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IV. Branching semi-groups

The definition of a branching Markov process was introduced in
Py
Chapter I: it is a Markov process on § whose semi-group satisfies

(1.2). We shall say that non-negative contraction semi-group T,
on B(./S\) with the property (1.2) has the branching property or,
simply, that it is a branching semi-group. Therefore, the study of
branching processes is, as a problem in analysis, the study of branching
semi-groups. In §1.3 we have introduced two fundamental equations
for a branching semi-group; M-equation and S-equation. The M-
equation is a usual renewal type integral equation for a semi-group
(the so called Desiré-André’'s equation or the first passage time re-
lation applied to the first splitting time r). When we look at the
M-equation on S only, then, by virtue of the branching property, we
have non-linear integral equation, which we have called the S-equation.
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In this chapter we shall give these equations independent of the
branching Markov processes only in terms of the fundamental sysiem
(T, K, =): T! and K are defined through (4.2) and (4.3) from a
Markov process X° on S, and = is a substochastic kernel on Sx S
such that z(x,S)=0 for every x&S. Given an M-equation, we shall
construct its solutions according to Moyal [33] and show that the
minimal solution of the M-equation defines a branching semi-group.
This will give another analytical method of constructing an (X°, n)-
branching Markov process from a given X° and n. Also, one can
construct an (X°, z)-branching Markov process through the solutions
of the S-equation: we shall first construct the solutions of the S-
equation by the usual method of successive approximation and then
define a branching semi-group from these solutions. In §4.5, we
shall discuss the theory of infinitesimal generators of a branching
semi-group under certain regularity assumptions on the fundamental
system. As a consequence, we shall have two types of differential
equations, the backward equation, which is a semi-linear evolution
equation, and the forward equation, which is a system of linear
evolution equations involving functional derivatives. In §4.6, the
equations related to the number of particles will be discussed.

§4.1. Fundamental system, M-equation and S-equation

Let X°= {x}, P!, #, &’} be a right continuous strong Markov
process on S U {4}, with 4 as the terminal point such that B¢,,=%".
Throughout this chapter we assume that (i)

(4.1 P x%- exists, {*<<oo] = P3[{’<Too]
for every x and
(ii) Pl[e°=s] =0 for every xS and s=>0.

Define a semi-group 77 on B(S) and a kernel K(x; dt dy) on
Sx ([0,0) xS) by

(4.2) T f(x)=E f(aD); t<<C°]
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(4.3) K(x; dt dy) = Pi[g°€dt, x2=dy].

Then we have clearly
o (K@ aranson+ 1§ kG aranrn |

=" kG aranrey

and

(4.5) T 1(x) +Sg K(x; dr dy)=1.

0Js
Let n(x,dy) be a substochastic kernel” on S XS such that =(x,S)=0
for every x.

Definition 4.1. We shall call (T}, K, =) a fundamental system
(defined by X°® and =). When this system is defined by a branching
Markov process X, i.e., when X° is the non-branching part® of X
and n is the branching law® of X, we shall call (7}, K, =) the
Sfundamental system of the branching Markov process X.

A class of fundamental systems we shall consider quite often in
the future is the following: let X={x,, P,, B,} be a conservative
right continuous strong Markov process on S such that @,+o=$,
and T, be its semi-group; T.f(x)=E,[f(x,)], f€B(S). Let %k be
a non-negative measurable function and X°= {x{, P¢, ¢} be e,
subprocess of X, (cf. Definition 0. 8).

Definition 4.2. When the process X° which defines (7%, K) is
given as above we shall call (77, K,=) the fundamental system
determined by [X, k, =].

When (79, K, =) is determined by [X, %4, =], then 77 and K are
given by

1) As we remarked in §3.3 it is equivalent to give a stochastic kernel = on
58 such that z(x, S)=0.

2) Definition 1.2. In this chapter, we shall assume that every branching
Markov process satisfies (C.2).

3) Definition 1.3.
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(4.6) Tif(x) = E.[eJoe2% f(x)]
@ (&G asayrn =g (eloeomkef s

:S;T?(kf)(x)ds.

(cf. [37]).
Given a fundamental system, we shall define kernels T{(x,dy)
and Y (x; dtdy), x,yES, te[0,0), by

@8 T (={ 1% dnfin) =T, recxs)y
and

(4.9) So nglf(x; dsdy)f (s, y)

—(lerires o1f K¢ asan P £es, @0
fE€*([0,2) xS,
where we put

@10 F@=\axdngn,  g=BS).

T! and +r are well defined by virtue of Lemma 0.3. It is clear that
T! defines, for each n=1, 2, ---, a semi-group on B(S").
Theoren 4.1. When (T?, K, =) is the fundamental system of
a branching Markov process X,» T! and < coincide with T? and
\r defined by
T f(x)=E.[f(X); t<c]  and
Y(x; dsdy) =P.[reds, X.=dy].

Proof. Looking at the relation
P.[r<t, X.€dy] =S S K(x; dsdz)n(z, dy)

t
0

4) The right hand side of (4.9) is, if x=[x1, %2, ---, x5 ]1ES",
n 0t
£ ). Jyptess dsde) (PG £ 5 DTG )
We remark also that T:f(s, -)(x) =sz(s, NT(x, dy).

5) We assume that X possesses the branching law.
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which is a direct consequence of the definition of the branching law,
the assertion follows at once from the fact that X has the property
B. III by Theorem 1. 3.

Lemma 4.1. For a given fundamental system (T, K,=) the
above T and v satisfy

(4.11) T!1(x)+4y(x; [0,¢] xS)<1
and

@12y §§ vt drayrco+ 1] [ e arayren @

s
0

I

N ore arayircy), remes.
Proof. Since F(x; 1)<1 for every x€S,
v (0,4 <)<\ 11| KC; drayco.
But T91(x) + S gsK(x; drdz)=1,
and hence SSK(x; drdz) = —d,(T*1(x)).
Therefore

S;<T'°1'SSK<'; dydz)>:S;<T211 —d,(T°1))
(—amn=1-1=1-1,
which proves (4.11). Next we have
S;ﬂ gsxp(x; drdy)g(y) =SL Ssllr(x; drdy)Z (y)
+S:+‘<Te glgsK(- . drdz2) F(z; ) (),

and by (4.4) the second term of the right hand side is equal to
Vgl K arvtanFe; >

~{«nregl{ TirC; dran PG 3@
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- T?SZ(T? gl SSK(' s drdz) F(z; g))(x)®
~ 1§ § s dranzcn .

This proves (4.12) if f is of the form g, g&€*(S). By virtue of
Lemma 0.2, (4.12) holds for every fe B(S).

Example 4.1. When S={a}, (cf. Examples 0.1 and 0.3),
feB*(S)* is given by a number f such that 0<{f<<l1. Then
‘f=e'f, where 0<c<<oo, and K(dt)f=ce“fdt. Now S=Z*
— 0,12} Let #(L, 1) =m, 70,23, (0=m, Bm=1).
Then T{(n,dy)=e "3, (dy), yES, and
W(n; dsdy) =cne"ds z" w0y (dy).

Definition 4.3. Given a fundamental system (7%, K, =), we con-
struct T and v by (4.8) and (4.9). For a given < B(S), consider
the following integral equation

t
0

413)  wt, =T+ (e dsayu-s,),
x€S, te [0, )
call it the M-equation (corresponding to the sysiem (T}, K, =)).

A solution u# (¢, x) of (4.13) is called a solution of the M-equation
with the initial value f.

Theorem 4.2. Let X be a branching Markov process and set
u(t,x)=T,.f(x)=E.[f(X,)], f€B(S). Then u(t,x) is a solution
of the M-equation corresponding to the system (Ti, K,=) of the
process X with the initial value f.

Proof. By the strong Markov property” applied to the first

6) It is easy to see that T{flg)=<(Tf|T?g); in fact
TN A T A~
T?(flg>=1€if)noT/{(f+€g—f)/€} =£i~r)13[T‘,'(f+Eg) —Tif1/e
T T P
=lei_1)13(T}’f+€T?g—T,°f)/€=<T?f| T!g> by (0.36).

7) It should be remembered that we are always assuming X is strong Markov
such that Be.o=B;.
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spilitting time r, we have

u(t, x) =E[f(X)]=E:[f(X); t<<c] + EL [ f(X); 7]
=Tf(2) + Ex[Ex: [ f(Xi=)] | s=r; 7]

=127+ | was dsdyruii—s, 3
by Theorem 4. 1.
Definition 4.4. Given a fundamental system (77, K,z) and
given f€B*(S), consider the following integral equation
@1 w0 =T+ | K dsdy)Fiy; uit—s, ),
S
xS, te [0, )
where F(x; u) is defined by (4.10). We shall call it S-equation
(corresponding to the system (T?,K,=)). A solution u(Z,x) of
(4.14) such that |u(¢, x)|<1 is called a solution of the S-equation
with the initial value f.

Theorem 4.3. Let X be a branching Mavkov process and set
u(t, x)=T.F(x) =E.[f(X)], fECXS), xS then u(t, x) is a
solution of the S-equation covresponding to the system (T}, K, )
of X with the initial value f.

A TR~ T~
Proof. Since T,f(x)=T.f|s(x)=u(t,-)(x) we obtain (4.14)
from (4.13) by restricting it on S.

§4.2. Construction of a branching semi-group through the M-
equation

First of all we shall give the following

Definition 4.5. A semi-group U, on B(S) is called a branch-
ing semi-group if it is a non-negative contraction semi-group (i.e.
the kernel U,(x,dy) of U, is substochastic for every ¢) with the

following property (called the branching property);
e

U.7(x)=U.fs(x).
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Let (T7, K, =) be a given fundamental system and T{ and v be
defined through (4.8) and (4.9). Define kernels ™ (x; dtdy)
(n=0,1,2,---) on SX([0,o0)XS) by®

(4.15)  09(x; ¢, dy) =3 (dy),

09 (x; £, dy) = (x; dsdy),

and 0" (x; 1, dy) = S Ss«mx; dvdz)0v(z; t—v, dy).
Then VN x; dtdy) =d, 0" (x; &, dy).

Set for each 2=0,1,2, ---,

(4.16)  T®(x dy) :S ngll-(")(x; dsdz) T!-.(z, dy).”

0
Lemma 4.2. T and « satisfy the following relations for
fEB(S)™ and 0<k<n;

@1n)  0of @ = weranoni-—nr,
@18)  TOf@ = T f(x),
419 TOTEf) ={ @) TP ),

(4.20) 0D f(x) =0"(s)f () + g T 209 (t—s)f (%),
for 0<<s<{.

Proof. (4.17) is the usual formula for iteration of convolutions
and can be proved easily. (4.18) follows from (4.16) and (4.17).
Now

8) Let 0™ (x; ¢, dy)=Sz¢(”)(x; dsdy). Clearly it is equivalent to give %™ and
o,

9) Hence it is clear that T{W=T; and T, »=0,1,2,:-- are non-negative
kernels.

10) We write T f(x) =SsTﬁ')(x, dy) f(y), 0™ () - f(x) =SS®(”)(3\’; t,dy) f(y)
and @8 f () = | $™(x; dtdy) ().



