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1. In the paper [ 1 ] ,  Greenberg called a unitary ring R  to be an
algebraic ring defined over k if the following conditions are satisfied :

1) R  is  a union of  a finite number of  algebraic varieties defined
over k.

2) R is an algebraic group defined over k as  to  its  additive law.
3) T he m apping o f  R x R  onto R , w hich m aps (a, b) onto ab,

is  an  everywhere regular mapping defined over k.
4) T he unit 1 o f  R  is  a  rational point of  R  over k .
5) T he set U  o f  the units in R is a locally k-closed subset in R.
6) The m apping o f  U  onto U, w hich m aps a  o n to  a', is  an

everywhere regular mapping on U.
In this note we shall remark, first, that if R  is an algebraic

ring defined over k in the above sense, then the set U  of the units
in R  is  a  k -open subset of R , and that if the characteristic of k
is zero, the conditions 5 ) and 6) can be excluded from the defini-
tion of an algebracic ring, i.e., if R  satisfies 1), 2), 3) and 4), then
R satisfies necessarily 5) and 6). Let R be an algebraic ring defined
over k. Then a two-sided ideal / of R  will be called an algebric
ideal of R  if / is a closed subset of R .  Then we shall construct
a residue class ring of R  b y  an algebraic ideal, which is also an
algebraic ring. Lastly we shall show that if R  is connected, any
two-sided ideal o f R  is  a  connected algebraic ideal and R  is a
ring with maximal and minimal conditions for two-sided ideals.

2 .  Let R  be a unitary ring which satisfies the conditions 1), 2),
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3) and 4), and U  the set of the units in R .  Let R„ R„ •-• ,R,_,
be the components o f R, where 1 is contained in R1 . When a is
any element o f U, let R i and Ri  be the components which contain
a  and a "  respectively, and let Pi ;  b e  the graph of the mapping
f i ;  o f  R i xR 1  into R, which maps (a, b) onto ab.

LEMMA 1. L e t R , U , a , r i i  b e  as above. T h e n  w e  have the
following:

(i) k(a, a") is purely  inseparable ov er k(a).
(ii) Fu r\ (R i x Ri  x 1) has only one component, which is the locus

o f (x , x ",1 ) over k, where x  is any  generic point of R i  ov er k.
(iii) Ri r\U is  a dense subset o f R i .

PROOF. I f  ( i )  is not true, there is a point b different from a "
such that b  is  a  generic specialization o f a "  over k (a ). Then
ab= fi i (a, b)= fi i (a, a ')  = aa - 1  =1, since f i i  is defined over k. This
is  a contradiction. Therefore ( i )  is  true. Since (a, a ', 1 )  is  a
point of Fi i r\(R i xR i x 1), this set is not em pty. L e t n be the
dimension of R .  Then it is easy to see that the dimension of any
component C of .r,i r\(Ri xR i x1) is not less than n, since R i x Ri  x R,
is non-singular. I f  (x, y, 1) is  a  generic point of C  over k, y is
equal to x ' .  Therefore k(x, y) is purely inseparable over k(x) by (i),
and x  is  a  generic point of R , over k. This means that F11 n
(Ri xR i x 1) has only one component and that R i r\U contains any
generic point of R i over k. Therefore (ii) and (iii) are also satisfied.

q.e.d.

PROPOSITION 1. Let R be an algebraic ring defined over k. Then
the set U of the units o f R is  a k-open subset o f R.

PROOF. Let R, be a component o f R which intersects with U.
Then by Lemma 1 R i r\U is a dense subset o f R i . On the other
hand U is a locally closed subset o f R, and hence R i r\U must be a
k-open subset o f R i . Therefore U is a h-open subset of R, since
R is a disjoint sum of R,, Ri, ••• q.e.d.

PROPOSITION 2. L e t R  b e  a  unitary  ring  w hich satisf ies the
conditions 1), 2), 3) and 4 ).  Let R, be the component containing 1,
and x a generic point of R, over k. Then i f  k(x 1 ) is equal to k(x),
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R  is  an  algebraic ring  defined over k , i.e., R  satisf ies the conditions
5) and 6).

