# Homotopy groups of symplectic groups 

By<br>Mamoru Mimura and Hirosi Toda

(Received Jan. 17, 1964)

## §1. Introduction

The present paper is one of our series on the homotopy groups of simple Lie groups, following from the previous paper [7].

We shall consider the homotopy groups $\pi_{i}(S p(n))$ of symplectic groups $S p(n)$.

When $i \leq 4 n+1$, the groups are stable and computed by Bott [3]:

$$
\pi_{i}(S p(n)) \cong\left\{\begin{array}{lll}
Z & i \equiv 3,7 & (\bmod 8), \\
Z_{2} & i \equiv 4,5 & (\bmod 8), \\
i \leq 4 n+1 \\
0 & i \equiv 0,1,2,6(\bmod 8), & i \leq 4 n+1
\end{array}\right.
$$

For almost stable cases $i=4 n+2,4 n+3,4 n+4$, the following results are obtained (Theorem 2.2).

$$
\begin{aligned}
& \pi_{4 n+2}(S p(n)) \cong \begin{cases}Z_{2 \cdot(2 n+1)!} & \text { for odd } n \\
Z_{(2 n+1)!} & \text { for even } n\end{cases} \\
& \pi_{4 n+3}(S p(n)) \cong \begin{array}{ll}
Z_{2}, & \text { for odd } n
\end{array} \\
& \pi_{4 n+4}(S p(n)) \cong \begin{cases}Z_{2} & \text { for even } n . \\
Z_{2} \oplus Z_{2} & \end{cases}
\end{aligned}
$$

These results were already computed in [4], except the last one which will be determined in $\S 2$ by use of secondary compositions.

For $i \leq 23$, the groups $\pi_{i}(S p(1))=\pi_{i}\left(S^{3}\right)$ and $\pi_{i}(S p(2))$ are determined in [11], [6] and [7]. Then the following table of $\pi_{i}(S p(n))$ is established by the computation of the groups $\pi_{i}(S p(3)), 17 \leq i \leq 23$, and $\pi_{i}(S p(4)), 21 \leq i \leq 24$. The computation will be given in $\S 3$
by the aid of lemmas in $\S 4$ and $\S 5$. Generators of the 2 -primary components are also given in $\S 4$. In the table, the symbols $\infty,+$ and an integer $r$ indicate an infinite cyclic groups, direct sum and a cyclic group $Z_{r}$ of order $r$. The notations and terminologies in [7], [6] and [11] will be used in the present paper.

|  | 1 | 2 | 3 | 4 | 5 | $n \geq 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (0) | (0) | (0) | (0) | (0) | (0) |
| 2 | (0) | (0) | (0) | (0) | (0) | (0) |
| 3 | ( $\infty$ ) | ( $\infty$ ) | ( $\times$ ) | $(\infty)$ | ( $\infty$ ) | ( $\infty$ ) |
| 4 | (2) | (2) | (2) | (2) | (2) | (2) |
| 5 | (2) | (2) | (2) | (2) | (2) | (2) |
| 6 | $2 \cdot 3$ ! | (0) | (0) | (0) | (0) | (0) |
| 7 | 2 | $(\infty)$ | ( $\times$ ) | ( $\times$ ) | ( $\infty$ | $(\infty)$ |
| 8 | 2 | (0) | (0) | (0) | (0) | (0) |
| 9 | 3 | (0) | (0) | (0) | (0) | (0) |
| 10 | 15 | $5!$ | (0) | (0) | (0) | (0) |
| 11 | 2 | 2 | ( $\times$ ) | $(\infty)$ | ( $\infty$ ) | ( $\infty$ ) |
| 12 | $2+2$ | $2+2$ | (2) | (2) | (2) | (2) |
| 13 | $12+3$ | $4+2$ | (2) | (2) | (2) | (2) |
| 14 | $84+2+2$ | $7!/ 3$ | $2 \cdot 7!$ | (0) | (0) | (0) |
| 15 | $2+2$ | 2 | 2 | $(\infty)$ | ( $\infty$ ) | ( $\infty$ ) |
| 16 | 6 | $2+2$ | 2 | (0) | (0) | (0) |
| 17 | 30 | 40 | 0 | (0) | (0) | (0) |
| 18 | 30 | $7!/ 2+2$ | 3.7! | $9!$ | (0) | (0) |
| 19 | $6+2$ | $2+2$ | 2 | 2 | ( $\infty$ ) | $(\infty)$ |
| 20 | $12+2+2$ | $2+2+2$ | $2+2$ | $2+2$ | (2) | (2) |
| 21 | 12+2+2 | $32+2$ | $12+2$ | $6+2$ | (2) | (2) |
| 22 | $132+2$ | $44 \cdot 5!+2+2$ | 11!/120+2 | 11!/2 | $2 \cdot 11$ ! | (0) |
| 23 | $2+2$ | $2+2+2$ | $2+2$ | 2 | 2 | ( $\times$ ) |
| 24 |  |  |  | $2+2$ | 2 | (0) |

## §2. Almost stable groups

Consider the following exact sequence associated with the fibering ( $S p\left(n+1\right.$ ), $p, S^{4 n+3}, S p(n)$ ):
$(2.1)_{n} \cdots \longrightarrow \pi_{i}(S p(n)) \xrightarrow{i_{*}} \pi_{i}(S p(n+1)) \xrightarrow{p_{*}} \pi_{i}\left(S^{4 n+3}\right) \xrightarrow{\Delta} \pi_{i-1}(S p(n)) \cdots$, where $i_{*}\left(\operatorname{resp} . p_{*}\right)$ is a homomorphism induced by the injection (resp. the projection) and $\Delta$ is a boundary homomorphism. Therefore we have isomorphisms

$$
i_{*}: \pi_{i}(S p(n)) \cong \pi_{i}(S p(n+1)) \quad \text { for } \quad i \leq 4 n+1
$$

since we have $\pi_{i+1}\left(S^{4 n+3}\right)=0$ for $i \leq 4 n+1$.
In this stable range the following results are well-known. (See Bott [3].)
i) $\quad \pi_{4 n-2}(S p(n))=0$,
ii) $\quad \pi_{4 n-1}(S p(n)) \cong Z$,
iii) $\pi_{4 n}(S p(n)) \cong \begin{cases}Z_{2} & \text { for odd } n, \\ 0 & \text { for even } n,\end{cases}$
iv) $\quad \pi_{4 n+1}(S p(n)) \cong \begin{cases}Z_{2} & \text { for odd } n, \\ 0 & \text { for even } n .\end{cases}$

The following diagram is evidently commutative and exact:

$$
\begin{aligned}
& \pi_{4 n+3}(S U(2 n+1)) \\
& \downarrow \\
& \pi_{4 n+3}(S U(2 n+1) / S p(n)) \\
& \downarrow \Delta_{2} \\
& \begin{array}{cc}
Z \cong \pi_{4 n+3}\left(S^{4 n+3}\right) \\
\| & \xrightarrow{\Delta} \pi_{4 n+2}(S p(n)) \\
\pi_{4 n+3}\left(S^{4 n+3}\right) & \longrightarrow i_{*} \\
\Delta_{4 n+2}(S p(n+1))=0 \\
\pi_{4 n+2}(S U(2 n+1)) & \longrightarrow \pi_{4 n+2}(S U(2 n+2))
\end{array} \\
& \downarrow p_{*} \\
& \pi_{4 n+2}(S U(2 n+1) / S p(n)) \\
& \downarrow \Delta_{3} \\
& \pi_{4 n+1}(S p(n)) \\
& \pi_{4 n+1}(S U(2 n+1)),
\end{aligned}
$$

where $\quad \pi_{4 n+3}(S U(2 n+1))=0 \quad$ by $\quad[10], \quad \pi_{4 n+3}(S U(2 n+1) / S p(n)) \cong$ $\pi_{4 n+2}(S U(2 n+1) / S p(n)) \cong \pi_{4 n+1}(S p(n)) \cong Z_{2}$ for odd $n$ and $=0$ for even $n, \quad \pi_{4 n+2}(S U(2 n+2))=0$ and $\pi_{4 n+1}(S U(2 n+1)) \cong Z \quad$ by [3], $\pi_{4 n+2}(S U(2 n+1)) \cong Z_{(2 n+1)!}$ by [2], [10].

First we have that $\Delta_{3}$ is an epimorphism and thus an isomorphism. It follows that $\Delta, \Delta_{1}$, and $i_{*}$ are epimorphisms and $\Delta_{2}$ is a monomorphism. Thus we have that $\pi_{4 n+2}(S p(n))$ is cyclic, and

$$
\pi_{4 n+2}(S p(n)) \cong \begin{cases}Z_{2 \cdot(2 n+1)!} & \text { for odd } n \\ Z_{(2 n+1)!} & \text { for oven } n\end{cases}
$$

We denote by $\theta_{4 n-1}$ a generator of $\pi_{4 n-1}(S p(n)) \cong Z$. Then we have the following

Theorem 2.1. When $n$ is odd, the generators of $\pi_{4 n}(S p(n)) \cong Z_{2}$ and $\pi_{4 n+1}(S p(n)) \cong Z_{2}$ are $\theta_{4 n-1}{ }^{\circ} \eta_{4 n-1}$ and $\theta_{4 n-1} \circ \eta_{4 n-1}^{2}$ respectively, where $\eta_{4 n-1}$ is the generator of $\pi_{4 n}\left(S^{4 n-1}\right) \cong Z_{2}$.

The proof is similar to that of Lemma 2 of [5], by use of Bott's periodicity $S p(\infty) \simeq \Omega^{8} S p(\infty)$.

