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Let V  b e  an affine variety with universal domain K  and let T

be a torus acting on V  in the usual sense.

Consider the set U  o f points o f  V  whose orbits are of maximal

dimension. Then we can think o f orbit space U /  which may not
be a variety in general but is a preschem e. For simplicity, we denote
by V I T  the orbit space U / T .  Let R  b e  the coordinate ring o f V
over K .  T hen T  acts also on R .  The set / T ( R )  o f  T-invariants in

R  is finitely generated over K ,  hence defines an affine variety W.

The main result o f our present article is that V/ T  is covered by
a finite number of projective varieties over W P )

The writer w ishes to express her thanks to Prof. M . N agata for

his valuable suggestions.

1 .  Form ulation of the re su lt

Let V  be an affine variety with coordinate ring R = K [x l, • • • , •
A  variety X  is  ca lled  a projectiv e  v arie ty  o v e r V  i f  there is a set

o f elements u 0 , •, um  of a field containing R  such that X  is covered
by affine varieties X ,  defined by R [ u o / u i , • - • ,u ./ u i ]  ( i= 0, 1, • • •, m).
If one a ,  (hence every u ;  w h ich  is  n o t zero) is transcendental over
the function fie ld  o f X  then  R [ it s ,  •• • , und is called  a homogeneous
coordinate rin g  o f X .  R [tt o , ••• , z r,] i s  a graded ring in which (1)

1) The definition will be recalled in §1 below.
2) Though we treat the case of usual varieties for the simplicity of formulation,

this can be adapted easily to the case of affine schemes whose rings are finitely generated
over K .  The reason is that Theorem 2. 1 in  [2 ] can be adapted to the case.
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elements of R  are of degree 0 and (2 )  the u i a re  o f d eg ree  1 . For

the necessity in order to apply induction argument on the dimension

of a torus to treat with, and for a generality in appearance, we con-
sider the case where a torus T  acts on the projective variety X over
the affine variety V.

The action of T  is assumed to induce an automorphism group of

a homogeneous coordinate ring R[uo, • • • , am] =K[x], • • x7?, us, • • • um]
o f X .  Under the circumstance, we may assume that x ,  and u )  are

all T-semi-invariants, because every rational T-module is generated by
semi-invariants. Then, in particular, T  acts on each affine variety Xi,

where we can think of X i /  T  in the sense we stated in the introduction.

Therefore we can consider orbit space X / T , 3 ) as  a  prescheme which

is covered by X ,1 T.
On the other hand, we consider the set /T(R ) of T-invariants

in R .  T his is an affine ring over K ,  hence defines an affine variety
W .  Now our main theorem is formulated as follows:

M a in  T h e o r e m .  X / T  is  c o v e re d  b y  a  .f inite num ber o f  p ro -
jec tiv e  v arie ties  ov er W.

Excat meaning o f this theorem  is that: i f  P E X  is such that its
orbit has a maximal dimension, then there is a  Tstable open subset

U  of X ,  such that U / T  exists in the usual sense and such that U /T
is  a projective variety over W.

2 .  P re lim in a ry  le m m a s .

Before proving the theorem, we explain some lemmas. One basic

result we use often in this article is  the following well known fact:"
L e m m a  1 .  L e t a  t o ru s  T  a c t s  o n  a n  a  n e  v a rie t y  V  w i th

coordinate  r in g  R .  I f  e v e ry  T o rb it  o n  V  is  c lo sed , th en  V / T  is
th e  af f ine  v arie ty  d e f in e d  b y  IT (R ) . In  p a r t ic u la r , if  d im  7 '=1 ,
and i f  th e re  is  n o  T -inv ariant p o in t o n  V , th e n  V /  T  is  the affi ne
v arie ty  d e f in e d  b y  IT (R ) . I n  th e  g e n e ral c ase , th e  set of  closed

3) X / T  is not the set of all orbits but is the set of orbits of maximal dimension.
4) The first and the last assertion can  be generalized  to  the case w here T  is  a

semi-reductive algebraic group, see  [3].
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orbits o n  V  is  naturally  iden tif ied  w ith  the af f ine variety  def ined
by IT (R) .

