type.}$

If a $K_d[G_d]$ -module \mathfrak{P} has a K_d -base $(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)$ such that the coefficients of the representation $\{M(\sigma) | \sigma \in G_d\}$ defined by $(\boldsymbol{\xi}_1^{\sigma}, \dots, \boldsymbol{\xi}_n^{\sigma}) = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n) M(\sigma) \ (\sigma \in G_d)$ belong to a finite algebraic extension of Q_p , we call \mathfrak{B} a $K_d[G_d]$ -module of finite \mathfrak{P} -type. We shall determine the structure of the $K_d[G_d]$ -submodule of $K_{d'}$ which is the union of all semi-simple $K_d[G_d]$ -modules of finite \mathfrak{P} -type in $K_{d'}$. The results (Theorem 3) is a partial generalization of the existence theorem of normal base for a finite normal extension.²⁾

§2. p-Wronskians.

As an analogy in theory of differential equation we shall define Wronskian and give a criterion of linearly independency over Q_p . We means by *the* p-*Wronskian* of a system (ξ_1, \dots, ξ_n) of quantities ξ_1, \dots, ξ_n the determinant

$$W_{\mathfrak{p}}(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}) = \left(\begin{array}{ccc} \boldsymbol{\xi}_{1} & , \cdots, \boldsymbol{\xi}_{n} \\ \boldsymbol{\xi}_{1}^{\mathfrak{p}} & , \cdots, \boldsymbol{\xi}_{n}^{\mathfrak{p}} \\ \vdots \\ \boldsymbol{\xi}_{1}^{\mathfrak{p}^{n-1}} & , \cdots, \boldsymbol{\xi}_{n}^{\mathfrak{p}^{n-1}} \end{array}\right).$$

Proposition 1. Let $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n$ be elements in $K_{d'}$. Then $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n$ are linearly independent over \boldsymbol{Q}_p if and only if $W_p(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n) \models 0^{3}$.

Proof. From the definition of \mathfrak{p} it follows that an element in $K_{d'}$ is fixed by \mathfrak{p} if and only if it belongs to Q_p . This shows that if $\mathfrak{k}_1, \dots, \mathfrak{k}_n$ are linearly dependent over Q_p the \mathfrak{p} -Wronskian $W_{\mathfrak{p}}(\mathfrak{k}_1, \dots, \mathfrak{k}_n)$ is zero. We shall prove the converse by the induction

²⁾ In Part II we shall treat the analogy for p-equations of Riemann's-problem for linear differential equations and shall determine the structure of the union of all simisimple $K_{\Delta}[G_{\Delta}]$ -submodules of finite p-type in $K_{\Delta'}$.

³⁾ Replacing \mathfrak{p} by \mathfrak{p}' and Q_p by the unramified extension of degree r over Q_p , we have the same result for \mathfrak{p}' -Wronskian as \mathfrak{p} -Wronskians.

on *n*. Assume the result for n-1 and $\boldsymbol{\xi}_1 \neq 0$. Suppose $W_p(\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_n) = 0$. Then it follows

$$W_{\mathfrak{p}}(\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{n}) = \boldsymbol{\xi}_{1}^{1+\mathfrak{p}+\dots+\mathfrak{p}^{n-1}} \begin{pmatrix} 1, \ \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1} & , \dots, \boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1} \\ 1, \ \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} & , \dots, (\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} \\ 1, \ \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}^{n-1}} & , \dots, (\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}^{n-1}} \end{pmatrix}$$

$$= \boldsymbol{\xi}_{1}^{1+\mathfrak{p}+\dots+\mathfrak{p}^{n-1}} \begin{pmatrix} 1, \ \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1} & , \dots, (\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}^{n-1}} \\ 0, \ (\boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1} & , \dots, (\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1} \\ 0, \ (\boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} & , \dots, (\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1} \\ 0, \ (\boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} & , \dots, (\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} \\ \vdots & 0, \ ((\boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{2}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}^{n-2}} & , \dots, ((\boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}} - \boldsymbol{\xi}_{n}\boldsymbol{\xi}_{1}^{-1})^{\mathfrak{p}^{n-2}} \end{pmatrix}$$

$$= \mathbf{0}.$$

Hence, by virtue of the assumption of the induction, there are elements a_2, \dots, a_n of Q_p which are not all zero such that $\sum_{i=2}^n a_i ((\boldsymbol{\xi}_i \boldsymbol{\xi}_1^{-1})^p - \boldsymbol{\xi}_i \boldsymbol{\xi}_1^{-1}) = 0$, and thus $(\sum_{i=2}^n a_i \boldsymbol{\xi}_i \boldsymbol{\xi}_1^{-1})^p = \sum_{i=2}^n a_i \boldsymbol{\xi}_i \boldsymbol{\xi}_1^{-1}$. This shows that $\sum_{i=2}^n a_i \boldsymbol{\xi}_i \boldsymbol{\xi}_1^{-1}$ equals to element, say $-a_1$, in Q_p . Namely these we a_1, \dots, a_n in Q_p which are not all zero $\sum_{i=1}^n a_i \boldsymbol{\xi}_i = 0$. For n=1 the result is obviously true, hence we complete the proof of Proposition 1.