PROOF. Let R o , Ri, , R s-, be the components of R .  Let .fi;
and Pi ;  be the same as in Lemma 1. By the assumptions, the locus
V of (x, x - ')  over k  on R ,x R , defines a birational correspondence
g  between R , and itself. I f  a  is any point of R i n U , a '  is also
in R ,n U . Then (a, ,  1 )  is in l'„r\ (R i x  R ,x  1) and hence (a, a')
is in  V by (ii) of Lemma 1. Moreover it is easy to see that if
(a, b) is in V , b  is equal to a '.  There fore  g  is regular at a  by
Zariski's Main Theorem, since R , is nonsingular. Similarly g - '  is
regular at a ' .  On the other hand i f  a  is any point of R , such
that (a, b) is  in  V fo r  some b  in R i ,  a  is  in R 1 r  U  b y  (ii) of
Lemma 1. Therefore R , r U  is  the set of the points at which g
is biregular and hence it is a k-open subset of R , .  Next let R i be a
component o f R  which intersects with U .  Then any generic point
x i  of R i is in  U by (iii) of Lemma 1. Assume that x 7' is in R J ,  and
let x ;  be  a generic point of R . over k(x i ). Then xi x;  is  in R , and
hence R 1 r\ U .  Therefore we have k(x , x 5 )) k(x i x ;) = k((x i x ;)-'). On
the other hand, since x 5 (x 1x ; ) '= x 7 ',  we have k(x i , x ,))k (x V , x ; )
and hence k(x 1) D k(x i

- 1 ). Similarly we have 10; - 1 ) k(x i ). Therefore
k(x i )  is equal to k(xT"), and we can define a  birational correspon-
dence g i ;  between R i and  R J . B y the quite similar way to the
above, we can see that R i n U  is a k-open subset o f R i and g i ;  is
biregular at any point of R i n U .  This means that the conditions
5) and 6) are slso satisfied on R. q.e.d.

COROLLARY. L e t R  be a  unitary  rin g  w hich satisf ies the con-
ditions 1), 2), 3) and 4). T h e n  if  the  characteristic  o f  k  is zero,
R  is  an  algebraic ring  defined over k.

PROOF. This is  a d irect consequence of Proposition 2  and
Lemma 1.

3. Now w e  shall call an algebraic ring S  to be a residue class
ring  of an algebraic ring R by an algebraic ideal I  o f R  (see 1) if
S  satisfies the following condition :
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T here is a  separable homomorphism p  of R  onto S, whose kernel
is equal to I.

Remark : S  is a factor group of R  by I  with respect to additive
law in the sense of [ 2 ] .  It is easy to see that the residue class ring
of R  by I  is uniquely determined within a biregular isomorphism.

THEOREM 1. L et R  be an  algebraic rin g  defined over k  and I
an  algebraic ideal of  R  whose components are defined over k. Then
there ex ists alw ays a  residue class ring of  R  by I, which is defined
over k.

PROOF. By Theorem 4  in  [2 ],  there exists a factor group
S =R I I  of R  b y  I ,  defined over k , w ith respect to  additive law.
Let p  be the natural homomorphism of R  onto S  with the kernel
I. W e shall show that S  has a structure of an algebraic ring
defined over k , which satisfies the condition of a residue class ring
of R  by I. Let S ,  and S ,  be two components o f S  (S , may be
equal to 5 2 ) ,  and let R ,  and R , be components o f R  which are
mapped onto S , and S y  by q i  respectively. I f  x  and y are inde-
pendent generic points of R , and R , over k  respectively, p(x) and
p (y )  are independent generic points of S , and Sy over k  respectively.
Now we show that k (p(x ), p(y )) contains k (p (x y )) . In fact k(p(xy),
p(x), p (y ))  is separab le over k (p(x ), p(y )), since k(x, y )  contains
k(p(xy)) and k(x, y) is separable over k (p (x ), p (y )) . I f  k(p(x), p(y))
does not contain k (p(x y )), there exists a  generic specialization z,
different from p (x y ) , o f  p(x y ) over k(p(x), p (y )), which can be
extended to a generic specialization (x ', y ') of (x, y ) .  Then we have
z =p (x 'y ') , p (x ')=p (x )  and p ( y ') =p ( y ) .  From these, we conclude
that x—  x' and y — y ' are both in I  and hence that xy—  x'y' is in I.
This means that z  =p(x 'y ') =p(x y ), and we have a contradiction.
Therefore we have a rational mapping h' of S l  x Sy into a component
S. o f  S  which maps (p(x ), p(y )) onto p ( x y ) .  Assume that x y  is
in  a component R , o f R , and let h  be the rational mapping of
R , x  R , into R , which maps (x, y) onto x y .  Let (a', b') be any point