Consider the exact sequence $(2.1)_{n}$ for $i=4 n+3$ :

$$
\begin{aligned}
& \pi_{4 n+3}(S p(n)) \xrightarrow{i_{*}} \pi_{4 n+3}(S p(n+1)) \xrightarrow{p_{*}} \pi_{4 n+3}\left(S^{4 n+3}\right) \xrightarrow{\Delta} \pi_{4 n+2}(S p(n)) \longrightarrow \\
& \longrightarrow \pi_{4 n+2}(S p(n+1)) \longrightarrow \cdots
\end{aligned}
$$

We have that $\pi_{4 n+2}(S p(n+1))=0$ by i) of (2.2), $\pi_{4 n+2}(S p(n)) \cong Z_{2 \cdot(2 n+1)!}$ for odd $n$ and $\cong Z_{(2 n+1) \text { ! }}$ for even $n$ and $\pi_{4 n+3}(S p(n+1)) \cong Z$. Therefore the degree of the homomorphism $p_{*}$ is $2 \cdot(2 n+1)$ ! for odd $n,(2 n+1)$ ! for even $n$ and $i_{*}$ is trivial. That is,

$$
p_{*}\left(\theta_{4 n+3}\right)= \begin{cases}2 \cdot(2 n+1)!\iota_{4 n+3} & \text { for odd } n  \tag{2.3}\\ (2 n+1)!\iota_{4 n+3} & \text { for even } n\end{cases}
$$

Whence we have (for $n$ : even)

$$
\begin{aligned}
& p_{*}\left(\theta_{4 n+3} \circ \eta_{4 n+3}\right)=p_{*}\left(\theta_{4 n+3}\right) \circ \eta_{4 n+3}=(2 n+1)!\eta_{4 n+3}=0 \\
& p_{*}\left(\theta_{4 n+3} \circ \eta_{4 n+3}^{2}\right)=p_{*}\left(\theta_{4 n+3}\right) \circ \eta_{4 n+3}^{2}=(2 n+1)!\eta_{4 n+3}^{2}=0,
\end{aligned}
$$

and
for the generators $\theta_{4 n+3}{ }^{\circ} \eta_{4 n+3}$ of $\pi_{4 n+4}(S p(n+1))$ and $\theta_{4 n+3}{ }^{\circ} \eta_{4 n+3}^{2}$ of $\pi_{4 n+5}(S p(n+1))$. Thus we have the following two exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow \pi_{4 n+4}\left(S^{4 n+3}\right) \xrightarrow{\Delta} \pi_{4 n+3}(S p(n)) \longrightarrow 0, \\
& 0 \longrightarrow \pi_{4 n+5}\left(S^{4 n+3}\right) \xrightarrow{\Delta} \pi_{4 n+4}(S p(n)) \xrightarrow{i_{*}} \pi_{4 n+4}(S p(n+1)) \longrightarrow 0,
\end{aligned}
$$

where $\pi_{4 n+4}\left(S^{4 n+3}\right) \cong \pi_{4 n+5}\left(S^{4 n+3}\right) \cong Z_{2}, \pi_{4 n+4}(S p(n+1))=\left\{\theta_{4 n+3} \circ \eta_{4 n+3}\right\} \cong Z_{2}$ for even $n$ and $=0$ for odd $n$. For odd $n$, obviously,

$$
\pi_{4 n+4}(S p(n)) \cong Z_{2} .
$$

But for even $n$, we must determine the following extension:

$$
0 \longrightarrow Z_{2} \longrightarrow \pi_{4 n+4}(S p(n)) \longrightarrow Z_{2} \longrightarrow 0
$$

Let $n$ be even and $\lambda=\Delta \iota_{4 n+3}$, then

$$
\begin{aligned}
\lambda \circ\left((2 n+1)!\iota_{4 n+2}\right) & =(2 n+1)!\Delta \iota_{4 n+3} \\
& =\Delta p_{*}\left(\theta_{4 n+3}\right) \\
& =0 .
\end{aligned}
$$

$S p(n+1)$ contains a subspace $S p(n) \bigcup_{\lambda} e^{4 n+3}$ such that $p \mid S p(n) \bigcup_{\lambda} e^{4 n+3}$ : $\left(S p(n) \bigcup_{\lambda} e^{4 n+3}, S p(n)\right) \rightarrow\left(S^{4 n+3}, *\right)$ is a relative homeomorphism preserving orientations.

Let $f: S^{4 n+3} \rightarrow S p(n) \bigcup_{\lambda} e^{4 n+3}<S p(n+1)$ be a coextension of $(2 n+1)!\iota_{4 n+2}$. Then $f$ represents $\theta_{4 n+3}$, since $p \circ f$ represents $p_{*} \theta_{4 n+3}=(2 n+1)!\iota_{4 n+3}$. It follows from Proposition 1.8 of [11]

$$
\theta_{4 n+3} \circ \eta_{4 n+3}=i_{*}(\alpha), \quad \alpha \in-\left\{\Delta \iota_{4 n+3},(2 n+1)!\iota_{4 n+2}, \eta_{4 n+2}\right\},
$$

where $i$ is the inclusion of $S p(n)$ into $S p(n+1)$.
We have

$$
\begin{aligned}
& -\left\{\Delta \iota_{4 n+3},(2 n+1)!\iota_{4 n+2}, \eta_{4 n+2}\right\} \circ 2 \iota_{4 n+4} \\
= & \Delta \iota_{4 n+3}{ }^{\circ}\left\{(2 n+1)!\iota_{4 n+2}, \eta_{4 n+2}, 2 \iota_{4 n+3}\right\}
\end{aligned}
$$

by Proposition 1.4 of [11]

$$
\begin{aligned}
& =\Delta \iota_{4 n+3} \circ((2 n+1)!/ 2) \eta_{4 n+2}^{2} \\
& =0,
\end{aligned}
$$

since $(2 n+1)$ ! is divisible by 4. Therefore, $2 \alpha=\alpha \circ 2 t_{4 n+4}=0$, for even $n$, and the above sequence splits.

Summarizing the above results, we have the following

## Theorem 2.2.

$$
\begin{aligned}
& \pi_{4 n+2}(S p(n)) \cong \begin{cases}Z_{2 \cdot(2 n+1)!} & \text { for odd } n, \\
Z_{(2 n+1)!} & \text { for even } n,\end{cases} \\
& \pi_{4 n+3}(S p(n)) \cong \begin{array}{ll}
Z_{2}, & \text { for odd } n,
\end{array} \\
& \pi_{4 n+4}(S p(n)) \cong \begin{cases}Z_{2} & \text { for even } n . \\
Z_{2} \oplus Z_{2} & \end{cases}
\end{aligned}
$$

## § 3. Computation of $\boldsymbol{\pi}_{\boldsymbol{i}}(\boldsymbol{S p}(n)), \boldsymbol{i} \leq 23$

The groups $\pi_{i}(S p(1)) \cong \pi_{i}\left(S^{3}\right), i \leq 23$, are determined in [11] and [6]. The groups $\pi_{i}(S p(2)), i \leq 23$, are determined in [7].

The groups $\pi_{i}(S p(n))$ are given in $\S 2$ for $i \leq 4 n+4$. So, it is sufficient to compute the groups $\pi_{i}(S p(3)), 17 \leq i \leq 23$, and $\pi_{i}(S p(4)), 21 \leq i \leq 24$. The computations will be done algebraically by use of the exact sequences (2.1) $)_{n}$ and by the aid of Lemmas 3.1 to 3.6 , which will be proved in the next section.

Lemma 3.1. The homomorphism $\Delta: \pi_{18}\left(S^{11}\right) \rightarrow \pi_{17}(S p(2))$ is an epimorphism.

It follows from Lemma 3.1 and the exactness of $(2.1)_{2}$ that the sequence

$$
0 \longrightarrow \pi_{17}(S p(3)) \longrightarrow \pi_{17}\left(S^{11}\right) \longrightarrow \pi_{16}(S p(2)) \longrightarrow \pi_{16}(S p(3))
$$

is exact. $\pi_{16}(S p(3)) \cong Z_{2}$ by Theorem 2.2, $\pi_{16}(S p(2)) \cong Z_{2} \oplus Z_{2}$ by Theorem 5.1 of [7] and $\pi_{17}\left(S^{11}\right) \cong Z_{2}$. It follows

$$
\pi_{17}(S p(3))=0
$$

From (2.1) $)_{3}$, we have an exact sequence

$$
\pi_{19}\left(S^{15}\right) \longrightarrow \pi_{18}(S p(3)) \longrightarrow \pi_{18}(S p(4)) \longrightarrow \pi_{18}\left(S^{15}\right) \longrightarrow \pi_{17}(S p(3))=0 .
$$

We have $\pi_{18}(S p(4)) \cong Z_{9!}$ by Theorem 2.2, $\pi_{19}\left(S^{15}\right)=0$ and $\pi_{18}\left(S^{15}\right) \cong Z_{24}$. It follows

$$
\pi_{18}(S p(3)) \cong Z_{9!24}=Z_{3 \cdot 7!} .
$$

It follows from (2.1) ${ }_{3}$ that $i_{*}: \pi_{19}(S p(3)) \rightarrow \pi_{19}(S p(4))$ is an isomorphism, since $\pi_{20}\left(S^{15}\right)=\pi_{19}\left(S^{15}\right)=0$. Thus

$$
\pi_{19}(S p(3)) \cong \pi_{19}(S p(4)) \cong Z_{2} \quad(\text { Theorem 2.2 })
$$

From the last sequence, we have that $p_{*}: \pi_{18}(S p(4)) \rightarrow \pi_{18}\left(S^{15}\right)$ is an epimorphism. Let $\left[\nu_{15}\right]$ be an element of $\pi_{18}(S p(4))$ such that $\quad p_{*}\left[\nu_{15}\right]=\nu_{15} \in \pi_{18}\left(S^{15}: 2\right) \subset \pi_{18}\left(S^{15}\right)$. Obviously $\quad p_{*}\left(\left[\nu_{15}\right] \circ \nu_{18}\right)=$ $\nu_{15}{ }^{\circ} \nu_{18}=\nu_{15}^{2}$. $\nu_{15}^{2}$ generates $\pi_{21}\left(S^{15}\right) \approx Z_{2}$. It follows that the homomorphism $p_{*}$ in the following sequence is an epimorphism:

$$
\pi_{21}(S p(4)) \xrightarrow{p_{*}} \pi_{21}\left(S^{15}\right) \longrightarrow \pi_{20}(S p(3)) \longrightarrow \pi_{20}(S p(4)) \longrightarrow \pi_{20}\left(S^{15}\right)=0 .
$$

Thus we have

$$
\pi_{20}(S p(3)) \cong \pi_{20}(S p(4)) \cong Z_{2} \oplus Z_{2} \quad(\text { Theorem 2.2) }
$$

Lemma 3. 2. The image of $\Delta: \pi_{21}\left(S^{11}\right) \rightarrow \pi_{20}(S p(2))$ is isomorphic to $Z_{2} \oplus Z_{2}$.

Lemma 3. 3. The image of $\Delta: \pi_{22}\left(S^{11}\right) \rightarrow \pi_{21}(S p(2))$ is generated by $4\left[\sigma^{\prime} \sigma_{14}\right]$ and isomorphic to $Z_{8}$.

In [7], we have obtained the results:

$$
\begin{aligned}
& \pi_{20}(S p(2)) \cong Z_{2} \oplus Z_{2} \oplus Z_{2}, \\
& \pi_{21}(S p(2)) \cong Z_{32} \oplus Z_{2}=\left\{\left[\sigma^{\prime} \sigma_{14}\right], i_{\left.* \eta_{3} \bar{\mu}_{4}\right\}} .\right.
\end{aligned}
$$

Then it follows from the exactness of $(2.1)_{2}$ that the sequence $0 \rightarrow Z_{4} \oplus Z_{2} \rightarrow \pi_{21}(S p(3)) \rightarrow Z_{6} \oplus Z_{2} \rightarrow Z_{2} \oplus Z_{2} \rightarrow 0 \quad$ is exact, where $Z_{6} \oplus Z_{2} \cong \pi_{21}\left(S^{11}\right)$ by [11]. Thus we have easily

$$
\pi_{21}(S p(3)) \cong Z_{12} \oplus Z_{2} .
$$

Lemma 3..4. The image of $\Delta: \pi_{22}\left(S^{15}\right) \rightarrow \pi_{21}(S p(3))$ is isomorphic to $Z_{4}$.

