# On orbit spaces by torus groups 

By<br>Kayo Otsuka<br>(Communicated by Prof. Nagata, June 15, 1964)

Let $V$ be an affine variety with universal domain $K$ and let $T$ be a torus acting on $V$ in the usual sense.

Consider the set $U$ of points of $V$ whose orbits are of maximal dimension. Then we can think of orbit space $U / T$, which may not be a variety in general but is a prescheme. For simplicity, we denote by $V / T$ the orbit space $U / T$. Let $R$ be the coordinate ring of $V$ over $K$. Then $T$ acts also on $R$. The set $I_{T}(R)$ of $T$-invariants in $R$ is finitely generated over $K$, hence defines an affine variety $W$.

The main result of our present article is that $V / T$ is covered by a finite number of projective varieties over $W$. ${ }^{122)}$

The writer wishes to express her thanks to Prof. M. Nagata for his valuable suggestions.

## 1. Formulation of the result

Let $V$ be an affine variety with coordinate ring $R=K\left[x_{1}, \cdots, x_{n}\right]$. A variety $X$ is called a projective variety over $V$ if there is a set of elements $u_{0}, \cdots, u_{m}$ of a field containing $R$ such that $X$ is covered by affine varieties $X_{i}$ defined by $R\left[u_{0} / u_{i}, \cdots, u_{m} / u_{i}\right] \quad(i=0,1, \cdots, m)$. If one $u_{i}$ (hence every $u_{j}$ which is not zero) is transcendental over the function field of $X$ then $R\left[u_{0}, \cdots, u_{m}\right]$ is called a homogeneous coordinate ring of $X . \quad R\left[u_{0}, \cdots, u_{m}\right]$ is a graded ring in which (1)

[^0]elements of $R$ are of degree 0 and (2) the $u_{i}$ are of degree 1 . For the necessity in order to apply induction argument on the dimension of a torus to treat with, and for a generality in appearance, we consider the case where a torus $T$ acts on the projective variety $X$ over the affine variety $V$.

The action of $T$ is assumed to induce an automorphism group of a homogeneous coordinate ring $R\left[u_{0}, \cdots, u_{m}\right]=K\left[x_{1}, \cdots, x_{n}, u_{0}, \cdots, u_{m}\right]$ of $X$. Under the circumstance, we may assume that $x_{i}$ and $u_{j}$ are all $T$-semi-invariants, because every rational $T$-module is generated by semi-invariants. Then, in particular, $T$ acts on each affine variety $X_{i}$, where we can think of $X_{i} / T$ in the sense we stated in the introduction. Therefore we can consider orbit space $X / T,{ }^{3}$ ) as a prescheme which is covered by $X_{i} / T$.

On the other hand, we consider the set $I_{T}(R)$ of $T$-invariants in $R$. This is an affine ring over $K$, hence defines an affine variety $W$. Now our main theorem is formulated as follows:

Main Theorem. $X / T$ is covered by a finite mumber of projective varieties over $W$.

Excat meaning of this theorem is that: if $P \in X$ is such that its orbit has a maximal dimension, then there is a $T$-stable open subset $U$ of $X$, such that $U / T$ exists in the usual sense and such that $U / T$ is a projective variety over $W$.

## 2. Preliminary lemmas.

Before proving the theorem, we explain some lemmas. One basic result we use often in this article is the following well known fact: ${ }^{4)}$

Lemma 1. Let a torus $T$ acts on an affine variety $V$ with coordinate ring $R$. If every T-orbit on $V$ is closed, then $V / T$ is the affine variety defined by $I_{T}(R)$. In particular, if $\operatorname{dim} T^{\prime}=1$, and if there is no T-invariant point on $V$, then $V / T$ is the affine rariety defined by $I_{T}(R)$. In the general case, the set of closed

[^1]orbits on $V$ is naturally identified with the affine variety defined by $I_{T}(R)$.

Lemma 2. Let $V$ be an affine variety and let $T$ be a torus acting on $V$. Then for $P \in V$ the orbit $P T$ has a maximal dimension if and only if the dimension of $P T$ is equal to the dimension of $T / H$, where $H=\left\{\sigma \mid \sigma \in T, P^{\sigma}=P\right.$ for $\left.{ }^{v} P \in V\right\}$.