We mean by the *p*-Wronskian of a system (ξ_1, \dots, ξ_n) of elements ξ_1, \dots, ξ_n the determinant:

$$\boldsymbol{W}_{p}(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}) = \begin{pmatrix} \boldsymbol{\xi}_{1} & , \cdots, \boldsymbol{\xi}_{n} \\ \boldsymbol{\xi}_{1}^{p} & , \cdots, \boldsymbol{\xi}_{n}^{n} \\ \boldsymbol{\xi}_{1}^{p^{n-1}} & , \cdots, \boldsymbol{\xi}_{n}^{p^{n-1}} \end{pmatrix}$$

Then by replacing \mathfrak{P} by p we have the following the analogious results as Proposition 1 by the completely same reason.

Proposition 1'. Let ξ_1, \dots, ξ_n be elements in Δ' . Then ξ_1, \dots, ξ_n are linearly independent over the prime field GF(p) if and only if $W_p(\xi_1, \dots, \xi_n) \neq 0$.

§ 3. Non-commutative \mathfrak{p} -polynomials and $Q_p[G_d]$ -submodules in $K_{d'}$.

We denote by $K_{\mathcal{A}} \langle t \rangle$ (resp. $W_{\mathcal{A}} \langle t \rangle$) the ring of non-commuta-

326

tive polynomials in t with coefficients in K_d (resp. W_d) with the law of multiplication: $ta = a^p t$, $t^{\mu} t^{\nu} = t^{\mu+\nu}$ ($a \in K_d$; $\mu, \nu > 0$). We call elements in $K_d \langle t \rangle$ non-commutative \mathfrak{p} -polynomials with coefficients in K_d and mean by the rank of a non-commutative \mathfrak{p} -polynomials \mathfrak{p} -polynomial f the highest degree in t in f. We denote by rank f the rank of f. Each element $f = \sum_{\nu=0}^{n} a_{\nu} t^{\nu}$ in $K_{\nu} \langle t \rangle$ acts on $K_{d'}$ in the following way: $f(\boldsymbol{\xi}) = (\sum_{\nu=0}^{n} a_{\nu} t)(\boldsymbol{\xi}) = \sum_{\nu=0}^{n} a \boldsymbol{\xi}^{\mathfrak{p}\nu}$. For each \mathfrak{p} -equation $f(X) = \sum_{\nu=0}^{n} a_{\nu} X^{\mathfrak{p}\nu} = 0$ we mean by f the noncommutative \mathfrak{p} -polynomial $\sum_{\nu=0}^{n} a_{\nu} t^{\nu}$.

Lemma 1. Let V be a Q_p -finite-dimensional Q_p -vector subsace in $K_{d'}$ and $(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)$ be a Z_p -base of the intersection $V \cap W_{d'}$ regarded as a Z_p -module. Then $W_p(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)$ is a unit in $W_{d'}^{(4)}$.

Proof. Assume $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_r$ are linearly independent modulo $p(W_{d'} \cap V)$ and $\boldsymbol{\xi}_{r+1}, \dots, \boldsymbol{\xi}_n$ are linearly dependent on $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n$ modulo $p(W_{d'} \cap V)$. Obviousely $1 \leq r \leq n$ Suppose for a monent $r \leq n$. Then there exist elements $\boldsymbol{a}_1, \dots, \boldsymbol{a}_r, \boldsymbol{b}_1, \dots, \boldsymbol{b}_n$ in Z_p such that $\boldsymbol{a}\boldsymbol{\xi}_1 + \dots + \boldsymbol{a}_r\boldsymbol{\xi}_r - \boldsymbol{\xi}_n = p(\boldsymbol{b}_1\boldsymbol{\xi}_1 + \dots + \boldsymbol{b}_r\boldsymbol{\xi}_n)$. Since $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n$ are linearly independent over Z_p , we have $\boldsymbol{a}_1 = p\boldsymbol{b}_1, \dots, \boldsymbol{a}_r = p\boldsymbol{b}_r, \boldsymbol{b}_{r+1} = \dots = \boldsymbol{b}_{n-1} = 0$ and $1 + p\boldsymbol{b}_n = 0$. This is contradiction, because $1 \equiv 0$ mod p. This shows $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n$ are linearly independent modulo $p(W_{d'} \cap V)$. Since $p(W_d \cap V) = pW_{d'} \cap V$ and $W_{d'}/pW_{d'}$ is canonically isomorphic to Δ' , by virtue of Proposition 1' we have $W_p(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n) \equiv 0 \mod pW_{d'}$. This proves Lemma 1.