We have seen that $p_{*}: \pi_{21}(S p(4)) \rightarrow \pi_{21}\left(S^{15}\right) \cong Z_{2}$ is an epimorphism. It follows from Lemma 3.4 that we have an exact sequence

$$
0 \longrightarrow Z_{4} \longrightarrow Z_{12} \oplus Z_{2} \xrightarrow{i_{*}} \pi_{21}(S p(4)) \longrightarrow Z_{2} \longrightarrow 0 .
$$

Thus $\pi_{21}(S p(4))$ is isomorphic to $Z_{6} \oplus Z_{2}$ or $Z_{12}$. If, $\pi_{21}(S p(4)) \cong Z_{12}$, then $i_{*} \pi_{21}(S p(3))=2\left(\pi_{21}(S p(4))\right)$. Then the injection homomorphism $i_{*}: \pi_{21}(S p(3)) \rightarrow \pi_{21}(S p(5))$ vanishes, since $\pi_{21}(S p(5)) \cong Z_{2}$. The group $\pi_{21}(S p(5))$ is generated by $\theta_{19} \circ \eta_{19}^{2}$ (Theorem 2.1). In $\S 2$, we have
seen that $i_{*}: \pi_{20}(S p(4)) \rightarrow \pi_{20}(S p(5))$ is an epimorphism. We have seen also that $i_{*}: \pi_{20}(S p(3)) \rightarrow \pi_{20}(S p(4))$ is an isomorphism. Thus, there exists an element $\alpha \in \pi_{20}(S p(3))$ such that $i_{*}(\alpha)=\theta_{19}{ }^{\circ} \eta_{19}$ for $i_{*}: \pi_{20}(S p(3)) \rightarrow \pi_{20}(S p(5))$. Consider the composition $\alpha \circ \eta_{20}$. Then $i_{*}\left(\alpha_{\circ} \eta_{20}\right)=\theta_{19} \circ \eta_{19}^{2} \neq 0$, on the other hand $i_{*}: \pi_{21}(S p(3)) \rightarrow \pi_{21}(S p(5))$ vanishes as stated above. Thus the assumption $\pi_{\xi 1}(S p(4)) \cong Z_{1:}$ leads us to the contradiction, and we have

$$
\pi_{21}(S p(4)) \approx Z_{i} \oplus Z_{2}
$$

Consider the exact sequence $(2.1)_{4}$ :

$$
\begin{aligned}
& 0=\pi_{23}\left(S^{19}\right) \longrightarrow \pi_{22}(S p(4)) \longrightarrow \pi_{22}(S p(5)) \stackrel{p_{*}}{\longrightarrow} \pi_{22}\left(S^{19}\right) \longrightarrow \pi_{21}(S p(4)) \\
& \xrightarrow{i^{*}} \pi_{21}(S p(5)) .
\end{aligned}
$$

The last homomorphism $i_{*}$ is an epimorphism and its kernel is isomorphic to $Z_{6}$ by the above discussion. Then the image of $p_{*}$ is isomorphic to $Z_{4} \simeq Z_{24} / Z_{6}$, since $\pi_{22}\left(S^{19}\right) \simeq Z_{24}$. By Theorem 2.2, $\pi_{22}(S p(5)) \simeq Z_{2 \cdot 11!}$.

It follows that

$$
\pi_{22}(S p(4)) \simeq Z_{111 / 2}=Z_{199584400} .
$$

Consider the exact sequence $(2.1)_{3}$ :

$$
\pi_{23}\left(S^{15}\right) \longrightarrow \pi_{22}(S p(3)) \xrightarrow{i_{*}} \pi_{22}(S p(4)) \xrightarrow{p_{*}} \pi_{22}\left(S^{15}\right) \xrightarrow{\Delta} \pi_{21}(S p(3)) .
$$

The group $\pi_{22}\left(S^{15}\right)$ is isomorphic to $Z_{240}$ [11] and the image of the last homomorphism $\Delta$ is $Z_{4}$ by Lemma 3.4. Thus the cokernel of $i_{*}$ is isomorphic to $Z_{60} \cong Z_{240} / Z_{4}$. Since $\pi_{23}\left(S^{15}\right) \cong Z_{2} \oplus Z_{2}$ [11], it follows that the sequence

$$
\begin{equation*}
Z_{2} \oplus Z_{2} \longrightarrow \pi_{22}(\mathrm{~S} p(3)) \longrightarrow Z_{322640} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

is exact.
Next consider the exact sequence ( $2: 1)_{2}$ :

$$
\pi_{23}\left(S^{11}\right) \longrightarrow \pi_{22}(S p(2)) \xrightarrow{i_{*}} \pi_{22}(S p(3)) \longrightarrow \pi_{22}\left(S^{11}\right) \longrightarrow \pi_{21}(S p(2)) .
$$

The group $\pi_{22}\left(S^{11}\right)$ is isomorphic to $Z_{504}$ [11]. It follows from

Lemma 3.3 that the cokernel of $i_{*}$ is isomorphic to $Z_{63} \cong Z_{504} / Z_{3}$. We have $\pi_{22}(S p(2)) \cong Z_{5280} \oplus Z_{2} \oplus Z_{2}$ [7] and $\pi_{23}\left(S^{11}\right) \cong Z_{2}$ [11].

Now apply
Lemma 3.5. The homomorphism $\Delta: \pi_{23}\left(S^{11}\right) \rightarrow \pi_{22}(S p(2))$ is a monomorphism.

Then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow Z_{2} \longrightarrow Z_{5280} \oplus Z_{2} \oplus Z_{2} \longrightarrow \pi_{22}(S p(3)) \longrightarrow Z_{63} \longrightarrow 0 . \tag{3.2}
\end{equation*}
$$

There exists an element of order $332640=5280 \times 63$ in $\pi_{22}(S p(3))$ by the exactness of (3.1), but the element cannot be divisible by 2 by the exactness of (3.2). Thus $\pi_{22}(S p(3))$ has a direct factor isomorphic to $Z_{332640}$. It follows from the exactness of (3.2)

$$
\pi_{22}(S p(3)) \cong Z_{332640} \oplus Z_{2}=Z_{11!/ 120} \oplus Z_{2} .
$$

It follows immediately from the exact sequence $0=\pi_{24}\left(S^{19}\right) \rightarrow$ $\pi_{23}(S p(4)) \rightarrow \pi_{23}(S p(5)) \rightarrow \pi_{23}\left(S^{19}\right)=0 \quad$ that $\quad \pi_{23}(S p(4)) \cong Z_{2}$, where $\pi_{23}(S p(5)) \cong Z_{2}$ by Theorem 2.2.

Consider the exact sequence $(2.1)_{3}$ :

$$
\pi_{23}(S p(3)) \xrightarrow{i_{*}} \pi_{23}(S p(4)) \xrightarrow{p_{*}} \pi_{23}\left(S^{15}\right) \xrightarrow{\Delta} \pi_{22}(S p(3)),
$$

where $\pi_{23}(S p(4)) \cong Z_{2}$ and $\pi_{23}\left(S^{15}\right) \cong Z_{2} \oplus Z_{2}=\left\{\bar{\nu}_{15}, \varepsilon_{15}\right\}$. By use of Lemma 5.3 in $\S 5$ we have $\Delta \bar{\nu}_{15}=0$, hence we know that $\pi_{23}(S p(4)) \cong Z_{2}$ is generated by [ $\bar{\nu}_{15}$ ], and that

$$
\begin{equation*}
i_{*}: \pi_{23}(S p(3)) \longrightarrow \pi_{23}(S p(4)) \quad \text { is trivial. } . \tag{3.3}
\end{equation*}
$$

By the isomorphism $i_{*}: \pi_{23}(S p(4)) \cong \pi_{23}(S p(5))$, we see that $\pi_{23}(S p(5)) \cong Z_{2}$ is generated by $i_{*}\left[\bar{\nu}_{15}\right]$.

In the exact sequence (2.1) :

$$
\pi_{25}\left(S^{23}\right) \longrightarrow \pi_{24}(S p(5)) \longrightarrow \pi_{24}(S p(6)) \longrightarrow \pi_{24}\left(S^{23}\right) \xrightarrow{\Delta} \pi_{23}(S p(5)),
$$

we have $\pi_{25}\left(S^{23}\right) \cong Z_{2}=\left\{\eta_{23}^{2}\right\}, \pi_{24}(S p(5)) \cong Z_{2}$ (Theorem 2.2) $\pi_{24}(S p(6))$ $=0, \pi_{24}\left(S^{23}\right) \cong Z_{2}=\left\{\eta_{23}\right\}$, and $\pi_{23}(S p(5)) \cong Z_{2}=\left\{i_{*}\left[\bar{\nu}_{15}\right]\right\}$. Therefore, $\Delta \eta_{23}=i_{*}\left[\bar{\nu}_{15}\right]$, hence we have that $\Delta \eta_{23}^{2}=i_{*}\left[\bar{\nu}_{15}\right]{ }^{\circ} \eta_{23}$ and $\pi_{24}(S p(5)) \cong Z_{2}$ is generated by $i_{*}\left[\bar{\nu}_{15}\right]{ }^{\circ} \eta_{23}$.