Proof. We may assume that $H=\{1\}$ and that every element $t$ of the torus $T$ is a diagonal matrix. Let $H_{P}=\left\{t \mid P^{t}=P, P \in V\right\}$, then $\operatorname{dim} P T=\operatorname{dim} T-\operatorname{dim} H_{P}$. If $t=\left(\begin{array}{cc}t_{1} & 0 \\ \ddots & \ddots \\ 0 & t_{n}\end{array}\right) \in H_{P}$ and $P=\left(p_{1}, \cdots, p_{n}\right)$, then $P^{t}=\left(p_{1} t_{1}, p_{2} t_{2}, \cdots, p_{n} t_{n}\right)=P$. So if $p_{i} \neq 0$ then $t_{i}=1$. Namely, if $\Pi p_{i} \neq 0$, then $H_{P}=\{1\}$ hence $\operatorname{dim} H_{P}=0$. It is clear that the orbit $P T$ has a maximal dimension.

## 3. Reduction to one dimensional case

Now we shall go back to our main theorem. We may assume that some orbits have dimension equal to $\operatorname{dim} T$. We use the induction argument on the dimension of $T$. Let $T_{1}$ and $T_{2}$ be tori such that $T=T_{1} \times T_{2}$ with $\operatorname{dim} T_{1}=1, \operatorname{dim} T_{2}=\operatorname{dim} T-1$. Let $I_{T_{2}}(R)=T_{2}$-invariants in $R$. Then by the induction assumption we can assume that the orbit space $X / T_{2}$ is covered by a finite number of projective varieties $X_{i}$ over $W^{\prime}$, where $W^{\prime}$ is the affine variety defined by $I_{T_{2}}(R)$. On the other hand we can see that $X / T=\left(X / T_{2}\right) / T_{1}=U X_{i} / T_{1}$ and $I_{T}(R)=I_{T_{1}}\left(I_{T_{2}}(R)\right)$. Therefore if we can prove that each $X_{i} / T_{1}$ is covered by projective varieties over $W$, then our proof come to an end. Namely it is sufficient to prove the assertion in the case where the dimension of $T$ is one.

## 4. One dimensional case

From now on, we shall assume that $\operatorname{dim} T=1$. Let $P \in V$ be such that $\operatorname{dim} P T=1$. When $f$ is a $T$-semi-invariant, $f$ defines a character $\chi$ so that $f^{\sigma}=\chi(\sigma) f$. Since $T$ is a torus of dimension !, there is an isomorphism $t$ from $T$ onto multiplicative group of $K$ and
$\chi=t^{\alpha}$ with a natural number $\alpha . \alpha$ is called the exponent of $\chi$. Now we take one of $u_{i}(i=0,1, \cdots, m)$ whose character has minimal exponent, say $u_{0}$. Then we may assume that $u_{0}$ is a $T$-invariant and then the character defined by each $u_{i}$ has non-negative exponent.

When $M$ is a homogeneous element of positive degree, say $d$, of $R\left[u_{0}, \cdots, u_{m}\right]$, we denote by $R_{M}$ the affine ring of the affine variety $X-($ closed set defined by $M=0)$, which is denoted by $X_{M}$. Namely, $R_{M}$ is the ring generated by all elements of the form (homogeneous form of degree $d$ )/M.

We call a monomial $M=u_{i_{1}}^{\beta_{1}} \cdots u_{i}^{\beta_{r}} x_{j_{1}}^{r_{1}} \cdots x_{j_{s}}^{\tau_{s}}$ is of type (1) if $x_{j_{*}}$ $(*=1, \cdots, s)$ are invariants and $\alpha_{i_{1}}=\cdots=\alpha_{i_{r}}$ where $\alpha_{i_{k}}$ are exponents of character defined by $u_{i_{k}}(k=1, \cdots, r)$. We call $M$ is of type (2) when $M$ is not of type (1).