Lem m a 2 .  L e t  V  b e  an  af f ine  v arie ty  a n d  le t  T  be a  torus
acting o n  V . Then f o r  PE V  the  orb it P T  has a m ax im al dimen-
sion i f  an d  o n ly  if  the  d im ension of  PT  is equal to  the dimension
o f  T / H , w here H = {a T ,  P '  = P  for v  PE V }  .

P ro o f .  W e m ay assume that H = {1} and that every element t
o f th e  torus T  i s  a diagonal m a tr ix . L e t Hp= { t Pt = P ,  PE V },

then dim PT = dim T— dim H .  I f  t  - • - • - pE  and P =  — • p”),
0

then  p ,  =( p , t 1 , P 2 t2 1  •  •  •  p t )  = P .  So if p srO  th en  t 1 = 1 .  Namely,
if .7 pi O, then H p= {1} hence dim H p O . It is clear that the orbit

P T  has a maximal dimension.

3. Reduction  to one dimensional case

N ow  w e shall go back to  our main theorem . W e m ay assume

that some orbits have dimension equal to dim T .  We use the induction

argument on the dimension of T .  Let T 1 and T 2  be tori such that

T = T 1 x  T2 with dim T i= 1, dimT2 = dim T — 1. Let 1 2 (R ) =  7'2-invariants
in R .  Then by the induction assumption we can assume that the orbit
space X / T , is covered by a finite number of projective varieties X i
o v e r  W ', w h e r e  W ' is  the affine variety defined  by / T , ( R ) .  On

the o th e r  h an d  w e  c an  se e  th a t X / T = (X / T 2)/ T 1= UX ;/ T , and

/T(R) —/T 1 (1.T2 ( R ) ) .  Therefore if w e can  prove that each  X i T i  i s
covered by projective varieties over W , then our proof com e to an

end. Namely it is sufficient to prove the assertion in the case where
the dimension of T  is  one.

4 .  One dimensional case

From now on, we shall assume that dim T - 1 .  L e t  PE  V  be
such that dim FT = 1. W h e n  f  is a T-sem i-invariant, f  defines a
character x so that f  — 26(a)f . Since T  i s  a  torus of dimension 1,
there is an isomorphism t  from T  onto multiplicative group of K  and
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x = ta . w ith  a natural number a .  a  is  ca lled  the exponent o f x .  Now
w e  ta k e  o n e  o f  u i (1 = 0 , 1 , • • • , n t )  w hose character has minimal

exponent, say n o .  Then we m ay assume that uo  is  a T-invariant and

then the character defined by each u ; has non-negative exponent.

W hen M  i s  a homogeneous element of positive degree, say d,

of R [u o ,••• ,u ,, ] ,  we denote by R m  the affin e  ring of the affine variety

X —  (closed set defined by M = 0 ) ,  which is denoted by X m . Namely,

R m  is  the ring generated by all elements of the form (homogeneous
form of degree d)/111.

W e ca ll a monomial M = 4 '• • • 0 : 4 • • • x ; :  i s  o f  type ( 1 )  i f  x i ,,

(*=1, • • • , s) are invariants and ••• = a i ,  where a 11 a re  exponents
o f character defined by u i ,  (k=1, ••-, r ) .  W e call M  is  of type (2)

when M  is not of type (1).

L em m a 3 .  I f  M  is  o f  type ( 2 ) ,  th en  X m  h a s  no f ix e d  point.

P ro o f .  Assume that M .= u , '• • • 0 : 4 1 •• •x j: and assume that x J ,  is
not invariant. If there is a fixed point in X m ,  then the proper semi-
invariants in R m  c an  b e  sp ec ia liz ed  to  zero simultaneously on X m .