Consider the homomorphism

$$
p_{*} \circ \Delta: \pi_{25}\left(S^{19}\right) \longrightarrow \pi_{24}(S p(4)) \longrightarrow \pi_{24}\left(S^{15}\right),
$$

where $\pi_{25}\left(S^{19}\right) \cong Z_{2}=\left\{\nu_{19}^{2}\right\}$ and $\pi_{24}\left(S^{15}\right) \cong Z_{2} \oplus Z_{2} \oplus Z_{2}=\left\{\nu_{15}^{3}, \mu_{15}, \eta_{15} \varepsilon_{16}\right\}$. We have $\Delta \nu_{19}^{2}=\left[\nu_{15}\right] \circ \nu_{18}^{2}$, since $\Delta: \pi_{19}\left(S^{19}\right) \rightarrow \pi_{18}(S p(4))$ is an epimorphism and since $\pi_{18}(S p(4): 2) \cong Z_{128}$ is generated by $\left[\nu_{15}\right]$. Whence $p_{*}\left(\Delta \nu_{19}^{2}\right)=p_{*}\left(\left[\nu_{15}\right] \circ \nu_{18}^{2}\right)=\nu_{15}^{3}$. Therefore $\pi_{24}(S p(4))$ is isomorphic to $\pi_{25}\left(S^{19}\right) \oplus \pi_{24}(S p(4)) / \pi_{25}\left(S^{19}\right)$, where $\pi_{25}\left(S^{19}\right) \cong Z_{22}$ and $\pi_{24}(S p(4)) / \pi_{25}\left(S^{19}\right)$ $\simeq \pi_{: 1}(S p(5)) \cong Z_{2}$ by the exactness of the sequence :

$$
\pi_{25}\left(S^{19}\right) \longrightarrow \pi_{24}(S p(4)) \longrightarrow \pi_{24}(S p(5)) \longrightarrow \pi_{24}\left(S^{19}\right)=0
$$

Thus $\pi_{24}(S p(4)) \cong Z_{2} \oplus Z_{2}$. One of its generators is $\left[\nu_{15}\right] \circ \nu_{18}^{2}$. Let $\alpha$ be another one such that $p_{*}(\alpha)=0\left(: \pi_{24}(S p(4)) \rightarrow \pi_{24}\left(S^{15}\right)\right)$. Consider the element $\left[\bar{\nu}_{15}\right] \circ \eta_{23}=\alpha+x\left[\nu_{15}\right] \circ \nu_{18}^{2}$. Since $i_{*}\left[\bar{\nu}_{15}\right] \circ \eta_{23} \neq 0$ in $\pi_{24}(S p(5))$, we have $\left[\bar{\nu}_{15}\right] \circ \eta_{23} \in \pi_{24}(S p(4))$. Applying $p_{*}$, we have

$$
\begin{aligned}
p_{*}\left(\left[\bar{\nu}_{15}\right] \circ \eta_{23}\right) & =\bar{\nu}_{15} \eta_{23} \\
& =\nu_{15}^{3} \quad \text { by Lemma } 6.3 \text { of }[11] \\
& =p_{*}(\alpha)+x \nu_{15}^{3} .
\end{aligned}
$$

Therefore $x=1$, and

$$
\alpha=\left[\bar{\nu}_{15}\right] \circ \eta_{23}+\left[\nu_{15}\right] \circ \nu_{18}^{2} .
$$

The exact sequence $(2.1)_{3}$

$$
\pi_{24}(S p(4)) \xrightarrow{p_{*}} \pi_{24}\left(S^{15}\right) \longrightarrow \pi_{23}(S p(3)) \longrightarrow \pi_{23}(S p(4))
$$

is reduced to the exact one :

$$
0 \longrightarrow Z_{2} \longrightarrow Z_{2} \oplus Z_{2} \oplus Z_{2} \longrightarrow \pi_{23}(S p(3)) \longrightarrow 0,
$$

by the above discussion and by (3.3). Thus we obtain

$$
\pi_{23}(S p(3)) \cong Z_{2} \oplus Z_{2} .
$$

## § 4. Generators

In this section we shall study the generators of the 2 -primary components of $\pi_{i}(S p(n)), i \leq 23$, and prove the lemmas used in the previous section.

We omit those of $\pi_{i}(S p(1))$ and $\pi_{i}(S p(2))$, as they are already stated in [11], [6] and [7].

It follows easily from (2.2) that

$$
\begin{array}{ll}
\pi_{3}(S p(n))=\left\{i_{*} \iota_{3}\right\} \cong Z & \text { for } n \geq 1, \\
\pi_{4}(S p(n))=\left\{i_{*} \eta_{3}\right\} \cong Z_{2} & \text { for } n \geq 1, \\
\pi_{5}(S p(n))=\left\{i_{*} \eta_{3}^{2}\right\} \cong Z_{2} & \text { for } n \geq 1, \\
\pi_{7}(S p(n))=\left\{i_{*} \theta_{7}=i_{*}\left[12 \iota_{7}\right]\right\} \cong Z & \text { for } n \geq 2 .
\end{array}
$$

Consider the exact sequence $(2.1)_{2}$ :

$$
\pi_{11}(S p(3)) \xrightarrow{p_{*}} \pi_{11}\left(S^{11}\right) \longrightarrow \pi_{10}(S p(2)) \longrightarrow \pi_{10}(S p(3))=0 .
$$

We have that $\pi_{11}\left(S^{11}\right)=\left\{t_{11}\right\} \cong Z$ and $\pi_{10}(S p(2)) \cong Z_{5!}$ by (2.2). Therefore $\pi_{11}(S p(3))$ is generated by [5! $\iota_{11}$ ], that is,

$$
\pi_{11}(S p(n))=\left\{i_{*} \theta_{11}=i_{*}\left[5!\iota_{11}\right]\right\} \cong Z \quad \text { for } \quad n \geq 3 .
$$

Next, $\pi_{10}(S p(2): 2) \cong Z_{8}$ is generated by [ $\nu_{7}$ ] by Theorem 5.1 of [7]. Restricting our considerations to the 2-primary components, we may consider as (cf. Lemma 2.3 of [7])

$$
\begin{equation*}
\Delta \iota_{11}=\left[\nu_{7}\right], \quad \text { and } \quad \Delta(E \alpha)=\left[\nu_{7}\right] \circ \alpha \quad \text { for } \quad \alpha \in \pi_{i}\left(S^{7}: 2\right) . \tag{4.1}
\end{equation*}
$$

Consider the exact sequence $(2.1)_{2}$ :

$$
\begin{aligned}
& \pi_{13}\left(S^{11}\right) \xrightarrow{\Delta} \pi_{12}(S p(2)) \longrightarrow \pi_{12}(S p(3)) \longrightarrow \pi_{12}\left(S^{11}\right) \xrightarrow{\Delta} \pi_{11}(S p(2)) \longrightarrow \\
& \xrightarrow{i_{*}} \pi_{11}(S p(3)) \cong Z,
\end{aligned}
$$

where $\pi_{13}\left(S^{11}\right)=\left\{\eta_{11}^{2}\right\} \simeq Z_{2}, \pi_{12}\left(S^{11}\right)=\left\{\eta_{11}\right\} \simeq Z_{2}$ by [11], $\pi_{12}(S p(2))=$ $\left\{i_{*} \mu_{3}, i_{*} \eta_{3} \varepsilon_{4}\right\} \cong Z_{2} \oplus Z_{2}, \quad \pi_{11}(S p(2))=\left\{i_{*} \varepsilon_{3}\right\}=Z_{2} \quad$ by Theorem 5.1 of [7]. We have

$$
\begin{equation*}
\Delta \eta_{11}=i_{*} \varepsilon_{3}, \tag{4.2}
\end{equation*}
$$

since $i_{*} \pi_{11}(S p(2))=0$. By this relation, we have

$$
\begin{gathered}
\Delta \eta_{11}^{2}=\Delta\left(\eta_{11}\right) \circ \eta_{11}=i_{*} \varepsilon_{3} \eta_{11}=i_{*} \eta_{3} \varepsilon_{4}, \quad \text { by (7.5) of }[11] . \\
\pi_{12}(S p(3))=\left\{\theta_{11} \circ \eta_{11}=i_{*} \mu_{3}\right\} \cong Z_{2}, \\
\pi_{12}(S p(n))=\left\{i_{*} \mu_{3}\right\} \cong Z_{2} \quad \text { for } n \geq 3 .
\end{gathered}
$$

Hence and

Consider the exact sequence :

$$
\begin{aligned}
0=\pi_{15}\left(S^{11}\right) & \longrightarrow \pi_{14}(S p(2): 2) \longrightarrow \pi_{14}(S p(3): 2) \longrightarrow \pi_{14}\left(S^{11}: 2\right) \\
& \xrightarrow{\Delta} \pi_{13}(S p(2)) \longrightarrow \pi_{13}(S p(3)) \xrightarrow{p_{*}} \pi_{13}\left(S^{11}\right) \xrightarrow{\Delta} \cdots .
\end{aligned}
$$

It follows from the above discussion that the last homomorphism $p_{*}$ is trivial. We have that $\pi_{14}(S p(2): 2)=\left\{\left[2 \sigma^{\prime}\right]\right\} \cong Z_{16}, \pi_{13}(S p(2))$ $=\left\{\left[\nu_{7}\right] \circ \nu_{10}, i_{*} \eta_{3} \mu_{4}\right\} \cong Z_{4} \oplus Z_{2}$ by Theorem 5.1 of [7] and $\pi_{14}\left(S^{11}: 2\right)$ $=\left\{\nu_{11}\right\} \cong Z_{8}$. So we have

$$
\pi_{13}(S p(3))=\left\{i_{*} \eta_{3} \mu_{4}\right\} \cong Z_{2}
$$

since $\Delta \nu_{11}=\left[\nu_{7}\right] \circ \nu_{10}$ by (4.1).
As the order of $\Delta \nu_{11}$ is 4 , we have, by Theorem 2.2,

$$
\pi_{14}(S p(3): 2)=\left\{\left[4 \nu_{11}\right]\right\} \cong Z_{32} .
$$

Here note that, for suitable choice of [ $4 \nu_{11}$ ],

$$
\begin{align*}
& i_{*}\left[2 \sigma^{\prime}\right]=2\left[4 \nu_{11}\right], \\
& 315 \Delta \iota_{15} \equiv\left[4 \nu_{11}\right] . \quad \bmod \quad 2\left[4 \nu_{11}\right] . \tag{4.3}
\end{align*}
$$

The exactness of the sequerce

$$
0=\pi_{16}\left(S^{11}\right) \longrightarrow \pi_{15}(S p(2)) \longrightarrow \pi_{15}(S p(3)) \longrightarrow \pi_{15}\left(S^{11}\right)=0,
$$

where $\pi_{15}(S p(2))=\left\{\left[\sigma^{\prime} \eta_{14}\right]\right\} \cong Z_{2}$, implies that

$$
\pi_{15}(S p(3))=\left\{i_{*}\left[\sigma^{\prime} \eta_{14}\right]\right\} \cong Z_{2}
$$

Consider the exact sequence $(2.1)_{3}$ :

$$
\pi_{15}(S p(4)) \longrightarrow \pi_{15}\left(S^{15}\right) \longrightarrow \pi_{14}(S p(3)) \longrightarrow \pi_{14}(S p(4))=0,
$$

where $\pi_{14}(S p(3))=Z_{2 \cdot r!}$ and $\pi_{15}\left(S^{15}\right)=\left\{t_{15}\right\} \simeq Z$. Whence we have

$$
\begin{aligned}
& \pi_{15}(S p(4))=\left\{\theta_{15}=\left[2 \cdot 7!\iota_{15}\right]\right\} \cong Z . \\
& \pi_{15}(S p(n))=\left\{i_{*} \theta_{15}=i_{*}\left[2 \cdot 7!\iota_{15}\right]\right\} \cong Z \quad \text { for } \quad n \geq 4
\end{aligned}
$$