Lemma 3. If $M$ is of type (2), then $X_{M}$ has no fixed point.
Proof. Assume that $M=u_{i_{1}}^{\beta_{1}} \cdots u_{i_{r}}^{\beta_{r}} x_{j_{i}}^{\gamma_{1}} \cdots x_{j_{s}}^{\gamma_{s}}$ and assume that $x_{j_{1}}$ is not invariant. If there is a fixed point in $X_{M}$, then the proper semiinvariants in $R_{M}$ can be specialized to zero simultaneously on $X_{M}$. But $x_{j_{1}}$ can not be zero on $X_{M}$ if $s \geqslant 1$. Otherwise, there is a pair ( $k, l$ ) such that $\beta_{k} \neq \beta_{l}(k, l \leqslant r)$ and the proper semi-invariant $u_{i_{k}} / u_{i_{l}}$ can not be zero on $X_{M}$. Therefore $X_{M}$ has no fixed point.

Let $X$ be a projective variety over $V$ and let $K\left[x_{1}, \cdots, x_{n}, u_{0}, \cdots, u_{m}\right]$ be a homogeneous coordinate ring of $X$, where the degree of each $x_{i}$ is zero and the degree of each $u_{j}$ is 1 .

Let $\boldsymbol{P}$ be a projective variety defined by $I_{T}(R)\left[M_{0}, \cdots, M_{1}\right]$ where $M_{k}$ are the monomials on $x$ and $u$ which have same character and of the same degree (in $u$ ).

We consider the set $\mathfrak{M}_{\boldsymbol{P}}$ of monomials $M_{i}$ such that $\boldsymbol{P}_{M_{i}}=\boldsymbol{P}$ (the closed set in $\boldsymbol{P}$ defined by $\left.M_{i}=0\right)$ is defined by $I_{T}\left(R_{M_{i}}\right)$. Now we consider the union of such affine open set $X_{M_{i}}\left(M_{i} \in \mathfrak{M}_{\boldsymbol{P}}\right)$, and denote it by $U_{\boldsymbol{P}}$.

Lemma 4. When $P \in V$ is given so that dim $P T=1$, then there is a $\boldsymbol{P}$ such that $P \in U_{\boldsymbol{P}}$.

Proof. Since $P$ is not a fixed point, there is a monomial $M$ of
positive degree and of type (2) such that $M(P) \neq 0$. Then, we consider $I_{T}\left(R_{M}\right)$. This is generated by a finite number of elements of the form $M_{i} / M^{\gamma}$ ( $M_{i}$ being monomials, $i=1, \cdots, t$ ). Then the projective variety $\boldsymbol{P}$ with homogeneous coordinate ring $I_{T}(R)\left[M^{\gamma}\right.$, $\left.M_{1}, \cdots, M_{t}\right]$ contains a point which corresponds to the orbit of $P$.

We consider the set of $\boldsymbol{P}$ such that $P \in U_{\boldsymbol{P}}$ and chose a member in the set which has a maximal $U_{\boldsymbol{P}}$. We denote it again by the same $\boldsymbol{P}$. Then we wish to prove that $\boldsymbol{P} \subseteq U_{\boldsymbol{P}} / T$.

