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I V .  Branching semi - groups

The definition of a  branching Markov process was introduced in

Chapter I :  i t  is  a  Markov process on /..S whose semi-group satisfies
(1. 2 ) .  We shall say that non-negative contraction semi-group T,

on B ( :.S ) with the property (1 . 2 ) has the branching property or,

simply, that it is a branching semi- g ro u p . Therefore, the study of

branching processes is, as a problem in analysis, the study of branching

semi-groups. In  §1. 3 we have introduced two fundamental equations
fo r  a  branching semi-group; M - equation and S - equation. Th e M-
equation is a  usual renewal type integral equation for a  semi-group

(the so called Desiré-André's equation or the first passage time re-
lation applied to the first splitting time r ) .  When we look a t the
M-equation on S  only, then, by virtue of the branching property, we
have non-linear integral equation, which we have called the S-equation.
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In  this chapter we shall give these equations independent of the
branching Markov processes only in terms of the fundamental system

K, 77): r and K  are defined through (4. 2) and (4. 3) from a
Markov process X° on S , and i t  i s  a substochastic kernel on S X S
such that n (x, S) =0 for every x G S .  Given an M-equation, we shall
construct its solutions according to Moyal [33 ] and show that the
minimal solution of the M-equation defines a branching semi-group.
This will give another analytical method of constructing an (X°, 7r)-
branching Markov process from a given X ° and 7r. Also, one can
construct an (X°, 7r) -branching Markov process through the solutions
of the S-equation : we shall first construct the solutions of the S-
equation by the usual method of successive approximation and then
define a  branching semi-group from these solutions. In §4. 5, we
shall discuss the theory o f infinitesimal generators o f a  branching
semi-group under certain regularity assumptions on the fundamental
system. As a  consequence, we shall have two types of differential
equations, the backward equation, which is a semi-linear evolution
equation, and the forward equation, which is a  system o f  linear
evolution equations involving functional derivatives. In  §4. 6, the
equations related to the number of particles will be discussed.

§ 4 . 1 . Fundamental system, M-equation and S-equation

Let X ° {x %  P L  , C °}  b e  a  right continuous strong Markov

process on SU {4 } , with d as the terminal point such that
Throughout this chapter we assume that (i)

(4.1)P 2 [ x ° 0 -  exists, C°
< 0 0 ]  P.? [C°

<0.0]

for every x  and

(ii) P? [C° = s] =0  for every x e S  and s>0.

Define a  semi-group r  on  B ( S )  and a kernel K (x ; d l dy ) on
S x ( [0, 00) x S )  by

(4. 2) f(x)— E?lif (4); l<C°]
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(4.3)K ( x ;  d t  d y ) = . 1 3 ?[VEdt, x°0 -Edy].

Then we have clearly

(4.4)K ( x ;  d r  d y ) f ( y ) +  T O '  K(• ; dr dy)f(y)10 s 0 s

=S
t + ,

K (x ; d r dy )f(y )
o s

and

(4.5)r  1 ( x )  + t K (x ; d r  d y )= 1 .0 s

Let n(x, dy) be a substochastic kernel' )  on S X S  such that 7r(x, S) =
for every x.

Definition 4. 1. We shall call ( T ) , K, 7 r ) a fundamental system
(defined by X° and n ) .  When this system is defined by a branching
Markov process X , i.e., when X ° is  the non-branching pare )  o f  X
and  7r is  the branching law "  o f  X , we shall call ( T ,  K, 7r) the
fundamental system of the branching Markov process X.

A class of fundamental systems we shall consider quite often in
the future is  th e  following: le t  X =  { x t ,  P,, g t }  be a  conservative
right continuous strong Markov process on  S  such that -.9t+0 =-B,
and T, be its semi-group; T ,  f  (x )=  Z [f  (x , ) ]  ,  f  B (S ) .  Let k be
a non-negative measurable function and X° = {4 .13 ),, C°} be e- f
subprocess of X , (cf. Definition O. 8).

Definition 4. 2. When the process X° which defines (71), K )  is
given a s  above we shall call (T ,  K, 7r) the fundamental system
determined by [X, k, .

When (77, K, i t )  is determined by [X „  in , then  T2 and K  are

given by

1) As we remarked in §3. 3 it is equ ivalent to give a stochastic kernel in on

S x./SN  such that z (x ,
2) Definition 1.2. I n  th is chapter, we shall assume that every branching

Markov process satisfies (C. 2).
3 )  Definition 1.3.
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(4. 6) f  (x )= E ,[e - f tok ( " ) " f (x ,)]

(4.7)V ( x ;  d s  d y ) f  (  y) = E 3 :e - f 1," -r.) " k (x ,) f ( x )d s ]0

T ( k f ) ( x ) d s .0
(cf. [37] ).

Given a  fundamental system, we shall define kernels r (x , d y )
and p ( x ; d td y ) ,  x ,  y E S , tE  [0, co), by

(4.8)7 1 )  iN (x )(- -=- 11(x , dy )R y) ) =  f  ( x ) ,  f E C * ( S ) ±

and

(4.9)N , , / r ( x  ;  dsdy )R s, y )

f  (s, • )I L K  ( • ; dsdz )F(z ; f  (s, • ))> (x ), 4 )

f E C *([0 , 00 )x S )+,
where we put

(4.10)F ( x ;  g ) = , 7 r ( x ,  d y ) i  ( y ) , gE  B *(S ).

and Jr a re  well defined by virtue of Lemma O. 3 .  It is clear that
11 defines, for each n = 1 , 2 , •- , a  semi-group on B ( S ) .

T h e o re n  4 . 1 . W hen (r, K, n )  is  the fundam ental sy stem  of
a  branching M ark ov  process X »  11 and k  coincide w ith  11) and
lip defined by

f  (x ) E x [f (X ,) ; t<r] and

V r(x; ds dy) = Px [rE ds, X rE d y ].

P ro o f .  Looking at the relation

.13 [r<t, X r E dy] = t K (x ; d sd z )n (z , d y )0 s

4) The right hand side o f  (4.9) is, if x=[x1,x2, •-•, xn]ES",

±' St S K (x i; d sdz )(F(z ; f  (s , •))  n f  (s , •)(x,=, o  s

W e remark also that T `U ( s ,  • ) ( x )  5 0 f (s, Y )T(x , dY ) •

5) We assume that X possesses the branching law.
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which is a direct consequence of the definition of the branching law,
the assertion follows at once from the fact that X  has the property
B. III by Theorem 1. 3.

Lemma 4.1. F o r  a  given fundamental system (77, K ,7r) the
above 11 and satisfy

(4.11)1 1 1 ( x )  +  * ( x ;  [0 ,  t ]  x  S ) < 1

and

(4. 12) U s *(x  ; d rd y ) f ( y ) + T iO s lIP(• ; d rd y ) f (y )1 (x )
t+s

= ( )  ,s,11r(x ; drdy)f (y ), f E B (S ) .

P ro o f .  Since F(x ; 1 )< 1  for every x ES,

*(x ; [0 , 1] x  S ) 1 < 7 '.? 1 1  K (- ; drdz )>(x ).0

But 7 7 1 ( x ) + ' K ( x ; d rd z ) =1 ,0 s

and hence K ( x ; d rd z ) =  d r ( T 1 (x ) ) .

Therefore

:<7'1 I ; drdz )>= t < r ).11— d,(Tr1)>0

d,(T 1)=1—  771=1—  111,

which proves (4. 11). Next we have

ct+s
30 3 8 * ( x ; d rd y ) i ( y ) = q p (x ; d rd y ) i(y )S

i+s
<T g i sK (• ; drdz )F(z ; g ) > (x),

and by (4 . 4) the second term of the right hand side is equal to

Ço<T,?+ , K  ( • ; dr + t, dz )F(z ; g)>(x )

<77T, gi s 71)If (• ; drdz )F(z ; g)>(x )0
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=T i<T ,?gi sIf(•; drdz)F(z; g)>(x)G)

= r [ O s * (• ; d rd y ) i- (y )](x ).

This proves (4. 12) if f  is  of the form k, g E C * (S ) . By virtue of
Lemma O. 2, (4. 12) holds for every f E  B (S ) .

Example 4. 1. W hen S = { a} , (c f .  Examples O. 1  and O. 3),
fE B * (S )+  is  g iv e n  b y  a  number f  su ch  th a t 0 f < 1 .  T h e n
r f = e - " f ,  where O c<c>o, and K (dt)f =ce - "fdt. Now S--=-Z±

-
= {0, 1, 2, • • •} . L et 7r(1, {n})—= i t ,  n =0 , 2, 3, • • •, (0<rc„ ,

n= 0

Then r(n, dy )= e - -'8 (dy ), yG S , and

*(n; dsdy)— cne — sds E 7r3-„.+.1 8 f1 i(d y ).

Definition 4 . 3 . Given a fundamental system ( r ,  K ,  7 r ) ,  we con-
s tru c t T  and by (4. 8) and (4 . 9 ). For a given f E B (S ) , consider
the following integral equation

(4.13)u ( t ,  x) = T f (x ) +:‘1,(x ; dsdy )u(t —  s, y ),

xGS , tE [0, 00)

c a l l  i t  the M-equation (corresponding to th e  system  (T?,K , 7r)).

A  solution u(t, x )  o f (4. 13) is called a solution of the M-equation
w ith the initial value f .

Theorem 4. 2. L et X  be a branching Markov process and set
u(t,x)—  T t f (x ) =  E x [f (X , ) ]  f  G B ( S ) .  T hen u(t,x ) is a solution
of  the M -equation corresponding to the sy stem  (T ?,K ,n) of  the
process X  w ith the initial value f .

Pro o f . B y  the strong Markov property' )  ap p lied  to  the first

6) It is easy to see that T ;<f l g) =<7V  I T  0 ;  in  fact

f  Ig>=1im  T  f ( f  + g —f)/ € } = lim [T (f -1-€g) —  f
E->o E-->o

+ E g —TP f ) / € =<T  f  I g )  by (0.36).
E-4.0

7) It should be remembered that we are always assuming X  is strong Markov
such that T3c+0=.0t.
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spilitting time r ,  we have

u(t, x )=  E x[ f (X ,)] = E x [ f(X t); t< r ] +  E x [ f(X ,); 1 - t]

= f  (x )+E x [E  x r[f  ( x i - )] I

= (x ) + t 01p(x '• dsdy)u(t— s, y )
0 s  

by Theorem 4. 1.

Definition 4 .  4 .  Given a  fundamental system , K, Tr) and

given fE B * (S ),  consider the following integral equation

(4.14)u ( t ,  x )=771 . (x )+ K (x ; dsdy )F(y ; u(t— s, •)),

x E S , tE [0 ,00 )

where F (x ;  u )  is defined by ( 4 .  1 0 ) .  W e sha ll ca ll it S - equation
(corresponding to the system (7'2, K, 7 0 ) .  A solution u(t, x )  of

(4. 14) such that u ( t ,  x)I < 1  is  called a solution of the S-equation
with the initial value f .

Theorem 4. 3. Let X  be a branching M arkov process and set
u ( t ,x ) =1 ',7 ( x ) =E x [7 ( X ,) ],  f E C * ( S ) ,  x S  then u ( t , x )  is  a
solution of the S-equation corresponding to the system ( T ) , K, 7r)
o f X  with the initial value f .

P ro o f. Since T f ( x )  T t . f ls (x )= u ( i ,  • ) (x )  we obtain (4. 14)

from (4 . 13) by restricting it on S.

§ 4 . 2 . Construction of a branching semi-group through the M-
equation

First o f all we shall give the following

Definition 4. 5. A  semi-group IT, on B (S )  is called a branch-
ing sem i - group i f  i t  is  a non-negative contraction semi-group (i.e.

the kernel t (x , dy ) o f  U , is  substochastic  fo r  every t )  with the

following property (called the branching property);

U :7 (x )  lI t f  I s(x)
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Let ( r , K , 7r) be a given fundamental system and T  and *  be
defined through (4.8) a n d  (4. 9). Define kernels lk( ") (x ; dt dy)
(n=0, 1, 2, • • •) on S x ( [0, 00) x S )  by8 )

(4. 15) 0")(x ; t, dy )=8 [ ) (dy ),

0 1 ) (x ; t, dy )=:k ir(x ; dsdy ),

and ain)(x; t, dy) LV f(x; dvdz)0( - 1 )(z; t—  v, dy).

Then *(")(x ; dtdy) = d t o( ")(x; t, dy).

Set for each n=0, 1, 2, • • •,

(4. 16) T ( x ,  dy ) =V 1, ,e ) (x ; dsdz) r _ s (z, dy) . 9 )

Lemma 4. 2. V )  and Jr ( ") satisf y  the follow ing relations for
f  B ( S ) " )  and 0 <k <n ;

(4. 17) (P)(t)f (x) = t
o rkjr( "- k)(dr)0 ( k) (t — r) f (x) ,

(4.18)T t ( " ) f  (x) oqp("- k)(dr) n ) , f  (x),

(4. 19) 71°) ( x ) =* ( d r) V f ;') f  ( x ) ,

(4. 20) 0")(t)f (x) = e" ) (s)f  (x )+ E n . - -1) 0 ( i ) ( t  - s)f  (x),
1

fo r  0 <s<t.