Proposition 2. Let V be a Q_p -finite-dimensional $Q_p[G_d]$ -module in $K_{d'}$ and $(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)$ be a Q_p -base of V. Put $f_V(X) = (-1)^n$ $W_p(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)^{-1} W_p(X, \boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)$. Then the non-commutative ppolynomial f_V^{5} is an element in $W_d \langle t \rangle$ with the properties $1^\circ f_V$ does not depend on the choic of Q_p -base, 2° the highest coefficient equals 1, 3° the constant term is $(-1)^n W_p \boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)^{p-1}$ and $\equiv 0$ mod $p W_d^{6}$.

Proof. First we shall prove the independence of f_V on the

^{4), 6)} The situation is the same as 3).

⁵⁾ f_V is the non-commutative p-polynomial associated with the p-equation $f_V(X)=0$.

Hisasi Morikawa

choice of the Q_p -base of V. Let A be any non-singular $n \times n$ matrix with coefficients in Q_p and put $(\eta_1, \dots, \eta_n) = (\xi_1, \dots, \xi_n)A$. Then it follows

$$(-1)^{n} W_{\mathfrak{p}}(\boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{n})^{-1} W_{\mathfrak{p}}(\boldsymbol{X}, \boldsymbol{\eta}_{1}, \cdots, \boldsymbol{\eta}_{n})$$

= $(-1)^{n} |\boldsymbol{A}^{-1}| W_{\mathfrak{p}}(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n})^{-1} W_{\mathfrak{p}}(\boldsymbol{X}, \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n}) \left| \begin{pmatrix} 1 & 0 \\ 0 & \boldsymbol{A} \end{pmatrix} \right|$
= $(-1)^{n} W_{\mathfrak{p}}(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n})^{-1} W_{\mathfrak{p}}(\boldsymbol{X}, \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{n})$

This proves the independence of f_V on the choice of the Q_p -base. Since for every σ in G_d ($\xi_1^{\sigma}, \dots, \xi_n^{\sigma}$) is also a Q_p -base of V and K_d is the subfield of $K_{d'}$ consisting of all the elements fixed by every element in G_d , we can conclude that the coefficients in f_V belong to K_d . From the definition of f_V the highest coefficient in f_V equals to 1. Let $(\zeta_1, \dots, \zeta_n)$ be a Z_p -base of the intersection $V \cap W_{d'}$. Then by virtue of Lemma 1 we have $W_p(\zeta_1, \dots, \zeta_n) \equiv 0$ mod $pW_{d'}$. Since the coefficient of X^n in $W_p(X, \zeta_1, \dots, \zeta_n) \equiv 0$ $W_p(\zeta_p^p, \dots, \zeta_n^p) = W_p(\zeta_1, \dots, \zeta_n)^p$, this shows that the constant term in f_V is $(-1)^n W_p(\zeta_1, \dots, \zeta_n)^{p-1}$ and is not congruent to zero modulo pW_d . On the other hand, since $\zeta_1, \dots, \zeta_n \in W_{d'}$, the coefficients in $W_p(X, \zeta_1, \dots, \zeta_n)$ with respect to X are elements in $W_{d'}$. Therefore we can conclude f_V belongs to $W_d \langle t \rangle$, because $W_p(\zeta_1, \dots, \zeta_n)$ is a unit in $W_{d'}$ and f_V belongs to $K_d \langle t \rangle$.

For any element f (=0) in $K_{d} \langle t \rangle$ we mean by V_{f} the subset in $K_{d'}$ consisting of all the solutions ξ of the \mathfrak{p} -equation f(X)=0. Then we have

Proposition 3. (i) V_f is a $Q_p[G_d]$ -submodule in $K_{d'}$ such that $\dim_{Q_p} V_f \leq \operatorname{rank} f$. (ii) $V = V_{f_V}$. (iii) If V' is a $Q_p[G_d]$ -submodule * of V_f , then there exists g in $K_d < t$ such that $f = gf_{V'}$.

Proof. Since $(a\boldsymbol{\xi} + b\boldsymbol{\eta})^p = a\boldsymbol{\xi}^p + b\boldsymbol{\eta}^p$ for a, b in Q_p and $\boldsymbol{\xi}, \boldsymbol{\eta}$ in $K_{d'}$, we have $f(a\boldsymbol{\xi} + b\boldsymbol{\eta}) = af(\boldsymbol{\xi}) + bf(\boldsymbol{\eta})$ for $a, b \in Q_p$. This shows V_f is a Q_p -module. On the other hand all the coefficients in f belong K_d and \mathfrak{p} commutes with every element $\sigma \in G_d$, hence $\boldsymbol{\xi}^{\sigma}$ ($\sigma \in G_d$) belongs to V_f if and only if $\boldsymbol{\xi} \in V_f$. This means V_f is a $Q_p[G_d]$ -module. Let $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_m$ be linearly independent elements in V_f over Q_p . Then by virtue of Proposition 1 we have $W_{\mathfrak{p}}(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_m) \neq 0$. On the other hand, if we write $f = \sum_{\nu=0}^n a_\nu p^\nu$, we have