In the exact sequence $(2.1)_{3}$ :

$$
\pi_{17}\left(S^{11}\right) \xrightarrow{\Delta} \pi_{16}(S p(2)) \longrightarrow \pi_{16}(S p(3)) \longrightarrow \pi_{16}\left(S^{11}\right)=0,
$$

we have that $\pi_{16}(S p(2))=\left\{\left[\nu_{7}\right] \circ \nu_{10}^{2},\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{15}\right\} \cong Z_{2} \oplus Z_{2}$ and $\Delta\left(\nu_{7}^{2}\right)=$ $\left[\nu_{7}\right] \circ \nu_{10}^{2}$ for the generator $\nu_{7}^{2}$ of $\pi_{17}\left(S^{11}\right)$. It follows that

$$
\pi_{16}(S p(3))=\left\{i_{*}\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{15}\right\} \cong Z_{2}
$$

Consider the exact sequence $(2.1)_{2}$ :
$\pi_{18}(S p(2)) \longrightarrow \pi_{18}(S p(3)) \longrightarrow \pi_{18}\left(S^{11}\right) \xrightarrow{\Delta} \pi_{17}(S p(2)) \longrightarrow \pi_{17}(S p(3)) \longrightarrow \cdots$,
where $\pi_{17}(S p(2)) \cong Z_{40}, \quad \pi_{18}\left(S^{11}\right) \cong Z_{240}, \quad \pi_{17}(S p(2): 2)=\left\{\left[\nu_{7}\right] \circ \sigma_{10}\right\} \quad$ and $\pi_{18}\left(S^{11}: 2\right)=\left\{\sigma_{11}\right\}$ by [7] and [11].

We have $\Delta \sigma_{11}=\left[\nu_{7}\right] \circ \sigma_{10} \quad$ by (4.1).
The exactness of $(2.1)_{3}$ :

$$
\pi_{18}\left(S^{15}\right) \cong Z_{24} \longrightarrow \pi_{17}(S p(3)) \longrightarrow \pi_{17}(S p(4))=0
$$

implies that $\pi_{17}(S p(3))$ has no 5 -components. Thus the above homomorphism $\Delta$ is an epimorphism. This proves Lemma 3.1.

Since $\Delta \sigma_{11}$ is of order 8 , we have that $\pi_{18}(S p(3): 2) \cong Z_{16}$ is generated by [8 $\sigma_{11}$ ].

It follows easily from the exact sequence (2.1) :

$$
\pi_{18}(S p(4): 2) \longrightarrow \pi_{18}\left(S^{15}: 2\right)=\left\{\nu_{15}\right\} \longrightarrow \pi_{17}(S p(3))=0
$$

that $\pi_{18}(S p(4): 2) \approx Z_{128}$ is generated by $\left[\nu_{15}\right]$.
In the exact sequence $(2.1)_{2}$ :

$$
\pi_{19}(S p(3)) \longrightarrow \pi_{19}\left(S^{11}\right) \longrightarrow \pi_{18}(S p(2): 2)
$$

where $\pi_{19}\left(S^{11}\right)=\left\{\bar{\nu}_{11}, \varepsilon_{11}\right\} \cong Z_{2} \oplus Z_{2}$, we have

$$
\begin{align*}
\Delta\left(\bar{\nu}_{11}+\varepsilon_{11}\right) & =\Delta\left(\eta_{11} \sigma_{11}\right) & & \text { by Lemma } 6.4 \text { of }[12]  \tag{4.4}\\
& =\varepsilon_{3} \sigma_{11} & & \text { by }(4.2) \\
& =0 & &
\end{align*}
$$

Hence $\pi_{19}(S p(3)) \cong \pi_{19}(S p(4)) \cong Z_{2}$ are genarated by [ $\left.\eta_{11} \sigma_{12}\right]$.
Consider the exact sequence (2.1) :

$$
\begin{aligned}
& \pi_{20}\left(S^{19}\right) \xrightarrow{\Delta} \pi_{19}(S p(4)) \xrightarrow{i_{*}} \pi_{19}(S p(5)) \longrightarrow \pi_{19}\left(S^{19}\right) \xrightarrow{\Delta} \pi_{18}(S p(4)) \\
& \longrightarrow \pi_{18}(S p(5))=0 .
\end{aligned}
$$

It follows that $\pi_{19}(S p(5))$ is generated by [9! $\iota_{19}$ ], since $\pi_{18}(S p(4))$ $\cong Z_{9!}$ by Theorem 2.2. And we have

$$
\begin{equation*}
\Delta \eta_{19}=i_{*}\left[\eta_{11} \sigma_{12}\right] \tag{4.5}
\end{equation*}
$$

for the generator $\eta_{19}$ of $\pi_{20}\left(S^{19}\right)$, since $\pi_{19}(S p(5)) \cong Z$ implies the triviality of $i_{*} \pi_{19}(S p(4))$. Thus

$$
\pi_{19}(S p(n))=\left\{i_{*} \theta_{19}=i_{*}\left[9!\iota_{19}\right]\right\} \cong Z, \quad \text { for } \quad n \geq 5
$$

Next consider the homomorphism $\Delta: \pi_{21}\left(S^{11}\right) \rightarrow \pi_{20}(S p(2))$, where $\pi_{21}\left(S^{11}: 2\right)=\left\{\sigma_{11} \nu_{18}, \eta_{11} \mu_{12}\right\}$ and $\pi_{20}(S p(2))=\left\{\left[\nu_{7}\right] \circ \sigma_{10} \nu_{17}, i_{*} \bar{\mu}_{3}, i_{*} \eta_{3} \mu_{4} \sigma_{13}\right\}$. To prove Lemma 3.2 it is sufficient to show the following two relations:

$$
\begin{aligned}
& \Delta\left(\sigma_{11} \nu_{17}\right)=\left[\nu_{7}\right] \circ \sigma_{10} \nu_{17} \\
& \Delta\left(\eta_{11} \mu_{12}\right)=i_{*} \eta_{3} \mu_{4} \sigma_{13} .
\end{aligned}
$$

The first relation is easily obtained by (4.1). Since we have $\Delta\left(\eta_{11} \mu_{12}\right)=i_{*} \varepsilon_{3} \mu_{11}$ by (4.2), we shall show

$$
i_{*} \varepsilon_{3} \mu_{11}=i_{*} \eta_{3} \mu_{4} \sigma_{13} \quad \text { in } \quad \pi_{20}(S p(2))
$$

in order to prove the second relation.
By Theorem 14.1 of [11] we have $\varepsilon_{\mu}=\eta \mu \sigma$. As the kernel of $E^{\infty}: \pi_{20}\left(S^{3}: 2\right) \rightarrow\left(G^{17}: 2\right)$ is $\bar{\varepsilon}^{\prime}$, we obtain

$$
i_{*} \varepsilon_{3} \mu_{11} \equiv i_{*} \eta_{3} \mu_{4} \sigma_{13} \quad \bmod i_{*} \bar{\varepsilon}^{\prime} \quad \text { in } \quad \pi_{20}(S p(2))
$$

Here $i_{*} \bar{\varepsilon}^{\prime}=0$ in $\pi_{20}(S p(2))$. This shows the above relation.
In the exact sequence $(2.1)_{2}$ :

$$
\pi_{12}\left(S^{11}\right) \longrightarrow \pi_{20}(S p(2)) \xrightarrow{i_{*}} \pi_{20}(S p(3)) \xrightarrow{p_{*}} \pi_{20}\left(S^{11}\right) \xrightarrow{\Delta} \pi_{19}(S p(2)),
$$

we have that $p_{*}\left(\left[\eta_{11} \sigma_{12}\right] \circ \eta_{19}\right)=\eta_{11} \sigma_{12} \eta_{19}=\nu_{11}^{3}+\eta_{11} \varepsilon_{12} \neq 0$. So, considering $i_{* \pi_{20}}(S p(2))=\left\{i_{*} \bar{\mu}_{3}\right\}$, we see that

$$
\pi_{20}(S p(3))=\left\{i_{*}\left[\bar{\mu}_{3},\left[\eta_{11} \sigma_{12}\right] \circ \eta_{19}\right\} \cong Z_{2} \oplus Z_{2}\right.
$$

We have also

$$
\pi_{20}(S p(4))=\left\{i_{*} \mu_{3}, i_{*}\left[\eta_{11} \sigma_{12}\right] \circ \eta_{19}\right\} \simeq Z_{2} \oplus Z_{2}
$$

which follows from the exactness of the sequence $(2.1)_{3}$ :

$$
\pi_{21}\left(S^{15}\right) \xrightarrow{\Delta} \pi_{20}(S p(3)) \longrightarrow \pi_{20}(S p(4)) \longrightarrow \pi_{20}\left(S^{15}\right)=0,
$$

since $\Delta\left(\nu_{15}^{2}\right)=\Delta\left(\nu_{15}\right) \circ \nu_{17}\left(\pi_{17}(S p(3)) \circ \nu_{17}=0\right.$ for a generator $\nu_{15}^{2}$ of $\pi_{21}\left(S^{15}\right)$.