of S , x S , .  Then the specialization (p(x), P(Y )) - - > (a', b ')  can always

be extended to a specialization (x, y)—> (a, b). Then (xy, p(xy)) has
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a  uniquely determined specialization (ab, tp(ab)) over the above
specialization. Moreover we can easily see that p(ab) depends only
on (a', b '), but not on (a, b). From  this fact we can see, using
Zariski's Main Theorem, that h'. is  regu lar a t (a', b'). Therefore
we easily see that S has a structure of a ring whose multiplication
is defined naturally by that of R .  Then p is  a ring homomorphism
of R onto S, and S satisfies the conditions 1), 2), 3) and 4). Now
let R , (resp. S1)  b e  the component o f R  (resp. S ) containing 1.
Then p(R,) is equal to S .  L e t  x  be a generic point of R1 . Then
we have k(x)----1(x - 1 ) )k (p (x - 1 ) )= 1 (p (x ) ') .  On the other hand k(x)
is separable over k(q)(x)) and k(p(x),(p(x) - ' )  is purely inseparable
over k(p(x)) by Lemma 1. Therefore we have k(p(x))=k(p(x) - 1 )
and hence S is  an algebraic ring defined over k by Proposition 2.

q.e.d.

R em ark : Let R be an algebraic ring and I  its algebraic ideal.
If the residue class ring Rh I  is connected, the set U of the units
in R is mapped onto the set U ' of the units in R h .  I n  fact let
R, be the component of R containing 1. Then p  u „ i i s  a rational
homomorphism o f  U nR , in to  U ', which is defined over k  and
generically surjective. This means that q, maps Ur\R, onto U'.

4. In the following we shall study the structure of algebraic
ideals of a  connected algebraic ring.

PROPOSITION 3. L et R be an  algebraic ring  defined over k and
I  an  algebraic ideal o f  R . T h e n  the  component I , o f  I containing
0 is also an  algebraic  ideal o f  R . In  particular the component Ro

of  R containing 0  is  an  algebraic ideal o f  R.

PROOF. Let R i  be any component of R  and k' a field contain-
ing k over which all the components of I  are defined. Let x i  and
y  be independent generic points of R i  and I ,, over k'. It is suf-
ficient to show th at x i y  and yxi  a r e  both in  / ,.  Since / is  an
algebraic ideal of R, x i y and yxi are in components of I. On the
other hand y  is specialized to 0 over k' and hence x i y (resp. yx i )
is specialized to 0 over k'. Therefore x i y are yx i must be in /„.

q.e.d.
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COROLLARY. L et R  be an  algebraic rin g  defined over k. Then
R  is connected i f  an d  only  i f  th e  components containing 0  and 1
are the sam e.

PROPOSITION 4 .  L e t  R  be a  connected algebraic rin g  defined
over k. T hen any  algebraic ideal of  R  is also connected.

PROOF. Let I  be an algebraic ideal o f R , and let k ' be a field
containing k  over which all the components o f I  are defined. Let
I .  be any component o f I. I f  x  and y i a re  independent generic
points of R  and I i ,  xy i  is in a component I .  of I. However x  has
1  as a  specialization over k ', x y i  i s  in I ,  i.e .,  I .  is equal to I i .
On the other hand x  has 0  as a  specialization over k ', x y i  i s  in
the component I,, o f I  containing 0 ,  i.e., I f  is equal to I l . T h is
means that I,  is equal to I.  q . e . d .

COROLLARY. L e t R  b e  a  connected algebraic ring. T hen the
length m  o f  a sequence o f  proper algebraic ideals of  R  such that

j 1 c  1 2 .  .  .  C.= j n i

is less than the dim ension of  R.

PROPOSITION 5. Let R  be a connected algebraic ring defined over
k. L et a„ a 2 , ••• , a, be rational points of  R  over k. Then the two-
sided ideal generated by  a„ a 2 ,••• ,a s  i s  a  connected algebraic ideal
o f  R , whose component is defined over k.