328

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_1 & eta_1 & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & eta_1 & eta_m & eta_m & \ eta_1^{\mathfrak{p}} & et$$

This shows $m \leq n$, and thus (i) has been proved. From Proposition 2 it follows rank $f_V = \dim_{Q_p} V$, hence by virtue of (i) we have $\dim_{Q_p} V_{f_V} < \operatorname{rand} f_V = \dim_{Q_p} V$. On the other hand $V < V_{f_V}$, hence $V = V_{f_V}$. From (i) and (ii) we know that $f_{V'}$ is the element h in $K_d \langle t \rangle$ with the smallest rank such that $V_h > V'$. We can choose g and θ in $K_d \langle t \rangle$ such that $f = gf_{V'} + \theta$ and rank $\theta < \operatorname{rank} f_{V'}$, because rank $f_{V'} \leq \operatorname{rank} f$. Since $V_f > V'$ and $V_{gf_{V'}} > V'$, we have $V_\theta > V'$. Thus rank $\theta \geq \dim_{Q_p} V_\theta > \dim_{Q_p} V' = f_{V'}$. Therefore, if $\theta \neq 0$, this is a contradiction. This proves $\theta = 0$.

We shall now show the reverse of Proposition 2.

Proposition 4. Let f be an element of $W_{d} \langle t \rangle$ such that the highest coefficient is 1 and the constant term is not congruence to zero modulo pW_{d} . Then $\dim_{Q_{h}} V_{f} = \operatorname{rank} f$ and $f = f_{V_{e}}$.

Proof. Let *n* be the rank of *f* and put $f = \sum_{\nu=0}^{n} a_{\nu} t^{\nu}$. Let $x_{0}, x_{1}, x_{2}, \cdots$ be indeterminates and put $X = \sum_{\nu=0}^{\infty} x_{\nu} p^{\nu}, f(X) = \sum_{\nu=0}^{\infty} \varphi_{\nu}(x_{0}, x_{1}, \cdots, x_{\nu}) p^{\nu}$. It is sufficient to show that the number of solutions of $\varphi_{0}(x_{0}) = 0, \varphi_{1}(x_{0}, x) = 0, \cdots, \varphi_{\nu-1}(x_{0}, x_{1}, \cdots, x_{\nu-1}) = 0$ in Δ' is exactly $p^{\nu n}$. Since $a_{n} = 1$ and $a_{0} \equiv 0 \mod p W_{\Delta}$, by virtue of (1), (2), (3) we have $\frac{\partial}{\partial x_{\mu}} \varphi_{\mu}(x_{0}, \cdots, x_{\mu}) \equiv 0$, and thus $\varphi_{\mu}(\xi_{0}, \cdots, \xi_{\mu-1}, x_{\mu}) = 0$ has no multiple root for given value $\xi_{0}, \cdots, \xi_{\mu-1}$ in Δ' . On the other hand the degree of $\varphi_{\mu}(\xi_{0}, \cdots, \xi_{\mu-1}, x_{\mu})$ in x_{μ} is p^{n} , hence we conclude the number of solutions of $\varphi_{0}(x_{0}) = 0, \varphi_{1}(x_{0}, x_{1}) = 0, \cdots, \varphi_{\nu-1}(x_{0}, \cdots, x_{\nu-1}) = 0$ in Δ' is exactly $p^{\nu n}$. This proves Proposition 4.

We now sum up the results in Proposition 2, 3, 4.

Theorem 1. The correspondence $V \leftrightarrow f_V(X) = 0$ gives a bijective map between the set of Q_p -finite-dimensional $Q_p[G_d]$ -submodules in $K_{d'}$ and the set of \mathfrak{p} -equations with the properties 1° the coefficients belong to W_d , 2° the highest coefficient is 1, 3° the coefficient of X is not congruent to zero modulo pW_{d} . By this correspondence $Q_{p}[G_{d}]$ -modules correscond to irreducible \mathfrak{p} -equaiions and conversely.

§4. $K_{\mathcal{A}}[G_{\mathcal{A}}]$ -modules of finite \mathfrak{p} -type in $K_{\mathcal{A}'}$.

Definition. If a $K_{d}[G_{d}]$ -module \mathfrak{V} in $K_{d'}$ has a K_{d} -base $(\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{n})$ such that the coefficients of the representation $\{\boldsymbol{M}(\sigma) | \sigma \in G_{d}\}$ defined by $(\boldsymbol{\xi}_{1}^{\sigma}, \dots, \boldsymbol{\xi}_{n}^{\sigma}) = (\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{n}) \boldsymbol{M}(\sigma)$ belong to a finite algebraic extension of \boldsymbol{Q}_{p} , then we call \mathfrak{V} a $K_{d}[G_{d}]$ -module of finite \mathfrak{p} -type.

In the present paragraph we shall be concerned with $K_{d}[G_{d}]$ modules of finite \mathfrak{p} -type in $K_{d'}$, especially semi-simple $K_{d}[G_{d}]$ modules of finite \mathfrak{p} -type in $K_{d'}$.