P ro o f .  (4. 17) is  the usual formula for iteration of convolutions
and can be proved easily. (4. 18) follows from (4. 16) and (4. 17).
Now

8) Let 0(n )  (x ; t, d  y) =S 0
6.11,0 ) ( x ;  d s d y ) .  Clearly it is equivalent to give 4'( n )  and

9) H en ce  it is  c lea r th a t r = r  and r " ) , n=0, 1, 2, •-• a re  non-negative
kernels.

10) W e  w r ite  r" ) f (x)— S (x, d y )  f (  y), 0(n )  ( t) • f sq)(n)(x; t , d y ) f (  y )

and 1.1,(n) (d t )  f  ( x )=  s il,( n) ( x ;  d td y )  f ( y ) .
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Ti(f)0 f (x) = TP'1 0 * ( d r)  T 1 2 f
J
 (x )

0 T ,° p , (dr) T t
(f .; ),. f  (x ),

and by (4 . 12) this is equal to

d0 (r + v) T f ( x ) q p ( d r ) T 7 , 1 ) f  (x ).

This proves ( 4 .  1 9 ) .  For the proof o f (4 . 20), first we note that if
n=1, (4.20) is just (4 . 1 2 ) . Assume that it holds for n = n :
then

d("+l)(t)f (x) -- l
o rtk(dr)0 ( ")(t r) f  ( x )

A k (dr)oc")(t r)f  (x ) +:1jr(dr)0 ( ")(t r ) f  ( x )0

'..4r(dr) {0 ( ") ( s  r) f  + 1',7.1 ) 0( i)(t s ) f  }  (x )0

V p(dr)0(")(t r)f  (x )

e.--)(s)f  (x ) + E Ts(n— i+ ')0 ( 1 ) ( t — s ) f ( x )
j = 1

T ° ) * (d r)0 ( ")(t r) f  ( x )0
+ 1

—0( "+ ')(s )f (x )+  E r"---Dou) (t — s)f (x )J-1

by (4 . 12) and ( 4 .  1 8 ) .  This proves (4 . 20) for every n.
-

Lemma 4.3. E  V" )  (x , S )<1 f o r every xG S.0-0

P ro o f. By (4 . 11) we have

Tim (x, S ) = 1(x) = (dv) T 1 ( x )

< o
t l.k(dv) (1— qr( • ; [0, t v ] x  S ) )

= 0 ( 1 )(t)1(x) — Y 2 (t)1(x ) (t)1(x )
and
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T t" ) ( x , S ) * (dv )T ,T ,1 (x )

qr(dv) [ø(t—  )1 (x ) -  0 (2 ) (t -  01 (x )]

= 0(2) (t)i (x ) - 0") (t)i (x )

Repeating this we have for every n = 1, 2, • • • ,

Ti ( ") (x, S ) <0 ( n) ( t)1(x )—  ' ' ( t )  1 (x )

and therefore we have
-

EV" )  (x , S ) < 111(x ) + 0" ) ( 0 1 ( x ) x <1

b y (4. 11).

Thus for each t E [0, 00),

-
(4. 21) d y ) = E 0 T ( x ,  d y )

defines a  substochastic kernel on S X S .  Let

(4. 22) T f f  (x ) =L T  i (x , dy )f  (y ), f E  B (S ) .

Now we shall show th a t T , is  a  semi-group on B ( S ) .  In fact

Tt ( ") f  (x ) = o
t lk (")(dr)T t

(_°), f  (x )

Ilr( ") (dr)T ,T ),- f  (x ) + ,
,qp( ") (d r)T i (2),. f  (x ).0

Then by (4. 20) the second term of the last expression is equal to

i-s
qp ( i ) ( d r )  TT's _ f  (x )")

=1 0

= E r" - i) f  (x )..J=1

Also the first term is equal to

1 1 )  By (4.20), one can easily prove for f (r , x )e  B ([0 , 00] x S)

,,' IP(dr)f(r, • ) (x ) T i ' ' g ip ( i) (d r)  f (r + s, •)(x).
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S:IP ) (dr) T  sTr f  (x ) = r " ) T, (2! f  (x ),

and hence we have

Ti ( ")  f  (x) E  " " T1 f  ( x ) .
j= 0

Therefore

Tf(x) = E E Ts( "- "TtTs f (x )
n =0 j - 0

= E E T» ) V.",) f  (x)
n-0 nz =0

= T s (T„, f ) ( x ) ,

which proves T , is  a semi-group on B (S).
N ext w e sha ll show th a t  u(t, x )= (x )  i s  a solution of the

M-equation (4. 13). Moreover, it is the minimal solution in the sence
that if f > 0, then  u(t, x )  is  the smallest o f all non-negative solutions

o f  (4 . 1 3 ) . In fact,

u(t, x) = T f (x)

= TP ) f  (x ) + E TP )  f  (x)
,=1

= T t" ) f (x) + o
tf  ( x )

= TP ) f  (x) + ot  Ajp(ds)Tt_, f  (x ),

which proves u(t, x )  i s  a solution of the M -equation (4. 13). Now
let 0 < v  be a solution o f (4. 13) ; then

v(t, x ) =  r i(x )  + of  q r( d r) v ( t  r, • ) f  (x)

and if w e suppose v(t, x ) > E  T ( ' ) f  (x ) , theni-o

v(t, x)>TP f (x) Vr(dr) (E T,(>„ f  ) (x )
0 e=0

n +1

=EV ' )  f  (x)
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This proves v(t, x)>-Z Tt ( ' ) f  (x )  for all n , and hence letting n--.00,
we have v (t, x)>- T f (x)

Finally we must show that T , is  a  branching semi-group, but
this was proved already in Proposition 1. 3•1 2

)

Summarizing, we have the following

Theorem 4. 4. For a given fundamental system (TP ,K ,n ), we
construct a kernel T t (x, d y ) on S x S  by (4. 15), (4. 16) and (4. 21).
Then T, f (x)= -=  T  , (x ,  d y )f  (y ) ,  f  B (S ) , defines a branching semi-s
g ro u p . u (t ,x )= T , f (x ) ,  f e B (S ) ,  is a solution of  the M-equation
corresponding to the given system with the initial value f ,  and if

then u (t, x ) is the minimal solution among all non-negative
solutions with the initial value f .

C orollary. u(t, x) = T r fN( x ) ,  f B * (S ) ,  is a solution of  the S-
equation corresponding to the given system with the initial value
f .

Proof is the same as ta a t  of Theorem 4. 3.

To this semi-group there corresponds a unique (up to equivalence)
branching Markov process X. If we compare the above construction
with the probabilistic construction given in  Chapter III we see at
once that X  is the ( X10 , n)-branching Markov process, and hence it
is a right continuous strong Markov process.

Example 4. 2. Consider Example 4. 1. Then the construction
o f  T , is just the usual analytical construction of the semi-group of
the minimal Markov chain (X 1 , P,)  on iE Z+ = {0, 1, 2, • -•} such that

E, (r) —  1   and 13
1 ( X , —  =  tr ,+ 1 ,  where r  is the first jumping time.c i

Hence by the above theorem, we see in particular that such a Markov
chain is a branching process, i.e. the transition matrix satisfies (1. 3).

1 2 )  When the fundamental system satisfies the condition (U )  o f  Definition
(4 .2 ) g iven  be low , w e can  g ive  a  simpler proof o f th e  branching property by
Theorem 4. 7 and Theorem 4. 5, C or. C f. §4. 4.
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This fundamental fact is, of course, well known in the theory of

branching processes, (cf. Harris [8] , Chapter V).

Finally we shall discuss the uniqueness of the solution of the
M -equation. The following class o f fundamental systems plays an

important rôle in the future discussions.

Definition 4. 6. A  fundamental system ( T,°, K, 7 r ) is said to

satisfy the condition (U ) i f  TP satisfies

(U) inf inf T,°1(x)>0, for every d> 0.
, .E S  05.15_7

It is clear that a fundamental system (77 , K, n )  satisfies the
condition (U )  i f  it is determined by [X, k, n ]  (cf. Definition 4. 2)
and k  is bounded (i.e., kE B ( S ) + ) ;  in fact,

T,? 1(x) = E x [e- ri-u k(x.oas
]

and hence for every a>0

inf in f 771(x) ___e- ' 11'11>0.

Theorem 4. 5. Suppose (77,K , 7 r )  satisfies the condition (U).
Then the solution u(t, x ) of  the  M-equation with the initial value

f ( x )  such that Jim sup u (t, x) I = 0  is unique.
x-->4 0 .5t5cr

P ro o f. First we remark that for each n=1, 2, • •-, and a>0 , we
have

(4.23) sup qr(x ; [0, x  S )<1.
S E S "

For, by (4 .1 1 ) and (L ) ,

sup*(x ; [0, a] X S) <1 — inf T:1(x) = 1 — inf T c?1(x )<1,xEsn ..s.
Now suppose that there exist two solutions u i  and u 2  o f (4. 13)
satisfying the condition of the theorem, then ypt ( x )  u1 (t, x) — u2 (t, x)
is a solution of

çot (x )= t , tp, (x; drdy)ço i _,(y )
o s

such that
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(4.24) lim  sup I (/),(x) =0.

Assume
a—sup sup gos(y) I >O.

Y E S  0_.çs er

Then by (4 . 24) there exists m such that

(4. 25) a= sup sup I ( y )  .

On the other hand

0 < su p  sup y2,(x) I <sup sup 1,lp(x; drdy) {sup sup I ço,(y) I }
X S "  0 . 5 t 5 c r  0  S Y E S  O s5_0.

< supqr(x , [0 , al X S ) {sup sup I yot (y ) I}
xES ,"Y E S

and hence by (4.23), we have

0 < su p  sup §9t (x ) I <sup sup I cps (y ) I = a,
x E .S m  O S ia Y E S  0.5s a

which contradicts ( 4 .  2 5 ) .  Therefore go, ( x )  = 0  for a ll t E  [0, cs] and
xE  S .  Since 6  is arbitrary, tti = u2, which proves the theorem.

Corollary. Suppose (77, K, n) satisfies the condition (U ), and
let U, b e  a branching sem i-group on B (S ) such that, f o r every
fE B (S ) ,  u ( t ,  x )= U t f ( x )  defines a so lu tio n  o f  th e  M-equation
(4. 13). T hen U t coincides w ith the semi-group T ,  constructed in
Theorem 4. 4.

Proof. Let f E B *(S )+ ; then u(t, x) = U f (x )  = u ( t ,  ) ( x )  is a
solution of the M -equation with the initial value /7 ,  where u(t, x)
= U t î  , ( x ) .  We shall show that

(4.26) lim  sup I u(t, x) I =0, for every a> 0 .
x-->4 05t5a

For, since u(t, x )  is a solution of the S-equation (4. 14), we have

0< u  (t, x ) =  f (x ) + t
o s K(x ; dsdy)F(y; u(t — s, • ))

<77 f (x) + t K (x ; d sd y ) = (x) + 1— T,° 1(x)0 s
=1— T t° (1— f ) (x) 1— (1— f II)  i n f  T 1 (x).es.0..5t5.cr
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for every t E 10 , 61 and x E S ; therefore, (4.26) is satisfied. In the

same way we see that v(t, x) — T t i N(x ), f E B *(S )+ satisfies the same

equation and (4. 26). Hence by Theorem 4. 5, we have u(t, x ).=v(t, x),

i.e., T iî(x ) = I :7 (x ) for every f E B * (S )+. By Lemma 0.2 we have

T,-.= LI, on B(S).

§4. 3. S-equation

L e t (T , K, 7c) be a given fundamental system. In Definition 4. 4
of §4. 1 the S-equation was defined as

(4. 14) u(t, x) = K (x ; dsdy )F(Y ;
0 s

where u t ( x ) =u ( t ,  x ) .  A solution of (4. 14) can be constructed by
the usual method of successive approximation.

Theorem 4. 6. For a given f  E B *(S )+, define {u„(t, x)}  induc-
tively by

(4.27)u o (t, x )=0,

u„(t, x)=TP f (x) K (x ; dsdy )F(y ; u , ( t  — s, • )) .
0 s

Then

(i) 0<u,<u„,1<1—  T,°(1— f),

and hence

(4. 28) x)=1imu„(t, x)
P 1 -4 ,0

exists f o r e v e ry  t  [0, 00) and x ES .
(ii) u„.„ i s  a solution of  the S -equation (4. 14), an d  i t  i s  the
m inim al solution o f  (4. 14) in  the sense that i f  v (0<v <1) is  any
solution of  (4. 14), then u„.„<v.
(iii) u„.„ h as  the  follow ing representation by  a  (uniquely  deter-
m ined) substochastic kernel lx ,(x , d y )  on  S x S ;

(4.29)( t ,  x ) = J 2 1 ( x , d y ) I N ( y ) .
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Pro o f . First o f all we remark that, since

F(x ; f )  = (x, d y ) î(y )

and n  is a substochastic kernel, i f  0 <g 1 <g 2 < 1 ,  then O<F(x; g 1 )
<F(x  ; g 2) < 1 .  Then

=  T Pf (x )+ ' K (x ; d sd y )x (Y ; {a} )
0 ,

. 77 f (x )+ ' K (x ; d sd y )0 s
= f  (x ) +1—  771(x )
=1— 77 (1— f )(x),

and if we suppose 0<uk_i<uk<1— 77(1— f), then

0<uk(t, x ) T tY (x )+ K (x; dsdy) F(y ; uk-i(t — s, • ))s

<77. f (x) + f K  (x  ; dsdy )F(y ; uk (t— s, •))0 s

=uk + i(t, x) < T f ( x ) + : s lf(x; dsdy) =1—  77 (1— f )(x),

which proves (i). Now it is clear that z,L (t, x )  is  a
11—>co

solution of (4 . 1 4 ) . Suppose that 0 < v < 1  is  a solution of (4. 14);
then u 0 -- ---0 < v , and if we suppose uk<v , then

u,i(t, x ) = 77 f (x )+ t
o , K (x ; dsdy )F(y ; u k (t— s, •))

< 7 7  f  ( x )  1 - 1 0 sK ( x  ; d sd y )F(y ; v ( t  s , • ) )

= v(t, x).

