Note on semi-reductive groups

By

Masayoshi NAGATA and Takehiko MIYATA

(Received June 15, 1964)

The notion of a semi-reductive group was introduced in the preceding paper. The present note contains two results on semi-reductive groups.

The first result is as follows: Let G be a semi-reductive group contained in GL(n, K), K being a field of characteristic p (which may be zero). Let ρ be a rational representation of G of type $\begin{pmatrix} 1 & \tau \\ 0 & \rho' \end{pmatrix}$, ρ' being a representation of degree one less than the degree m of ρ . We consider the action of G defined by ρ on the polynomial ring P_m in indeterminates X_1, \dots, X_m over K. Let a be a G-stable ideal in P_m such that $\Sigma X_i K \cap a = 0$ and let x_i be the class of X_i modulo a. The semi-reductivity of G implies the existence of a G-invariant f in $K[x_1, \dots, x_m]$ such that f is monic and of positive degree in x_1 . Now the result is:

Theorem 1. If there is such an f of degree d in x_1 so that d is not a multiple of p and if x_1 is transcendental over $K[x_2, \dots, x_m]$, then ρ is equivalent to $\begin{pmatrix} 1 & 0 \\ 0 & \rho' \end{pmatrix}$.

The other result concerns with the case of algebraic linear group, and can be stated as follows:

Theorem 2. If an algebraic linear group G is semi-reductive, then the radical of G is a torus.

We shall note in this article that any one of these theorems implies the following fact:

Proposition. Let K be a field of characteristic zero and let G be a subgroup of GL(n, K). Then G is reductive if and only if G is semi-reductive.

1. The proof of Theorem 1.

We set $y(\sigma) = x_1^{\sigma} - x_1$ for $\sigma \in G$. Then $y(\sigma) \in \Sigma_{i \ge 2} x_i K$. We express f as a polynomial in x_1 with coefficients in $K[x_2, \dots, x_m]$ so that

$$f = x_1^d + c_1 x_1^{d-1} + \dots + c_d.$$

Then $f=f^{\sigma}=x_1^d+(c_1^{\sigma}+dy(\sigma))x_1^{d-1}+\cdots$. Thus we have $c_1^d+dy(\sigma)=c_1$ for any $\sigma \in G$. Set $x^*=x_1+(1/d)c_1$. Then $x^{*\sigma}=x^*$, and therefore the representation module $\Sigma x_i K$ is the direct sum of representation modules x^*K and $\Sigma_{i\geq 2}x_i K$, and the assertion is proved.

2. The proof of Theorem 2.

We shall make use of the following result of Bialynicki-Birula:1)

Lemma 1. Let G' be a connected linear algebraic group and let H be a closed subgroup of G'. Let H_u be the unipotent part of the radical of H. If G'/H is affine, then G'/H_u is affine and furthermore the following condition is satisfied:

Any finite-dimensional rational H_{u} -module M is an H_{u} -submodule of a finite-dimensional rational G'-module N such that the set of H_{u} -invariants in M coincides with the set of G'-invariants in N.

We shall modify the last condition in Lemma 1 as follows:

If $\rho = \begin{pmatrix} 1 & \tau \\ 0 & \rho' \end{pmatrix}$ is a rational representation of H_{μ} , ρ' being a rational representation of degree one less than the degree m of ρ , then there is a rational representation ρ^* of G' such that

$$\rho^{*} = \begin{pmatrix} 1 & \tau^{*} & \tau_{1}^{*} \\ 0 & \rho^{\prime *} & \tau_{2}^{*} \\ 0 & \tau^{\prime *} & \rho_{2}^{*} \end{pmatrix}$$

and such that the restriction of ρ^* on H_{μ} is of the form

$$\begin{pmatrix} 1 & \tau & * \\ 0 & \rho' & * \\ 0 & 0 & * \end{pmatrix}$$

¹⁾ A. Bialynicki-Birula, On homogeneous affine space of linear algebraic groups, Amer. J. Math. 85 (1963), pp. 577-582.

The proof of this modification is done as follows: Let ρ_1 be the contragradient representation to ρ , and let M be a representation module for ρ_1 . Apply Lemma 1 to this M, and get N as stated. Then ρ^* is the contragradient representation to the representation of G defined by N.

Now we shall prove Theorem 2. Let G' be a connected linear algebraic group which contains G and let H_s be the unipotent part of the radical of G. Since G is semi-reductive, G'/G is affine.³⁾ Therefore the condition stated above holds for this pair of G' and H_s . Observe the situation as in the modification above. Consider the restriction ρ_G of ρ^* on G. Then the semi-reductivity of G implies the existence of a G-invariant f in $P_s = K[X_1, \dots, X_s]$ under the action of G defined by ρ_G (s= degree of ρ^*), such that f is monic and of positive degree in X_1 . Let f' be the polynomial obtained form f removing out all terms in which some of X_{m+1}, \dots, X_s appear. Then f' in an H_s -invariant in P_m under the action defined by ρ , and we see that H_s is semireductive. Thus Theorem 2 follows from the following lemma:

Lemma 2. If U is a connected unipotent linear algebraic group of positive dimension, then U cannot be semi-reductive.

Proof. Since the image of a semi-reductive group under a rational homomorphism is semi-reductive we may assume that U is of dimension 1. Then U has a faithful rational representation ρ of degree 2:

$$\rho = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Consider the action of U on $P_2 = K[X_1, X_2]$. Then X_2 is an invariant. Since U is not a finite group, the set of invariants cannot be larger than $K[X_2]$, and the assertion is proved.

3. Proofs of Proposition.

(1) First we give a proof of Proposition making use of Theorem 2. We note that, letting K be a universal domain,

Lemma 3. Let G be a group contained in GL(n, K), and let

²⁾ See §8 of the preceding paper.

382

 \overline{G} be the closure of G in Zariski topology of GL(n, K). Then (i) G is reductive if and only if \overline{G} is reductive and (ii) G is semireductive if and only if so is \overline{G} .

The proof of Lemma 3 is easy and we omit it.

Now, by Lemma 3, in order to prove Proposition, we may assume that G is algebraic. Then Theorem 2 shows that the radical of G is a torus if G is semi-reductive, whence G is reductive as is well known. The converse is obvious.

(2) Next we give a proof of Proposition making use of Theorem 1. We know that reductivity of a matric group G is equivalent to the condition that every rational representation of type $\begin{pmatrix} 1 & \tau \\ 0 & \rho' \end{pmatrix}$ is equivalent to $\begin{pmatrix} 1 & 0 \\ 0 & \rho' \end{pmatrix}$.³⁾ Therefore, in the zero characteristic case, the semi-reductivity of G implies the reductivity of G by virtue of Theorem 1. Thus Proposition is proved.

Errata to some of my papers

Masayoshi NAGATA

- "Complete reducibility of rational representations of a matric group", this journal, 1-1 (1961):
 - In foot-note 6) in p. 99, "an affine variety" should be read "a quasi-affine variety".
- "Note on coefficient fields of complete local rings", Mem. Coll. Sci. Univ. Kyoto, 32 (1959):
 - In the remark in p. 92, the statement (2) is under the condition stated in (1).
- "On the closedness of singular loci," Publ. Math. Inst. Haut. Etudes Sci., 2 (1959): Proposition 4 is wrong, hence Theorems 4, 5 are not proved yet.

³⁾ M. Nagata, Complete reducibility of rational representations of a matric group, this Journal, vol. 1, No. 1 (1961), pp. 87-99.