Assume that $\boldsymbol{P} \ni Q \notin U_{\boldsymbol{P}} / T$ and assume that $M_{j}(Q) \neq 0$. First we consider the case where $M_{j}$ is of type (2). Then by Lemma 3, $X_{M_{j}}$ has no fixed point. We consider $I_{T}\left(R_{M_{j}}\right)$. This is generated by elements of the form $M^{\prime} / M_{j}^{\gamma}$ where $M^{\prime}$ is of same degree and defines the same character as $M_{j}^{\gamma}$. Let a set of generators be $M_{0}{ }^{\prime} / M_{j}^{\gamma}, \cdots$, $M_{r}^{\prime} / M_{j}^{\gamma}$. Next we consider the projective variety $\boldsymbol{P}^{\prime}$ which defined by $M_{0}^{\prime}, \cdots, M_{r}^{\prime}$, and all monomials of degree $r$ in $M_{0}, \cdots, M_{l}$, say $M_{r+1}^{\prime}, \cdots, M_{s}^{\prime}$. Now we can see that $M_{0}^{\prime} / M_{j}^{\gamma}, \cdots, M_{s}^{\prime} / M_{j}^{\gamma}$ are all $T$ invariants, hence $I_{T}\left(R_{M_{j}}\right)=K\left[M_{0}^{\prime} / M_{j}^{\gamma}, \cdots, M_{s}^{\prime} / M_{j}^{\gamma}\right]$. Therefore $M_{j}^{\gamma} \in$ $\mathfrak{M}_{\boldsymbol{P}^{\prime}}$. On the other hand, when $M_{i} \in \mathfrak{M}_{\boldsymbol{P}}$, then $M_{i}^{\gamma} \in \mathfrak{M}_{\boldsymbol{P}^{\prime}}$ and $\boldsymbol{P}_{M_{j}}=$ $\boldsymbol{P}_{M_{j}^{r}}^{\prime}$ as is easily seen. Therefore $U_{\boldsymbol{P}^{\prime}} \nsubseteq U_{\boldsymbol{P}}$, and then this fact contradicts to the maximality of $\boldsymbol{P}$. Next consider the case where $M_{j}$ is of type (1). We consider the set $A=\left\{M_{i} M_{k} \mid M_{i}\right.$ or $M_{k}$ is of type (2) $\}$, and let $\boldsymbol{P}^{\prime}$ be the projective variety over $W$ with homogeneous coordinates $\left\{M_{i} M_{k} \mid M_{i} M_{k} \in A\right\}$. Then all members of $A$ are of type (2). If $M_{j} \in \mathfrak{M}_{\boldsymbol{P}}$, then $M_{j}^{2} \in A$, and $\boldsymbol{P}_{M_{j}^{2}}^{\prime}=\boldsymbol{P}_{M_{j}}$ as is easily seen. Thus we can reduce to the first case, and we complete the proof.

## 5. Remarks

Orginal motivation of the present study was to observe the following question:

Let $G$ be a connected linear algebraic group and let $H$ be an algebraic subgroup of $G$. Is it true that $G / H$ has no everywhere regular non-constant rational function if and only if $G / H$ is a projective variety (i.e., if and only if $H$ contains a Borel subgroup of $G$ )?

As will be shown later, the answer of this question is not affirmative. But, because of the following lemma, we see a rather close connection between the above question and our main result, as will be shown below.

Lemma. 5. When $G$ acts rationally on a module $M$, then an element $a$ of $M$ is G-invariant if and only if $a$ is B-invariant with a suitable Borel subgroup $B$ of $G$.

Proof. We may assume that $M$ is a finite module over the universal domain $K$ of $G$, and we regard $M$ as an affine space on which $G$ acts. Then $G$-orbit of $a$ is quasi-affine. On the other hand, since $a$ is $B$-invariant, $G$-orbit of $a$ is projective. Hence $a$ is $G$ invarisnt.

Now, in the above question, we can replace $H$ with its connected component of the identity, and we assume that $H$ is connected. Then, applying Lemma 5 (for $H$ acting on $G$ ), we see that $G / H$ has a nonconstant regular function if and only if $G / B_{H}$ does with a Borel subgroup $B_{H}$ of $H$. Let $U$ be the unipotent part of $B_{H}$. Then $G / U$ is a quasi-affine varity (see [1|) on which the torus $B_{H} / U$ acts. Thus $G / U$ is an open subset of an affine variety $V$ on which $B_{H} / U$ acts. Therefore we see that, under the assumption that $G / H$ is not a projective variety,

Proposition 1. If $V$ can be chosen so that every point $P$ of $V$ which is not in $G / U$ has $B_{H} / U$-orbit whose dimension is less than $\operatorname{dim} B_{H} / U$, then $G / H$ has a non-constant regular function.