This proves uk<v  for every k , and hence u - <v .  Therefore ( ii)  is
proved. Finally we shall prove (iii). By Lemma O. 3  it is easy to
see that each uk (t, x )  has the expression

uk(t, x)= S s .i.N(Y ),te ) (x, dy ),

where /e ) (x , dy ) is  ( fo r  each fixed t )  a  substochastic kernel on
S x S .  Thus (4 . 29) holds with /2,(x, d y )  which is a  weak limit
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(on ./. )  of be)  w hen k--00.

As already stated in the Corollary of Theory 4 . 4 , the minimal
solution of the M -equation supplies a solution of the S-equation.
Conversely, we can construct a solution of the M -equation from a
solution of S-equation as we shall see in the following

Theorem 4. 7. Let f EB*(S)+ and u(t, x) b e a solution of the
S-equation (4 . 1 4 ) ; th en  u(t, x) defin ed  by

(4 .30 ) u ( t ,  x ) = u ( t ,  • )(x), x e S ,

i s  a solution of the M-equation (4. 13).

The theorem follows at once from  the following Lemma by
setting s=0 in  (4. 31).

Lemma 4. 4. Let u (t, x ) =u (x) b e a solution of the S-equation
(4 . 14 ) ; then

(4. 31) r u i - , ( x )=  f  ( x )+ tK ( .  ; drdY)F(Y; ut—)> (x)

w h ere  s<t.

P r o o f .  When x = 6  or d ,  it  is  o b v io u s . Suppose x S " .  We
shall prove (4 . 31) by induction on n . When n=1 we have by (4.14)

i-s
ut = f sK(. ; dr dy) F(y ;

and b y  (4 .4 )

T.? 77— f + ; drdY)F(Y ;

= T t° f +S t K (- ; d rd y )F (y ;s

Thus (4. 31) holds for n = 1 . Suppose it is  true  for xES - 1

Then for x= x2, • • x„] E S", we have by setting x'= [x2, x3, ••-,

T.?u,.(x)=77ut—(xi)n (71 1u,-.)(x;)
i= 2

= {TY (x1) + n K ( x i ;  d rd y )F(y ; ut-r {TU (x i)
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+ t <T v 'ttt - ,,! K (• ; dvdz )F(z ; us--,)>(x ')}

=7 7 .f (x )+ '  K ( x i; d rd y ) F ( y ; u t _r ) r f  ( x ')s s

+ K (- ; dv dz )F(z ; us-,)>(x ')

+ t K ( x i; d rd y ) F ( y ; K ( • ; dv dz )F(z ; ut-,)>(x ')s s 5
= 1, say.

Now consider the last term:

K (x i; d rd y )F(y ; K (• ; dv dz )F(z ;s s

K (x i ; d rd y )F(y ; u t _.,.){ t <T u „1 s K (•  ; d v d z )F(z ; u )>(x ')s

K (• ; dv dz )F(z ; u1)> (x ')
s

K (x i ; d rd y )F(y ; K (• ; dv dz )F(z ; u ) > ( x ')s s

+ E K (x ,; dv dy )F(y ; ‘ K (x i; drdy )F(Y ;,=2 s s v s

X  1 1  T (X k ).

Hence

I= 7 7 f (x )+ ! K ( x i ; d rd y )F(y ; it f _r ){ 7 7 f (x ')

+ t;  d v d z ) F ( z ;  ut— ) > ( x 9 }

+ E K (x i ; d rd y )F (y ; u s - s ) irf  (xi)
i= 2 s S

+ t K ( x i; d v d z ) F ( z ; u t ) )  x rs'ut-s(x0}S k 2 k j,

and, by induction hypothesis, this is equal to

T i'f (x )+ K (x i; drdy )F(y ; ui_s)T ,?ut_r(x ')s

drdy )F(Y ;us-s) 11 r 'U t— r(X k )
ri =
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t1

=  Tt
°f ( x ) K (X i; d rd y )F (y ;u ) Tu,-,(xk)

i = 1  s  S k - 1 , k 0 j

0 0

(x) + t <77- uf--,•I s K( • ; drd.Y)F(y; u ,,)>  (x ).

Thus (4. 31) is proved.

Corollary 1. Suppose (77,K, n )  satisfies the condition (U );
then the solution u (t,x ) (0 < u < 1 ) o f  th e  S-equation (4. 14) with
the initial value fE13*(S)+ is unique, and hence it coincides with
u.,(t, x) o f  Theorem 4. 6.

P ro o f. Let u(t, x )  be a solution of the S-equation (4. 14) then
just as in the proof of Corollary of Theorem 4. 5, we have

sup sup I u(t, x) I — (1 — Ilf ID i n f  V 1 (x )< 1 .
0.5t

Then û (t, • )(x ) is a solution of the M-equation with the initial value

7 (x )  satisfying lim sup I ii(t, . ) ( x )  = 0 . By Theorem 4.5 f i ( t ,  )(x )
(1 t 5.cr

is the unique solution and therefore u (t, x ) must be unique.

Corollary 2. L et T, be the branching semi-group constructed
i n  Theorem 4 . 4  (i.e., th e  semi-group o f  th e  ( X°, 7r)-branching
Markov process). Then f o r fE B *(S )+ , u (t,x )= T ,:fi ls (x )  is  the
minimal solution of the S-equation with the initial value f ,  that is,
we have

T x),

where u.. is defined in  Theorem 4. 6.

P ro o f. Let v(t, x )  (0< v< 1) be a solution of the S-equation
with the initial value f ;  then by Theorem 4.7 v (t, x) = i3 (t, .)(x ) is

a solution of the M-equation with the initial value i N( x ) .  By Theorem

4.4 we have T ,r(x )<v (t, x ); in particular, we have u(t, x )<v(t, x ).

One of the consequences o f Corollary 2  is  the following. Let

f  then T,11 5 (x )= E ,[Î(X ,)] = P[e_4>t]. Thus P.,[e4 > t ]  is the
minimal solution of S-equation with the initial value 1 .  In particular
we have the following
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Corollary 3. F o r a n  ( X°, n)-branching M ark ov  process X,
.13 [e4 = + 0, D] =1 for every x  i f  and only if  u(t, x ) , --- 1  is the unique
solution of  the S -equation corresponding to the system (77, K, or)
o f  X  with the initial value 1.

Now we shall discuss the regularity of a solution of the S-
equation assuming some regularity conditions on the fundamental
system (77 , K, 77). Let H c B ( S )  be a  closed linear subspace of
B (S )  satisfying:

(H. 1) H n C ( S )  is dense in C (S )  in the sense of w-convergence." )

(H . 2 ) The function f (x ) J u , ( x ) d t  belongs to H  i f  u t E H  for

e a c h  t  [a, b ] ,  u t  is right-continuous in  t fo r  each xE S  and

sup Ifutil<oe.
t E [a  ,b ]

Given a stochastically continuous" )  non-negative contraction semi-
group Ut o n  B ( S )  such that Ut ( H )C H , w e  set according to
Dynkin [6]

(4. 32) H0=---- HF)= {  f  E H ; s-urn Utf =f}  , 1 5 )
(4.33) : 1 4  f i ( U

)  = { f  G  H; w -lim U t f  =f } .

The H-inf initesim al generator A u  a n d  th e  weak H-infinitesimal

generator -A i  o f  U , are defined as in [6] ; in particular A H  is  the
infinitesimal generator in the Hille-Yosida sense o f U, restrictedli on
H,.

Definition 4. 7. A  fundamental system ( T?, K , 7 r )  is called H-
regular i f  it is determined by [X, k, 7r] (c f. Definition 4. 2) such
that, i f  T , is the semi-group of X,
( j )  T i (H )c H ,
( i i )  k .  E  H o ( —=H0m), if f  E  Ho, and

13) L e t  {  c B ( S )  th en  w - l i m  = f ; 0 i f  a n d  o n ly  if  s u p I f < oo  a n d

lim f s (x ) = f se ( x )  for every x E S .

14) i.e. lirn U t f  ( x )  = f ( x )  for every f  E C (S ) .  Every semi-group corresponding
ty.

to a right continuous M a rk o v  process on S  is stochastically continuous.
1 5 )  s - l im  f s  = f s ,  if and only i f  h fs — fg o 11—»0, (s—'s ,).
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(iii) F(• ; f ) E110 , if fE  H o nB *(S )+.

When H= H o = C(S ) we shall call the H-regular fundamental system
simply as regular.

Definition 4. 8. A  fundamental system ( T?, K, 7u) is called
w eak ly  H-regular i f  it is determined by [X, k, in  such that, i f  T
is the semi-group of X,
( j )  T , ( H ) c H ,
(ii) ) k- f E fio ( -- = •-110( T) ) if f E f i o ,

(iii) F ( •  f ) E 1-10 if fE k [1 ./ 3 * (S ) , and
(iv) t h e  function f  ( x )=S  r(v ,_ )d s  belongs to f  ,  if v E H  fo r0
every SE [0, t], v ,(x )  is right continuous in  s  an d  sup 1101<c) .°•

sE LO ,t]

Remark 4. 1. ( i )  The weak H-regularity does not necessarily
imply the H-regularity.

(ii) If a  system ( T,°, K, n) is H-regular or weakly H-regular, then
it satisfies the condition (U ) since k E B (S )+; hence the solution of
the S-equation with the initial value f E B * (S )+ is un ique . (There-
fore it must coincide with u. of Theorem 4. 6 (4. 28)).

(iii) If (77, K , n) is H-regular (weakly H-regular), then T ,°(H )cH
and H o' ) = H0 (resp. kor 0 = 1 0 ) .  Let A H(X ,) and A ( A H )  be the H-
infinitesimal generator (resp. weak H-infinitesimal generator) o f  T,
and T i° respectively. Then D (L ) (resp. D (il l l )----D(A 1)) and
A°H = A l l — k, (resp. —Z1H—k).

(iv) ( T,°, K, 7u) is regular if and only if  it is determined by [X, k, n]
where the semi-group T , of X  is  a  strongly continuous semi-group
on C (S ), k E C (S )+ and F(•  ; f )E C (S )  if f E C *(S ) + .

Theorem 4. 8. Suppose w e are giv en an H-regular (w eakly
H-regular) fundam ental system  (T , °, K , 70.  I f  f  H o n B * ( S ) +
(resp. f  E f f o r1B *(S )+), then the solution of the S-equation u(t, x)
-=u,(x ; f ) with the !initial value f  (which is unique") by Remark 4.1

1 6 )  We shall give another direct proof of the uniqueness of the solution in §4. 4.
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( i i ) )  belongs to H o (re sp . i i o ) , a n d  u (t , - ) is strongly  continuous
(resp. w eak ly  right continuous) i n  t.

P ro o f . Assume (77, K, r) is H-regular. By (4. 7) K (x; dsdy)
= r (x , d y )k (y )d s , where r (x ,  d y ) is  the kernel of the semi-group
T .  Thus the S-equation has the form u,= + 1 77(k • F(- ; u,_))ds.

Let {u„(t, • )}(n— 0, 1, 2, • • •) be defined by (4.27); then u„<_u, and

limu„ = u. Also by Theorem 4.6 ( i )  sup liu(t, • )11.<1 — (1 — 11f 11)e—  kl
0 5 t1 5 a

-=---- A0-<1 fo r  every a > 0 .  N ext, we rem ark that i f  g, hE.137(S)+

where r < 1 ,  then by Lemma O. 1  (O. 33) — and

hence

(4.34)F  ( -  ;  g )  F(• ; gl dy )(Y (y )—  k (y ))I

Now suppose u„(t, • ) E H o  fo r  every t  and is strongly continuous
in  t. (For n=0, u„-=-- 0, and hence it is triv ia lly  t ru e ).  Then by
th e  H-regularity o f  (  Ts°, K, n) , k F (- ; u „ (s , • )) H o , and hence

Tt°_s(k- F(- ; u.(s> •))E Ho every 0 < s< t. We shall prove that
V, is strongly continuous in s  on [0, t I .