Lemma 1. If \mathfrak{V} is a $\mathbf{K}_{\mathcal{A}}[G_{\mathcal{A}}]$ -module of finite \mathfrak{V} -type in $\mathbf{K}_{\mathcal{A}'}$, then there exists a \mathbf{Q}_p -finite-dimensional $\mathbf{Q}_p[G_{\mathcal{A}}]$ -module V in $\mathbf{K}_{\mathcal{A}'}$ such that $\mathfrak{V} = \mathbf{K}_{\mathcal{A}}\mathbf{V}$. If \mathfrak{V} is simple, we can choose a simple $\mathbf{Q}_p[G_{\mathcal{A}}]$ module as V.

Proof. Let \mathfrak{V} be a $K_d[G_d]$ -module in $K_{d'}$ with a K_d -base (η_1, \dots, η_n) such that the field Λ generated by the coefficients of the representation $\{M(\sigma) | (\boldsymbol{\xi}_1^{\sigma}, \dots, \boldsymbol{\xi}_n^{\sigma}) = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n)M(\sigma), \ \sigma \in G_d\}$ is a finite algebraic extension of \boldsymbol{Q}_p . Let $(\boldsymbol{\vartheta}_1, \dots, \boldsymbol{\beta}_r)$ be a \boldsymbol{Q}_p -base of Λ and put $\eta_{ij} = \beta_i \boldsymbol{\xi}_j$ $(1 \leq i \leq r; 1 \leq j \leq n)$. Then we have a $\boldsymbol{Q}_p[G]$ -module $\boldsymbol{V} = \boldsymbol{Q}_p \eta_{11} + \dots + \boldsymbol{Q}_p \eta_{rn} = \Lambda \boldsymbol{\xi}_1 + \dots + \Lambda \boldsymbol{\xi}_n$ in $K_{d'}$ such that KV = \mathfrak{V} . Assume \mathfrak{V} is simple. Then the enveloping algebra of $\{M(\sigma) | \sigma \in G\}$ over Λ is a simple Λ -algebra. Hence V is a direct sum $V_1 \oplus \dots \oplus V_r$ of simple $\boldsymbol{Q}_p[G]$ -submodules. Since $K_d V = \mathfrak{V}$ and \mathfrak{V} is simple there exists as V_i such that $K_d V_i = \mathfrak{V}$.

Theorem 2. Let \mathfrak{B} be a $K_{\mathfrak{A}}[G_{\mathfrak{A}}]$ -module of finite \mathfrak{P} -type in $K_{\mathfrak{A}'}$ and Λ be a suffield of $K_{\mathfrak{A}}$ in which the coefficients of a representation $\{M(\sigma) | (\mathfrak{k}_1^{\sigma}, \dots, \mathfrak{k}_n^{\sigma}) = (\mathfrak{k}_1, \dots, \mathfrak{k}_n)M(\sigma), \sigma \in G_{\mathfrak{A}}\}$ of $G_{\mathfrak{A}}$ by the $K_{\mathfrak{A}}$ -base $(\mathfrak{k}_1, \dots, \mathfrak{k}_n)$ are contained. Let r be the degree of Λ over Q_p . Then every $K_{\mathfrak{A}}[G_{\mathfrak{A}}]$ -module in $K_{\mathfrak{A}'}$ isomorphic to V is contained in the sum $\tilde{\mathfrak{B}} = \mathfrak{B} + K_{\mathfrak{A}}\mathfrak{B}^{\mathfrak{P}^r} + \dots + K_{\mathfrak{A}}\mathfrak{B}^{\mathfrak{P}^{r(n-1)}}$ in $K_{\mathfrak{A}'}$.

Proof. We notice that Λ/Q_p is cyclic and the galois automorphisms are induced by $\{1, p, \dots, p^{r-1}\}$, because $\Lambda \subset K_A$ and K_A is

330

unramified for p. Let \mathfrak{l} be a $K_d[G_d]$ -module in $K_{d'}$ isomorphic to \mathfrak{V} and φ be the isomorphism of \mathfrak{V} onto \mathfrak{l} . Then, putting $M(\sigma) = (m_{ij}(\sigma))$ ($\sigma \in G_d$), we have $(\varphi(\boldsymbol{\xi}^1)^{\sigma}, \dots, \varphi(\boldsymbol{\xi}_n)^{\sigma}) = (\varphi(\boldsymbol{\xi}_1^{\sigma}), \dots, \varphi(\boldsymbol{\xi}_n^{\sigma})) = (\varphi(\sum_{l=1}^n m_{l1}(\sigma)\boldsymbol{\xi}_l), \dots, \varphi(\sum_{l=1}^n m_{ln}(\sigma)\boldsymbol{\xi}_l)) = (\sum_{l=1}^n m_{l1}(\sigma)\varphi(\boldsymbol{\xi}_l), \dots, \sum_{l=1}^n m_{ln}(\sigma)\varphi(\boldsymbol{\xi}_l)) = (\varphi(\boldsymbol{\xi}_1), \dots, \varphi(\boldsymbol{\xi}_n))M(\sigma)$. Replacing \mathfrak{p} by \mathfrak{p}^r in Proposition 1, by the same reason as for \mathfrak{p} , we have