Consider the exact sequence $(2.1)_{4}$ :

$$
\pi_{21}\left(S^{19}\right) \xrightarrow{\Delta} \pi_{20}(S p(4)) \longrightarrow \pi_{20}(S p(5)) \longrightarrow \cdots,
$$

where $\pi_{21}\left(S^{19}\right)=\left\{\eta_{19}^{2}\right\} \cong Z_{2}$ and $\pi_{20}(S p(4))=\left\{i_{*}\left[\eta_{11} \sigma_{12}\right] \circ \eta_{19}, i_{*} \bar{\mu}_{3}\right\}$.
We have $\Delta\left(\eta_{19}^{2}\right)=i_{*}\left[\eta_{11} \sigma_{12}\right] \circ \eta_{19}$ by (4.5). Thus

$$
\pi_{20}(S p(5))=\left\{i_{*} \bar{\mu}_{3}\right\} \cong Z_{2}
$$

and

$$
\pi_{20}(S p(n))=\left\{i_{*} \theta_{19} \circ \eta_{19}=i_{*} \bar{\mu}_{3}\right\} \cong Z_{2}, \quad \text { for } n \geq 5
$$

By Theorem 2.1 we have

$$
\pi_{21}(S p(5))=\left\{i_{*} \eta_{3} \bar{\mu}_{4}\right\} \cong Z_{2},
$$

since $\eta_{3} \bar{\mu}_{4}=\bar{\mu}_{3} \eta_{20}$. Hence we have

$$
\pi_{21}(S p(n))=\left\{i_{*} \theta_{19} \circ \eta_{19}^{2}=i_{*} \eta_{3} \overline{\mu_{4}}\right\} \cong Z_{2}, \quad \text { for } \quad n \geq 5
$$

For $\Delta: \pi_{22}\left(S^{11}\right) \rightarrow \pi_{21}(S p(2))$ and $p_{*}: \pi_{21}(S p(2)) \rightarrow \pi_{21}\left(S^{7}\right)$ we have

$$
\begin{aligned}
p_{*} \Delta\left(\zeta_{11}\right) & =\nu_{7} \circ \zeta_{10} & & \text { by }(4.1) \\
& =E^{2} \sigma^{\prime \prime \prime} \circ \sigma_{14} & & \text { by Lemma } 9.2 \text { of }[11] \\
& =4\left(\sigma^{\prime} \sigma_{14}\right) & & \text { by Lemma } 5.14 \text { of }[11] \\
& \in \pi_{21}\left(S^{7}: 2\right) & &
\end{aligned}
$$

So we obtain, by the exactness of (2.1) ${ }_{1}$,

$$
\Delta \zeta_{11}=4\left[\sigma^{\prime} \sigma_{14}\right] \quad \text { or } \quad \Delta \zeta_{11}=4\left[\sigma^{\prime} \sigma_{14}\right]+i_{*} \eta_{3} \bar{\mu}_{4} .
$$

In either case, $\Delta \zeta_{11}$ is of order 8 in $\pi_{21}(S p(2))$.
Assume that $\Delta \zeta_{11}=4\left[\sigma^{\prime} \sigma_{14}\right]+i_{*} \eta_{3} \bar{\mu}_{4}$, then we have

$$
\pi_{21}(S p(3): 2)=\left\{i_{*}\left[\sigma^{\prime} \circ \sigma_{14}\right]\right\} \cong Z_{8}
$$

But this contradicts that $\pi_{21}(S p(5))$ is generated by $\theta_{19} \circ \eta_{19}^{2}=i_{*} \eta_{3} \bar{\mu}_{4}$.
Whence we have $\Delta \zeta_{11}=4\left[\sigma^{\prime} \sigma_{14}\right]$ and have proved Lemma 3.3.
Easily we have

$$
\pi_{21}(S p(3): 2)=\left\{\left[\sigma^{\prime} \sigma_{14}\right], i_{*} \eta_{3} \bar{弓}_{4}\right\} \simeq Z_{4} \oplus Z_{2} .
$$

We shall prove Lemma 3.4. We obtain by use of (4.3)

$$
\Delta\left(2 \sigma_{15}\right)=2\left[4 \nu_{11}\right] \circ \sigma_{14}=\left[2 \sigma^{\prime}\right] \circ \sigma_{14} .
$$

We have that

$$
p_{*}\left(\left[2 \sigma^{\prime}\right] \circ \sigma_{14}\right)=p_{*}\left(2\left[\sigma^{\prime} \sigma_{14}\right]\right)=2 \sigma^{\prime} \sigma_{14} .
$$

Hence we get, in $\pi_{21}(S p(2))$,

$$
\left[2 \sigma^{\prime}\right] \circ \sigma_{14} \equiv 2\left[\sigma^{\prime} \sigma_{14}\right] \quad \bmod \quad\left\{i_{*} \eta_{3} \bar{\mu}_{4}, 8\left[\sigma^{\prime} \sigma_{14}\right]\right\}
$$

since the kernel of $p_{*}: \pi_{21}(S p(2)) \rightarrow \pi_{21}\left(S^{7}\right)$ is generated by $i_{*} \eta_{3} \bar{\mu}_{4}$ and $8\left[\sigma^{\prime} \sigma_{14}\right]$. So in $\pi_{21}(S p(3))$

$$
\left[2 \sigma^{\prime}\right] \circ \sigma_{14} \equiv 2\left[\sigma^{\prime} \sigma_{14}\right] \quad \bmod \quad i_{*} \eta_{3} \bar{\mu}_{4}
$$

Thus the order of $\Delta \sigma_{15}$ is 4 .
Consider the homomorphism :

$$
\pi_{22}\left(S^{15}: 3\right) \xrightarrow{\Delta} \pi_{21}(S p(3): 3) \xrightarrow{p_{*}} \pi_{21}\left(S^{11}: 3\right) .
$$

The last homomorphism $p_{*}$ is already known to be isomorphic. By Proposition 13.6 and Theorem 13.9 of [11] we have that

$$
\pi_{22}\left(S^{15}: 3\right)=\left\{\alpha_{2}(15)\right\} \cong Z_{3} \quad \text { and } \quad \pi_{21}\left(S^{11}: 3\right)=\left\{\beta_{1}(11)\right\} \cong Z_{3}
$$

We have

$$
\begin{array}{rlrl}
p_{*}\left(\Delta\left(\alpha_{2}(15)\right)\right) & =\left(p_{*}\left(\Delta \iota_{15}\right)\right) \circ \alpha_{2}(14), & & \text { since } \alpha_{2}(15) \text { is a suspension } \\
& \text { element } \\
& \subset \pi_{14}\left(S^{11}: 3\right) \circ \alpha_{2}(14) & & \\
& =\left\{\alpha_{1}(11) \circ \alpha_{2}(14)\right\} & & \text { by Proposition } 13.6 \text { of }[11] \\
& =\left\{3 \beta_{1}(11)\right\} & & \text { by Lemma } 13.8 \text { of }[11] \\
& =0 . & &
\end{array}
$$

Thus $\Delta\left(\alpha_{2}(15)\right)=0$. As $\pi_{21}(S p(3))$ has no 5 -components, we have proved Lemma 3.4.

Consider the exact sequence $(2.1)_{3}$ :

$$
\pi_{22}\left(S^{15}: 2\right) \xrightarrow{\Delta} \pi_{21}(S p(3): 2) \longrightarrow \pi_{21}(S p(4): 2) \xrightarrow{p_{*}} \pi_{21}\left(S^{15}: 2\right),
$$

where $\pi_{21}(S p(3): 2) \cong Z_{4} \oplus Z_{2}=\left\{\left[\sigma^{\prime} \sigma_{14}\right], i_{*} \eta_{3} \bar{L}_{4}\right\} . \quad \pi_{21}\left(S^{15}\right) \cong Z_{2}=\left\{\nu_{15}^{2}\right\}$.

We have known in $\S 3$ that $p_{*}$ is an epimorphism and the order of the image of $\Delta$ is 4 . It follows that $\pi_{21}(S p(4): 2) \cong Z_{2} \oplus Z_{2}$ is generated by $\left[\nu_{15}\right] \circ \nu_{18}$ and $i_{*} \eta_{3} \bar{\mu}_{4}$.

Next we shall prove Lemma 3.5. We have, for $p_{*}: \pi_{22}(S p(2))$ $\rightarrow \pi_{22}\left(S^{7}\right)$,

$$
\begin{aligned}
p_{*} \Delta \theta^{\prime} & =p_{*} \Delta\left\{\sigma_{11}, 2 \nu_{18}, \eta_{21}\right\}_{1} & & \text { (see page 141 of [11]) } \\
& <p_{*}\left\{\Delta \sigma_{11}, 2 \nu_{17}, \eta_{20}\right\} & & \text { by Theorem 5.2 in 5 } \\
& \subset\left\{p_{*} \Delta \sigma_{11}, 2 \nu_{17}, \eta_{20}\right\} & & \text { by Proposition 1.2 of [11] } \\
& =\left\{\nu_{7} \sigma_{10}, 2 \nu_{17}, \eta_{20}\right\} & & \text { by (4.1) } \\
& >\left\{\nu_{7} \sigma_{10} \nu_{17}, 2 \iota_{20}, \eta_{20}\right\} & & \text { by Proposition 1.2 of [11] } \\
& =\left\{\sigma^{\prime} \nu_{14}^{2}, 2 \iota_{20}, \eta_{20}\right\} & & \text { by (7. 19) of [11] } \\
& >\sigma^{\prime}\left\{\nu_{14}^{2}, 2 \iota_{20}, \eta_{20}\right\} & & \text { by Proposition 1.2 of [11] } \\
& \ni \sigma^{\prime} \varepsilon_{14} & & \text { by (6.1) of [11]. }
\end{aligned}
$$

We have $p_{*} \Delta \theta^{\prime} \equiv \sigma^{\prime} \varepsilon_{14} \bmod \pi_{21}\left(S^{7}\right) \circ \eta_{21}=\left\{\sigma^{\prime} \bar{\nu}_{14}+\sigma^{\prime} \varepsilon_{14}, \kappa_{7} \eta_{21}\right\}$. By (10.23) of [11] we have $\kappa_{9} \eta_{23}=\bar{\varepsilon}_{9}$. The kernel of $E^{2}: \pi_{22}\left(S^{7}: 2\right)$ $\rightarrow \pi_{24}\left(S^{9}: 2\right)$ is generated by $\sigma^{\prime} \bar{\nu}_{14}$ and $\sigma^{\prime} \varepsilon_{14}$. So we have $\kappa_{7} \eta_{21}$ $=\bar{\varepsilon}_{7}+a \sigma^{\prime} \bar{\nu}_{14}+b \sigma^{\prime} \varepsilon_{14}$, where $a, b=0,1$. Thus we obtain

$$
p_{*} \Delta \theta^{\prime}=\sigma^{\prime} \varepsilon_{14}+x\left(\sigma^{\prime} \bar{\nu}_{14}+\sigma^{\prime} \varepsilon_{14}\right)+y\left(\bar{\varepsilon}_{7}+a \sigma^{\prime} \bar{\nu}_{14}+b \sigma^{\prime} \varepsilon_{14}\right),
$$

where $x, y=0,1$. Apply the boundary homomorphism $\Delta: \pi_{22}\left(S^{7}\right)$ $\rightarrow \pi_{21}\left(S^{3}\right)$ to the above equality, where $\Delta\left(\bar{\varepsilon}_{7}\right)=\nu^{\prime} \bar{\varepsilon}_{6} \neq 0$ and $\Delta\left(\sigma^{\prime} \varepsilon_{14}\right)$ $=\Delta\left(\sigma^{\prime} \bar{\nu}_{14}\right)=0$ by Proposition 3.2 of [7], and $\Delta p_{*} \Delta \theta^{\prime}=0$. It follows that $\Delta \theta^{\prime}=\left[\sigma^{\prime} \varepsilon_{14}\right]+x\left(\left[\sigma^{\prime} \bar{\nu}_{14}\right]+\left[\sigma^{\prime} \varepsilon_{14}\right]\right)=\left[\sigma^{\prime} \varepsilon_{14}\right]$ or $\left[\sigma^{\prime} \bar{\nu}_{14}\right]$.