 F o r ,

ilvs+h— vdl 7 .(k • F ( ;  u„(s +h, •)))—  T(k •  F ( ;  u„(s, -)))11,

{F(• ; u„(s+ h, -))—  F ( ;  u .(s , •))})Il
T ,)  (k  • F ( ;  tc„(s, •))) Il

411 F ( ;; u„(s +h, • )) — F ( ;  u„(s, • ))II
7 , ) (k •  F ( ;  u.(s, •)))11

fl'Ilk11-11u„(s+h, •)—u„(s,•)11
+II ( T_„— 77)(k • F(• ; u„(s, .)))11

when h—.0, where we set a '= A , .  Therefore,

v,ds 4  7 - .? k•F(• ; u„(t—s, •)))dsEHo

and
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1-1-h
11W t+h -  W 117 7 + ,- (k •  F ( ;  u„(.3, •)) lids

T L )(k • F(• ; u„(s, -)))ilds0

when Thus w , is strongly continuous and therefore u„,i ( t ,  )

=V I* + w,E Ho a n d  is strongly continuous in  t. Hence, for every
n=0,1, 2, • • • , u„(t, • ) EH,, and is strongly continuous in t. Now if
t o-, then, setting a' =a k ., we have

Ilu„(t, • ) - 74-1(t, •) < ! T.?(k• {F(• ; •))

— F ( ;  u„_2(1—  •))))ds11

<111411F(• ; u,(t—  s, -))—  F(• ; u2(t —  s, •))11ds

<(a'lik11) 2 : t i
o lfu„-2(s, •)—u0-3(s, -)Ildsdti

( a i l ik i l ) '•  • •)ildsdt,,_idt„,. • • dti

< {alklf}" 
n!

Hence for every a> 0 ,

sup II u (  •  ;  f )  _ ) r < E   {a' 1114}.  6 . _ > 0

m!

when n-->c,o, which proves u ,(• ; f )E H 0 an d  is strongly continuous
in t.

The proof for the case of weak H-regular is similar. We only
rem ark that w e use the condition (iv) of Definition 4 . 8  to  show

that 77(k • F( • ; u„(t—  s, •))dsEll- 0 by assum ing u„(s, D  .# 0 and
0

is weakly right continuous in s.

Further regularity of the solution u,(- ; f ) ,  w hen  f D (A H ) n
B *(S )+  (resp. fED(X onB -(s)+), will be d isscussed  in §4 .5 .
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§ 4 . 4 . Construction of a branching semi-group through the S-
equation

Given a fundamental system ( K, 7 r ) ,  we constructed in §4 .2
a branching semi-group as the minimal solution of the M-equation.
We shall now give another construction of a branching semi-group
using the solution u . o f th e S-equation obtained in  Theorem 4. 6.
For th is w e shall assume in  this section that (T°, K, 7 r )  is deter-
mined by [X , k, ,  where kEB(S)+ . Then this fundamental system
satisfies the condition (1.1) and hence u., i s  the unique solution of
the S-equation if the initial value f  is  in B* (S)+ . But the proof of
Corollary 1  of Theorem 4. 7 involves arguments on the M-equation;
therefore we shall give first o f a ll a direct proof of the uniqueness
of the solution so that future discussions will be self-contained and
independent of the discussion given in §4. 2.

Let ut = u(t, x ) ( 0 < u < 1 )  be a solution of the S-equation (4. 14)
with the initial value f e B * (S )+ .  Then

Tt° f + 1 r(k • F( • ; f))ds<TP f + (1—  T° 1)

<1— (1— 11f

I f  v, = v(t, x) (0<v <1) is another solution, then we have from (4. 34)
that i f  t<a

11u, — r { k ( F ( -  , — F(•, ds110

<a' 11k11Ç011u.,— v sdds

<(a'll k11) 2 :, Olds dt,

e t  CI, C t x ,

Ilu. — 2) lids c/1„_1. ••dti
0 0 0

,

nt

where a' = aA„ . Hence
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sup Ilut— vtii (a '
n
I
) " ( n — ) .  co)

which proves ut =-- vt ;  i.e ., the solution of the S-equation w ith the

initial value fE B * (S )+  is  unique, and hence it must coincide with
u_ o f Theorem 4, 6. We set u t(x ; f ) = u -(t ,  x ).  Then by Theorem
4. 6

(4. 35) sup lut( ; f ) K1—(1-11f11)e - '1"<i> for a ll a>0,

and ut h as  the following expression

(4. 36) u t (x ; f ) =  12 x,dy ) y )

where /2,(x, dy) i s  a  (uniquely determined) substochastic kernel on

S >< S. By Lemma O. 3  there exists a  (uniquely determined) substo-

chastic kernel T,(x, dy) on S x S such that for every fE B *(S )+ ,

(4. 37) ut( • ; f ) ( x ) j -if(x , dy )1 N(y ),  t  E  [0 , xE s.

W e shall show th a t  1-",g (x )-j T ,(x , d y )g (y ) ,  g E B (S ),  defines a
semi-group on B (S ) .  For this we shall prove

(4. 38) u ,„ (  ; f )  =  t (  ;  us( • ; f ) ) , fE B * (T )± .

In fact,

t+s
u ,„(•; f)— f K ( ;  d rd y )F (y ; u ,_ (•  ;  f ) )

=777'1) f K (• ; drdy)F(y; u t „.,.(• ; f))0 s

+
t s

K (-; d rdy )F (y ; u t , s _t ( • ;  f ) )

= I ,  say;

applying (4. 4) to the last term of the above we have

7',0 Z 'f + 1 K (• ; drdY)F(Y ; ut+— (•; f ) )o s

+
0

K (•; d rdy)F (y ; u t _r ( .  ;  f ) )
 s
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T Î(T s'f ;  d r d y )F ( y ; f ) ) )0 s

+ t K ( •  ; d rd y )F (y ; tt„_ s-,( •  ; f ) )

= T u s (- ; f )  + t
o s K( • ; drdy)F( y ut+ ,--,( • ; f ) ) .

This proves that v,--u,+, (  ; f )  i s  a solution of the S-equation with
the initial value u s (•  ;  f)E B * (S )+ , and by the uniqueness of the
solution we have (4. 38). Then for f e C * (S ) ÷  we have

i'f+ ,;>(x ) ---u t+ ,( • ; f ) (x )=u ,( •  ; u s  ( •  ; f ) ) (x )

= 4 .",( u ,( •  ; f ) ) ( x ) =4 " ,( T f ) ( x ) .

By Lemma 0. 2 , T , ( s g ) ( x )  holds for a ll C o ( S )  and hence— T
fo r a l l  g E B ( S ) .  T h u s 1 , is  a  semi-group on B (S ) ,  and by its
definition it is a branching semi-group. In this way we have const-
ructed a branching semi-group —1, from a given fundamental system.
We shall assume further that ( T,°, K, n )  is H-regular or weakly H-
regular; then we have the following

Theorem 4. 9. (  i  )  Suppose ( T ,K ,  n )  is  H -reg u lar. T h en
T, is a  strongly continuous semi-group on the smallest closed linear
subspace H o in  B (S )  containing f  G  H o nw(s)+1. In particular

i f  (7 7 , K , r )  is regular, then  EI i s  a  strongly  continuous sem i-
group on C o (S ), an d  hence the corresponding branching M arkov
process is a Hunt process.
(ii) Suppose ( T,°, K, 7 r )  is w eak ly  H -regular. T hen —I', is weakly
continuous on the sm allest closed linear subspace î l o i n  B ( S )  con-
taining { ;  fE f i o n B * ( S ) } .  Also, is strongly  continuous on the
sm allest closed linear subspace containing { 7 : fE H j r "r1B *(S )} . i 7 )

P ro o f .  Proof o f  ( i )  is almost immediate from Theorem 4. 8:
in fact if fE H e n B * (S )+ , then

1 7 )  In  th e case o f H-regular we have H;T° ) = Ho ( H T ) )  but in the case of
weakly H-regular they do not coincide in general.
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u r (•  ; f)= T :71 sE H oriB * (S ) + a n d  Hui( • ; f ) — f

when t— > 0 . Then Ti f E l l ,  and

II-11 - 1N"  , C• ; f ) -  f  —.0

when t—>0. The first assertion of ( i i )  is proved sim ilarly. As for
the second assertion, w e see from  the Corollary o f Theorem 4. 10

given below that i f  (77, K, 7r) is  weakl - -:,  H-regular, then f E D (X11)

n  B *(s)÷  implies u,( • ; f ) D ( AN) nB *(S )+E 1-10(')FIB *(S ); there-
fore If tt,(- ; f)— f Then the proof is the same as in (i).

In §4. 2 we have constructed a branching semi-group T, as the
minimal solution of the M-equation and, i t  is  the semi-group corres-
ponding to the (X°, 7)-branching Markov process. We now claim
th at -i t  = T ;  i.e., the semi-group "it  i s  the semi-group corresponding
to the (X°, r)-branching Markov process. This follows from Theorem
4. 4, Corollary or Theorem 4. 7 and Theorem 4. 5, Corollary. But in
the case w hen (T , K, 7r) is regular, we can give the following direct
proof independent of the arguments involving the M-equation. Thus
w e  sh a ll see  th a t, a t le a s t in the case of a regular fundamental
system , the construction of the (X°, 70-branching M arkov process
given in this section is completely self-contained.

Suppose, therefore, (7';', K, n )  is regular; then branching Markov

process X  corresponding to the semi-group T  a Hunt process," )

and we shall show that X  is  the (X°, 70-branching Markov process.
By Theorem 4.10 given below, if f  ED(A °) nB * (S) +, then

<f I + k F ( f )>  -->0 when t—.0.

In particular we have

— f ) — f — kL7E(• , dy);; Zy) 1—>0 when t--->0.

1 8 ) Hence it satisfies the conditions (C. 1) and (C. 2), cf. §1. 2.
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If we consider kJ`, 12( <1., then we see easily that" )

sx 1.2 1 dy).î(y )—  k (x) 2r(x , dy )Ry)s.
(n=0, 2, 3,

and

dy)f(y)— f (x)} — A° f (x ) H 0 ,  when t-- 0.

From the first formula we can conclude, as in  Ikeda-Watanabe [18],
that rc(x, dy) is  the branching law of X  and further

, X, e E ] T,* (x, dy)k(y)7r(y, E)ds,
CI S

where Ts* (x, dy) is  the kernel of the semi-group of the non-branch-
in g  p a rt X *  o f  X . F ro m  th is  w e  have sup P , [r< t]  = 0 (t ) . WerEs
shall now prove that X *  i s  epuivalent to  X °, i.e ., T , * = r .  I t is
sufficient to show that

(*) sup E  [f (X t);  t > - r, X t E S ]  = 0 ( t ) (t 0),

since then we have, for f D (A °)F  B *(S )+  ,

sup (x, dY)f(Y) - f  (x)}  — A° f (x ),Es t

<sup d y )f(y ) —f (x )}  —  f  (x )

1+—.‘ s u p  [ f (x t ) ;,Es

This proves that D (A ° )  D (A * )  and A* f = A° f  on D (A °), and hence
T,*. B u t  we have

E . [f (X t ) ; X ,e ,3 ] =E ,[E x ,[f  (X i-.) ; X S l I  - ;  r< t ]
and

1 ^E x [ f(X ,); X ,ES ] =  T ,<0 f> (x)=1im — (7 ',E f —  T,0 )(x)
E-->0 E

=<TSI5IT,<01f>15>(x).

1 9 ) Generally, if a sequence of a Banach space valued analytic functions ff, i (x)}
is such that Ilfn(X) H 0 (1N I <1) when n—o s , then Ilf> (0)11—>0 (n—>00) where f,1' )  is
v-th derivative.

Sup
,E S
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/ " .

Since sup T,0(x) = 0 (r )  we havexEs

sup <T,ÔNIs l TO ] f> is> (x )=0 (r ).
r E s - S

Combining this with supP, []r< t ]  = 0 (t ) we have ( * ) .  Thus X  is the
x E S

( X°, n)-branching Markov process.

§4. 5 . Backward and forward equations

We shall discuss in  this section the theory of the infinitesimal
generator of a branching semi-group Tt corresponding to the ( X°, TO-

branching Markov process. As in  [6 ], the strong and the weak in-

finitesimal generators A and 271 o f T , are defined by

A f = s-lim   f  f  a n d  ;if — w-lim  T i f  

with domain of definitions

D(A )= {f  f E B ( S )  such that s-urn  f  f  — Af exists}
t-40

D(Â) = if ;  f  G B (S ) ;  w-11m  T ' f  f  =  AY exists
1-0 t

such that w-lim T,( 51-f ) - 271f }to
—

It seems difficult to discuss A  or A  without some additional condi-
tion on the system ( T,°, K, r )  and so we shall assume it is H-regular
or weakly H-regular fo r  some closed linear subspace H  satisfying
the conditions (H. 1 ) and (H. 2 ) of §4. 3.

Lemma 4. 5. Suppose (77 , K , 7r) is H-regular (weakly H-
regular) and  le t v t G  H , te  [0 , 0 0 ) and f EB*(S)+ F1H 0 (resp .

f E B * (S ) - 0 )  such that I]v, —f when t-->0. Then

r (k  •  F (•  ; v „ ) )d s
(4. 39) s-lim — k F (f)t t o

r (k •  F (•  ; v t _s ) ) d s
(resp. w-lim — k F (f)) .to

and
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P ro o f .  From the condition II v, (t-->0) and f  E IP(S )+
w e m ay assume sup for some t0> 0 .  W e shall put for

05.1 ._10

K to

 7'.?(k • F(• ; , - , ) ) d s — k F ( •  f )=L +1 2t
where

T  { kF(• ; v, ) kF(- ; f  )1 ds
t

and

1.
2= l

t :7'.?(kF(• ; f  ))ds—  kF(• ;

B y  (4. 34) we have

T.°,{k(F(- ; v )— F( • ; f))111ds

< 1 IlkilaS (t-->0).
t 0

I f  (77, K , 7r) is H -regular (w eakly H -regular) and f E  H 0

f  G Ho), then  kF(• ; f )  H o (resp. kF(• ; f ) :go) and hence

s-lim T ,°(k F(• ; f ))=k F(• ; f )

(resp.