PROOF. Let x„ ••• , x ,  y„ ••• , y s be independent generic points
of R  over k , and put z =x ,a,y ,+ •• • +x s a s y s . Then k(z ) is a regular
extension over k. Let W  be the locus of z  over k. Let z „••• , z i

be independent generic points of W  over k  and W i  the locus of
z 1 + ••• +z i  o v e r  k. Since W  contains 0 ,  w e have W i  ,  and
hence there exists a positive integer N  such that WN =  W. for any

Then it is easy to see that W N  is  an algebraic subgroup
o f R  as an additive group (cf. Propositions 3  and 5  in P I  and
that W N contains the ideal I  generated by a „• • •  ,a ,  as a dense
subset. Since W , is an algebraic subgroup of R , any point in WN
is  the sum o f two generic points of W N  over k  and hence is a
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point of the ideal I. Therefore W , is equal to I ,  i.e., I  is  an
algebraic ideal. q.e.d.

We shall say that an algebraic ideal I  of R  is defined over k,

i f  k  is a field of definition o f R  and all the components o f I.

COROLLARY. L e t R  b e  a com m utativ e algebraic rin g  defined
over an  algebraically closed f ield k. I f  R  is not a field, then R  has
a proper algebraic ideal def ined over k.

PROOF. I f  R  is not connected, the component o f R  containing
0 is a proper algebraic ideal defined over k  by Proposition 3 .  If
R  is connected, there is a  rational point a  over k  such that a  is
not a unit of R .  Then a R  is a proper algebraic ideal defined over
k  by Proposition 5. q . e . d .

THEOREM 2. L et R  be a  connected algebraic rin g  defined over
an algebraically closed field k. Then f o r any  algebraic ideal I o f  R
def ined ov er k ,  there  are  rational points a„ ••• ,a , su ch  th at I=
(a „  •••  ,a „ ). Moreover th e  num ber s  of  the points can be less than
the dim ension of  R.

PPOOF. Let a„ ••• ,a , be any rational points of I  over k. Then
(a„••• ,a 1)  is in I. Therefore we can choose a sequence of rational
points a „ a 2 ,••• ,a i ,••• , of I ,  such that i f  (a „••• ,a i _ i )  is not equal
to I ,  a i  is not in (a „••• ,a i _ i ). This is  possible, since the set of
the rational points in I  over k  is dense in I. This means that our
assetion is true by Corollary of Proposition 4. q . e . d .

THEOREM 3. L e t R  be  a  connected algebraic ring  defined over
k. T hen any  ideal of  R  i s  an  algebraic ideal defined over a f ield
containing k  and R  is a rin g  with maximal and minimal conditions
f o r two-sided ideals.

PROOF. First notice that, for any finite set of points a„••• ,a ,

in R , (a „•••  ,a 1 )  is an algebraic ideal of R  defined over k(a„•-• ,a1)
by Corollary o f Proposition 5. From this we can see that R  is a
ring with maximal condition for two-sided ideals. In fact i f  it is
not so, there exists an ideal I  of R  which is not finitely generated.
Then we can choose a i  ( i = 1 ,  2, •••) inductively so that a i  i s  an
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element of / not contained in I g _,— (a,,••• ,a i ). On the other hand
I ,  is a subvariety of R  defined over k(a„ ••• , ai )  for j < i .  There-
fore by C o ra lla ry  of Proposition 4  there exists a positive integer
N  such that /i = / , for i > N .  This is a contradiction. Since any
two-sided ideal / of R  is finitely generated, / is an algebraic ideal
of R  defined over a certain field containing k  by Corollary of Pro-
position 5  and hence the length o f any sequence of proper two-
sided ideals such that

 / ,   • • • /,n

is less than the dimension of R  by Corollary of Proposition 4. q .e .d .

R em ark : Although we treat only two-sided ideals of connected
algebraic rings in Theorems 2 and 3, similar results can be obtained
in the case of left (or right) ideals. In other words any left (or
right) ideals of a connected algebraic ring R  is closed in a Zariski
topology and R  is  a ring with maximal and minimal conditions
for left (or right) ideals. In fact we can easily see that all results
in this section are modified, taking closed left (or right) ideals
instead of algebraic ideals.
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