In either case we have proved Lemma 3.5. Assume that, $x=0$, then, $\Delta \theta^{\prime}=\left[\sigma^{\prime} \varepsilon_{14}\right]$. Consider the exact sequence (2.1) $)_{2}$ :

$$
\begin{equation*}
\pi_{24}\left(S^{11}\right) \longrightarrow \pi_{23}(S p(2)) \longrightarrow \pi_{23}(S p(3)) \xrightarrow{p_{*}} \pi_{23}\left(S^{11}\right), \tag{4.6}
\end{equation*}
$$

where $\quad \pi_{24}\left(S^{11}\right) \cong Z_{6} \oplus Z_{2}, \quad \pi_{24}\left(S^{11}: 2\right)=\left\{\theta^{\prime} \eta_{23}, \sigma_{11} \nu_{18}^{2}\right\}, \quad \pi_{23}(S p(2)) \cong Z_{2} \oplus Z_{2}$ $\oplus Z_{2}=\left\{\left[\sigma^{\prime} \mu_{14}\right],\left[\sigma^{\prime} \eta_{14}\right] \circ \varepsilon_{15},\left[\nu_{7}\right] \circ \sigma_{10} \nu_{17}^{2}\right\}$ and $p_{*}$ is trivial by Lemma 3. 5.

We have

$$
\begin{array}{rlr}
\Delta\left(\theta^{\prime} \eta_{23}\right) & =\left[\sigma^{\prime} \varepsilon_{14}\right] \circ \eta_{22} & \text { by the assumption } \\
& =\left[\sigma^{\prime} \eta_{14}\right] \circ \varepsilon_{15} & \\
\Delta\left(\sigma_{11} \nu_{18}^{2}\right) & =\left[\nu_{7}\right] \circ \sigma_{10} \nu_{17}^{2} & \text { by (4.1). }
\end{array}
$$

Therefore $\pi_{23}(S p(2)) / \Delta \pi_{24}\left(S^{11}\right) \cong Z_{2}$ and $\pi_{23}(S p(3)) \cong Z_{2}$. But this contradicts to the result obtained in $\S 3$. Therefore $x=1$, i.e.,

$$
\Delta \theta^{\prime}=\left[\sigma^{\prime} \bar{\nu}_{14}\right]
$$

Now it is obvious that $\pi_{22}(S p(3): 2) \cong Z_{32} \oplus Z_{2}$ is generated by $i_{*}\left[\rho^{\prime \prime}\right]$ and $i_{*}\left[\sigma^{\prime} \varepsilon_{14}\right]$.

It follows from Lemma 3.4 that $\pi_{22}(S p(4): 2) \cong Z_{128}$ is generated by $\left[4 \sigma_{15}\right]$.

Since $\Delta \nu_{19}=\left[\nu_{15}\right] \circ \nu_{18}$ is of order 2 in the exact sequence

$$
\pi_{22}(S p(5)) \xrightarrow{p_{*}} \pi_{22}\left(S^{19}\right) \longrightarrow \pi_{21}(S p(4)),
$$

we have that $\pi_{22}(S p(5): 2) \cong Z_{512}$ is generated by [ $2 \nu_{19}$ ].
In the exact sequence (4.6) we have that $\Delta\left(\theta^{\prime} \eta_{23}\right)=\left[\sigma^{\prime} \bar{\nu}_{14}\right] \circ \eta_{22}$ and $\Delta\left(\sigma_{11} \nu_{18}^{2}\right)=\left[\nu_{7}\right] \circ \sigma_{10} \nu_{17}^{2}$. It follows immediately that $\pi_{23}(S p(3))$ $\cong Z_{2} \oplus Z_{2}$ is generated by $i_{*}\left[\sigma^{\prime} \mu_{14}\right]$ and $i_{*}\left[\sigma^{\prime} \eta_{14}\right] \circ \varepsilon_{15}$.

The generators of $\pi_{23}(S p(4))$ and $\pi_{23}(S p(5))$ are already stated in $\S 3$.

## § 5. Boundary homomorphism and secondary composition

Let $Y$ be a $C W$-complex with a base point $y_{0}$. Let $S^{n} Y=Y \mathbb{X} S^{n}$ the reduced join of $Y$ and the unit $n$-spheres $S^{n}$ and let $E^{n} Y=Y \mathbb{*} E^{n}$, where $E^{n}$ is the unit $n$-cube bounding $S^{n-1}$.

For topological pairs $\left(A, B, a_{0}\right)$ and ( $C, D, c_{0}$ ), we denote by $\pi(A, B ; C, D)$ the set of the homotopy classes of maps $f:\left(A, B, a_{0}\right)$ $\rightarrow\left(C, D, c_{0}\right)$.

We have the following exact sequence for an arbitrary topological space $X$ and its subspace $A$ with a base point $a_{0}$, as usual:

$$
\cdots \longrightarrow \pi\left(S^{n_{+1}} Y, X\right) \xrightarrow{j_{*}} \pi\left(E^{n_{+1}} Y, S^{n} Y ; X, A\right) \xrightarrow{\partial} \pi\left(S^{n} Y, X\right) \longrightarrow \cdots .
$$

Let $p: X \rightarrow B$ be a fibre map with a fibre $A=p^{-1}\left(b_{0}\right), b_{0} \in B$. Then $p$ induces isomorphims $p_{*}: \pi\left(E^{n+1} Y, S^{n} Y ; X, A\right) \cong \pi\left(S^{n+1} Y, B\right)$ for all $n \geq 0$.

Define a boundary homomorphism $\Delta: \pi\left(S^{n+1} Y, B\right) \rightarrow \pi\left(S^{n} Y, A\right)$ by the commutativity of the following diagram:


For this $\Delta$, we have the following
Theorem 5.1. Let $Z$ be a $C W$-complex with a base point $z_{0}$. Then $\Delta(\alpha \circ E \beta)=\Delta \alpha \circ \beta$ for $\alpha \in \pi\left(S^{n+1} Y, B\right)$ and $\beta \in \pi\left(S^{n} Z, S^{n} Y\right)$.

This theorem is, as it were, a generalization of (2.2) in [7], but the proof is easy and omitted.

We shall prove the following theorem, which is the purpose of this section.

Theorem 5.2. Assume that $\alpha \circ E \beta=\beta \circ \gamma=0$ for $\alpha \in \pi\left(S^{n+1} Y, B\right)$, $\beta \in \pi\left(S^{n} Z, S^{n} Y\right)$ and $\gamma \in \pi\left(S^{n} W, S^{n} Z\right)$, where $Y, Z, W$ are $C W$-complexes with base points. Then we have

$$
\Delta\{\alpha, E \beta, E \gamma\}_{1} \subset\{\Delta \alpha, \beta, \gamma\}
$$

Proof. We denote by Ext ( $\alpha$ ) an extension of $\alpha: S^{n+1} Y \bigcup_{n \beta \beta} C S^{n+1} Z$ $\rightarrow B$ and denote by $\operatorname{Coext}(\gamma)$ a coextension of $\gamma: S^{n_{+1}} W \rightarrow$ $S^{n+1} Y \bigcup_{\nexists \beta} C S^{n+1} Z$.

By Proposition 1.7 of [11], any element of $\{\alpha, E \beta, E \gamma\}_{1}$ can be represented as $\operatorname{Ext}(\alpha) \circ E(\operatorname{Coext}(\gamma))$. By Theorem 5.1 we obtain

$$
\Delta(\operatorname{Ext}(\alpha) \circ E(\operatorname{Coext}(\gamma)))=\Delta(\operatorname{Ext}(\alpha)) \circ \operatorname{Coext}(\gamma)
$$

We have a commutative diagram, by naturality,

where $i_{1}$ and $i_{2}$ are inclusions: $S^{n+1} Y \rightarrow S^{n+1} Y \bigcup_{\mu \beta} C S^{n+1} Z$ and $S^{n} Y \rightarrow S^{n} Y \bigcup_{\beta} C S^{n} Z$ respectively. Therefore

$$
\begin{aligned}
i_{2}^{*} \Delta(\operatorname{Ext}(\alpha)) & =\Delta\left(i_{1}^{*}(\operatorname{Ext}(\alpha))\right) \\
& =\Delta\left(\operatorname{Ext}(\alpha) \circ i_{1}\right) \\
& =\Delta(\alpha)
\end{aligned}
$$

by the definition of the extension. This shows that $\Delta(\operatorname{Ext}(\alpha))$ is an extension of $\Delta \alpha$, that is,

$$
\Delta(\operatorname{Ext}(\alpha) \circ E(\operatorname{Coext}(\gamma)))=\operatorname{Ext}(\Delta \alpha) \circ \operatorname{Coext}(\gamma)
$$

Therefore we have

$$
\Delta\{\alpha, E \beta, E \gamma\}_{1} \subset\{\Delta \alpha, \beta, \gamma\}
$$

since the indeterminacy subgroups of the right hand side include those of the left hand side.
q.e.d.

We shall prove the following special lemma which has been used in the previous sections.

Lemma 5. 3. For the homomorphisms $\Delta: \pi_{24}\left(S^{23}\right) \rightarrow \pi_{23}(S p(5))$,

$$
\begin{gathered}
i_{*}: \pi_{23}(S p(4)) \stackrel{( }{\leftrightarrows} \pi_{23}(S p(5)) \text { and } p_{*}: \pi_{23}(S p(4)) \rightarrow \pi_{23}\left(S^{15}\right) \text {, we have } \\
p_{*} i_{*}^{-1} \Delta\left(\eta_{23}\right)=\bar{\nu}_{15} .
\end{gathered}
$$

Proof. The following diagram is commutative :
where $S p(4) / S p(3)=S^{15}$ and $\Delta$ in the lower sequence is the boundary homomorphism for the bundle ( $\left.S p(6) / S p(3), p, S^{23}=S p(6) / S p(5)\right)$. we remark that the above two injection homomorphisms are isomorphisms since $\pi_{24}\left(S^{19}\right)=\pi_{23}\left(S^{19}\right)=0 . S p(5) / S p(3)$ is a bundle over $S^{19}$ with a fibre $S^{15}$. Then there is a cellular decomposition $S^{15} \cup e^{19} \cup e^{34}$ of $S p(5) / S p(3)$ such that the class of the attaching map of $e^{19}$ is $\alpha=\Delta\left(\iota_{19}\right)\left(\Delta: \pi_{19}\left(S^{19}\right) \rightarrow \pi_{18}\left(S^{15}\right)\right)$. Furthermore $S p(6) / S p(3)$ has a cellular decomposition $S p(5) / S p(3) \cup e^{24} \cup e^{38} \cup \cdots$ such that the class of the attaching map of $e^{23}$ is $\Delta\left(t_{23}\right) \in \pi_{22}(S p(5) / S p(3))$.