1-.0

(resp. iv-limTi°(kF(• ; f ))— k F(• ; f )) .
1-.0

Then we have clearly that

s-lim h = 0 (resp. w-lim = 0),
1-.0

and the proof of the lemma is now complete.

Theorem 4. 10. ( i )  Suppose (7'10, K, or) is  H -re g u lar. I f
f  D ( 2 4 ° H ) F I B * ( S ) + ( = D ( A f f ) F I B * ( S ) ÷ ) ,  th e n  j >E D ( .1 )  and .21î  is
given by

(4.40) A'îf=<f Ic(f)>,
where

(4. 41) c ( f ) =  f  + k F ( •  ;  f )
=  f  +  k (F (• ; f)— f).



126 N . Ikeda, M . Nagasawa, S . Watanabe

Conversely, if f E  linB*(s)÷ is such that ? E D (A ),  then f e D ( A )
(=D(A H)) and  hence A ? is giv en by  (4. 40).

( i i )  suppose (Tt°, K, 7r) is w eak ly  H-regular. I f  fED (;410  n13*(S)±
(=D(211)(1B*(S)+), then 7 E D (2 )  and  :4 7  is given by

(4.42) <f I e(f)>,
where
(4. 43) e (f)= +kF(• ; f)=71Hf+k(F(•; f ) — f ) .

Conversely, if  f  fin  B*(s)+ is such that i NED(517), then f  ED(:41)
=D(A H) and hence 4..? is giv en by  (4. 42).

P ro o f . W e sha ll f irs t p rove  ( i ) .  Suppose fED(A°H)(1B*(S)÷
th en  b y  T h eo rem  4. 8, u ( . ; f )  = T ,?  sE Ho and lu t ( ; f ) — f
w hen t 0. Now i f  c ( f )  is defined  by  (4. 41), w e  have

(u`(f  c (f) ) T u
t f  - Av)

+ ( :77(k • F(•; tt,-,))ds
 k F ( •  ; f ) ) .

Clearly the first term  converges strongly  (i.e ., in the norm) to  zero

w hen t 0 and so  does a lso  the second te rm  by  L em m a 4. 5. Thus

f)—f)—c(f)11 —.0 w hen t—>0. Then, if t<a , w e have by

 

Lemma O. 1 (O. 35)

II T Î _ Î — <f I c f >>1 H u t( ' ; —<f le(f)>

<dA,11 - (tf,(• ; f)—f)—c(f) +eAJc(f)IIIIu,(-; f)—f112°'
—431

w hen t—.0 proving that  7 D ( A )  and A j>=<f ic(f )>.
Conversely let fEH r1B *(S )+ be  such  tha t . Î . E D (A ) .  Then

( T t 7-1)— A ? —.0 (t )

20) =1 —  (1 f  e - ' 11';1<1.
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and a fortiori

R(ut(• ; f )  — f ) — A Î  s —>0 ;

that is,

(4.44) ft— f  +  l
t : T.,°•(k • F(• ; ut-s))ds —  A /11.1

 

(t--->0).

 

Tt° f — f  11 i s

t 11
an d  hence 1177f —f 11 -->0. Therefore f  Ho a n d  th is im plies, by
Theorem 4 . 8 , th a t u t ( • ; f )  G Ho a n d  Ilu,( • ; f ) —  f 11— .0. Then by

Lemma 4.5 s - l im 14  T (/e - F(.; u t - s))ds=k - F(.  ; f ) .  C om bin ing14 0
this w ith (4. 44) w e see th at s-lim  7 7 f

t
 f  e x is t s  and is equal to

A k  • F(• ; f ) which proves f  eD (A °H ).

The proof o f ( i i)  is quite similar, and therefore it is omitted.

C o ro lla ry . S uppose th e  fundam ental sy stem  (T10, K , r )  is
H -regular (w eak ly  H-regular). I f  f  G D(AH) fl B * (5  )±  (resp.
f  E D (X i i ) n B * (S ) +), t h e n  ut=ut(• ; f  )  T  î l s  D ( A O  (resp.

u t e D ( :4 ;) )  f o r  every  t e  [0, c c )  a n d  d
d
u
t t e x is ts  s tro n g ly  (resp.

d+u, exists w eak ly );") further, w e have
dt

(4.45)d u t   _ k (F(• ; — u1)dt
d+ut ( r e s p .  d t  _

, T Hut+k (F(-; ut) — ut))

and
(4.46) 11ut — f -->0,

Pro o f . If f  G D (.4H )nB * (S ), then .i'Ne D ( A ) .  Therefore, by the

general theory of semi-groups we see that 7'1 f (x) u0(- ; f  )(x ) e  D (A )

and is strongly differentiable" )  in  t  an d  
d T ,  

 — A T T t A j N. T h en
dt

21) '4 + 1 4  denotes the right hand derivative.dt
22) W ith respect to the Banach space B(S).

From (4. 44) we see in  particular that bounded in  t
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u ,( •  ;  f )  is strongly differentiable in t and tti ED(A H )  by the second

part of ( i )  of the previous theorem. By the same theorem we have

(4 . 4 5 ) . The proof of the case of weakly H-regular is quite similar
and hence it is omitted.

Definition 4. 9. The equation (4 . 45) with the initial condition

(4. 46) is called the backward equation corresponding to the system
(77, K, rc)

Thus the backward equation is a semi-linear evolution equation
and the semi-group o f th e (X°, 7r)-branching Markov process defines
its solution.

Now we shall consider the equation

(4 .47) t
tî  — T ,A î=  Tt<f ic(f)>.a

For simplicity, we shall assume that the fundamental system ( T  K , n )

i s  regular, though a sim ilar argument can be carried over for H-
regular or weakly H-regular fundamental systems. Then the branch-
ing semi-group T, is  a strongly continuous semi-group on Co (S ) such

that if fE D (A )riC *(S )+ , 2 3 ) then fr\E D (A ) and

(4.48)A i N = < f i c ( f ) > ,

where c (  f  )  is g iven by c(f ) A f +  k (F  ( • ; f ) —  f ). (4. 4 8 ) deter-
mines the semi - group uniquely: in fact we have the following

Theorem 4 .  1 1 .  L et (7',°, K, 7E) be a regular fundamental sys-
tem . L e t U, be a  non-negative contraction semi-group on  B(S)
such that if fE D (A )f)C * (S )+ , then Î D ( A u ) 2 4 ) and

(4 .4 9 ) Auj>=<flc(f)>,
where

23) In the case of H =  C (S ) w e w rite A g  simply as A.
24) D (A u ) is the domain of the strong infinitesimal generator Au o f Ut ;

cU f — f
D (A u) E H (S ) ; s- urn t  Au f  exists/.
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(4.50)c ( f ) = A ° f + k • F ( • ; f ) = A f + k ( F ( • ; f ) — f ) .

Then U 1 = T i , t h a t  is , U , i s  the semi-group o f  (X °, n)-branching
M ark ov  process.

Before proving the theorem we shall give the following remark.
Let B  be a  Banach space and g  be an open subset of B .  A  real
valued function 0 ( f )  defined on g  is said to be G-dif ferentiable" )

in  g  if for every f e g  and g e B

lim  ( P ( f  ± E g )  — 6 ) ( f )   =8 0 ( f ; g )
€4,0

exists. 6 0 (f ; g )  is called the first variation with increment g  of f .
Now we take C (S ) as  B  and

(4 .51) g ( S ) = { f E C ( S ) ;  0 < f < 1 }

as  g .  Given a  bounded measure g  on S  define 0 ( f ) ,  f e g  by

0 ( f ) —  7 ( x ) p ( d x ) .

Then by (1. 49), 0 ( f )  is G-differentiable in  g  and

(4. 52) 80(f ; g ) l s <f ig >(x ) ,u (d x ) , f G g (S ) , g E C (S ) .

Remark 4. 2. Such 0 ( f )  has all higher order derivatives and
in  fact it is an analytic function of f g ( S )  in  the sense o f [9] .
One can develop th e  theory of branching semi-groups on the basis
of analytic functions defined on g ( S )  instead of using the symmetric
direct product spaces :  for such an approach see Mullikin [36] .

Now l e t  U , b e  a  semi-group satisfying the condition of the
theorem. If we set

(4. 53) 0x ,,(f )=UtiN (x ), f e g ( S ) ,

then for each x S  we have that

( j )  f o r  fixed f E g ( S ) ,  it is continuous in  t,")

25) Cf. Hine-Phillips [9] p. 71.
26) ( i )  is  a  consequence o f  (ii). Note that the linear hull o f  f f ;  e D (A )

no(s)} is dense in Co (S).
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(ii) for fixed f E  D (A )  rig (S ) , it is continuously differentible in  t,
and
(iii) for fixed t , it is G-differentiable in f E 2 ( S ) .
By (4.47) and (4 .5 2 ) w e  have for f E D (A )rig (S )

( f ) - - - - a o s , , ( f ;  c ( f ) ) ,  0 . . , 0 + ( f ) = R x ) .at

Definition 4. 10. F o r  a  given regular fundam ental system
( T,°, K, 7r) and a function 0 ( f )  defined on g (S ) ,

(4. 54) { at
0 . + ( f ) - 0 ( f )

is called the forward equation corresponding to the system (77, K, 7r).

A  function ø t ( f )  o f  ( t , f )  defined o n  [0, 00) x g ( S )  is  ca lled  a
solution of  (4. 54) w ith the initial v alue 0 ( f )  i f  it satisfies the
conditions ( i ) ,  ( i i ) ,  ( i i i )  above and (4. 54).

Example 4 .  3 .  In  th e  simplest case when S = {a} and if the
fundamental system is given by c  and {ni}7:0 (cf. Example 4. 1), 2 7

)

then the forward equation (4. 54) is given as

ac(f) 
 — c ( f )

aot(f )
at a f  '

where c ( f )— c • ( iar,f '— f ) .

If 0 ,,,( f )— i.1 3 ,5 ( t ) f i ,  then the above equation is equivalent to
.1=0

3P (#'\ ;+1
 _  _  j c pi x t )  + c  P ikk • 7ri--k± i •at le- 1

This is just the classical Kolmogorov's forward differential equation

fo r  a  Markov chain (X „ Pi) such that E, (r) —   and  P,[xT= j]

= ;- , + 1  , where r  is  the first jumping time.

Thus (Dr,,(f ) =U, . /î(x ) , f G  2 (S ), defines a solution of the forward

2 7 )  Clearly it is a  regular fundamental system.

a c ( f )  
 — s o t (f ;  c ( f ) ) ,  f  E D (A )n g (s )
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equation (4. 54) with the in itia l va lue o ( f ) ----=R x )  for, each fixed
Hence the theorem will be proved if  we can prove the fol-

lowing

Theorem 4 . 1 1 '.  Let (77, K, n) be a given regular fundamental
system and Ut be a non-negative contraction semi-group on B(S)
such that f o r  each x E S , o x , ,( f ) =- U Î ( x ) ,  f  E 2 ( S ) ,  defines a
solution of  the forward equation (4. 54) with the initial v alue

f ( x ) .  Then

P ro o f. Set 0 ( f ) —  TS' (x ) , f E W (S ); then we know that for
each fixed x , 0:r, i ( f )  is also a solution of (4. 54) with the initial

value 0 (f) =frN( x ) .  Since U is a contraction semi-group, we have
by Lemma 0. 1,

0 x ,t(f) - - 0 x,t(g) I =  I 11 1( ri — k )(x ) < J7 k ifs< arilf — g11,
f ,  g E 2 (S )  n c7(s),

and noting (4. 52) we have, provided f ,  g E .W ( S ) n  (s),
1& 0,,(f ; c (f ))-80 x ,

1
(g; c(g))1

—111.,(<f ic(f )>— <gic(g)>)1

<11<flc(f)>—<glc(g)>Il8
<br ilc(f) II hf — gil ±c r lic (f)— c(g )il.

Clearly we have similar results for . Hence i f  w e se t  C f
f 2 ( S ) ,  then ø , ( f )  i s  a so lution  of (4. 54)

with the initial value o ( f ) - 0  such that for every r<1

(4.55) I c (f )  — 0 t(g )  I
and

(4.56) 1& 0(f ; c(f )) - - a0 ,(g ; c (g ))i
< 13r 1lc(f)1HI f — +r,11c(f) —c(g)il

for every f  and g  in  g(S)n Cr*(S), where cer, j ,  and r ,  are con-
stants depending on r. By the following lemma we have o t (f)==-0
a n d  hence U1.î(x) =0 x ,i ( f ) - - 0 '.„( f ) = T t î ( x )  fo r every f E 2 ( S ) .
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Since th e  linear hull o f {r>; f E 2 ( S ) }  is  dense in C o ( S )  w e have
Ut = T , on C o ( S )  and hence on B (S).

Lemma 4. 6. Let ø t ( f )  be a solution of the forward equation
(4. 54) with the initial value o ( f ) = - 0  satisfying (4. 55) and (4. 56)
fo r  every r < 1 .  Then 0 , ( f ) = 0  fo r  every t> 0  and f e 2 ( S ) .

