A note on transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers

To Professor Y. Akizuki on the occasion of his 60th birthday
By
Noboru Ito
(Communicated by Prof. Nagata, Aug. 19, 1963)

1. Let $p \geqq 5$ be a prime number and let Ω be the set of symbols $1, \cdots, p$. Let (\mathcal{S} b be a nonsolvable transitive permutation group on Ω. Let $p_{0}(\mathbb{S})$ be the number of irreducible characters of (3) whose degrees are divisible by p. It seems to be little known about the number $p_{0}(\mathbb{S})$. In (9) it is shown that $p_{0}(\mathbb{S})>0$. There exist a few groups with $p_{0}(\mathscr{S})=1$; namely, $L F_{2}(l)$ as a permutation group of degree $l(l=5,7,11)$, where $L F_{2}(l)$ denotes the linear fractional group over the field of 1 elements ((2), p. 286). In the present note, under the special condition that $\frac{1}{2}(p-1)=q$ is also a prime, we show that the converse of this fact holds; namely, we prove the following

Theorem. Let $q=\frac{1}{2}(p-1)$ be also a prime. If $p_{n}(\mathbb{S})=1$, then $p=5,7,11$ and (BS_{3} is isomorphic to $L F_{2}(p)$.
2. Throughout this section we assume that $q=\frac{1}{2}(p-1)$ is a prime. Then in (6), (7) and (8) we studied the structure of (\mathbb{S}) to some extent. In particular, we proved that such a group (G) is triply transitive on Ω with the exception of $L F_{2}(7)$ and $L F_{2}(11)$. Now let us consider two irreducible characters $X_{0}(X)=\frac{1}{2}(\alpha(X)-1)$ $(\alpha(X)-2)-\beta(X)$ and $X_{00}(X)=\frac{1}{2} \alpha(X)(\alpha(X)-3)+\beta(X)$ of the symmetric group on Ω, where $\alpha(X)$ and $\beta(X)$ respectively denote the the numbers of fixed symbols and the transpositions in the cycle
structure of $X((3))$. Then using the above mentioned triple transitivity of $\mathbb{B S}^{\text {f }}$ for $p>11$ we obtain the following

Lemma. Let us assnme that $p>11$. Then X_{0}^{0} restricted on (\$) is irreducible, and the decomposition of X_{00} restricted on (BS into its irreducible parts has the following form:

$$
X_{00}=\sum_{i=1}^{s}(D, C)_{i},
$$

where $(D, C)_{i}(i=1, \cdots, s)$ has degree $r p$ with $r s=q-1$.
The proof is similar to those of Lemmas $5-10$ in (7). A detailed proof will appear elsewhere (Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers, III).
Now by a theorem of Frobenius ((4)) © is quadruply transitive on Ω if and only if $s=1$.

Proof of Theorem. Surely we can assume that $p>11$. Because of $p_{0}(\mathbb{S})=1$, we can assume, by Lemma, that $\mathbb{C S}$ is quadruply transitive on Ω. Therefore X_{00} restricted on \mathscr{S}_{5} is irreducible.

If the order of \mathbb{C} is divisible by q^{2}, then (\mathbb{S}) contains a q-cycle. Thus by a theorem of Jordan ((10), 13.9) (S) contains the alternating group on Ω. Since $p>11$, (S3 is sextuply transitive on Ω. Then using a theorem of Frobenius ((4)) we obtain that $p_{0}(\$) \geqq 3$, which contradicts our assumption $p_{0}(\mathbb{S})=1$. Hence q divides the order of (5) only to the first power. Let $\mathfrak{\Omega}$ be a Sylow q-subgroup of $(\$ 3)$ and let Q be a generator of $\mathfrak{\Omega}$. Then we have that $\alpha(Q)=1$. Let $N s Q$ denote the normalizer of \mathfrak{Q} in $\mathbb{(S)}$.

If (\mathbb{S}_{3} contains a class \mathbb{C}_{5} of conjugate involutions J such that $N s \cong \cap($ is empty, then we obtain the equation

$$
\begin{equation*}
0=\sum_{X} X(J)^{2} X(Q) / X(1), \tag{B}
\end{equation*}
$$

where X runs over all the irreducible characters of $(\mathbb{S}(\mathbf{1}),(21))$. For $X=X_{00}$ we have that $X(J)^{2} X(Q) / X(1)=-\left\{\frac{1}{2} \alpha(J)(\alpha(J)-3)+\right.$ $\beta(J)\}^{2} / \frac{1}{2} p(p-3)=-\{\alpha(J)(\alpha(J)-4)+p\}^{2} / 2 p(p-3)$, because of $\alpha(J)+$ $2 \beta(J)=p$. Since $\alpha(J)$ is odd and smaller than $p, \alpha(J)(\alpha(J)-4)$ is not divisible by p. On the other hand, by our assumption $X(1)$ for $X \neq X_{00}$ is prime to p. Then (B) shows a contradiction. Hence
for each class \mathfrak{C} of conjugate involutions of (\mathbb{S}) we have that $N s \mathfrak{Q} \mathfrak{C}$ is not empty. In particular, we have that $\alpha(J)=3$ for every involution J of (s).

Let \mathfrak{M} be the maximal subgroup of \mathfrak{B}, which leaves the symbols $1,2,3$ and 4 individually fixed. Then the order of \mathfrak{M} is odd. Hence by a theorem of M. Hall ((5)) p is smaller than or equal to 11 . This is a contradiction.

Mathematical Institute, Nagoya University

BIBLIOGRAPHY

[1] R. Brauer and K. Fowler, On groups of even order, Ann. of Math. 62 (1955), pp. 565-583.
[2] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Leipzig, 1901.
[3] G. Frobenius, Über die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad. Wiss. Berlin (1900), 516-534.
[4] G. Frobenius, Über die Charaktere der mehrfach transitiven Gruppen, S.--B. Preuss. Akad. Wiss. Berlin (1904), 528-571.
[5] M. Hall, On a theorem of Jordan, Pacific J. Math. 4 (1954), 219-226.
[6] N. Ito, A note on transitive groups of degree p, Osaka Math. J. 14 (1962), 213218.
[7] N. Ito, Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers, Bull. Amer. Math. Soc. 69 (1963), 165-192.
[8] N. Ito, Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers. II, to appear in Trans. Amer. Math. Soc.
[9] N. Ito, Ein Satz über die Permutationsgruppe vom Grad p, to appear in Math. Zeitschr.
[10] H. Wielandt, Permutationsgruppen, Vorlesungsausarbeitungen von J. André, Tübingen, 1955.