Here we consider the homotopy groups of dimension up to 24. Then we may consider that

$$
S p(5) / S p(3)=S^{15} \bigcup_{a} e^{19} \text { and } S p(6) / S p(3)=S^{15} \bigcup_{a} e^{19} \bigcup_{\Delta{ }^{\prime} 23} e^{23}
$$

We see in $\S 2$ and $\S 3$ that $\Delta: \pi_{19}\left(S^{19}\right) \rightarrow \pi_{18}(S p(4))$ and
$p_{*}: \pi_{18}(S p(4)) \rightarrow \pi_{18}\left(S^{15}\right)$ are epimorphisms. It follows that $\Delta: \pi_{19}\left(S^{19}\right)$ $\rightarrow \pi_{18}\left(S^{15}\right)$ is an epimorphism and $\alpha=\Delta\left(\iota_{19}\right)$ is a generator of $\pi_{18}\left(S^{15}\right) \cong Z_{24}$.

We see also in $\S 2$ and $\S 3$ that $\Delta: \pi_{23}\left(S^{23}\right) \rightarrow \pi_{22}(S p(5))$ is an epimorphism and $p_{*} \pi_{22}(S p(5))=6 \pi_{22}\left(S^{19}\right)=\left\{2 \nu_{19}\right\} \simeq Z_{4}$. It follows $p_{*} \Delta\left(\iota_{23}\right)= \pm 2 \nu_{19}$ for the above $\Delta \iota_{23}$. Then we have that $\Delta t_{23}$ is a coextension

$$
\Delta \iota_{23}=\operatorname{Coext}\left( \pm 2 \nu_{18}\right) \in \pi_{22}\left(S^{15} \bigcup_{a} e^{19}\right)
$$

of $\pm 2 \nu_{18}$. Since $E^{10}: \pi_{8}\left(S^{5}\right) \rightarrow \pi_{18}\left(S^{15}\right)$ is an isomorphism, there exists an element (generator) $\alpha^{\prime}$ of $\pi_{8}\left(S^{5}\right)$ such that $E^{10} \alpha^{\prime}=\alpha$. $S^{15} \bigcup_{\alpha} e^{19}$ is homotopy equivalent to 10 -fold suspension $S^{10}\left(S^{5} \bigcup_{\alpha^{\prime}} e^{9}\right)$ of $S^{5} \bigcup_{\alpha^{\prime}} e^{9}$. Thus we may consider that $S^{15} \bigcup_{\alpha} e^{19}=S^{10}\left(S^{5} \bigcup_{\alpha^{\prime}} e^{9}\right)$.

Since $\alpha^{\prime} \circ\left( \pm 2 \nu_{8}\right) \in 2 \pi_{11}\left(S^{5}\right)=0$, there exists a coextension

$$
\operatorname{Coext}\left( \pm 2 \nu_{8}\right) \in \pi_{12}\left(S^{5} \cup e^{9}\right)
$$

of $\pm 2 \nu_{8}$. Then we have

$$
\Delta \iota_{23}=\operatorname{Coext}\left( \pm 2 \nu_{18}\right)=E^{10} \operatorname{Coext}\left( \pm 2 \nu_{8}\right)+i_{*} \beta
$$

for some element $\beta \in \pi_{22}\left(S^{15}\right)$ and the injection $i: S^{15} \subset S^{15} \bigcup_{\alpha} e^{19}$, since Coext $\left( \pm 2 \nu_{18}\right)$ and $E^{10}\left(\operatorname{Coext}\left( \pm 2 \nu_{8}\right)\right)$ are both coextensions of the same element $\pm 2 \nu_{18}$.

Now consicer $\Delta \eta_{23}$. Then

$$
\begin{aligned}
\Delta \dot{\eta}_{23} & =\left(\Delta t_{23}\right) \circ \eta_{22} \\
& =\left(E^{10} \operatorname{Coext}\left( \pm 2 \nu_{8}\right)+i_{*} \beta\right) \circ \eta_{22} \\
& =E^{10}\left(\operatorname{Coext}\left( \pm 2 \nu_{8}\right) \circ \eta_{12}\right)+i_{*}\left(\beta \circ \eta_{22}\right) \\
& \in E^{10} i_{*}\left\{\alpha, \pm 2 \nu_{8}, \eta_{11}\right\} i_{1}+i_{*}\left(\beta \circ \eta_{22}\right) \quad \text { by Proposition } 1.8 \text { of }[11] .
\end{aligned}
$$

$\alpha$ and $\nu_{5}$ generates $\pi_{8}\left(S^{5}\right) \cong Z_{24}$ and $\pi_{8}\left(S^{5}: 2\right) \cong Z_{8}$. Thus there is an odd integer $t$ such that $t \alpha= \pm \nu_{5}$. Then, by (6.1) of [11],

$$
\begin{array}{rlr}
\left\{\alpha, \pm 2 \nu_{8}, \eta_{11}\right\}_{1} & =\left\{\alpha, \pm 2 t \nu_{8}, \eta_{11}\right\}_{1} & \\
& \equiv\left\{ \pm t \alpha, 2 \nu_{8}, \eta_{11}\right\}_{1} & \bmod G \\
& =\left\{\nu_{5}, 2 \nu_{8}, \eta_{11}\right\}_{1} & \\
& \equiv \varepsilon_{5} & \bmod G,
\end{array}
$$

where $G=\alpha \circ E \pi_{12}\left(S^{8}: 2\right)+\pi_{12}\left(S^{5}: 2\right){ }^{\circ} \eta_{12}=\left\{\sigma^{\prime \prime \prime} \circ \eta_{12}\right\}=0$ (cf. [11]). We
have obtained

$$
\Delta t_{23}=i_{*}\left(\varepsilon_{15}+\beta \circ \eta_{22}\right)
$$

Next consider about $\beta$. Assume that $\beta \notin E^{8} \pi_{14}\left(S^{7}\right)=2 \pi_{22}\left(S^{15}\right)$. Then $\beta \in \sigma_{15}+2 \pi_{22}\left(S^{15}\right)$ and we have by Proposition 8.1 of [11]

$$
S q^{8} \neq 0 \quad \text { in } \quad S^{15} \bigcup_{\beta} e^{23}
$$

Note that in $S q^{8}=0$ in $S^{15} \bigcup_{a} e^{19} \bigcup_{\gamma} e^{23}, \gamma=E^{10} \operatorname{Coext}\left( \pm 2 \nu_{8}\right)$, since it is a 10 -fold suspension of $S^{5} \bigcup_{\alpha^{\prime}} e^{9} \bigcup_{\gamma^{\prime}} e^{13}, \gamma^{\prime}=\operatorname{Coext}\left( \pm 2 \nu_{8}\right)$. Then it is verified without difficulty that
and

$$
S q^{8} \neq 0 \quad \text { in } \quad S^{15} \bigcup_{\alpha} e^{19} \bigcup_{\Delta \Delta_{23}} e^{23}
$$

Similarly we have $S q^{8} H^{15}\left(S p(6) / S p(3) ; Z_{2}\right)=0$ if $\beta \in E^{8} \pi_{14}\left(S^{7}\right)=2 \pi_{22}\left(S^{15}\right)$. The projection homomorphisms

$$
p_{*}: H^{i}\left(S p(6) / S p(3) ; Z_{2}\right) \longrightarrow H^{i}\left(S p(6) ; Z_{2}\right)
$$

are isomorphisms for $i=15$ and 23 since $H^{*}\left(S p(6) ; Z_{2}\right) \cong H^{*}\left(S p(3) ; Z_{2}\right)$ $\otimes H^{*}\left(S p(6) / S p(3) ; Z_{2}\right)$ and $H^{8}\left(S p(3) ; Z_{2}\right)=0$, By Corollary 13.5 of [1],

$$
S q^{8}\left(v_{4}\right)=b_{2}^{4.12} v_{6},
$$

where $v_{4}$ and $v_{6}$ are generators of $H^{15}\left(S p(6) ; Z_{2}\right) \cong Z_{2}$ and $H^{23}\left(S p(6) ; Z_{2}\right) \cong Z_{2}$, and $b_{2}^{4,12}$ is the coefficient of $\sigma_{12}$ in the expression

$$
\sum x_{1}^{2} \cdots x_{4}^{2} x_{5} \cdots x_{8}=B_{p}^{4,12}\left(\sigma_{1}, \cdots, \sigma_{12}\right) \equiv \sigma_{4} \cdot \sigma_{8}+\sigma_{12} \quad \bmod 2
$$

Thus $S q^{8}\left(v_{4}\right)=v_{6}$ and $S q^{8} H^{15}\left(S p(6) / S p(3) ; Z_{2}\right) \neq 0$. By the above discussion, we have obtained

$$
\beta \equiv \sigma_{15} \bmod \quad 2 \pi_{22}\left(S^{15}\right)
$$

Since $2 \pi_{22}\left(S^{15}\right) \circ \eta_{22}=\pi_{22}\left(S^{15}\right) \circ 2 \eta_{22}=0$,

$$
\begin{aligned}
\Delta \eta_{23} & =i_{*}\left(\varepsilon_{15}+\beta \circ \eta_{22}\right) \\
& =i_{*}\left(\varepsilon_{15}+\sigma_{15} \eta_{22}\right) \\
& =i_{*} \bar{\nu}_{15} .
\end{aligned}
$$

q.e.d.

Kyoto University

## BIBLIOGRAPHY

[1] A. Borel and J.-P. Serre : Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math., 75 (1953), 409-448.
[2] A. Borel and F. Hirzebruch : Characteristic classes and homogeneous spaces, II, Amer. J. Math., 80 (1958), 458-538.
[3] R. Bott : The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.

1. 4] B. Harris : Some calculations of homotopy groups of symmetric spaces, Trans. of Amer. Math. Soc., 106 (1963), 174184.
「5」 M. A. Kervaire : Some nonstable homotopy groups of Lie groups, Illinois Jour. Math., 4 (1960), 161-169.
[6] M. Mimura and H. Toda : The $(n+20)$-th homotopy groups of $n$-spheres, Jour. of Math. of Kyoto Univ. 1 (1963), 37-58.
[7] M. Mimura and H. Toda : The homotopy groups of $S p(2), S U(3)$ and $S U(4)$, Jour. of Math. of Kyoto Univ., 2 (1964), 217-250.
[8] J.-P. Serre : Groupes d'homotopie et classes des groupes abeliéns, Ann. of Math., 58 (1953), 258-294.
[9] N. E. Steenrod : The topology of fibre bundles, Princeton (1951).
[10] H. Toda : A topological proof of theorems of Bott and Borel-Hirzebrugh for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto, 32 (1959), 103-119.
[11] H. Toda : Composition methods in homotopy groups of spheres, Ann. of Math. Studies, No. 49, Princeton (1962).