$$W_{pr}(\xi_1, \cdots, \xi_n) = \begin{vmatrix} \boldsymbol{\xi}_1 & , \cdots, \boldsymbol{\xi}_n \\ \boldsymbol{\xi}_1^{pr} & , \cdots, \boldsymbol{\xi}_n^{pr} \\ \vdots \\ \boldsymbol{\xi}_1^{pr(n-1)} & , \cdots, \boldsymbol{\xi}_n^{pr(n-1)} \end{vmatrix} \neq 0$$

Hence putting

$$\begin{pmatrix} \varphi(\boldsymbol{\xi}_1) & , \cdots , \varphi(\boldsymbol{\xi}_n) \\ \varphi(\boldsymbol{\xi}_1)^{\mathrm{pr}} & , \cdots , \varphi(\boldsymbol{\xi}_n)^{\mathrm{pr}} \\ \vdots & \vdots \\ \varphi(\boldsymbol{\xi}_1)^{\mathrm{pr(n-1)}} & , \cdots , \varphi(\boldsymbol{\xi}_n)^{\mathrm{pr(n-1)}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 & , \cdots , \boldsymbol{\xi}_n \\ \boldsymbol{\xi}_1^{\mathrm{pr}} & , \cdots , \boldsymbol{\xi}_n^{\mathrm{pr}} \\ \vdots \\ \boldsymbol{\xi}_1^{\mathrm{pr(n-1)}} & , \cdots , \boldsymbol{\xi}_n^{\mathrm{pr(n-1)}} \end{pmatrix}^{-1} = \begin{pmatrix} \boldsymbol{a}_{11} & , \cdots & \boldsymbol{a}_{1n} \\ \vdots & \vdots \\ \boldsymbol{a}_{n1} & , \cdots & \boldsymbol{a}_{nn} \end{pmatrix},$$

we get a matrix with coefficients $a_{ij}(1 \le i, j \le n)$ in K_d . Since $\varphi(\boldsymbol{\xi}_i) = \sum_{l=1}^n a_{il} \boldsymbol{\xi}^{p^{r(l-1)}} \ (1 \le i \le m)$ with $a_{ij} \in K_d$ and $\varphi(\boldsymbol{\xi}_1), \dots, \varphi(\boldsymbol{\xi}_n)$ generate \mathfrak{U} over K_d , we conclude $K_d \mathfrak{B} + K_d \mathfrak{B}^{p^r} + \dots + K_d \mathfrak{B}^{p^{r(n-1)}} \supset \mathfrak{U}$.

We shall now culculate the multiplicity of simple $K_{d}[G_{d}]$ -module in the union $K_{d',s}$ of semi-simple $K_{d}[G_{d}]$ -modules of finite \mathfrak{p} -type in $K_{d'}$.

Theorem 3. Let \mathfrak{V} be a simple $\mathbf{K}_{d}[G_{d}]$ -module of finite \mathfrak{p} -type in $\mathbf{K}_{d'}$ and $\{\mathbf{M}(\sigma) | \sigma \in G_{d}\}$ be a representation of G_{d} by a \mathbf{K}_{d} -base of \mathfrak{V} such that the coefficients in $\{\mathbf{M}(\sigma) | \sigma \in G_{d}\}$ belong to a finite algebraic extension Λ of \mathbf{Q}_{p} in \mathbf{K}_{d} . If the envelopeng algebra of $\{\mathbf{M}(\sigma) | \sigma \in G_{d}\}$ over Λ is a full matrix ring of degree d_{0} over a division ring and r is the degree of Λ over \mathbf{Q}_{p} , then the sum $\tilde{\mathfrak{V}} = \mathfrak{V} + \mathbf{K}_{d} \mathfrak{V}^{\mathfrak{p}^{r}} + \cdots + \mathbf{K}_{d} \mathfrak{V}^{\mathfrak{p}^{r(d_{0}-1)}}$ in $\mathbf{K}_{d'}$ is a direct sum such that every $\mathbf{K}_{d}[G_{d}]$ -module in $\mathbf{K}_{d'}$ isomorphic to \mathfrak{V} is contained in $\tilde{\mathfrak{V}}$. Namely the multiplicity of \mathfrak{V} in the union $\mathbf{K}_{d',s}$ of semi-simple $\mathbf{K}_{d}[G_{d}]$ -moules of finit \mathfrak{p} type is d_{0} .