Now, we shall give a counter-example to the question stated above. Set $G=S L(3, K)$ and let $H$ be the subgroup of $G$ consisting of all matrices of the form

$$
\left(\begin{array}{lll}
t & a & b \\
0 & t & c \\
0 & 0 & t^{-2}
\end{array}\right)
$$

$H$ is properly contained in a Borel bubgroup of $G$. With this pair of $G$ and $H$, we have:

Proposition 2. The facter space $G / H=\{g H \mid g \in G\}$ has no
non-constant everywhere regular rational function.
Proof. Let

$$
\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)
$$

be a generic point of $G$. Then the affine ring $R$ of $G$ is $K\left[x_{11}, \cdots, x_{33}\right]$ with the unique relation det $\left|x_{i j}\right|=1$. Let $H_{u}$ be the unipotent part of $H$. We first consider $H_{u}$-invariants in $R$ (under the right multiplication by elements of $H_{u}$ ). Obviously, $x_{11}, x_{21}, x_{31}$,

$$
y_{1}=\left|\begin{array}{ll}
x_{21} & x_{22} \\
x_{31} & x_{32}
\end{array}\right|, \quad y_{2}=\left|\begin{array}{ll}
x_{31} & x_{32} \\
x_{11} & x_{12}
\end{array}\right|, \quad y_{3}=\left|\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right|
$$

are $H_{u}$-invariants. We want to show that
Lemma 6. $K\left[x_{11}, x_{21}, x_{31}, y_{1}, y_{2}, y_{3}\right]$ is the set of $H_{u}$-invariants in $R$.

Proof of the Lemma 6. One sees easily that if, for two $P, Q \in G$, $x_{i 1}(P)=x_{i 1}(Q)$ and $y_{i}(P)=y_{i}(Q)$ for $i=1,2,3$, then $P H_{u}=Q H_{u}$. Therefore these $x_{11}, x_{21}, x_{31}, y_{1}, y_{2}, y_{3}$ separates all cosets from each other. Since $\operatorname{dim} G / H_{u}=8-5$, the obvious relation $\sum x_{i 1} y_{i}=0$ is a unique relation for these elements, and we see that $K\left[x_{11}, x_{21}, x_{31}, y_{1}\right.$, $\left.y_{2}, y_{3}\right]$ is a normal ring. Furthermore, $K\left(x_{11}, x_{21}, x_{31}, y_{1}, y_{2}, y_{3}, x_{12}, x_{13}\right.$, $x_{23}$ ) is the function field $K(G)$ of $G$, as is easily seen. Thus $K(G)$ is purely transcendental over $K\left(x_{11}, x_{21}, x_{31}, y_{1}, y_{2}, y_{3}\right)$ and therefore the normality of $K\left[x_{11}, x_{21}, x_{31}, y_{1}, y_{2}, y_{3}\right]$ implies that this affine ring is integrally closed in $K(G)$. Thus we prove the lemma.

Now we go back to the proof of Proposition 2. The action of $H$ on $R$ induces and action of the torus $H / H_{u}$. We denote by ( $t$ ) the class of

$$
\left(\begin{array}{lll}
t & a & b \\
0 & t & c \\
0 & 0 & t^{-2}
\end{array}\right)
$$

in $H / H_{u}$. Then $x_{t 1}(t)=t x_{i 1}$ and $y_{i}(t)=t y_{i}$. Therefore there is no non-constant $H$-invariant in $K\left[x_{11}, x_{21}, x_{31}, y_{1}, y_{2}, y_{3}\right]$. Since $H$ -
invariants are $H_{u}$-invariants, we complete the proof of the proposition.

## REFERENCES

[1] A. Bialynicki-Birula, G. Hochschild and G. D. Mostow, Extensions of representations of algebraic linear groups, Amea J. Math. 85, 1963, pp. 131-144.
[2] M. Nagata, Note on orbit spaces, Osaka Math. J. 14, 1962, pp. 21-31.
[3] M. Nagata, Invariants of a group in an affine ring, in this issue.

Kyoto Prefectural University


[^0]:    1) The definition will be recalled in $\S 1$ below.
    2) Though we treat the case of usual varieties for the simplicity of formulation, this can be adapted easily to the case of affine schemes whose rings are finitely generated over $K$. The reason is that Theorem 2.1 in [2] can be adapted to the case.
[^1]:    3) $X / T$ is not the set of all orbits but is the set of orbits of maximal dimension.
    4) The first and the last assertion can be generalized to the case where ' $T$ ' is a semi-reductive algebraic group, see [3].