104 N. Ikeda, M. Nagasawa, S. Watanabe

TOTEF(x) = T {S;—”\;r(dr) T, } (x)
~\"rowan 1ez s,
and by (4.12) this is equal to
{"a.00+01en s ={wan T,

This proves (4.19). For the proof of (4.20), first we note that if
n=1, (4.20) is just (4.12). Assume that it holds for n=1[25"-, n;
then

# 2 (0f () = (@t —rf @
={wanoni-nre +{waneoa—ni@
~{vn wo-rrenTee -9 @

+{w@nea-rnre
=0 ()f (2) + BTS00 (1 $)f (&)
+ {7 ronan et -nre
—0"D(f (1) + ST P00 (1 - ) ()
by (4.12) and (4.18). This proves (4.20) for every n.
Lemma 4. 3. gT,"”(x, S)<1 for every x<S.
Proof. By (4.11) we have
O (x, $) = T01(0) = w(@n) 1010o)

<[ @ a-vC; 10,101 %))

=0P()1(x) —0® (1) 1(x)

and



Branching Markov processes IIT 105

D (x, §) = S;\[p(dv) T2, 1(x)

<[ vt 10t 0)10x) ~ 00— 0)1())
=0®()1(x) —0®()1(x).
Repeating this we have for every n=1,2, -,
T (x, $) <0™(1)1 (%) —0"(£)1(x)

and therefore we have
% T (x, §) < T1(x) +00(1)1 () x<1

by (4.11).
Thus for each {€ [0, o),

(4.21) T.(x, dy) = BT, (x, dy)
defines a substochastic kernel on SxS. Let
.22 Tf@=| Txdry, FeBO).
Now we shall show that T, is a semi-group on B(S). In fact
T f () = (@ 1. )
~(woan rer@+{vouan 1o r@.
Then by (4.20) the second term of the last expression is equal to
sre{Tyoun T f
_ 2 TS T, f(x).

Also the first term is equal to

11) By (4.20), one can easily prove for f(r,x)EB([0, c0]xS)
(an s, Y@ =5 1o "y @n fr+s, ) (.
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Ss\lf(")(dr) TOTOf(x) =TT f(x),
0
and hence we have

T f (x) = STC P TL, £ ().
ji=0
Therefore

T,f(x) =3 ST P T, f(x)

n=0 j=0

oo

T T f(x)
=0

I
M

”

0m

T.(T.-.f) (=),

which proves T, is a semi-group on B(S).

Next we shall show that u#(¢,x)=T,f(x) is a solution of the
M-equation (4.13). Moreover, it is the minimal solution in the sence
that if >0, then #(¢, x) is the smallest of all non-negative solutions
of (4.13). In fact,

u(t,x)="T,f(x)
= TOF(x) + % TOf(x)

I

— 107 +{ @ ST )
= T0f () + (W@ T f ),

which proves u(Z, x) is a solution of the M-equation (4.13). Now
let 0<<v be a solution of (4.13); then

o(t, )= T () + | w@nv—r, H =T )

and if we suppose v(¢, x)ziT,("f(x), then
i=0

ot DZT () +{ @ (ST2.) @

t
0

L)



Branching Markov processes IIT 107

This proves v(Z, x)zioT,("’ f(x) for all #, and hence letting n—>oo,
we have v(¢, x)>T.f(x).

Finally we must show that T, is a branching semi-group, but
this was proved already in Proposition 1.3.'?

Summarizing, we have the following

Theorem 4.4. For a given fundamental system (T?, K, r), we
construct a kernel T,(x,dy) on SXS by (4.15), (4.16) and (4.21).
Then T, f(x)ESST,(x, dy)f(y), FEB(S), defines a branching semi-
group. u(t,x)=T,f(x), f€B(S), is a solution of the M-equation
corrvesponding to the given system with the initial value f, and if
f=>=0, then u(t, x) is the minimal solution among all non-negative
solutions with the initial value f.

Corollary. u(t, x)= T,j/"\(x), fEB*(S), is a solution of the S-
equation covvesponding to the givem system with the initial value

f.
Proof is the same as taat of Theorem 4. 3.

To this semi-group there corresponds a unique (up to equivalence)
branching Markov process X. If we compare the above construction
with the probabilistic construction given in Chapter III we see at
once that X is the (X!, =)-branching Markov process, and hence it
is a right continuous strong Markov process.

Example 4.2. Consider Example 4.1. Then the construction
of T, is just the usual analytical construction of the semi-group of

the minimal Markov chain (X,, P,) on i€Z*={0,1,2, ---} such that
E“(’):"élT and P.(X.=j)=n;.1, where ¢ is the first jumping time.

Hence by the above theorem, we see in particular that such a Markov

chain is a branching process, i.e. the transition matrix satisfies (1. 3).

12) When the fundamental system satisfies the condition (U) of Definition
(4.2) given below, we can give a simpler proof of the branching property by
Theorem 4.7 and Theorem 4.5, Cor. Cf. §4.4.
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This fundamental fact is, of course, well known in the theory of
branching processes, (cf. Harris [8], Chapter V).

Finally we shall discuss the uniqueness of the solution of the

M-equation. The following class of fundamental systems plays an

important réle in the future discussions.

Definition 4.6. A fundamental system (77, K, =) is said to
satisfy the condition (U) if T, satisfies

%)) inf inf 771(x)>0, for every ¢>>0.

€S 0<t<co
It is clear that a fundamental system (7T}, K,r) satisfies the
condition (U) if it is determined by [X, k&, =] (cf. Definition 4.2)
and k is bounded (i.e., 2 B(S)"); in fact,

TP 1(x) = E.[e o4 =t K
and hence for every ¢=>0

inf inf 77 1(x)=e*>0.

2€S 0<t=o

Theorem 4.5. Suppose (17, K,r) satisfies the condition (U).
Then the solution u(t, x) of the M-equation with the initial value
f(x) such that linj sup lu(t, x)| =0 is unique.

<t<o
Proof. First we remark that for each #=1,2, -+, and ¢>0, we
have

(4.23) sug«p(x; [0, 4] X 8)<1.
For, by (4.11) and (U),
R
sug)\[»(x; [0, o] XS)Sl—ing T 1(x)=1—inf T21(x)<1,
xeSst E{=Ng =0

Now suppose that there exist two solutions #, and #. of (4.13)
satisfying the condition of the theorem, then ¢,(x)=u,(%, x) —u.(¢, x)
is a solution of

%(x):So Ss\ll‘(x; d?’dy)(o,_,(y)
such that
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(4.24) lim sup |¢,(x) | =0.

x>4 0<t<¢g
Assume
a=sup sup |,(y)|>0.
yeS 0<s<g¢

Then by (4.24) there exists m such that

(4.25) @=sup sup lo.(X) 1.

Sm 03s<a

On the other hand

t
0<<sup sup |¢,(x) | <sup sup S S Y(x; drdy) {sup sup |o,(y) |}
xeS” 0<t<go xS 0JS yES 0<s<¢

" 0<t<og

Ssupy (s (0,01 x5 toup sup lo () 1)

and hence by (4.23), we have

xeS™ 0<i<a

0<<sup sup |¢,(x) | <§2£0§P£ le.(y) | =a,

which contradicts (4.25). Therefore ¢,(x)=0 for all {<[0,s] and
xe 8. Since ¢ is arbitrary, #,=u,, which proves the theorem.

Corollary. Suppose (T, K, =) satisfies the condition (U), and
let U, be a branching semi-group on B(S) such that, for every
feB(S), ult,x)=U,f(x) defines a solution of the M-equation
(4.13). Then U, coincides with the semi-group T, constructed in
Theorem 4. 4.

A~ T
Proof. Let fB*(S)*; then u(t,x)=U,f(x)=u(t, -)(x) is a
solution of the M-equation with the initial value j/’: where u(%, x)
~U,f]s(x). We shall show that
(4.26) liIEI Sup lu(t, x)| =0, for every ¢>0.

For, since #(¢,x) is a solution of the S-equation (4.14), we have

0<u(t, x) = Tf (%) + So SSK(x; dsdy) F(y; u(t—s, )
<Tf(x) + S SSK(x; dsdy) = T0f (x)+1— T01(x)

=1-T'A-N@=1-A-|f])_jnf_T*1(x)<1
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for every {€|0,5| and xS, therefore, (4.26) is satisfied. In the
same way we see that v(f, x) = T,j/’\(x), feB*(S)* satisfies the same
equation and (4.26). Hence by Theorem 4. 5, we have u(¢, x)=v({, x),
ie., T,]/‘\(x) :U,j/’\(x) for every f€B*(S)*. By Lemma 0.2 we have
T,=U, on B(S).

§4.3. S-equation

Let (T, K, =) be a given fundamental system. In Definition 4.4
of §4.1 the S-equation was defined as

419w, =T+ | K dsdy) F(y; u),
0JS
where u,(x)=u(t, x). A solution of (4.14) can be constructed by
the usual method of successive approximation.
Theorem 4. 6. For a given f€B*(S)", define {u,(¢, x)} induc-
tively by
(4.27) u, (¢, x) =0,

w4, £) = Tf (x) +S gsm; dsdy) F(y; w1 (t—s. ).

t
0

Then

(i) 0<u,<w,,<1—T7?(A—f),
and hence

(4.28) u..(t, x)=limu,(t, x)

#—>c0

exists for every t€[0,00) and x<S.

(ii) #. is a solution of the S-equation (4.14), and it is the
minimal solution of (4.14) in the sense that if v(0<v<<l) is any
solution of (4.14), then u.<v.

(iii) #. has the following rvepresentation by a (uniquely deter-
mined) substochastic kernel p,(x,dy) on SxS;

(4.29) uat, 2) = puCx, dpFCy).
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Proof. First of all we remark that, since
Fx; )=\ r(x.dfly)

and n is a substochastic kernel, if 0<g,<<g,<1, then 0<F(x; g1)
<F(x; g.)<1. Then
=0 =707 (0)+ | | K(x; dsde(y; o1
<T’f(x)+ S; S K(x; dsdy)
=T f(x)+1—-T 1(x)
=1-T'A—-f) (=),

and if we suppose 0<<w,,<u,<<1— T7(1—f), then
0<w:(t, ) = TOF (x) + S SSK(x; dsd) F(y: tr(i—s, -))

<7+ | Kas dsay) Fiys mit—s, )
—talt, O=Tf @+ | Kexs dsdy)=1-T01—£) (),
S
which proves (i). Now it is clear that u#.(Z, x)=limu,({, x) is a
solution of (4.14). Suppose that 0<<p<<1 is a solution of (4.14);
then #,=0<v, and if we suppose #,<<v, then
taa(t, ) = T () + | KCx; dsdy) FCy; matt—s, -))
<12+ § KCxi dsdy) F(ys o(t—s,))
0JSs

=v(t, x).
This proves u,<<v for every k, and hence #.<<v. Therefore (ii) is
proved. Finally we shall prove (iii). By Lemma 0.3 it is easy to
see that each #,(¢, x) has the expression

u(t, )=\ Flo)ux dy),

where 4 (x,dy) is (for each fixed {) a substochastic kernel on
Sx8. Thus (4.29) holds with u(x,dy) which is a weak limit
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(on :9\) of 4*® when k—>co.

As already stated in the Corollary of Theory 4.4, the minimal
solution of the M-equation supplies a solution of the S-equation.
Conversely, we can construct a solution of the M-equation from a

solution of S-equation as we shall see in the following

Theorem 4.7. Let f€B*(S)* and u(t, x) be a solution of the
S-equation (4.14); then u(l,x) defined by

o~
(4. 30) u(t, x)=u(t, - )(x), xS,
is a solution of the M-equation (4.13).

The theorem follows at once from the following Lemma by
setting s=0 in (4. 31).

Lemma 4.4. Let u(t, x)=u,(x) be a solution of the S-equation
(4.14); then
S T~ t
4.31) Tu-(x)=T'f(x) +S <T?u,_,lg K(-; drdy) F(y; u.-.))(x)
s S
where s<t.

Proof. When x=40 or 4, it is obvious. Suppose x&S". We
shall prove (4.31) by induction on . When #=1 we have by (4. 14)

we= T S+ KCs aray PGy )
and by (4.4)
Thu =TT f+ T\ { KC3 drdy) F(y; ..o
S
_ T,°f+S:SsK(- : drdy) F(y; u.-,).

Thus (4. 31) holds for n=1. Suppose it is true for x&S** (n=2)..
Then for x= [%1, X2, -+, X,] €S”, we have by setting &' = [x2, x5, ***, %.],

T "
T?ut—s(x) = Tg Ui—s (xl) 1:-[2 ( T?“t—-:) (x])

~{77Ce0 + (' K aray) Foys oo} {Tefn

t
s
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N <rtu § K5 dvan Fees w0y )
S t N
=107+ | Kexi dray) Fey; u ) Teptar
+ Tef G\ <Tru) | KOs dvae) Fez; u > ()
+\\ K drayy Py )<t KO dvan) PG udy e

=1, say.