Proof. Let $(\boldsymbol{\xi}_{p}, \dots, \boldsymbol{\xi}_{n})$ be a K_{d} -base of \mathfrak{V} such that $(\boldsymbol{\xi}_{1}^{\sigma}, \dots, \boldsymbol{\xi}_{n}) = (\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{n}) M(\sigma) \ (\sigma \in G_{d})$ and put $V = A \boldsymbol{\xi}_{1} + \dots + A \boldsymbol{\xi}_{n}$. Since Λ is

algebraic subfield in K_{d} of degree r over Q_{p} , Λ/Q_{p} is a cyclic extension and the galois automorphisms are induced by $\{1, p, \cdots, d\}$ \mathfrak{p}^{r-1} . Since V is a simple $\Lambda[G_{d}]$ -module, $V^{\mathfrak{p}^{r\nu}}$ ($\nu = 1, 2, \cdots$) are also simple $\Lambda[G_{4}]$ -modules isomorphic to V, and thus $K_{4}V^{\mu^{\nu}}$ $(\nu = 1, 2, \dots)$ are simple $K_{a}[G_{a}]$ -modules isomorphic to $\mathfrak{B} = K_{a}V$. This shows that the sum $\mathfrak{V} = K_{\mathcal{A}}V + \cdots + K_{\mathcal{A}}\mathfrak{V}^{p^{(n-1)r}}$ in $K_{\mathcal{A}'}$ is a direct sum $K_{\mathcal{A}}V \oplus K_{\mathcal{A}}V^{\mathfrak{P}^r} \oplus \cdots \oplus K_{\mathcal{A}}V^{\mathfrak{P}^{(t-1)r}}$ with a positive integer t. The purpose of the proof is to show $t = d_0$. Let A_{Λ} be the enveloping algebra of $\{M(\sigma) | \sigma \in G_A\}$ over Λ and D be the division algebra of A_{Λ} . Then $[A_{\Lambda}:D] = d_0^2$. Let Ω be the center of A_{Λ} and T be the minimal extension of Ω such that $D \otimes_{\Omega} T$ splits. Then we have $[A_{\Lambda}:\Lambda] = d_0^2 [T:\Omega]^2 [\Omega:\Lambda]$ and $T \cap K_{\Lambda} = \Lambda$. We put $d = d_0[T:\Omega]$. We introduce the endomorphism \mathfrak{q} of $T \otimes_{\Lambda} K_{\mathfrak{a}'}$ by by $(\boldsymbol{a} \otimes \boldsymbol{\xi})^q = \boldsymbol{a} \otimes \boldsymbol{\xi}^{pr}$ $(\alpha \in T, \boldsymbol{\xi} \in K_{a'})$. Since $\boldsymbol{\Lambda}$ is the subfield of $K_{a'}$ consisting of all the elements fixed by p', the endomorphism q is well defined. There exists an absolutely simple $T[G_{\lambda}]$ -module U in $T \otimes_{\Lambda} V$, because $T \otimes_{\Lambda} A_{\Lambda}$ is a full matrix algebra over T. We choose a **T**-base $(\boldsymbol{\eta}_1, \cdots, \boldsymbol{\eta}_d)$ of **U**. Then, since

$$\begin{pmatrix} \boldsymbol{\eta}_1 &, \cdots, \boldsymbol{\eta}_d \\ \boldsymbol{\eta}_1^{\mathrm{q}} &, \cdots, \boldsymbol{\eta}_d^{\mathrm{q}} \\ \vdots \\ \boldsymbol{\eta}_1^{\mathrm{q}d-1} &, \cdots, \boldsymbol{\eta}_d^{\mathrm{q}d-1} \end{pmatrix} = |= \mathbf{0} ,$$

putting

$$m{f}_U(m{X}) \,=\, (-1)^d egin{pmatrix} m{X}, m{\eta}_1 &, \cdots, m{\eta}_d \ m{X}^{m{q}}, m{\eta}_1^{m{q}} \,, \cdots, m{\eta}_d^{m{q}} \ m{dots} \,, m{\eta}_1^{m{q}} \,, \cdots, m{\eta}_d^{m{q}} \ m{dots} \,, m{\eta}_1^{m{q}} \,, \cdots, m{\eta}_d^{m{q}} \ m{dots} \,, m{\eta}_1^{m{q}-1} \,, \cdots, m{\eta}_d^{m{q}-1} \ m{dots} \,, m{\eta}_1^{m{q}-1} \,, \dots, m{\eta}_d^{m{q}-1} \ m{dots} \,, m{\eta}_1^{m{q}-1} \,, \dots, m{\eta}_d^{m{q}-1} \ m{dots} \,, m{\eta}_1^{m{q}-1} \,, \dots, m{\eta}_d^{m{q}-1} \ m{dots} \,, m{dots} \,$$

we know that $f_U(X) = 0$ is an irreduducible \mathfrak{q} -equation⁷⁾ with coefficients in $T \otimes_{\Lambda} K_{\mathcal{A}}$ and U coincides with the $T[G_{\mathcal{A}}]$ -module of of solutions of $f_U(X) = 0$ in $T \otimes_{\Lambda} K_{\mathcal{A}'}$. Next we write the (i, i)-th unit $(1 \leq i \leq d)$ in the full matrix ring $T \otimes_{\Lambda} A_{\Lambda}$ as follows $\sum_{l=1}^{t} \gamma_{il} N(\sigma_l)^{\otimes}$ $(1 \leq i \leq d)$ with γ_{il} in T and σ_l in $G_{\mathcal{A}}$. Assume $\sum_{l=1}^{d} \sum_{j=1}^{n} \lambda_{ij} \eta_1^{\mathfrak{g}^{j-1}} = 0$

⁷⁾ The situation is the same as 2).