But x i ,  can  no t be zero on X m  i f  s > 1 .  Otherwise, there is a pair

( k , 1 )  such that 19,, fir ( k ,  1 < r)  and the proper semi-invariant it id u i ,

can not be zero on X m . Therefore X m  h a s  no fixed point.

Let X  be a projective variety over V  and let K[xi, • • • , x,,, uo, • • • ,uni]

b e  a homogeneous coordinate ring of X ,  w here the degree o f each
x ; i s  zero and the degree of each Ili  i s  1.

Let P  be a projective variety defined by L- (R)  •• • , M i ] where
M , are the monomials on x  and u  w hich have same character and

of the same degree (in  u ) .

We consider the set 911p o f monomials M 1 su ch  th a t P m , — P -

(the closed set in P  defined by M i=  0 )  is defined by / T (R m ,). Now
we consider the union o f  such affine open  set X m , ( M i E a r lp ) ,  and
denote it by Up.

L em m a 4. W hen P E  V is  g iv en  so  that d i m P T = 1 ,  then there
is  a  P  such  that PE  U P.

P ro o f .  Since P  is not a fixed point, there is a monomial M  of
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positive degree and  o f type ( 2 )  such that M (P) 4 0 .  Then, we

consider IT (R,,f ). This is generated by a finite number o f  elements

o f th e  form  M i/M 7  (M 1  being monomials, i=1, • •• , t). Then the

projective variety P  with homogeneous coordinate ring Jr  ( R )  [M r,
1111, •• • , M t] contains a point which corresponds to the orbit o f P.

We consider the set of P  such that PE U p and chose a member

in the set which has a maximal U p .  We denote it again by the

same P .  Then we wish to prove that P  Up/ T.

Assume that P B Q E E U p / T  and assume that M ; (Q) O . F ir s t

we consider the case where M ;  is  of type ( 2 ) .  Then by Lemma 3,

X m i  has no fixed point. We consider This is generated by

elements of the form M7/141; where M ' is o f same degree and defines

the same character as M L  Let a set of generators be 1110 71M, • •• ,

M , ' / M ; ' .  Next we consider the projective variety P '  which defined

by M0', • • •  M , ',  and all monomials o f  degree y  in M0, •••, M,, say

M'+1, •••, M s '.  Now we can see that M 07M 3, •••, M s7/1f , are a ll T

invariants, hence /7-(Rm))= K 11M 0 7  , •  •  •  ,  .  Therefore A/7
; E

W ip e . On the other hand, when M ,E 0 p ,  then /141, M p , and P m ,=
P r  as is easily seen. Therefore Up' C  Up, and then this fact contra-,
dicts to  the maximality o f P .  Next consider the case where M ;  is

of type (1 ) .  We consider the set A = {M, M01 M , or Mt, is of type (2) } ,

and let P '  b e  the projective variety over W  with homogeneous
coordinates {M, M,, I M, MkE A }. Then all members o f A  are of type

( 2 ) .  I f  M , E a l i p ,  then M ., E A ,  and P ' P m ,  as is easily seen.

Thus we can reduce to the first case, and we complete the proof.

5 .  Remarks

Orginal motivation of the present study was to observe the
following question:

Let G  b e  a connected linear algebraic group and let H  be an
algebraic subgroup o f  G .  Is it true that G /  H  has no everywhere

regular non-constant rational function if and only i f  G /  H  is a projec-
tive variety (i.e., if and only if H  contains a Borel subgroup of G)?
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As will be shown later, the answer o f  this question is not affir-
m ative. But, because of the following lemma, we see a rather close
connection between the above question and our main result, as will
be shown below.

Lemma. 5. W hen G  ac ts  ratio n ally  on a module M , then  an
elem ent a  of  M  is  G-invariant i f  and o n ly  i f  a  is B-invariant w ith
a suitable  Borel subgroup B  of  G .