Now consider the last term:
[§ xexs aray POy o\ <ru ) G5 dvaz) Fez; w0y
~{§ KCxs arayy POy; ) (<o § KO dvdz) Pzs udy
\ertu§ &0 avan PG w0y @)

=S SK (213 drdy) F(y; u,-,)Si<T‘3u,-"|SSK(-; dvdz) F(z; u,-,))(a")

t
s

j=2Js

+ 520§ K dvan Py 0§ Keos drayy Foys )

x I TSu,..(x).
Hence
I=Tif (=) +SSK(x drdy)F(y: u,.) {@(xz)
(e § kG dvan P ey
+gS:SsK(x,~; drdy)F(y; u.-) {T,"f(xl)
' K avazy Pz wey) x 1110w o)

and, by induction hypothesis, this is equal to

T t T
Tif o+ ([ Kees dray)FCys u-) Tou ()

+3\'( & dra Fyiue) 1 Tou (2
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S n (t ”
=Tt + 5 | Kixs dray) FCysun) 11 Thu, ()

o~
=Tf(x)+

e

creun§ K¢ dray) FCys u-0d .
Thus (4.31) is proved.

Corollary 1. Suppose (T, K, =) satisfies the condition (U);
then the solution u(t,x) (0<u<l1) of the S-equation (4.14) with
the initial value f= B*(S)* is unique, and hence it coincides with
U..(t, x) of Theorem 4.6.

Proof. Let u(t,x) be a solution of the S-equation (4. 14) then
just as in the proof of Corollary of Theorem 4.5, we have

sup sup |u(t, 2) | <1—-A—|fID inf T°1(x)<1.

x€S 0<t=c €S,
Then #(¢, -)(x) is a solution of the M-equation with the initial value
N

f(x) satisfying lin}’ sup i (t, -)(x)| =0. By Theorem 4.5 #(¢, -)(x)

is the unique solution and therefore #(Z, x) must be unique.

Corollary 2. Let T, be the branching semi-group constri:cted
in Theorem 4.4 (ie., the semi-group of the (X°, n)-branching
Markov process). Then for f€B*(S), u(t,x)=T.f|(x) is the
minimal solution of the S-equation with the initial value f, that is,
we have

T.fl(x) =u.(t, 2,

where u.. is defined in Theorem 4. 6.

Proof. Let v(t,x) (0<v<{1) be a solution of the S-equation
with the initial value f; then by Theorem 4.7 v(¢,x)=0(¢, -)(x) is
a solution of the M-equation with the initial value J/‘\(x). By Theorem
4.4 we have T,j/‘\(x) <v(¢, x); in particular, we have u(¢, x)<v({, x).

One of the consequences of Corollary 2 is the following. Let
f=1; then T.1|¢(x)=E.[1(X,)] =P.[e,>t]. Thus P,[e,>t] is the
minimal solution of S-equation with the initial value 1. In particular
we have the following
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Corollary 3. For an (X°, n)-branching Markov process X,
P.[e,=+co] =1 for every x if and only if u(t, x)=1 is the unique
solution of the S-equation corvesponding to the system (T!, K, =)
of X with the initial value 1.

Now we shall discuss the regularity of a solution of the S-

equation assuming some regularity conditions on the fundamental
system (T?,K,n). Let HCB(S) be a closed linear subspace of
B(S) satisfying:
(H.1) HNOC(S) is dense in €C(S) in the sense of w-convergence.'®
(H.2) The function f(x)ngu,(x)dt belongs to H if u,=H for
each t€(aq, b], u, is right-céntinuous in ¢ for each xS and
Iggglllu:ll<°°~

Given a stochastically continuous' non-negative contraction semi-
group U, on B(S) such that U,(H)CH, we set according to
Dynkin [6]

(4.32) H=H"={feH; s-limUf=f}">
(4. 33) H=H®={feH; w-limUf=f}.

The H-infinitesimal genevator Ay and the weak H-infinitesimal

generator Ay of U, are defined as in [6]; in particular Ay is the
infinitesimal generator in the Hille-Yosida sense of U, restricted®on
H,.

Definition 4.7. A fundamental system (7T}, K,r) is called H-
regular if it is determined by [X, &k, z] (cf. Definition 4.2) such
that, if 7, is the semi-group of X,

(i) T.(H)CH,
(ii) k-feH,(=HP™), if feH,, and

13) Let (f:}cB(S) then w-limf;=f;, if and only if squfs'i<°° and
lim fs(x) =f5,(x) for every xES. ’
s—>50

14) ie. 1{1:13 U.f(x)=f(x) for every fC(S). Every semi-group corresponding

to a right continuous Markov process on S is stochastically continuous.
15) s-lim fs=fs, if and only if || fs—fs,[| =0, (s—>s0).
s>s50
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Gii) F(;f)eH,, if fe H,NB*(S)".
When H= H,=C(S) we shall call the H-regular fundamental system

simply as regular.

Definition 4.8. A fundamental system (77, K, =) is called
weakly H-regular if it is determined by [X, k&, =] such that, if T
is the semi-group of X,

(i) T,(H)CH,

(i) kfeH(=H™ if fel,

Gi) F(-;f)eH, if fe H,N\B*(S), and

(iv) the function f(x)zS;TS(v,_s)ds belongs to ﬁo, if v.€H, for

every s€ [0, ¢], v.(x) is right continuous in s and sup |[[v,]|<<co.
sel0,1]

Remark 4.1. (i) The weak H-regularity does not necessarily
imply the H-regularity.
(ii) If a system (7, K, =) is H-regular or weakly H-regular, then
it satisfies the condition (U) since 2= B(S)™; hence the solution of
the S-equation with the initial value f& B*(S)* is unique. (There-
fore it must coincide with #. of Theorem 4.6 (4.28)).
(iii) If (T}, K, =) is H-regular (weakly H-regular), then T)(H)c H
and H{™=H, (resp. ﬁ{"zﬁo). Let A.(Ay) and A?,(zzlv‘};) be the H-
infinitesimal generator (resp. weak H-infinitesimal generator) of 7,
and T respectively. Then D(A,) =D(A%) (resp. D(A,) =D(A%)) and

L= Ay—k, (resp. Ay=A,—k).

(iv) (T! K, =) is regular if and only if it is determined by [X, &, =]
where the semi-group 7, of X is a strongly continuous semi-group

on C(S), keC(S)* and F(-; f)eC(S) if feC*(S)".

Theorem 4.8. Suppose we are given an H-rvegular (weakly
H-regular) fundamental system (TP, K,z). If feH,NB*(S)*
(resp. fef[voﬂB*(S)*), then the solution of the S-equation u(t, x)
=u,(x; f) with the 'initial value f (which is unique'® by Remark 4.1

16) We shall give another direct proof of the uniqueness of the solution in §4.4.
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(ii)) belongs to H, (resp. }70), and u(t, -) is strongly continuous
(resp. weakly right continuous) in t.

Proof. Assume (T/, K, =) is H-regular. By (4.7) K(x; dsdy)
=T%x,dy)k(y)ds, where T!(x,dy) is the kernel of the semi-group
T?. Thus the S-equation has the form u,= T,°f+gl T(k-F(-;u,..))ds.
Let {u,(¢, -)}(n=0,1,2, ---) be defined by (4. 27)0; then #,<#,,; and
limu,=u. Also by Theorem 4.6 (i) sup ||u(z, I<1—=A—=|flDe
;NAU<1 for every ¢>0. Next, wef—‘r_eornark that if g, heB}(S)*
where 7<<1, then by Lemma 0.1 (0.33) [g—hls<alg—h|, and

hence

(4.3 IFC; )~ FC; Dl =supl| =(x, dy)(Fy)~2(3))|
<allg—nhl.
Now suppose u,(f, -)=H, for every ¢ and is strongly continuous
in £. (For n=0, u,=0, and hence it is trivially true). Then by
the H-regularity of (TP, K, =), kF(-; u.,(s, -))€H,, and hence
v,.=T" (k- F(-; u,(s, -))eH, every 0<s<<t. We shall prove that
v, is strongly continuous in s on [0, ¢]. For,
lven—vll =1 T (k- FC5 un(s+h, ) — T (k- FC-5 u.(s, D),
ST (R AFCs w(s+h, - )= FC 5 u(s, -0
(T s = T (k- FC 5 (s, Dl
<IENFC; ua(s+h, -))—FC 5 uls, )
T o= T (k- F(C-5 ua(s, D)l
<a|lk|l-lu.(s+h, ) —u.(s, )]
FNCT =T (k- F(C- 5 ua(s, )N
—0

when 4—0, where we set @’=A,. Therefore,

w,zg'vsdszg'ngk-n-; w(t—s, ))dse H,

and
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+h”

||w,+h—w,ugg S (k- F(- 3 (s, ) ds

1T T G FC s, ) s
—0

when 2—0. Thus w, is strongly continuous and therefore #,.,(Z, )
=Tf+w,H, and is strongly continuous in f. Hence, for every
n=0,1,2, -, u, (1, -)=H, and is strongly continuous in {. Now if
t<, then, setting @’=a,,, we have
t
ety =t NI T2 (FC5 =5, )
_F<) u,,-z(i_s, ’))})dS”
<RI IFC 5 (=5, )= FC5 ali=s, -))ds

<@ s (s, )= 20a(s, s

<@ KD (s, ) —sCs, s,

<@\ as Hldsat,sdt,oo-ar,

A LI
n!

Hence for every >0,
sup (5 )=t O <3 IR g

when n—oo, which proves u,(-; f)= H, and is strongly continuous
in £.

The proof for the case of weak H-regular is similar. We only
remark that we use the condition (iv) of Definition 4.8 to show
that S;Tﬁ’(k-F('; u,(t—s, -))dSEﬁ; by assuming #,(s, -)Eﬁo and

is weakly right continuous in s.

Further regularity of the solution #,(-; f), when feD(As)N
B*(S)* (resp. feD(;fH)ﬂB*(S)*), will be disscussed in §4. 5.
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§4. 4. Construction of a branching semi-group through the S-
equation

Given a fundamental system (77, K, ), we constructed in §4.2
a branching semi-group as the minimal solution of the M-equation.
We shall now give another construction of a branching semi-group
using the solution #.. of the S-ejuation obtained in Theorem 4. 6.
For this we shall assume in this section that (T?, K, =) is deter-
mined by [ X, k, =], where k= B(S)*. Then this fundamental system
satisfies the condition (U) and hence #. is the unique solution of
the S-equation if the initial value f is in B*(S)*. But the proof of
Corollary 1 of Theorem 4.7 involves arguments on the M-equation;
therefore we shall give first of all a direct proof of the uniqueness
of the solution so that future discussions will be self-contained and
independent of the discussion given in §4. 2.

Let u,=u(¢, x) (0<<u<C1) be a solution of the S-equation (4.14)
with the initial value f€ B*(S)*. Then

0= Tof+ | Tok- FC-3 £)ds< T + (1= T01)
<1- (- fIDe=A<1.
If v,=v({, x) (0<<v<1) is another solution, then we have from (4. 34)
that if {<¢
=0l =1, THRCFC )= FC o)) ds|
<a'#]{ .~ v.]ds

<@k \"jw—ovldsat,

fye

<@a{ "’

Yo, — v, ||ds dt,s--dty

/k n”
<@k,

where @’=a,,. Hence
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sup flu,— v < CIED" o (soo)
o<t<g n:

which proves u,=v,; i.e., the solution of the S-equation with the
initial value f€ B*(S)"* is unique, and hence it must coincide with
#.. of Theorem 4.6. We set u,(x; f)=u.({,x). Then by Theorem
4.6

(4.35)  sup (5 HIS1=A=|fDe o<1, for all 70,

and #, has the following expression

(4.36) w3 )=\ ptx dpfly

where p,(x,dy) is a (uniquely determined) substochastic kernel on
SxS. By Lemma 0.3 there exists a (uniquely determined) substo-
chastic kernel i(x, dy) on SX S8 such that for every f= B*(S)",

T ~ ~
@3l H@=| T dnfly, telo ), xes.