P ro o f .  Since D(A )( - 1 2 ( S )  is  dense in  g ( S )  and ø , ( f )  i s
continuous in f e 2 (S )  b y  (4. 55), it is sufficient to show 0 , ( f ) -----

fo r every f e D (A )n 2 (S ) .  So  assume fE D (A )n g (S )  and let
i t , --- u t (  • ; f )  be the solution of S-equation w ith the initial value f ;

then we know that ut G D (A )n 2 (S ) by Cor. of Theorem 4.10 and

sup < A o< 1 for every d < 0 . We shall now prove that 
d + 0 . ( t )

=0
dt

in t  (0, a), where we se t lp ,„ ( t ) - 0 , ( t t c , „ ) ,  t E  [0, a ] ,  for each fixed
6 > 0 .  I f  this is proved, then  / r ( t )  i s  constant in t ,  and hence

'ti (6 ) = 0 , ( f ) =  lirr, (0) = 00 (u,) 0  for every a > 0 ;  therefore, the lemma
will be proved.

Now

1 
[4P,r ( t+ h ) . - ] = h

i  fOt+h(u-t-h) - 0 ,(u -t)1h
1

= —
h

[Ot+h(u-t-h) - ot(u -,--h )] + 1 [0t(u.-1- ) - 0 t (u - t ) ]h
12,

where we set

1L  œh  [0 t+ h (u o - t -h )  -  a
 ( u o - t - h  )1

and

12= 1 [ 0 i ( u . , - - h ) - 0 t ( u . - t ) ] .h

S e t et ( f ) — ( f ) ( - 8 0 1 ( f ; c ( f ) ) ) ; then e t + o h ( u — , , , )  for

some 0 = 0 ( h )  such that 0< 0< 1, and hence

(4. 57) I II—  et ( u . - t )  I =  I e t + o h ( u . - - i - h )  — I
I e t+ o h  ( i t  a  — h) t+oh (u I + I e t+ o h (u — t) I
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Since e s is continuous in s  by the condition ( i i )  of a solution, the
second term tends to zero when h--->0. The first term is equal to

Int+oh(tto-(_h; c(u-t-h)) - 80,+0, (u.-_,; c(74- ) )1,

and by (4 . 56) this is majorized by

K i 11 - u.--t11+ -  c(tt,r-t)

The first term tends . t o  zero when h--->0. By Theorem 4.11 and

its corollary, c(ur,_ ( _h) =  (A fi- , + ) I ,= (T c r - t - h A ./Î)I and  similarly

c(u,s,) = ( To-_,21:1>) Is ; therefore, the second term is m ajorized  by

T o -f)A îji which tends to  zero when h-->0. This proves
I / 1 - 0 (u0_,)1--->0 when

Next consider 12 ;  setting g = c (u ._ ,),

112= 
 h  

{Ø ,(u .,,)  — 0(u—,)}

and the second term tends to  -8 0 , (u - t ;  g )  when h -> 0  by the defi-
nition of the functional derivative 8. By (4. 5 5 ) the first term is
majorized by

and this tends to zero since

IItt - - .
14

- -

--->0 (h - -> 0 ).

Thus /2--> ; g )  and hence

± /2—e, 8 0 t ( 1 4 .- - t ; g ) o
a
t o—sot)=o.

dqr.,.(t) This proves 0.
dt
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Finally we shall give a direct proof that the semi-group T , con-
structed in Theorem 4 . 4  as the minimal solution of the M-equation
satisfies the forward equation. This will give us a new proof of the
branching property o f  2 ', a t le a s t  in the case when (77, K , n )  is
regu la r . This point can be seen more clearly in the following way:

i f  0 ( f ) —  f  E  2 ( S ) ,  defines a solution of the forward

equation w ith the initial value o ( f ) = ? ( x )  fo r each x  S ,  then

ex, t ( f )= T , f )  s ( x )  defines also a solution of the same equation
with the same initial value. Hence by Lemma 4. 5  we have

— Ox,,===0, i.e., T 7 ( x ) f )  ! (x).

This proves T i h as  the branching property." )

Now, T , was constructed as

T i f  = E T , f ,  f  B ( S ) ,
It = 0

where Ti( ") ,  n =0 ,1 , 2, • • • were defined by ( 4 .  1 6 ) .  Let p(x , dy ) be
a kernel on S X S  defined by

(4. 58) P ( x ,  dy ) /f (Y )—  <f I k • F( - ; f )> (x) •

Such a kernel exists and uniquely determined by Lemma O. 3. Set

(4. 59) o(t, x , dy )= s Ti°(x, dz),a(z, dy);

then the kernel qp(x ; dsdy ) defined by (4 . 9 ) is given by

4r(x ; ds dy ) =0(s, x , dy )ds.

Now set

(4. 60) 0*(t, x , dy) d z ) r( z ,  d y ) ;

then clearly

28) This argument is similar to that given in Harris [8] to prove that a minimal

Markov chain such that P i ( X r = j ) = r 1 - i . i  and E ( T ) =   c
l

. ( c f .  Example 2 )  is  a

branching process.
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(4. 61) o(s, x, dz)1(z, dy)

= 77(z, dz)0*(t— s, z, dy).

Rewriting (4 . 16) by 0  and o*, we have

T f" ) (x , dy )=:L 0(s, x , dz )17_ ,(z , dy )ds

= t 71(x , dz )0*(t—  s, z , dy )ds,0  s

T t" ) (x , dy )=:L (1) ( 2 ) (s, x , dz )7n(z , dy )ds" )

= 1 r ( x ,  d z ) 0 * " ) (t—  s, z , dy)ds
0  s

= t r i ) (x, dz)0*(t—  s, z , dy)ds,0  s

r " ) (x, d y ,)=-O s T!" - "(x , dz)95 *(t—  s, z , dy)ds

f  (x ) = E T f  (x)—0

=  f  ( x )  + t
o dsT s 10*(t —  s, • , dy)f  ( y ) )  ( x )

for every f  B (S ) .  In particular for 7(x), f E B * ( S ) + ,  w e have by
(4 . 60 ) and (4. 58)

(4.62)T ,  frN( x ) =  f  (x ) + Ts(<Tt - f I kF( • ; f )>) (x)0

Therefore, if f  EC*(S )+ nD(A),

II — <f I A° f + k • F(- f)>1

<   <  f Ao f >11

+11 1-
t

i
od s { T f ( k• F(• ; - f )>) — < f I kF(• ; f

=  111111 + Ilhil
29) (t, x, dy)— S A c(t — s, x , dz )y 5(s, z , dy )ds. 0* (4  is defined similarly.

and hence
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and by Lemma O. 1 (O. 35),

( 77.f —f) — A°.fFellAV . 11.1177f

when t-->0. Also by (O. 34) and (4. 34)

l
t

 t
odsll< 7 7-sf Ik F(•; f )>— <f lk F(•  ; f)>II

<  l
t  t odsli<r—f I k •F( •  ; 7 7 -J)> — <7 7 - ,f lk •F(• ; f)>I1

+ f  k •F(• ; f )> — <f Ik K (•; f ) › ! !

< K
t  t

o d.silk • F(• ; T P-,f ) — k - F ( • ; f)11

K
t

i
 t o jl 7  f  f  lids

fo r some constants K , K ' and K "  and tE [0, a] if 1  i s  sufficiently

small. Hence MII-->0 where t-->0. Hence ?E D (A ) and A î '=<f  IA° f
+k - F ( • ; f)> . T h i s  implies, as w e have seen above, that ,,x( f )

= T, fN(x ) , f  E g (S ), satisfies the forward equation.

§ 4 . 6 . Number o f  particles a n d  related equations

Let X = (Xe, P x ) be a  branching Markov process; we assume

(4. 63) Px[e, = + =1 for every xE S.

This is equivalent to the following weaker condition:

(4.64)P x [ e 4 = =1 for every x E S

since, if  x= x2, •••,

P.,[e = + 00 ] = lim T  3 (x ) =lim h  T  S (x ,)= -P 1 [e4= + c c ] .
i 1i = 1

The mapping f  5 .1 1 (S ) -4 ( e5B (S ) is defined by (O. 32);
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i f  x = 6
f ( x ) =  1 ° '

f (xi)+ f (x2) + • • + f (x.), i f  x = X 2 , •  •  • ,  x n ] G S " ,

n =1 , 2, • -•.

We shall sometimes write ( f ) v  instead o f  ;./. It  is  c le a r  for
f e B ( S ) ±  and 0 < ,I < 1  that if  g  is defined by g ( x ) = A ',  then

(4. 65) (x )  =À ,x  G  S

The operation " "  is linear:

(4. 66) ( f i+ f 2 ) \ /= .4 + ; ( 2 .

In this section we shall discuss E.f(co) defined by

(4. 67) E [(0 ))= /(X t) .

If ID is  the indicator function of a set D E B ( S )

(4. 68) (0))----ef»(0)>=Tpcx,)

stands for the number of particles in the set D.

Lemma 4.7. F o r  f B ( S ) +  a n d  h e B * ( S ) +  we hav e, f or
x = [x 1 , X2, •••, x„] E S',

/
(k) k!(4. 69) T ,( 1 ( .0 ') ( x ) - - - ,  , T t ( h ( f ) k i ) ( x 1 ) ." )

k l! k 2 ! •  •  •  R I  j=1

P ro o f. W e assume first h E B * ( S ) + ;  then there exists some
20>  0  such that, if I AI À0, Ile" II h  <  1. Therefore, setting g= e v ,
we have for x =  [xi, x2, •-•, x „ ]  and I Al <  20

A"
 T  ( C k i  ) k )  (X )

k = 0  k!

= T t ( Î t •g ) ( x )

= i=1T ,(h •g)(x .i)

ne )ki-Fk2+•••-hk,, ,"„

E...E A II T  ( h ( f ) k.0(x.1).
k t= 0  k 2 = 0  k .= 0  k i!k ! •••k „!

(k)
30) This equality is true including the case  +0.= +00. E denotes the

(ki,k2,•••.kn)
sum over all (k 1, k 2, • • , k )  such that and ki+ k2+ • • • ± kn = k .
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Comparing the coefficients of A* we have (4 . 6 9 ) . When h B*(S)+,
w e  h a v e  (4 . 9 6 )  b y  the monotone convergence theorem, taking
h„E B*(S)± such that h„th.

Corollary. For f  G B(S)+,

(4. 70) T, f(x) = ov(x).

Now set for f G B (S )+

(4. 71) M, f (x) s(x)=  E x [r(X ,)] .

Let
B 1 = f fE B (S), I B (S )  for every t > 0).

It is clear that i f  f  belongs to B 1 then both f +=f  VO and
- ( —f) VO belong to Li'. We define M ,f (x )  for f  .1 3 ' by

(4.72) M, f (x 111, f+(x)— M e f -  (x).

I f  we define a  kernel M ,(x , dy ) on S x S  by

(4.73)M t( x ,  E ) = M ilE ( x ) ,  x  G  S ,  E E _ B ( S ) ,

then we have clearly

(4. 74) M, f (x) (y )M ,(x , dy ), f  E  .131 .

By (4 . 70) we have

Mt+s f (x) = Tt+.,X (x) = TRY ) (x) = T ,(T Y - is) v  (x)

T (M s f ) v (x )= M t(M , f )(x ) •

Thus we have the following

Theorem 4. 12. f(x ) =  SM, (x , dY )f  00= Ex [f (X ,)], x  G S,

f  1 3 1 ,  defines a  non-negative semi-group on 13 1 .

Definition 4. 10. The non-negative semi-group M , is called the
expectation semi-group of  the process X,.

From now on we assume X  is  a n  ( X°, n)-branching Markov
process and let K , n) be the fundamental system of X.
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Lemma 4. 8. L et h B * (S )+ and f  B ( S ) +  ;  then f o r each
k  =0, 1, 2, • ••, we have

(4. 75) T t ( k l ) k )  I s (x) =  r(h • f  k ) (x ) + U K (x  ; d sd y )
( k ) k !  E  E , h  , n(y , dz ) (I(1)k d )i S( Z j ) • " )

n=0 (k i.02 ,- ..,k .) r v 2  •  •  •  r t , , 5=1

P ro o f .  We
some Ao >  0  such

= T t (h e") 12(x)

assume first that hEB *(S )+ . Then there exists
that, if A l  .<  2 0  1161111h11<1. We know that v(t, x)

satisfies the S-equation:

(4 . 7 6 )  v(t, x )= r(h  • e 'v ) +S  K (x ; dsd  y ) n ( y , dz )D (t—  s,•)(z ).0 s
-

Since v (t, x) — E
k=0

(4. 77)
k=0

—

0=0

T ,(I1(.6 0 )ls(x ), 121<20, we have

T t ( k f ) k )  s (x )

k!
{7'?(h (x ) K (x ; d sd y )E (y , dz )0 s n = 0  S"

Alt

k!

k!
Ak

(k)
I? !

(*E  A
t

T _ .7 )k i s(z ;),
(0 1. 0 2, - 0 0 K 2 :  '•  • 5=1 

( z =  [ Z 1 i  z 2 ,  • • • i  Z n ] ) •

Comparing the coefficients of A* we have (4 . 7 5 ) . When h E  B *(S)÷,
taking h„EB(S)± such that kth, we have (4 . 75) by the monotone
convergence theorem.