P ro o f .  W e m ay assume that /I/ is a  finite module over the

universal domain K  o f G , and we regard M  as an affine space on

which G  acts. Then G-orbit of a  is quasi-affine. On the other hand,

since a  is  B-invariant, G-orbit o f  a  is  projective. Hence a  is G-
invarisnt.

Now, in the above question, we can replace H  with its connected

component of the identity, and we assume that H  is connected. Then,

applying Lemma 5  (for H acting on G ), we see that G/H has a non-

constant regular function if and only if G/ 13, does with a Borel sub-

group B f f  o f  H .  L e t U  be the unipotent part o f B y .  Then G/ U is
a quasi-affine varity (see [ 1  )  on which the torus B l l  / U  acts. Thus

G /U  is an open subset of an affine variety V  on which BH/LI acts.

Therefore we see that, under the assumption that G /H  is not a pro-

jective variety,

Proposition 1 .  I f  V  can  be  chosen  so  that ev ery  point P  o f

V  w h ic h  is  n o t  in  G / U  has B id U-orbit w hose  dimension is less

th an  dim BH/ U , then  G/H h as  a non-constant regular f unction.
Now, we shall give a counter-example to the question stated above.

Set G = SL(3, K) and let H  be the subgroup o f G  consisting o f all

matrices o f the form
t a  b
O  t c
0  0  t - ' 1 .

H  is properly contained in a Borel bubgroup o f G .  With this

pair o f G  and H , we have:

Proposition 2. T h e  facter space  G / H =  {g H lg e G } h a s  no
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non-constant ev ery w here regular rational function.

P ro o f .  Let
X j j

 1 12 Xis

X 2 1  1 2 2  1 23

X 3 1  1 3 2  1 33

be a generic point of G .  Then the affine ring R  of G is K [xii, • • • , x33]
with the unique relation d e t  I x d  I = 1 .  Let I-I„ be the u n ip o te n t  part
of H .  We first consider H ;,-in va rian ts  in  R  (under the right multi-
plication by elements of I L ) .  Obviously, 1 ,  121, In,

y i = 1 2 1 1 2 2 , Y 2 X31 1 3 2 , Y 3  - X I I X12

I n 1 32 I n 1 12 1 2 1 1 22

are H ” - in v a r ia n ts .  We want to show that

Lemma 6 .  K 121, 131, Yi, Y 2 ,  y31 i s  t h e  s e t  of  IL -inv ariants
in  R.

Pro o f  o f  th e  L em m a 6 .  One sees easily that if, for two P, Q G,
x11 ( P ) =x 1 1 ( Q )  and y ( P ) = y ( Q )  fo r i= 1 , 2 ,  3 ,  then PH „=Q H ,,.
Therefore these x n ,  x 21 ,  131 ,  v  v  v  separates all c o se ts  from each1, 2, 3

other. S in c e  d i m G / H „ =  8 - 5 ,  the obvious relation 0  is a
unique relation for these elements, and we see that K [x i i , 121, 1 3 3 , y i,

y 2 ,  y 8 ]  is a norm al ring. Furthermore, K (x ii, 121, 13 v v v x1, 1, 2, 3 ,  - 1 2 ,  1
13,

1 2 3 )  is  the function field K ( G )  of G , as  is easily seen. Thus K (G )

is purely transcendental over K (x ii, 1 21, 1
3 1 ,  Y l ,  y 2 ,  y8 ) an d  therefore

the normality of K  121, 121, Y i, y 2 ,  y d  implies that this a ffine  ring
is integrally closed in  K ( G ) .  Thus we prove the lemma.

Now we go  back to the proof of Proposition 2. The action of
H  on R  induces and action of the torus H /  H „.  We denote by (t)

the class of
t a b
0  t  c

0  0  t - 2 ,

in  H /  H „ .  Then x, i ( t )=  tx , and y i ( t ) = t y i . Therefore there is no
non-constant H -invariant in  K  [111, 121, v  v1, 1 , 2 3] • Since H-
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invariants are H”-invariants, we complete the proof of the proposition.
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