We shall show that ig(x)=gi(x, dy)g(y), g=B(S), defines a
semi-group on B(S). For this we shall prove

(4. 38) s (5 ) =w(5u(-5 7)), FEB*(T)™

In fact,

tts
0

w5 )= Te 4 KC s dran PG w5 )

=TT+ | KC dray) FOys s (5 )
+S:+SSSK<-§ drdy)F(y, u,h_'(,;f))
=1, say;

applying (4.4) to the last term of the above we have

I=T'TOf + S Ss’“' L drdy) F(Y; thene (- )

+ T\ Ko dras) Fys (5 )
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~1mef+( § KCs dran Foys a0
N K drdy) FCys w5 1)

=105 )+ | KCs dran) Foys w5 70,
This proves that v,=u,,.(-; f) is a solution of the S-equation with
the initial value u.(-; f)eB*(S)*, and by the uniqueness of the
solution we have (4.38). Then for feC*(S)* we have

~ A~ T —
T..flx)=uu. (5 @) =u( 5 u( 5 ))(x)
~ T T ~ o~ AN
=T, (u,(-; [))(x)=T.(T.f)(x).
By Lemma 0. 2, T,“g(x) = ’TV,(’ig) (x) holds for all €,(S) and hence
for all g B(S). Thus ff, is a semi-group on B(S), and by its
definition it is a branching semi-group. In this way we have const-

ructed a branching semi-group T, from a given fundamental system.
We shall assume further that (77, K, =) is H-regular or weakly H-
regular; then we have the following

Theorem 4.9. (i) Suppose (T}, K, =) is H-regular. Then
T, is a strongly continuous semi-group on the smallest closed linear
subspace H, in B(S) conlaining {f\; fe HNB*(S)*}). In particular
if (T) K,rn) is regular, then T, is a strongly continuous semi-
group on C,(S), and hence the corresponding branching Markov
process is a Hunt process.

(ii) Suppose (1!, K, ) is weakly H-regular. Then T, is weakly
continuous on the smallest closed linear subspace H, in B(S) con-
taining {j/‘\; feﬁoﬂB*(S)}. Also, T, is strongly continuous on the
smallest closed linear subspace containing {J/‘\:fe HOB*(S)}.1»

Proof. Proof of (i) is almost immediate from Theorem 4.8:
in fact if fe H,N\B*(S)*, then

17) In the case of H-regular we have H{"” =H,(=H!™) but in the case of
weakly H-regular they do not coincide in general.
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(-3 F)=T.f <€ HNB*S)* and |lu(-: f)—f[—0
when /—0. Then T’,J/[\EHO and

IT.7—Flls<anlluC-; F)—f[—0

when t—0. The first assertion of (ii) is proved similarly. As for
the second assertion, we see from the Corollary of Theorem 4. 10
given below that if (7/, K, =) is weakls H-regular, then f ED(ZH)
AB*(S)* implies u,(-; f)eD(A,)NB*(S)*C HT N\ B*(S): there-
fore ||u,(-; f)—f]|—=0. Then the proof is the same as in (i).

In §4.2 we have constructed a branching semi-group T, as the
minimal solution of the M-equation and, it is the semi-group corres-
ponding to the (X° =)-branching Markov process. We now claim
that T,= T,; i.e. the semi-group T, is the semi-group corresponding
to the (X°, n)-branching Markov process. This follows from Theorem
4.4, Corollary or Theorem 4.7 and Theorem 4.5, Corollary. But in
the case when (77}, K, =) is regular, we can give the following direct
proof independent of the arguments involving the M-equation. Thus
we shall see that, at least in the case of a regular fundamental
system, the construction of the (X' =)-branching Markov process
given in this section is completely self-contained.

Suppose, therefore, (T, K, =) is regular; then branching Markov
process X corresponding to the semi-group fﬁ is a Hunt process,'®
and we shall show that X is the (X° =)-branching Markov process.
By Theorem 4.10 given below, if f&D(A*) NB*(S)", then

|2 (TF-F)—<F1 47 +RF(F| ~0 when 10,

In particular we have

‘%(iﬂs-n—mf— e dy>ﬂy>u—>o when £—0.

18) Hence it satisfies the conditions (C.1) and (C.2), cf. §1.2.
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If we consider if, |2|<1, then we see easily that'”

0 T anfly) —a@ atx anfiy)] o,
n=0,2,3,--+)

sup
xS
and

sup

xsS

L Ficx anf(n—fo} = a7|~0, when 10,

From the first formula we can conclude, as in Ikeda-Watanabe [18],
that z(x, dy) is the branching law of X and further

P.le<t, X.e B =\ { T*(x, dnk(5)=(s, BYas,

where T*(x,dy) is the kernel of the semi-group of the non-branch-
ing part X* of X. From this we have §IEJSpP,[r£t]=O(t). We
shall now prove that X* is epuivalent to X 0 ie, Tx¥=T? It is
sufficient to show that

™ sup E.[f(X.); 1=z, X,€S]=0(}) (t10),
since then we have, for feD(A") N B*(S)Y,

o| H{ Tz anf o} - a7 )

{g T.(x, dy)f(9) f<x>} Af <x>|

+%su1§)E,[ f(x); >, X,€S]—0

This proves that D(A*) C D(A*) and A*f=A"f on D(A®), and hence
T’=T*. But we have

Ex[f(Xl); t>r, XtES] :EX[EXY [f(Xt—u); Xt—ues] lu:T; Tgt]

d
o /\ o~
E.[f(X.); X,.€5] = T0|f>(®) =lim L(T.&— T.0) ()

=(T,01 TAOI Yo (x).

19) Generally, if a sequence of a Banach space valued analytic functions {fs(A)}
is such that [|fx(A)||=>0(|A|<1) when n—>oco, then ||f*(0)||=0 (n—>c0) where f{* is
»-th derivative.
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Since sugT,B(x)zO(r) we have
sup (7,014 T.01 5| (x) =0(r).

Combining this with supP,[+<{] =0(¢) we have (*). Thus X is the
rES
(X°, n)-branching Markov process.

§4.5. Backward and forward equations

We shall discuss in this section the theory of the infinitesimal
generator of a branching semi-group T, corresponding to the (X°, x)-
branching Markov process. As in [6], the strong and the weak in-
finitesimal generators A4 and A4 of T, are defined by

Afzs—lim.T'—f?ii and Af— w—limLft—‘i

t=>0 t—0

with domain of definitions

D(A)={f :f€B(S) such that s—limljt—_Ji:Af exists}

t=>0

and
D(A)= {f; FEB(S); w*fﬁ?% = Af exists

such that w—limT,(Zf)=Zf}.
140

It seems difficult to discuss 4 or A without some additional condi-
tion on the system (7, K, =) and so we shall assume it is H-regular
or weakly H-regular for some closed linear subspace H satisfying
the conditions (H.1) and (H.2) of §4.3.

Lemma 4.5. Suppose (T, K, =) is H-regular (weakly H-
regular) and let v, H, 1|0, ) and f=B*(S)'MH, (resp.
fEB*(S)'MH,) such that |v,—f|—0 when t—0. Then

e pes 0)as
(4. 39) s-lim-2 —kF(f)

140 t

(resp. w-lim S"Tg(k. PO veDds =kF(f)>.

tL0 t
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Proof. From the condition [jv,—f|—=0 ({—0) and fB*(S)*
we may assume sup ||v,]|<r<<1 for some {,>0. We shall put for
o<t<ty
1<t,

%S;Tg(k.p(.; Vi ))ds—kF(-; f)=L+1,
where

IIZ%S;Tg{kF(.; v,)—kF(-; f))ds
and

L=\ TekF s £))ds—RFC5 £,
By (4.34) we have
ML= (I TS RCRC s 00— FC3 )} ds
<1 Ikla [0.~f Ids—=0 (t=0).

If (T, K, ) is H-regular (weakly H-regular) and feH, (resp.
feH,), then kF(-; f)eH, (resp. kF(-; f)e H,) and hence
S-HmTRF(; £))=kFC:3 f)
(resp. w-NmT?(RF(-; f))=kF(-; f)).
Then we have clearly that
s-lligm I,=0 (resp. w—l’i_gl 1,=0),

and the proof of the lemma is now complete.

Theorem 4.10. (i) Suppose (T?, K, =) is H-regular. If
FED(AYD NB*(S)*(=D(A) N\ B*(S)"), then feD(A) and Af is
given by

(4. 40) AF={Fle(fH),
where
(4.41) c(f)=A%f+kF(; f)

= Ay f+RCFC5 £)=F)-
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Conversely, if fe HNB*(S)* is such that f€D(A), then fD(A%)
(=D(A)) and hence Af is given by (4. 40).

(ii) Suppose (T?, K, ) is weakly H-regular. If f& D(A)NB*(S)*
(=D(ADNB*(S)"), then feD(A) and Af is given by

(4.42) AF=(F1ECNH),

where
(4.43) &) =AWf+RFC; [)=Auf +k(FC; ).
Conversely, if f€ HN\B*(S)* is such that ]‘\e D(Z), then fe D(}ﬁ)
=D(Ay) and hence Af is given by (4.42).

Proof. We shall first prove (i). Suppose feD(AY) NB*(S)*

then by Theorem 4.8, u,(-; f)=T.f|s€H, and [w.(-; f)—F|—0
when £} 0. Now if ¢(f) is defined by (4.41), we have

(vl D2=L o)) = (LL=L - asy)

+<§0:r.e<xe-F<t-; u,-))ds _m.;f)).

Clearly the first term converges strongly (i.e., in the norm) to zero
when ¢ | 0 and so does also the second term by Lemma 4.5. Thus

[EXCACTIEIPENICH
Lemma 0.1 (0.35)

”L’i—f—<f|c(f>>”s=”—-—~———@)_fA—<fIC(f)>|iS

<d.,
—0

—0 when {—0. Then, if {<s, we have by

s 1y=r—er||+eaetHd; H~F 1

when {—0 proving that f\ED(A) and AJ/‘\= Sfle(fH)).
Conversely let fe HNB*(S)* be such that j/’\ED(A). Then

[2arp-af|~o a0

20) A,=1—(1—[lf|De- i<l
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and a fortiori

|5 =) - af)

—0 (t—=0);

that is,

(4. 44) "—T'Of;—_er%S;Ti’(k-F(-;u,_s))ds—AfAl.c 0 (t=0).

. . T f—r11| . .
From (4.44) we see in particular that — is bounded in ¢

and hence ||7T'f—f||—0. Therefore f€H, and this implies, by
Theorem 4.8, that u,(-; f)eH, and ||u.(-; f)—f||—=0. Then by

Lemma 4.5 S-li&l%gtT?(k'FC; u,_))ds=k-F(-; f). Combining

.. TN~ . .
this with (4.44) we see that s—hm—t exists and is egjual to

Af'\ls—-k-F(~;f) which proves f& D(AY).

The proof of (ii) is quite similar, and therefore it is omitted.

Corollary. Suppose the fundamental system (TP, K, =) is
H-regular (weakly H-regular). If feD(A,)NB*(S)* (resp.
FED(AHNBXS)Y), then w=u(-;f)=Tfls€D(As) (resp.

u,eD(Ay)) for every t< [0, <) and ‘Z;’

exists strongly (resp.

d;,’;’ exists weakly);* further, we have

du, _ .
(4. 45) —‘dT—AHut‘l'k(F(v ul)_ut)

(resp. d;?’ =guux+k(F('; M:)“%))
and

Proof. If feD(Ax)B*(S), then f&D(A). Therefore, by the
A T
general theory of semi-groups we see that T,f(x) =u,(-; f)(x)=D(4)

and is strongly differentiable™ in ¢ and i%;fi;n, F=T,4F Then

21) d;tm denotes the right hand derivative.