If 11=- 1  and k =1 , w e have from (4. 75)

(4.78) T 1 ( ) ( )  s(x )  = f  ( x ) + K (x ; d sd y )E (y , dz )0 s —0 s.
N /

• T,, ( f  ) 1 s ( z i )
1= 1

= T ? f  (x )+ E K ( x ; d s d y ) L n ( y , d z ) i( T s )v (z ).

Theorem 4 .1 3 .  u(t, x ) =M 1 f ( x ) ,  f  1 3 + satisfies the following
(linear) integral equation

31) z  =  [zi, zz , •••, zn7•
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(4. 79) u(t,x )= r ' f ( x ) l t K ( x ; d s d y ) G ( y ; u ( t— s ,; • ) ) ,
0 s

where

(4.80)G ( y ;  g ) = L n ( x , d y ) k ( y ) .

Further, u ( t ,  x ) =M , f ( x )  defines the smallest solution among all
non-negative solutions o f  (4. 79).

P ro o f. (4. 79) follows from (4 . 7 8 ). To prove the second asser-
tion, we need the following

Lem m a 4.9. I f  x = [x 1 , x2, •••, x„] ES",

(4. 81) "T)j ( x ) = <rlIT ? f , 1-{ i r)1 (x .,)} f  (x ,),

(4. 82) A s

•kk(x; d s d y )k ( s , • ) ( y )
n t

rg ( s ,  • ) ( x i )[—  d,(IIT ?1(x ,))]0

+ {II r 1 ( x .,A  K ( x , ; d sd s)G (y ; g (s , • ) ) ,i=1
f o r every f E 0 ( S ) +  and gE0( [0, no) x S)+. 3 2 )

Proof. Let h = e ;  then (4.81) is obtained from T PÎ(x) = 7711(x)
by differentiating with respect to A and then putting 2 - 0 .  (4. 82) can
be proved in  a  similar way.

Now le t v17----v(t, x) (0 < v < + no) be a solution of (4 . 79 ). Then,
for x =  [x1, x2, •••, x„] E S',

t (x )  = • v (1 , x i )
i=1
n ” t

=- E r  f  (X i)  ±  4  K (x i ; d sdy )G (y ; v „,)i=i 0
n=E{n r 1 ( x ; )} T? f (xi) +E (1 —  II 711(x ,)) TY (x i )i--1 pTi 

O ,
+  E  H  r 1 ( x 3 ) K ( x i ; d sdy )G (y ; v ,„)

i-i 0.i*i s

+ iV  (1—  Il n _ ( x i ) )  K ( x i ; dsdy )G(y ; v „.„)

=--/i +h +/ -3 +h , say;

3 2 ) As for the definitions o f T t  and 11), see §4.1.
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then

1'4 = d,(—  II 711(x ; )) K (x i ; dsdy)G(y; 24_ )0 0

i — 13 0

Çs S

K (x i ; dsdy )G(y ;
S

n ri(x ;)),

and hence
rir

12 + .14=4 [ T V  (xi) + K ( x ;  dsdY )G(Y ; v i-i)1dr( M (-xi))0

[T,°.v, (x i ) ] d , ( —  r1 ( x ; )).i=, 0

where we used (4 . 4) to single out T .

Therefore by (4. 82)

/2+ 14+  /3 =  
o S

.Vr(x; dsdy)v-,(Y).

By (4.81)

I1 =  r9 x )  .

Hence we have

i (x )=  T nY(x) *(x ; dsdY )i5-i(Y );0 s

i.e., I ( x )  is a a solution of the M-equation with the initial value

In §4. 2  we have shown that T 7 ( x )  i s  the smallest o f  all
such solutions, and therefore

T,T(x)<‘6,(x)

which implies, in particular, that

Mt f  ( x )  ( T t . 6  s (x )

From now on  we shall assume that the fundamental system
, K, r )  is determined by [X, k, 7 r ]  and is H-regular or weakly H-

regular. We shall assume further that

(4. 83) stA rc(x , K <co

and
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(4.84)k  •  G ( -  ;  g) E Ho (resp.11) if gE Ho (resP. Flo)

in the case when the fundamental system is H-regular (resp. weakly
H-regular).

From (4. 83) we have for every gE B (S ),

(4.85)I I G (  •  ;  g)11‹ K • Ile .

Now, for given f B * (S  ) , define {u„(t, x ) }  ,0 successively by

(4. 86) uo(t,

u„(t, x ) =  T f (x ) ± K(x; dsdy)G( • ; u„_,(t s, • )).0 s

Then just as in the case of the S-equation, u„l'uo., where u„,, i s  the
minimal solution of (4. 79), and hence u-(t, • ) = /1/ f b y  the above
theorem. We shall now prove

(4. 87) Mt/. II_<eKdkoiifji.

For, if we assume

(4. 88) u„(t, • )il < jkl Ilf 11,
j - O

then

0 < u„,i(t, x)= (x ) o r, {k•G( • ; u„(t— s, -))} ds

11.f11 +11kIIK  1
0 11/4„(s, -)Jids

11 f 11 + 11k11 K • t( K  . 1 1 4
 s ) i  a d s

(KIjkljt)i 
f=710J .

This proves (4. 88) for every n  and hence letting n—). 00 we have-
(4. 87). Now noting the following property of G,

(4. 89) —G(• ; h)11<11g—h1I,

we can repeat the same arguments as for the S-equation to obtain
the following
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Theorem 4 .1 4 . Assume that the fundamental system (11 1, K , r )

is H-regular or w eakly  H-regular and (4 . 83) is satisf ied; then
fo r  giv en fEB (S ) there ex ists a unique solution u(t,x )E B (S ) of

(4. 79) and u(t,x )=M ,f (x ) Ex [r(X ,)]." )  M , satisfies

(4. 90) iiM if II< f  f  B (s) .

Further, (i) i f K, n )  is H-regular, then M , is a strongly
continuous semi-group on H o w ith  the inf initesim al generator L
such that D(L )=D(A , r )(=D(A°H)) 3 4 )
and

(4.91)L u — A ° H u + k • G ( - ;u )
=A Hu+k{G(•; u)— u} .

( i i)  I f K, n )  is w eakly  H-regular, then M , is a weakly right-
continuous semi-group on IL w ith the weak infinitesimal generator

such that D(Z )=D(A ii)(=D(241))" )  and

(4.92)=  .:41u + k•G(• ;u)

= :4- ,,u+k{ G(•; u)— u}.

Now consider for instance the case when n(x, dy )=8 [x ,x i (dy );" )

then G(x; f  )= 2f (x )  and hence Lu = A u+ ku. By K ac's theorem

(4. 93) M , f  (x ) E [exP( i
o le(x)ds)f (x,)1,

where E x is  the expectation with respect to the process X .  If k <0
the Markov process corresponding to M , is obtained from X by shor-
tening the life time (cf. §0. 1), while in the case k> 0  we must in-
troduce creation of new particles and the branching process X  seems
to be one of the natural and nice models for the creation (cf. Knight
[23] for another approach).

33) This implies, in particular, that 13' B (S ) .
34) A R (A - )  is the H-infinitesimal generator o f  T t ( T )
35) IH(::=4,) is the weak H-infinitesimal generator o f  T  t(T
36) 86,.)(dy) is the unit measure on S  a t [x,x]ES2.
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Finally we shall derive some equations fo r higher moments of
$ [ .  For simplicity we shall assume (r, K ,  n )  is regular and for
any f&C(S )+

E x [( 1 ) ( X t ) ]=- E.[(EO P ] E C (S ) + .
Set

( 4 .9 4 ) u(P)(t, x) E x [C .0(X t)] •

Now we shall introduce th e  following notations: J e t  (tx ),7=o,

=1,2, • • •  be a  countable family of sequences and define P ( a )  by

(4 . 95)
—0 n!

„
 , J))  L E" a  + ( ) )1

Clearly PT(a. ( . ) )  is  a polynom ial in ai' >, k =1 , 2, • ••, n - 1 ,  i 1, 2,

••••, m .  For y ES, y = [ y i, • • • ,y „ ,]  E S ',  m ( y ) = m  and

(4 . 96) Hp(t, y )  Hp(u ( ')(t, •), u ( 2 )(t,-), u ( P- ')(t, •))(y )
_  p”,;(y)(,:x . c.)) ,

where
er(; )  =u(k )(t, y ,), i=1, 2, • • •, m (y ), k =1 , 2, •••, p - 1.

Theorem 4 . 1 5 .  Under the assumptions above, we have

(4 . 97 ) u(P)(t, x )= M t[f  P](x )

+ P i _ s [ 4 , 7r( • ; dy )11,(s, y )1(x )ds, X E  S.

P ro o f. It is sufficient to prove ( 4 .  9 7 )  fo r non-negative f .  If
we take 12= 1  in  ( 4 .  7 5 )  we have

( 4 .  9 8 )  u( P) (t, x )= T ?[( f )P](x )+:7 '° [k G (-  ; u ? ) )](x )ds

+Ço r_s[k L 7r( • ; dz)Hp(s, z )1(x)ds.

Now put

v (t, x )= M t [ f P ] (x )+ t
o M t_s [k• 7 r (  ;  dy )H p(s, y )1 (x )ds.

Combining this with

M t[g ](x )= [g](x )+:7"?-,[k G (- ; X (g ))](x )d s ,
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we have

v(t, x) = 7' ) [ f  ( x )  +  t
o TL,[kL7r( • ; dy )11,(s, y )1(x )ds

+ t
o T ) .- s[k G( • ; M s[ f  '1)] (x )ds

t t-s
+ 0 0  [T , [k G (  •  ;  M 6 [k (.; dy )11,(s, y )])ideds.

It is easy to see that

{• ; 111,[kLn( • ;dy)11,(s,y)111(x) dO ds

=S T[kG {  • ; M „_,[k s 7r(• ; dy)11,(s, y)]} 1(x)du ds

; M,_„[k .s 7r( • ; dy) Hp(u, y )]} 1(x) du.

Hence

v (t, x )= T 2[fP](x ) + t
o r , [ k s 7r( • ; dy )11,(s, y )1(x ) ds

+Ço T q k G (•  ; (  ; dy )H (u, y )]du)1(x )ds

=  r '[ f l ( x )  +  g
o TL,[1? ,s7r( • ; Y) Hp(s, y ) 1 ( x )  ds

TL ,[kG(• ; vs )] (x) ds.0
Therefore we have

(4.99) v ( t ,  x ) = [ f P] (x) +S t
o T L ,[k s 7r( • ; dy) Hp(s, y)1(x) ds

r _ s [kG(• ; y ,)] (x ) ds.0

Since the equation (4. 99) has a unique solution in C (S ) , w e have

v(t, x)=u(P)(t, x)

which completes the proof.

The formula (4. 97) permits us to obtain u( P) (1, x )  successively
though it is quite complicated even for p = 3 . For example u( 1 ) (t, x)

= M tf (x ), and
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u2 (t, x)—  M,[f 2 ] (x)

+ t 111,_s[k 7 r ( •  ;  dY )EM JCY ,)M J(Y i)1(x ) ds.0

In a similar way we can prove

E.,[f(xtY k(xt)]

g)+:111,-s[kL7,(• dy) , M ,f (y 1 ) M ,g(y ,)1(x ) ds.

-
If, in particular, n(x , dy )= E p„s [x, • • •, x ](d y )  and C=- E  (n — 1)p”

” = 0

<00, then

E ,[f (x i ) k ( x , ) ] M,[ f g] (x) + M ,_ ,[k M s f M s g] (x) ds.

V. Transformations of branching Markov processes

In this chapter we shall consider transformations of branching
Markoy processes; i.e., operations on  a  branching Markov process
which yield a new branching Markov process. We shall discuss main-
ly the transformations by multiplicative functionals (cf. §0. 1 Defi-
nition 0. 8) and obtain, in particular, the condition on a multiplicative
functional under which the transformed process will be a  branching
Markov process.

§ 5 .1 . Multiplicative functionals o f branching type.

Let X= (..Q, 0 < t< 0 0 ,P x , x E S , X „  0,) 1 ) b e  a  branching
Markov process and M,(w) be an N ,,, -multiplicative functional of X.
Unless otherwise stated we shall assume always

(5.1) Ex[M ,1<1, for every xe  S

and

(5.2) Pa [Mt = 11 = 1 341M, =11 = 1, for every t> 0 .

Also we shall assume that

1 )  We are assuming always
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(5.3)  2 =  W  the set of all right continuous path functions

w : tE  [0 , 00)--->w (t)E . such that i f  w(t)----6 (=4) then w (s)=a
(resp. = 4 )  for all

Let W ( ")  b e  the n-fold product o f W  and put

W =  W c " ) :  the sum of
n= 1

We define a mapping Ç2 o f I/I- 7  to  W  by

(5.4)( t ) , =  r(w 1 ( t) , w2 (t), •, w "(t)), t > 0 ,

when -7;6= w2, • • •, ur) E W ( ") , w 'E  W, j= 1, 2, • • •, n ,  where r  is de-
fined by (0.19).

Definition 5 .1 .  A multiplicative functional M ,  o f X  is said to
be of  branching ty pe if it satisfies for any n > 1

(5 .5 ) Mi (ç t.()) =  W O ) ,  t  0 ,  (a. s. V xE S ('))

where iv= (w1 , w2 , • • •, Uf" ) ) E  Fr")  and

P x — P x ,x P x ,x • • • x P x . ,x — (x l., x 2 ,  •  •  •  X n )  •

Theorem 5.1. L et X  be a  branching M ark ov  process, M , be
an U2,-multiplicative functional o f  X  satis f y in g  ( 5 .1 )  an d  (5. 2)
and X m be the M r subprocess o f  X .  T hen the following statements
are  equivalent to each other:
(i) X m i s  a  branching M arkov  process,
(ii) M , is  a m ultiplicative functional o f  branching type.