⁸⁾ $\{N(\sigma) | \sigma \in G_d\}$ is the representation by the base (η_1, \dots, η_d) .

with λ_{ij} in $T \otimes_{\Lambda} K_d$. Then, since $\sum_{i=1}^{l} \gamma_{il} \eta_j^{\sigma} l = \eta_i \delta_{ij}$ $(1 \leq i \leq d)$ and σ_l $(1 \leq l \leq t)$ commute with \mathfrak{q} , we have $\sum_{l=1}^{t} \boldsymbol{\gamma}_{il} (\sum_{k=k} \boldsymbol{\lambda}_{kk} \boldsymbol{\eta}_{lk}^{\mathfrak{q}^{k-1}})^{\sigma_l} =$ $\sum_{i=1}^{n} \lambda_{ik} \eta_{i}^{0k-1} = 0 \quad (1 \leq i \leq d). \quad \text{On the other hand by virtue of the}$ irreducibility of the q-equation $f_U(X) = 0$ we know that η_i, η_i^q, \cdots , $\eta_i^{q^{d-1}}$ are linearly independent over $T \otimes_{\Lambda} K_d$ and $\eta_i^{q^d}$ is a linear combination of η_i , η_i^q , \cdots , $\eta_i^{q^{d-1}}$ with coefficients in $T \otimes_{\Lambda} K_{d}$. Thefore we can conclude that $(\boldsymbol{\eta}_1, \cdots, \boldsymbol{\eta}_d, \boldsymbol{\eta}_1^q, \cdots, \boldsymbol{\eta}_d^q, \cdots, \boldsymbol{\eta}_1^{q^{d-1}}, \cdots, \boldsymbol{\eta}_d^{q^{d-1}})$ is a $(T \otimes_{\Lambda} K_{d})$ -base of $(T \otimes_{\Lambda} K_{d})[G_{d}]$ -module $\tilde{\mathfrak{U}} = (T \otimes_{\Lambda} K_{d})U$ + $(T \otimes_{\Lambda} K_{d}) U^{\mathfrak{q}} + \cdots + (T \otimes_{\Lambda} K_{d}) U^{\mathfrak{q}^{n-1}}, \text{ and thus } \tilde{\mathfrak{u}} = (T \otimes_{\Lambda} K_{d}) U \oplus$ $(T \otimes_{\Lambda} K_{d}) U^{\mathfrak{q}} \oplus \cdots \oplus (T \otimes_{\Lambda} K_{d}) U^{\mathfrak{q}^{d-1}}$. By virtue of Theorem 2 every $[T \otimes_{\Lambda} K_{\mathcal{A}}](G_{\mathcal{A}})$ -module in $T \otimes_{\Lambda} K_{\mathcal{A}'}$ isomorphic to $(T \otimes_{\Lambda} K_{\mathcal{A}})U$ is contained in \mathfrak{U} . We shall return to the culculation of t. Since Ω is the center of A_{Λ} , $\Omega \otimes_{\Lambda} V$ is isomorphic to the direct sum $V_1 + V_2 + \dots + V_{\omega}$ ($\omega = [\Omega : \Lambda]$) of mutually inequivalent G_{Δ} -modules V_1, \dots, V_{ω} such that V_1 is a simple $\Omega[G_{\omega}]$ -module and other V_i are conjugate of V_1 over Λ . Moreover $T \otimes_{\Omega} A_{\Lambda}$ is the full matrix ring over $T, T \otimes_{\Omega} V_1$ is the $[T:\Omega]$ -times direct sum of an absolutely simple $T[G_{\lambda}]$ -module U. This shows that $(T \otimes_{\Omega} K_{\lambda})$ $(V_1^{\mathfrak{q}} + \cdots + V_1^{\mathfrak{q}^{n-1}}) = \tilde{\mathfrak{U}}$ and $d^2 = \dim \mathbf{T}_{\Lambda \otimes \mathbf{K}_{\mathcal{A}}} \tilde{\mathfrak{U}} = i [\mathbf{T} : \Omega] \dim_{\mathbf{T}} \mathbf{U}$. Since $d = d_0[T:\Omega]$ and $d = \dim_T U$, we conclude $t = d_0$. This completes the proof of Theorem 3.

Mathematical Institute of Nagoya University

REFERENCE

[1] E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad p", J. Reine Angew. Math. 76, 126-140 (1936).