22) With respect to the Banach space B(S).
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u,(-; f) is strongly differentiable in { and #,= D(Ay) by the second
part of (i) of the previous theorem. By the same theorem we have
(4.45). The proof of the case of weakly H-regular is quite similar

and hence it is omitted.

Definition 4.9. The equation (4.45) with the initial condition
(4. 46) is called the backward equation corresponding to the system
(T) K, =).

Thus the backward equation is a semi-linear evolution equation
and the semi-group of the (X° z)-branching Markov process defines
its solution.

Now we shall consider the eguation

(4-47) TS 1, AF= TS 1.

For simplicity, we shall assume that the fundamental system (77, K, )
is regular, though a similar argument can be carried over for H-
regular or weakly H-regular fundamental systems. Then the branch-
ing semi-group T, is a strongly continuous semi-group on C,(S) such

that if f€D(A)NC*(S)** then f&D(A) and
(4.48) AF={fle(fH)

where c¢(f) is given by ¢(f)=Af+k(F(-;f)—f). (4.48) deter-
mines the semi-group uniquely: in fact we have the following

Theorem 4.11. Let (T), K, ) be a regular fundamental sys-
tem. Let U, be a non-negative contraction semi-grvoup on B(S)

such that if fe D(A)NC*(S)*, then j/’\ED(AU)“’ and
(4.49) Auf={Fle(F),

where

23) In the case of H=C(S) we write Ag simply as A.

24) D(Ayp) is the domain of the strong infinitesimal generator Au of Uy;

Uf—f
t

D(Av) ={fEB(S); s-lim =Aryf exists}.
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(4.50)  c(f)=AS+k F(; [)=Af+k(F(C; f)=S).

Then U,=T,, that is, U, is the semi-group of (X°, n)-branching
Markov process.

Before proving the theorem we shall give the following remark.
Let B be a Banach space and 9 be an open subset of B. A real
valued function @(f) defined on 9 is said to be G-differentiable*®
in 9 if for every f€49 and geB

lim
€0

w(f+fg;)_(p(f) =0(f; &)

exists. 00(f; g) is called the first variation with increment g of f.
Now we take C(S) as B and

(4.51) D(S)={feC(S); 0<f<1}

as 9. Given a bounded measure x on S define 0(f), f€9D by
o(5) =\ Ffwudn.

Then by (1.49), o(f) is G-differentiable in 9 and

@Ws2) w9 Sflowadn, reas), gec(s).

Remark 4.2. Such o(f) has all higher order derivatives and
in fact it is an analytic function of f€9(S) in the sense of [9].
One can develop the theory of branching semi-groups on the basis
of analytic functions defined on 9(S) instead of using the symmetric
direct product spaces: for such an approach see Mullikin [36].

Now let U, be a semi-group satisfying the condition of the
theorem. If we set

(4.53) 0..(f)=Uflx), feD(S),

then for each xS we have that
(i) for fixed f€D(S), it is continuous in £,*®

25) Cf. Hille-Phillips [9] p. 71. ~
26) (i) is a consequence of (ii). Note that the linear hull of {f; f€D(A)
ND(S)} is dense in Co(S).
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(ii) for fixed feD(A)ND(S), it is continuously differentible in £,
and

(iii) for fixed ¢, it is G-differentiable in € 9D(S).

By (4.47) and (4.52) we have for fe D(A)ND(S)

Wt () =0021(f; €(FD), Oun(F)=F ().

Definition 4.10. For a given regular fundamental system
(T’ K, =) and a function @(f) defined on 9(S),

00,(f) _
(4.54) { L) —s0,(f; ¢(f)), FEDUMHNDS)

0. (f)=0(f)

is called the forward equation corresponding to the system (T, K,r).
A function @,(f) of (4, f) defined on [0, ) XD(S) is called a
solution of (4.54) with the initial value 0(f) if it satisfies the
conditions (i), (ii), (iii) above and (4.54).

Example 4.3. In the simplest case when S={¢} and if the
fundamental system is given by ¢ and {z;}7Z, (cf. Example 4.1),*”
then the forward equation (4.54) is given as

LGNNI

where c(f)=6~(§7r;fj“f>-

If o,,(f )=§‘,P,»,-(t)f", then the above equation is equivalent to
j=0

GPgt(t) = —JjcP,;(t) "‘C:Jrzl Pk mjp .

This is just the classical Kolmogorov’s forward differential equation
for a Markov chain (X,, P,) such that E"(f):iic and P [x,=7]
=m,;41, where r is the first jumping time.

Thus 0..,,.(f)=U, ]/‘\(x), fe9D(S), defines a solution of the forward

27) Clearly it is a regular fundamental system.



Branching Markov processes III 131

equation (4.54) with the initial value o(f)= f\(x) for, each fixed
x=S. Hence the theorem will be proved if we can prove the fol-
lowing

Theorem 4.11. Let (T, K, =) be a given regular fundamental
system and U, be a non-negative contrvaction semi-group on B(S)
such that for each x€S, 0.,(f)=Uf(x), fED(S), defines a
solution of the forward equation (4.54) with the initial value
o(f)=F(x). Then U,=T,.

Proof. Set 0.,(f)= T,j/’\(x), fe9D(S); then we know that for
each fixed x, 0.,(f) is also a solution of (4.54) with the initial

value o(f) =f\(x). Since U, is a contraction semi-group, we have
by Lemma O. 1,

100, (F)—02.(8) | = |UF- ) (x) | <|| F— Blls<a.|l F— gl,
f, € D(SHNCH(S),

and noting (4.52) we have, provided f, g€ D(S)NC*(S),

[60+,,(f; ¢(f))—00x.(g; c(&)]
=|Ufle(f)>—<gle()))]
<IKfle(f)>—<gle(&)ls
<bllc(DOINf—gl+elle(f)—e(ll.

Clearly we have similar results for @.,. Hence if we set 0,(f)
=0,,(f)—0:.(f), f€eD(S), then 0,(f) is a solution of (4.54)
with the initial value @(f)=0 such that for every »<(l

(4. 55) l0.(f)—0.(g) | <a.| f— 2l
and
(4.56) [60,(f; ¢(f))—00.(g; c(g))]

<Bllc(OIf—gl+rle(f)—c(Dl

for every f and g in D(S)NCH*(S), where «,, 8, and y, are con-
stants depending on 7. By the following lemma we have 0,(f)=0
and hence U,f(x)=0x,(f)=0.,(f)=T.f(x) for every fED(S).
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Since the linear hull of {f/'\; feD(S)} is dense in C,(S) we have
U,=T, on C,(S) and hence on B(S).

Lemma 4.6. Let 0,(f) be a solution of the forward equation
(4.54) with the initial value o(f)=0 satisfying (4.55) and (4. 56)
for every r<<1. Then 0,(f)=0 for every t=0 and f=D(S).

Proof. Since D(A)ND(S) is dense in D(S) and o,(f) is
continuous in f€9D(S) by (4.55), it is sufficient to show @,(f)=0
for every feD(A)ND(S). So assume f€eD(A)ND(S) and let
u,=u,(-; f) be the solution of S-equation with the initial value f;
then we know that #,€D(A)ND(S) by Cor. of Theorem 4.10 and

sup |Ju,||<A,<<1 for every ¢<<0. We shall now prove that d«,bd;;t)zo

0<t<c

in (0, ¢), where we set ¥, (¢) =0,(¢,-,), tE[0,06], for each fixed
¢>0. If this is proved, then +.(¢) is constant in #, and hence
Yo (6) =0,(f ) =rs(0) =0,(us) =0 for every ¢=>0; therefore, the lemma
will be proved.

Now

L (g (1) — ] =% (000 (thomsos) — 0y (thor) |

h
= ‘;7 [wt+h(u0—t—h> - mz(”u—t«h)] + % [mt(uﬂ—l—h) - 0: (uo—t>J
= [l + 12 ’

where we set

Il = % [ml+h (ua—t—h> —0, (ua—-t—h)]
and

I,= %l- (0, (to—i—s) — 0, (ths-,)].

Set 6,(f)= ag;' (f)(zaw,(f; c(f))); then J,—6,,0n(tho_ss) for

some f=6(k) such that 0<§<C1, and hence

(4. 57) l Il_@‘(ua‘—t) l = l@1+9h(u6—t—h) _@g(ur;—t) I
<6101 (Uo1-4) — Orson(Uot) | + 0104 (Uor) — 6,(%s-r) |.
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Since 6, is continuous in s by the condition (ii) of a solution, the
second term tends to zero when 2—0. The first term is equal to

|00 01 (Uoi-t; €(Uois)) — 80104 (Uo-s; €(Uo-)) |,
and by (4.56) this is majorized by

K[ thomr—thot|| + Kol € (tomrs) — ¢ (o) ||.
The first term tends to zero when A—o0. By Theorem*4.11 and
its corollary, c(ug_,_,,)=(Azia_,+,.)|s=(TH_;.A? )|s and similarly

c(ua_,):(T.,-,A]/c\ )ls; therefore, the second term is majorized by

| K@ —— T,,_,)Aj/f\ll which tends to zero when A~—0. This proves
'[1—‘@(ua'—z) |_)0 When h—>0.

Next consider I,; setting g=c (%o,
I,= % {0,(Uo—s-s) —0(Us-,)}
— 0t ) =0, (- — B )}
o 0, (o — - 8) = 0,(o)}

and the second term tends to —o®,(#s,—,; g) when A—0 by the defi-
nition of the functional derivative 8. By (4.55) the first term is
majorized by

K _ .
T oboss—thos+ - gl

and this tends to zero since
ot — Uy . 1 ~ ~ ~
| g = | AT F o TP — AT L

-0 (h—0).

Thus I.——00(#.—,; &) and hence

L+ 1,—6,(u.-,) —60,(ts—; §)= (%w— aa,) =0.

This proves i‘%—t(ﬁ =0.
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Finally we shall give a direct proof that the semi-group T, con-
structed in Theorem 4.4 as the minimal solution of the M-equation
satisfies the forward equation. This will give us a new proof of the
branching property of T, at least in the case when (7}, K, =) is
regular. This point can be seen more clearly in the following way:
if 0..,(f)= T,]/’\(x), feD(S), defines a solution of the forward
equation with the initial value o(f )=_/f\(x) for each xS, then

IR . .
0. (f)=T,f)|s(x) defines also a solution of the same equation
with the same initial value. Hence by Lemma 4.5 we have

~ A RS
0%, —0.,=0, ie, T f(x)=(T.f)|s(x).

This proves T, has the branching property.*®

Now, T, was constructed as
T.f=S\T"f, feB(S),
n=0

where T, n=0,1,2, --- were defined by (4.16). Let x(x,dy) be
a kernel on S X S defined by

@58) | uw dF)=F 1R FC @,

Such a kernel exists and uniquely determined by Lemma 0.3. Set

@59 ot xdy) =\ T dsuta dy);

then the kernel r(x; dsdy) defined by (4.9) is given by
Yr(x; dsdy) =¢(s, x, dy)ds.

Now set

(4. 60) #5(t, x, dy) = gsmx, d5) T (s, dy)

then clearly

28) This argument is similar to that given in Harris [8] to prove that a minimal
Markov chain such that P:(Xr=j)==j-i.1 and E;('r)=% (cf. Example 2) is a
T

branching process.



Branching Markov processes 111 135

(4.61) Ss¢(s, x, dz) TL.(z dy)

- SST?(x, d5)¢*(1—s, 5 dy).
Rewriting (4.16) by ¢ and ¢*, we have
TO(x, dy) = S S 6(s, %, dz) TL. (5, dy)ds
S Ssrﬂ(x, d5)¢*(1—s, 5 dy)ds,
T (x, dy) = S §s¢<2><s, %, dz) T (3, dy)ds™
T!(x, dz)¢*®(t—s, 5, dy)ds

1S
(.10 dmyerct—s, 5. ayras,
S

T (x, dy) = S T (% de) (=5, 3, dy)ds
]
and hence

T. f(x) = ET" f (%)

n=0

o+ ast(§ ort—s - dyfn) @

for every f€B(S). In particular for ]’\(x), feB*(S)*, we have by
(4.60) and (4.58)

~ T t
(4.62) T, f(x) =T/ f(x)+ Sods T.KT. FIRFC; T ) ().
Therefore, if feC*(S)*ND(A),

“it—ft_qlfl“ﬂrkf(- ; f)>.|
g”@—f 148

+ |3 astnr 1o FCs T 0 = <r1RFC )
=L+ || L]l

29) ¢@(t, x,dy)= Ss S:¢(t —s.x,dz)9(s, z,dy)ds. ¢*? is defined similarly.
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and by Lemma 0.1 (0. 35),

ILl<d| >(Ter—1)— Af

el AF |- | T2f—f =0
when {—0. Also by (0.34) and (4.34)
IEN< T dsICTe FIRFC T Y= CFIRFC 1)
<2 dsICTL. f1k-FC3 T2 Y= (T f 1B FC )
s+ asi<Te. 71k PO Y= CAIRKC S )1

<E(asie-re; 12— 0FC P

0
+ B yre r-rias
0
17 t
g——K; S TS, f—fllds
0

for some constants K, K’ and K" and t=[0,6] if ¢ is sufficiently

small. Hence | I;]|—0 where {—0. Hence ;‘\ED(A) and AJ/C\= {fIASf
+k-F(-; f)>. This implies, as we have seen above, that @,.(f)
= ,J/‘\(x), feD(S), satisfies the forward equation.

§4.6. Number of particles and related equations
Let X=(X,, P,) be a branching Markov process; we assume
(4.63) P .le,=+o0]=1 for every x€S8.
This is equivalent to the following weaker condition:
(4. 64) P.le,=+o0]=1 for every xS

since, if x=[xy, X2, -+, X4,

”n

P.le,= +oo] =lim T, 1(x) =limT1 T, 1(x,) = [1 P,, [e,= + oo].
t—>oc0 2 i i=1

>oo =1

The mapping fE%(S)—»]\‘/ESB(S) is defined by (0.32);
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)= { if x=20
f(x ) () 4+ (x), i x= (% X, o0, X,] ST
n=1,2,---

We shall sometimes write (f)Y instead of }/ It is clear for
fEeB(S)* and 0<<i<1 that if g is defined by g(x)=x“, then

(4. 65) Fx)=1®  ze8.

The operation ‘““”’ is linear:

(4.66) (fitfDV=Fitfe.

In this section we shall discuss &/ (w) defined by
(4.67) &l () =F(X)).

If I, is the indicator function of a set D B(S)
(4.68) £ (w) =1 () = [r(X,)

stands for the number of particles in the set D.

Lemma 4.7. For f€B(S)" and heB*(S)* we have, for
X = [xly X2y o0ty xn] ES",

~ (k) 1 " ~N N7
(4.69) T.(h(fH))(x)= > S — T, (h(f)5) (%)%
(ky kg, oy ky) k]!kz!"‘k,,! j=1
Proof. We assume first 2 B*(S)"; then there exists some
4>>0 such that, if [A|<a,, |l€V] ||k||<<1. Therefore, setting g=¢",
we have for x=[x,, %2, -+, x,] and |A|<<2

SR HOTR IO
k=0
=T.(h-2)(x)
i T.(h-2)(x;)
o oo oo PURLS SN ﬂTA X,
S D ik L RO @D,
30) This equality is true including the case +oco=+oo, @ denotes the

(k1 kg, kn)

sum over all (&, k2, -+, ky) such that 2 >0 and ki+k:+--+ky=F.
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Comparing the coefficients of 4* we have (4.69). When h€ B*(S)*,
we have (4.96) by the monotone convergence theorem, taking
h,e B*(S)* such that h,1h.

Corollary. For feB(S)*,

(4.70) T, f(x) = (T.f1)V(x).

Now set for feB(S)*
@71 M.f(x)=T,f]s(x) = E.[ F(X.)].
Let

B'={f=B(S), M,|f|€B(S) for every {>0}.

It is clear that if f belongs to B! then both f*=fV0 and f~
=(—f)VO0 belong to B'. We define M,f(x) for f€B* by

(4.72) M f(x)=Mf"(x)—Mf (x).
If we define a kernel M,(x,dy) on SXS by
(4.73) M(x, E)=MI:(x), x€8, E€B(S),

then we have clearly
@79 M.f(x)={ F(3)M.(x dy), FB
By (4.70) we have
My, f(2) = Tooo F ()= T(T.F) (@) = AT FI V()
=T.(M.f)V(x)=M,(M, f)(x).
Thus we have the following

Theorem 4.12. (M, 7(x) =M. (x, dn)f(») =E.[f(X)], xS,

f =B, defines a non-negative semi-group on B.

Definition 4.10. The non-negative semi-group M, is called the
expectation semi-group of the process X,.

From now on we assume X is an (X° x)-branching Markov
process and let (77, K, =) be the fundamental system of X.
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Lemma 4.8. Let heB*(S)* and f€B(S)*; then for each
£=0,1,2, ---, we have

4.75) TR 1@ = T2 @+ § K dsdy)
[l (k) k] i AN N7
5,3 e A0 D LT B s
Proof. We assume first that 2 B*(S)*. Then there exists
some 4,=>0 such that, if |[2]| <4, ||eV]/|lk]|<<1. We know that v(%, x)
AN
=T,(h-&)|s(x) satisfies the S-equation:

(4.76) o(t, %)= T(h-&") + ;SgK(x; dsdy)gsn( y, d5)d(t—s,)(z).

N

Since v (¢, x)= 2 T, (R( D ]s(x), [2]<<A,  we have

(4.77) 2 T,k 15(x)
=S A moe @+ K dsan s .0
O] k!
h kzzk.o kilky! k! jng_X(h(f) '1s(2),

(z= [21, 227 R zn])'

Comparing the coefficients of 2* we have (4.75). When he B*(S)*,

taking h,.€B(S)* such that %,%h, we have (4.75) by the monotone
convergence theorem.

If =1 and k=1, we have from (4.75)
@18 T =Tir@+|| K dsan S| =5, ds)
BT (D)
= 107 + || Kxi dsay)_xCy, d( T FlVo.

Theorem 4.13. u(¢, x)=M, f(x), f < B" satisfies the following
(linear) integral equation

31) z=[z;, 22, ", Zn].
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(4.79) u(t) =T )+ | Kx; dsanGly; uit—s; ),
where
(4.80) G(y; £ =\ =(x,d)E(y).

Further, u(t, x) =M, f(x) defines the smallest solution among all
non-negative solutions of (4.79).

Proof. (4.79) follows from (4.78). To prove the second asser-
tion, we need the following

Lemma 4.9. If x=[x, %, -, 2] €S,
(4.81) T fla) =T T () =S (I TI1(x,)} T (x),
4.82) | w(as dsay)zts (o
=3 Tt ) () [~ (I T01C))]
+ 3\ 71| Ko dsdsGey; g6, 0,
Sfor every feB(S)* and g=B([0, o) X S)*3»

Proof. Let h=¢; then (4.81) is obtained from T,“’)l/z\(x)——-l/"}’\h(x)
by differentiating with respect to 2 and then putting 1=0. (4. 82) can
be proved in a similar way.

Now let v,=v(¢, x) (0<{v <+ o) be a solution of (4.79). Then,
for X = [xly KXoy e, xn] ES"’

v,(x) =§lv(1, %)
ZéT?f(x:) +§SS;K(M; dsdy)G(y; v.-.)
=§{,E T (x)} Tif (%) +i='21(1 ~ I TCx)) TH ()
+ 3 701 0x)| Kixs dsd)Gs v
+§S;<l—£T31<xf>>SSK<xs: dsdy)G(y; vi-)
=L+ L+L+1., say;

32) As for the definitions of T; and ¥, see §4.1.
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then
=3 { a.(- 7o) Kexs dsay)G; v
=310 KCas a6y v Ja.(— m e,
and hence
Lo L= 3| 707 o)+ Keas dsan)60ys 00 Ja(— T

= (T ().~ LT ().

where we used (4.4) to single out Tj.

Therefore by (4.82)

12+14+13=S;Ss\;,(x; dsdy)¥—(y).
By (4.81)
= TOf ().

Hence we have
Bi(x) = TOF () +Sogs¢~(x; dsdy)b,.(y)

ie. 7,(x) is a a solution of the M-equation with the initial value

}/(x). In §4.2 we have shown that T,}’/(x) is the smallest of all
such solutions, and therefore

T.f () <¥.(x)
which implies, in particular, that
M, f(x)=(T.f)|s(x)<wv.(x).

From now on we shall assume that the fundamental system
(T?, K, =) is determined by [X, &, =] and is H-regular or weakly H-
regular. We shall assume further that
(4.83) suggn(x, dy)1(y)=K<oo

and
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(4.84) k-G(-; g)€ H,(resp. H,) if g H, (resp. H,)

in the case when the fundamental system is H-regular (resp. weakly
H-regular).
From (4.83) we have for every g€ B(S),

(4.85) G I<K-|gl.
Now, for given fe B*(S), define {u,(¢, x)};-, successively by
(4.86) u,(t, x)=0,

wn(t, 1) = TOF (%) J-SS K(x; dsdy)G(-; tya(i—s, -)).
0JS
Then just as in the case of the S-equation, #,}#., where #. is the
minimal solution of (4.79), and hence #..({, -)=M,f by the above

theorem. We shall now prove
(4. 87) | M, £l <<e|| £1i.

For, if we assume

(4.88) a2, - ||<§<K 'él!’i””—juf I,
then

0<tha(t, ) = T )+ THE-G(5 w(t—s, ))}ds
<A+ IRIE s, lds

<0+ i § s BT pas

w2 (K| R
= SR ) .

This proves (4.88) for every #» and hence letting #—co we have

(4.87). Now noting the following property of G,
(4. 89) IGC5 &) —G(-; W<|lg—~l,

we can repeat the same arguments as for the S-equation to obtain
the following
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Theorem 4.14. Assume that the fundamental system (T3, K, =)
is Hregular or weakly H-regular and (4.83) is satisfied; then
for given fEB(S) there exists a unique solution u(t, x)= B(S) of
(4.79) and u(t, x)=M,f(x)—=—E,[f\2X,)].“) M, satisfies

(4.90) M. flI<e"™| fll, f€B(S).

Further, () if (T?, K, =) is H-regular, then M, is a strongly
continuous semi-group on H, with the infinitesimal generator L
such that D(L)=D(Ax)(=D(AY)*®
and
(4.91) Lu=Au+k-G(-; u)

=Aqu+k{G(-; u)—u}.

i) If (T}, K, =) is weakly H-regular, then M, is a weakly right-
continuous semi-group on H, with the weak infinitesimal generator
L such that D(L)=D(Ax)(=D(AY)*™ and

(4.92) Lu=Au+k-G(-:u)
=.;1VHu+k{G(-; u)—u}.

Now consider for instance the case when =(x, dy) =0, 1(dy);*®
then G(x; f)=2f(x) and hence Lu=Au-+ku. By Kac’s theorem

(4.93) M.f()=E.lexp(| k(x)d)f(x)),

where E, is the expectation with respect to the process X. If £2<<0
the Markov process corresponding to M, is obtained from X by shor-
tening the life time (cf. §0.1), while in the case 2>>0 we must in-
troduce creation of new particles and the branching process X seems
to be one of the natural and nice models for the creation (cf. Knight
[23] for another approach).

33) This implies, in particular, that B'=B(S).

34) Axr(A%) is the H-infinitesimal generator of T'.(T').

35) ZE(Z%) is the weak H-infinitesimal generator of T':(T'}).
36) 8ls,21(dy) is the unit measure on S at [x, x]=S2
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Finally we shall derive some equations for higher moments of
&/. For simplicity we shall assume (79, K,#n) is regular and for
any feC(S)*
E.[(H)H(X)]=E.[()") €C(S)™.
Set

(4.94) U (t, %)= E,[(F)(X)].

Now we shall introduce the following notations: Iet (a$)ie,?
=1,2, --- be a countable family of sequences and define P} (a‘’) by

@95 (S5 a0)-2 2 500+ Pr(a)|.

j=1\n=0721! n=0M"!

Clearly P}(a’) is a polynomial in «f’, k=1,2, ---,n—1, i=1,2,
-, m. For yE8,y=1[y1, Y. ES", m(y)=m and

(4. 96) Hp(t, y)EHp<%(1)(t) . )v u(Z)(t) . )v T u(ﬁ_l)(ty : ))(y)
= P1®(a ),
where
o> =u®(t, y,), i=1,2, -, m(y), k=1,2, -, p—1.

Theorem 4.15. Under the assumptions above, we have
(4.97) u®(t, x) =M,[f*] (x)
{1 K 25 an B |@ds, res.
Proof. 1t is sufficient to prove (4.97) for non-negative f. If
we take 2=1 in (4.75) we have
(4.98) Pt )= T+ TG w)] (x)ds
+{ T8 x5 an G 0 [as,
Now put
o(t, =M+ M 5§ 25 an Hs ) [s.
Combining this with
M,1g)(x)=Tig) (0)+\ T kG(:; M.()))(x)ds,
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we have
ot 0= T2 0+ T =0 anE s ) e
+\ 1o G5 MDY (ds
(T 160 Mo U 55 dy) Hyts, 90D Jdods.
It is easy to see that
[z [k Mol s dn) B (s.01) [0 do ds
(T refrets Mot 205 an H(s 1) [@du ds
(as{ e [r6 0 Mt 20 ap ) [0 an.
Hence
o, =T 1@ +( T K 2G5 an s ) [ ds
(T [46Cs ML+ { M 5 dy) By p1dw) G ds
=T+ (T K <o D HG 0 [ ds
{1 k6 ¢ 0010 as
Therefore we have
.99 ot, =T @+ T B 25 dn Hs 0 |0 ds
+| T kG 001 ) ds.

Since the equation (4.99) has a unique solution in C(S), we have
v(t, x)=u(t, x)
which completes the proof.

The formula (4.97) permits us to obtain #“({, x) successively
though it is quite complicated even for p=3. For example u®(¢, x)
=M,f(x), and
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ut(4, ) =M.[f*] (%)
MW 2 dnSM A M 7 |00 ds
In a similar way we can prove
E.[/(x)§(x)]
~M.(f-g)+ | M B CanSM ) Mgls) @) ds.

0
If, in particular, =(x, dy)zip,,s[x, -, x](dy) and Czin(n—l)p"
n=0 N——— n=1
<Coo, then n

E.[F(x) 8]~ M8 () +C| M., kM. fM.g1 () ds.

t
0
V. Transformations of branching Markov processes

In this chapter we shall consider transformations of branching
Markoy processes; i.e., operations on a branching Markov process
which ‘yield a new branching Markov process. We shall discuss main-
ly the transformations by multiplicative functionals (cf. §0.1 Defi-
nition 0.8) and obtain, in particular, the condition on a multiplicative
functional under which the transformed process will be a branching
Markov process.

§5.1. Multiplicative functionals of branching type.

Let X=(82, B, 0t o, P,, xeé\, X,, 0,)" be a branching
Markov process and M,(w) be an N,,,-multiplicative functional of X.
Unless otherwise stated we shall assume always

(5-1) E.[M,1<1, for every xS
and
(5.2) P;[M,=11=P,[M,=1] =1, for every {>0.

Also we shall assume that

1) We are assuming always Br.o=B;.
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(5-3) 9= W= the set of all right continuous path functions

w: te [0, w)—»w(t)eé\ such that if w(?)=0(=4) then w(s) =2
(resp. =4) for all s=t.

Let W™ be the n-fold product of W and put
W= CJ W®: the sum of W,
n=1

We define a mapping ¢ of Wito W by
(5.4) (o) (), =7(w'(®), w*(t), -, w'(t)), =0,

when W= w', w*, -, w)e W, weW,j=1,2, -, n where r is de-
fined by (0.19).

Definition 5.1. A multiplicative functional M, of X is said to
be of branching type if it satisfies for any n>1

(5-5) M,(gow):éM,(wf),tgo, (a.s. P., vx=S™)

where W= (w", w?, -, W) W™ and

~

Px=Px1XPx2X"'XPx,,)x:(xly X2, "',xn)-

Theorem 5.1. Let X be a branching Markov process, M, be
an Jl-multiplicative functional of X satisfying (5.1) and (5.2)
and X" be the M, subprocess of X. Then the following statements
are equivalent 1o each olher:
(i) X" is a branching Markov process,
(i) M, is a multiplicative functional of branching type.

Proof. 1°) (i) — (ii). Suppose the M, subprocess® X"
=(X,, P¥, W) is a branching Markov process. Then X" has the pro-
perty B.I, and hence for 0<<{¢, <<{,<<---<<¢,=t and f, -+, f,EC*(S),
we have

N\

" ? PN
fJ(XIi)] :,_l;IlE,ﬁf []1_1 fj(Xr,. )]y x= [xl, Xay =, x,,].

S~

(5.6) E:|

I

ji=1

2) Cf. §0.1.
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Also we have by the property B.I of X,

6.7 E':[J_lflﬁcx,)] — B[ £(X,) M)
— Ea, X Ex, X % B, [ILFJ(X, (6)) - M, (o).

From (5.6) and (5.7) we have

A\

B X E.x o+ X B, [T 50X, (610)) M, (o) — LM, ()} ] =

J=1

b A ~ ~
Since [Ilf,(X,j(go(%))) generates o{ W, B(S); ow(s); s<t}, this
proves (5.5), that is, M, is a multiplicative functional of branching

type.
2°) (ii)—(@). If M, is a multiplicative functional of branching

type, then noting that X, has the property B.I we have
E’;’[f(X,)] :Ex[f(Xt>Mt]
=E, X XE,[f(X,(oW0)) M (ow)]
= B X B, [TLAOX (w)) LM, ()]
j= j=1

FXOM)

r"l
IEX{F(X),
which implies that the M,-subprocess is a branching Markov process.

Remark 5.1. In Theorem 5.1 the assertion “(ii)—(1)” is true

if M, is an Jl,,,-multiplicative functional.
Definition 5.2. Let M, be a multiplicative functional of X. M,
is said to be of branching type in the weak sense if for any n>1,

(5.5)’ M, (o) = LM, (), 0t <e(ol) (as. P, v S®).

Theorem 5.2. Let X be a branching Markov process satisfy-
ing the conditions (c.1) and (c.2) of §1.2, and M, an IJl-multi-
plicative functionl such that M,-subprocess X" of X satisfies (c.1)
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and (c.2). Then the following statements are equivalent:

(i) X" is a branching Markov process,

(i) M, is a multiplicative functional of branching type in the
weak sense.

Proof. (i)—(ii) is clear from the previous theorem since every
multiplicative functional of branching type is of branching type in
the weak sense. Assume conversely that M, is of branching type in
the weak sense. Let x=[x, %, -+, x,] €S"; then

E¥[f(X); t<e) =E<[F(X)M,; t<c]®
—E. XE, % XE., [ F(X.(6W)) M(oW); t<(oT)]
= B X B X oo X By | LUK () M) - T} |

= [E, [f(X) M t<c]LE¥|f(X.): t <z,
j=1 ji=1

which proves X* has the property B. III (i). Quite similarly we
can prove that X" has the property B.III (ii). By Theorem 1.2 d),
X" is a branching Markov process.

Remark 5.2. (ii)— (@) is true if M, is an Jl,,,-multiplicative

functional.

§5.2. Examples

Example 5.1. (Harmonic transformation). Let f €C*(S)";
assume that e(x)=Ilim T,j/‘\(x) exists and e(x)>0 for every a&S.
Then -

e( X, (w .
oo M = ——egxiw%% if X,(w)es,
1, if Xo(w)=4

defines a multiplicative functional of branching type. In fact e(a)

N
=e|s(x), and hence

3) This follows from the general formula: PM[B;es;>t]=E.[M:; B.es,>t).
VBEB;.
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e(Xf(co?)) _ i?l]e(X,(wj)) =ﬁM,(W),
e(Xo(ew)) El(e(Xo(w’)) =

(5.7 M, (o) =

where W= (", u? ---, w)e W™, If in particular
e (x)=P,[es<<oo|>0 or e;(x)=P,[e,= +]>0,
then they define a multiplicative functional of branching type since

e (x)=Ilim T,f)\(x) and e,(x)=Ilim T,i\(x).

Example 5.2. (Killing of the non-branching part). For f
B(S)*, set

exp(—gt}‘/(Xs(w))ds), if X,(w)es$
(5-8) M, (w) = ’

1 , if Xo(w) = 4.

Then M,(w) is a contraction® multiplicative functional of branching
type since

M, (o) —exp(— 3| FX.(w))ds)
= LM, (w),
where W= (w', w?, -, w) € W,

It is easy to see that the non-branching part of X™ is the

e Jv D¢ subprocess of the non-branching part of X.

Example 5.3. (Transformation of branching laws).
Let X be an (X°, n)-branching process such that the non-branch-

ing part X° is the eJ 2#04_qubprocess of a conservative Hunt process
X=(x:, P.) on S, where k€ B(S)*. Let f(x,y) be a function in

B(S><:S\)+ such that Sge""”)n(x, dy)=1 for every x&S. We define

a kernel n(x,dy) on S§xS by

4) M:(w) is called a contraction multiplicative functional if M(w)<1 for every
t and w.
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n(x, dy) = 2 k(x)n(xi, dy) X TLoy, ) (dy,)or™

where 7: (¥1, ¥z, =+, ¥.)—>Y is defined by (0.19). Define a kernel
n*(x, dy) in the same way using the kernel =*(x, dy)=e’“*)rn(x, dy)
instead of n(x,dy). Then since »n* is absolutely continuous with
respect to # it is easy to see that there exists f(x, y) which is an
extension of f(x,y) such that f(a, y)EB(ng) and #*(x,dy)
=¥ (x, y). Now we shall define a multiplicative functional M,(w)
of the process X by

M. (w) =exp§§ f(X,-, X, )3>

Then it is clear that M,(w)=1 if X,=0 or 4, and we can show that
it is a multiplicative functional of branching type in the weak sense
such that E.[M,] =1 for every x and {>>0. The M,subprocess X™
coincides with the (X° =*)-branching Markov process. (Cf. [27]
where the transformation of Lévy measures by multiplicative func-
tionals is discussed).

§5.3. Construction of a multiplicative functional of branching
type.

Let X be an (X° =n)-branching Markov process and m, be a
multiplicative functional of the non-branching part X° of X. We
shall construct a multiplicative functional M, of branching type in
the weak sense of the process X by piecing out m,.

Let W=CJ W, where W,={we W; w(0)eS"}. Define a mapp-

n=0

ing ¢ from the n-fold product Wi X W, x---x W, of W, to W, by

(5.9 (o) (1) =7 w' (), w* (), -, w (D],

where W= (w', w? -, w)E Wy X WyX -+ X W,.

Lemma 5.1. Let F(w) be a bounded Il..|w,-measurable function

5) {ts} is defined by (1.8).
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on W.. Then there exists one and only one Il.|y,-measurable
function F on W, such that

(5.10) Floin) = IF(w) for %= (', ?, -+, w).

Proof. 1t is sufficient to show that if ow=ew’ (W, W' WX
<X W,), then IF(w)=T11F(w”’). But this is clearly true if F(w)
i=1 i=1

is of the from

F(w)=3a, Ti z ConFre( X (w)),

i=11

where f,,€C*(S), and hence by Lemma 0. 2 it is true for all bound-
ed Jl.|w,-meaurable function F.

Now let X°={W,, I, |w,, X,, t <z, P,, xS} be the non-branch-
ing part on S of X, and m, be the JI,|w -multiplicative functional of
X° whose defining set is Wi For >0 we extend m, as follows:

when #n>>1, we put
(5.11) i giD) = om, (), i ¢ <e(iD)
= Mom (o), if ¢ >c(¢W)
and when =0, we put
m,(ew)=1.

Then 7, is well defined as an Jl.|w,-measurable function by the
previous lemma. As is easily seen, we can take W/ =UW,, where
n=0

Wi=eo(W,x---x W), as a defining set of #i,. We shall now define
M, (w) as follows:

(5-12) M, (w) = 9. (w) - 6., 70 (w) 0., 9. (w) - . (w) (H.,0
on we A, j=0,1,2--

= I'iﬁTj;Ti,(zv), on we {t>-.},
j=1

where

6) Cf. £0.1.
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(5.13) 6- . (w) = i, (6- W),
where a=7(6.,w) and
(5-14) A= A{w: o;<t<<r,}.
Lemma 5.2. M, is Jl,,,-measurable.
Proof. We first note that
(5.15) M, (w) =M. (w) -, (6., w) on Aj.

Then M., (w) is Jl.-measurable, and hence M. - L, is Jl,,,-measurable.

Next we set

i(w) :ﬂz_" 1 on B,= {w:ﬂz:”'L<T;(W)S;n—n} ;

then t{1c;(m— o) and hence ¢—7jlt—7;. Now %,-,;(ﬁ,iw)'lgm

=M1 (6:,0) * Lyce er-n=1zee 1. Since m,z=1(6-w) is Tl -no1-mea-

rsuable, #7,(6.,w) I, is 37,+2+-measurable, and hence lim i, .;(-,w)

7n—»00

=, ., (6., w) is Jl,,,-measurable.

Lemma 5.3. M.,(w) is multiplicative, i.e.,
(5.6) M,,.(w)=M(w)M,(6,w), ws W’
Proof. Since
M, (6,w) = M- (6,5(0.0) - T~ 0,05 (0=, (O.0)), OweE A,

and
M, (w) =M.,(w) W, (0.,w), wE Af,
we have for we AN67 (AN W
(5-17)
M. (w) - M.(0.w) =M. ,(w)#,—,(6:;w) M+ 9,05(0.W) W~ co,u5(0-,(8.0) )
=M. (W) 1,5, (0,0) 0,05 (0,W) Br 6 ,5Whrco 3 (B,0) -+ s -z 05,05 (6:,(8:0)) .

If weAiNo:'(A;) N W', we have
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e (6,w) =1, (W) — 1, k=12, -
(5.18) {
0, w=0,_.,(6..w),
and hence
(5.19) W y—r, (0,0) Mg,y (0,00
=My, (O, 0) Whr,, - (0,1, (6-,0) )
= Plhr, =, (0-,0) = 0,7, (W),
(5.20) Br 160> Mhrco0y (B:0)
= Mz (o) (Bricouy (00)), 0= 0r¢0,u>(0,W),
= My (Or1010) v==0..,u,

= 07,-41%1 (w) y

Also for we A:N6:'(A;) N W', we have

s—r,(0w) =t+s—r.,,;(w)
(5.21)
Br 60> (0:0) = B 0034 : W= O, ;W0
and hence
(5- 22) %S—Ti(egtv)(afj(ﬁtw)> = %tﬁ—mi(onuw)-

(5.17), (5.15), (5.20) and (5.22) imply
Mt(w>Ms(0tw):Mt+x(w)) we W'.
Remark 5.3. If m,<<1 then %i,<<1 and hence M,<1.

Lemma 5.4. If E.[m.]=1 for every xS, then for every n
Ex[Mx/\-r,,]:l f07’ xeé\.

Proof. Eirst it is clear that E.[M.] =1 for every x&€S8. Then
E (M., =E M. i+ c,0)) =E<| M. Ex,|M,]]=1, and repeating this
we have E.[M.]=1 for every k. Next we have

M.,., if o.<t<<tp, (B<<n)

(5. 23) Mt/\7,+71(61../\:w)= {
M., if t>r,,

and hence
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Ex [Mt/\r,] = E.\c [Ml/\T,,EXT,./\t [Mrl] ]
E, [Mf/\T;M71(91”/\1w)(07./\1w)]
E

I

I

x [Mt/\f.. 1-71(91./\,-0)]
1

”

I

E, [Mm,; <<t <ti| + Ex [Mr..ﬁ t>1.].

=1

b

Also, if k<n—1,

E.[M,,; ©.<t<<tw)
=E.[ M., E..,. [M,]; o<t<t)
=E.[M., M., (0., w); 1. <t <<ti]
=E.[M,.; to<t<<tpi].

‘Therefore we have

n-1

Elet/\'rn] zl?_:onxl_Mr.ﬂ; Tkgt<flz+l] +E[M'r,,q; t2'rn]
=E, [Mf.u] =1,

which proves the lemma.

From this lemma we see that if E,[M.] =1 for every xS, then
E.[M])<lim E,[M.]=1 and E.[M,]=1 if {Ms.,, n=0,1,2, -}

is uniformly integrable. Summarizing we have the following

Theorem 5.3. Let X be a branching Markov process and X°
={W.,,T\w, X., t<<c,xES} be the non-branching part of X.
Let m, be a multiplicative functional of X° satisfying either
(i) m<1
or
(i) E.[m.])=1, x€8.

Then M,(w) defined by (5.12) is an Il,.-multiplicative functional
of X which is of branching type in the weak sense satisfying
1) M.<1 '

or

(i)’ E.[M,)<1, x=8

according as m, satisfies (i) or (ii).
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If further {M,.,,n=1,2, -} is uniformly integrable, then we
have in the case of (ii)
(i)” E.[M,)]=1, x8S.

§5.4. Transformation of drift

Let X=(X,, B,, P,) be a Hunt process on S with a reference
measure” and B, be a continuous additive functional of the process
X such that F,|B} <(co and E,.[B,] =0.» Then it is known that
there exists a unique non-negative continuous additive functional {B),
such that E,[B?}| =E,[{B),]. Set

(5.24) m,=exp {B,—%(B),}.
Lemma 5.5. Let o be a finite valued Markov time of X sa-
tisfying for every t>=0
(5.25) {t<<os}C{o<t+os(6w)} .0
Ir su?Ex[<B>a]<00, then E.[m.| =1 for every x<S.

Proof.' Set o,=inf{t; |C,|>n}An, n=1,2,---, where C,=B,
’_'—‘21—<B>t; then we have

(5.26) E. \mops,) =1, n=1,2, ---.
For, by a formula on stochastic integrals (cf. [27])
m,—1=e6r—1=S'msst—LS'm,d<B>s+ig'msd<B>s
0 2 Jo 2 Jo

=S;msst.

a/\

Then, ncting m,<<e¢" for t<<sAg,, we have E,[S ” m.dB,] =0
0

proving (5.26). Next we shall prove

7) Cf. £0.1.

8) The class of such additive functionals was studied in [32].

9) If ¢ is a quasi-hitting time or o=¢, (5.25) is clearly satisfied.

10) We have borrowed the essential part of the proof from Dynkin [6].
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(5.27) insf E.[m,)=d>0.
For, by the assumption sup E,[{(B),] <o, we have
P.IC<—2k < P.1|C,[> 2k < P.l|B,| >+ P 1<B)> k]
1 2 1 — 1 i ) i
< BB + gy BB = (S + o JE KBy <
for all x if k is sufficiently large. Then for all xS
E.[m,|>E.[m,; Co=>—2k|>e%*P,[C,>—2k]
—e(1- PIC<-2)=E

proving (5. 27).
Now by (5.25) we have ¢<<q,+0(6,,w) and hence by the super-

martingale inequality'®

E.:[”za; 6n£”]2E[m7.+kuw); Gn_élf]
=FE,[m. Ex, [m.;]; 6.<o]|>dE,[m.,; 6.<o0].

Therefore we have, (noting 6,10),

(5.28) lim E, [m.,; 6,<q] =0.

n->co

Then
1=FE, [Mmops,) =E.[Mo; 6<<o,) + E.[Ms,; 6,<0]

and by (5.28)
lim E, [m,; 6<o,] =E.[m,] =1.

Now assume that the non-branching part X° of a (X° n)-
branching Markov process X is equivalent to an e **-subprocess of a
Hunt process X=(X,, B,, P.), where A, is a continuous non-negative
additive functional of X. Then X° is equivalent to the process
{X,, P.} defined by (0.12) and (0.13). By enlarging B, if necessary
we can assume that the life time ¢ defined by (0.12) is a B,-Markov

11) It is easy to see that (mq, B;) is a supermartingale for every P.; we have
Eilmeson]=1 just as (5.26) and hence E;[m.]<lim Eu[#t4.»]=1 for every ¢. Thus

Ex[mes| Bs]l=Ex[m¢]-ms<ms a.s.
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time for which (5.25) is easily verified. If further the condition
(5.29) sup £, [{B)¢] <eo
is satisfied, then we have

E. [m;] =1.

Now m,z can be considered as a multiplicative functional of X° and
applying Theorem 5.3 we have a multiplicative functional M, of X.
We shall call this M, a multiplicative functional of drift.

Example 5.4. Let X={x,=(x}, x, -, x7), P.} be an N-dimen-
sional Brownian motion'® and A,=S‘k(xs)ds, where k= C(S) such
0
that k(x)>c¢>0. Let

N t .
B,— zS b(x)dx.

where b;(x), i=1, 2, ---, N, are bounded continuous functions on R¥.
Nt

Then <B>,:ZS |b;1*(x.)ds. In this case the conditions (5.29) can
i 0

=1
be easily verified, and hence we have a multiplicative functional of

drift M, for every branching Markov process X whose non-branch-
ing part is equivalent to X°. The backward equation of X is
given by

D

? =—%—Zu+k(x) AF(x; u) —uy,

D

while the backward equation of X" is given by

ou _ 1 X, ou N

D

Thus M, induces a drift.

§5.5. Another transformation.

The following transformation is a generalization of a well known

transformation for a branching process of a single type (S={a}),

12) We take as S the one-point compactification of R¥. cf. Chapter III Ex. 3(A).
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(cf. Harris [8], p 14).
Let X be a branching Markov process with the semi-group T,
such that g(x)<C1 for every xS where

(5. 30) g(%) =limT.0(x) = P, [es <co] .

Theorem 5.4. There exists a (unique) branching semi-group
T, (and hence a branching Markov process) such that

(5.31) T fl o) = (TG (L)) — ()}

1
1-q(x)
Proof. It is sufficient to to show that there exists a substochas-
tic kernel u,(x,dy) on SX 8 such that the right-hand side of (5.31)

is equal to S,?(y)/x,(x, dy), since, then by Lemma 0.3 there exists a
unique substochastic kernel 7’,(;\:, dy) on SXS8 such that
N
[, 7w anfin = st aniin @,

and the semi-group property of i is obvious from (5.31). First we

. A — X~
note T.G=4 since T.g=1im T, T0=1imT,.0|s=¢. Then

§—>o0 §—»00

(T@F A=) () —g(x)}

1- q( )
b T ) L@ A=) 0 —2())
=g T 4 (TN Ty 2

But for fixed x and ¢,
wi(@) =\ T dy) (2N A= )e(r)), g€ B(S)

defines clearly a non-negative linear functional on B(S) and hence

13) ¢(x) is called the extinction probability.

14) For fixed yES, y=[y. -, y1], we denote y’<y if y'=[yl,- 3] k<a,
such that yi=y;, for some /i, 1<!i<n and all /i, i=1,2,-, k are different. y”'=[y!,

-, y2_+] is the remainder of y excluding y’, ie., ¥’ and y’/ define a partition of y.

Z* denotes the sum (for fixed y) over all y’ such that y' <y and y'=y.
¥y
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it is given by a non-negative Radon measure #,(x, dy). u is a
substochastic kernal on SX S since

N - 1 Py -
|y a1 ==L (T3 —a(en =1,
From (5.31) we have 7‘,6(96) :?IEG_){QOC) —q(x)} =0;

ie., for the transformed branching process the extinction probability

is identically zero.
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