Proof. 1°) (ii). Suppose the M,-subprocess')  X m
= (X „  P ,  W ) is a branching Markov process. Then Xm has the pro-
perty B .I, and hence for 0 <ti<tz <• • •<tp =t  and f , ,  •••,f p C * (S ) ,
we have

(5.6)E n r I f f ( X ,  ) i  =  H E ' f i ( X t , ) ] ,  x = [ x l ,  x 2 ,  • • • ,  x ] .
1=1 ,=1 r

2 )  C f. §0.1.
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Also we have by the property B.I of X,

P P _ -
(5.7)n [ n  f i (X, ; )] — Ex [n f i(X t,)M f ];=1 ;=1

P

=E x , x E x 2 x • • •  x E ,[1 -  1 f  ;(X t i (çait))) • Mt(soi-())];=1 -

From (5. 6) and (5 . 7) we have

P
E, 1 x E ,„x •••x E ., i ( X ,;( ( p ) ) { M ,( ( * ) - 1 1 M i(  )) 1 =0 .

P
Since f  ,(X t V i v ) ) )  generates CI CS) ; ÇO7:6 (S ) ; S  < t }  ,  this,=1 '
proves (5. 5), that is, M t is  a multiplicative functional of branching
type.

2 ° )  ( i i) - - -> ( i) .  I f  M , i s  a multiplicative functional o f  branching
type, then noting that X, has the property B.I we have

[7 ( X t ) ]=E x :I C U M ii

[? (  ( ç o i -v)) M t(oa )

= E • x f (X t(w ))1 .1 M i(w )i;-1 ;-1

HE„ [f(xt)111,1
„

= n [f(X,)1,

which implies that the M,-subprocess is a branching Markov process.

Remark 5 . 1 .  In Theorem 5. 1  the assertion "00—> (i)" is true
i f  M , is an 77, 0-multiplicative functional.

Definition 5 . 2 .  Let M t b e  a multiplicative functional of X . M t
is said to be of branching type in the weak sense if for any n > 1 ,

(5. 5)' M ,(çoi,v) =-1-1111,(w i), 0<t<r(v i -v )  (a.s. -./ x  , x S ' " ) ).
1=1

Theorem 5 . 2 .  Let X  be a branching M ark ov  process satisfy-

ing the conditions ( c .1 )  and (c. 2 )  o f  §1. 2 ,  and M t an  32t -multi-
plicative f u n c tio n l such that M t -subprocess Xi" of X  satisfies (c .1)
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and  (c. 2). T hen the follow ing statem ents are  equivalent:
(i) X m  is  a  branching M ark o v  process,
(ii) M ,  is  a m ultiplicative f unctional o f  branching ty pe  in  the
weak sense.

P ro o f .  (i)---).(ii) is clear from  the previous theorem since every
multiplicative functional o f branching type i s  o f  branching type in

the weak sense. Assume conversely that M , is  of branching type in
the weak sense. Let x =  l_x 1, x 2, •••, x „] ES '; then

E I [ Î ( X t ) ;  t< r ]  -- - E x [î ( X ,) M t; t < r1 ' )

E  „x E „x • • • x E  x„F (X ,((piv)) • M ; t < r( y -i -v)]
n

=E „x E „x • • •  x E ,„[ri  {f(X ,(7 ,0))M t(w i) •.J=1
n >,
I I E  rf ( X t ) M t ; t  <r] n f (x i) ; t <r] ,

which proves X ' h as  the property B. III (i). Q uite sim ilarly we
can prove that X m  has the property B. III (ii). By Theorem 1. 2 d),
X ' is  a branching Markov process.

Remark 5.2. (ii)-->(i) is  tru e  i f  M , i s  an J2 , 0 -multiplicative
functional.

§ 5 .2 .  Examples

Example 5.1. (Harm onic transformation). Let f  E C * (S )+;

assume that e ( x ) — lim  T , Î ( x )  ex is ts  an d  e ( x ) > 0  fo r  ev e ry  xE S.
1 —n

Then

e(X 9 (w))

(5 .6 )M t ( w )  =  e(X o(w )), X o(w )ES ,

1, if X 0 (w )= J

defines a multiplicative functional o f  branching typ e . In  fact e(x )

=el s ( x ) ,  and hence

3 )  T h is  fo llow s from  th e  general form ula: Pf [B ; e e >t]=E x C A lt; B . e i > t ,
v B E g t .
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e(X t (W ) )
M t (  )

e(X t ( p w ) )  —  J - 1  

J=1

(5. 7 )
M t  (Ç''rv) e(X0(çoi-v)) 121 (e(X 0(w0)

j  = 1

where iv= (w 1, w', • •, l e )  E  W ( ") . If in particular

ei ( x ) =  [ea < 0 0 ] >  0 or e2(x)=.13 [e4= + oo]> 0,

then they define a multiplicative functional o f  branching type since

e,(x )= lirn T ,6(x ) and e,(x )= lim  TS.N(x).
1->co t->n.

Example 5.2.  ( K i l l i n g  of the non-branching p a rt). For
G B (S )+ , set

t,
exp( f (X s (w ))ds), i f  X o (w )E S

(5.8) M, (w) = 0

1 ,  i f  X ° (w) =J.

Then Mt (w ) is a contraction' )  multiplicative functional of branching
type since

M, ( v) = exp( — E  f (X s(w O)ds)

=  M  t( W i) ,

j=1

where 275= (w', w', • • •, /X") E  W .

It is easy to see that the non-branching part o f Xm is  the

e - 57. ( 4 ) '-subprocess of the non-branching part of X.

Example 5 . 3 .  (Transformation of branching laws).
Let X  be an ( X°, 7-0-branching process such that the non-branch-

ing part X° is the e j  -subprocess of a conservative Hunt process
X = ( x t ,  P )  on  S , where kE B (S )+ .  Let f (x , y )  be a  function in

B (S x :SN )+ such that ,,e. 7r(x, dy ) =1 for every X G S .  We define

a kernel n(x , dy ) on S x i b y

4 ) M c (w ) is called a contraction multiplicative functional i f  M t ( w ) 1  for every
t  and w.
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n(x , dy )= k(x,)7r(x,, dye) X 1-41, a,„,(dy,)or - i

i O

where r :,  Y 2 7 Y.)--->y is defined by (0 . 1 9 ) . Define a  kernel
n*(x, dy) in the same way using the kernel Tc*(x, ef(''"))n(x, dy)
instead of n (X , d y ) .  Then since n *  is absolutely continuous with
respect to n  it is easy to see that there exists f (x , y )  w hich is an

extension of f (x , y )  such  th at f (x , y ) E B(S X :SN ) and n*(x, dy)
=ef ( x , Y ) n(x , y ) .  Now we shall define a multiplicative functional M (w )
of the process X by

M i (w)— exp{E f (X ,_ , X.,„)} . 5 )

Then it is clear that M1(w)=---- 1  i f  X° =6  or zl, and we can show that
it  is  a multiplicative functional of branching type in the weak sense
such that Ex[M 1] =1 for every x  and t The M 1 -subprocess Xm

coincides with th e  (X°, n*)-branching M arkov process. (Cf. [27]
where the transformation of L évy measures by multiplicative func-
tionals is discussed).

§5. 3 .  Construction of a multiplicative functional o f branching
type.

Let X  be an (X°, n)-branching M arkov process and m , b e  a
multiplicative functional of the non-branching part X ° o f  X . W e
shall construct a multiplicative functional M , o f branching type in
the weak sense of the process X  by piecing out m,.

Let W= U W„ where W,= {tv W ;  u;(0) G S "} . Define a maPP -

Pt =0

ing ço from the n-fold product W1x W, X •-• X W , o f W , to  W„ by

(5.9)( 9 -g ) ( 0 = r [ tv 1 ( t ) ,  w2 ( t ) ,  ••.,

where iv= (2,0, tv2 , w'9E W i  x  W, x • • • x W1 .

Lemma 5.1. Let F(w ) be a bounded al,. ,-m easurable function

5) {I-n} is  defined by (1.8).
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o n  W i .  Then there exists o n e  an d  only one Tool,„-measurable
function P on W, such that

(5. 10) F(Ç oiv )= F(w ')  for = (w 1 , w2 , • • • , w").
=1

P ro o f .  It is sufficient to show th a t if  9-i5=çoivi 1 V E  W 1 X

• • • X W „), then H F(w 1 ) =I I F ( w '') .  But this is clearly true if F(w )
=1i 1

is  of the from
Pik <.\

F(w )=Z ak
k=1 i =1 1=1

where f„,,E C * (S ) , and hence by Lemma 0.2 it is true for all bound-
e d  72_1 w 1 -meaurable function F.

Now let X ° = W1, 7111w„ X,, t<r,  P ,, X E  SI be the non-branch-
ing part on S  o f X , and m , be the Jl, ,-multiplicative functional of

X ' whose defining set i s  P ri .G)  F o r  n > 0  we extend ni t a s  follows:
when n >  1, we put

(5. 11) =  m ,(w 1 ) ,  i f  t < r ( ç o i,v)
3=1

= if  t_> r ( 0:6 )

and when n=0 , we put

in,(cpiv) = 1.

Then M , is well defined as an 37_ Iw,-measurable function by the
-

previous lemma. A s is easily seen, we can take W '=  U  W ,, where
n-0

P r n
= g0( W X • • •  X  Wri ) ,  as a defining set of Rif. We shall now define

M ,(w )  as follows:

(5-12) ( w )  ih ,(w ) - 0,* ( w ) . . . 0 , Wir(w) • 31,--„(w)(0,„w),

on wEAti , j=0, 1, 2.••

Ho, ihr(w ), on WE {t >r- } ,

where

6 )  Cf. O. 1.
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(5. 13) r(w) = ifV er i w),

where a = (0 - i v()) and

(5•14)A ,  = {w:

Lemma 5.2. M t is  7 1 , 0 -measurable.

P ro o f .  We first note that

(5. 15) M e (w )=M r,(w )• iiii-„() (0 „w )  on A t.

Then M „( w )  is T„-measurable, and hence M„•./-A  is 72 t+0-measurable.

Next we set

m -1 on B,„—lw : m - 1  < ( w ) _-_ };
2" 2"

then  r"/tr i (n  —> 0 0 )  a n d  hence t —  . N ow  Wi t _,..(0„w) • 49„,

=-  Y-129_,n,7, 1 (0 , ,W )• 1 -11< ,,+ t— m2
-,: 1 ,5t+  2

1
.  ■• Since iii,_- (0 „w )  is

rsuable, ih,_,(0„w )I,9 is 371 +  2 1.  -measurable, and hence 
„  0 0

-,/ W )

=  t  5 (8, ,w) is 37,, 0 -measurable.

Lemma 5.3. M t (w ) is  multiplicative, i.e.,

(5. 6) M i+s(w )=M I(W )M ,(0 0 ) , W E  W '

Proof. Since

M .,(00)=M =,(00,)((i0)• -i -n,-, ;(o,,,,)(0 ,-; ( 0 0 ) ) ,  OtwE A ,

and

Mt(w) = Mr i (w) • -r t-, ; („,)(0 w), wE 2t,

we have for w n 07i (A.;) 14/7

(5•17)

M t(w )•M ,( 0 0 ) =M ,;( w ) i i i , - , , ( 0 ,-,w )M r i c000(Otw)iii,-,-,(eio(0, ; ( 0 0 ) )

=M ,;(w )iii,- ,,( 0 ,-,w)M;(0,.)(0, 10 0 ,0,.A -K e,.)( 0 0 ) • • - ihs-r,(19,o(0, ; (0-0))•

I f  w E A r0 7 1 (A ) n  W ', we have



154 N . Ikeda, M . N agasaw a, S . Watanabe

k (0  t
W )  =  i +  k ( W )  t k = 1, 2, • •

(5.18)
1

8
 tW  0 1 - T  j (°," j W ) ,

and hence

(5.19) F i l t - T i (
0

7i tV)
)74

) (
0

0 )

1 - T O T  ) ( 8 t - r  (OT ;IV) )

= OTA T ( W ) ,

(5.20) °T1(0,10 K .( 9 0 . ) (ow)
- - W I T O O (

O
T 1 O W ) (

90 ) ) , V =
—  47( , ) 0T i4- 10 =  O , 14),
=  T  +1W t ( w

) 1

Also for w e it r107 1 (4 4 ) r) W ', we have

s—z-; (0,w )=t+s— r, + ; (w)
(5.21){

and hence

(5. 22) j-n,-,,( .)(0, (U A ) )  =

(5. 17), (5. 15), (5. 20) and (5. 22) imply

111,(w)m,(0o ) ----m,s(w), w E W'.

Remark 5 .3 .  I f  m t <  1  then ih i < 1  and hence /1/1 < 1 .

Lemma 5 . 4 .  I f  E,[m ,.] =1 f o r every x E S , then f o r  every n
Ex[MiA ,„] =1 f o r  xE.§N.

P ro o f. E irst it is clear that E r[M r] =1  for every x ES. Then
Ex[M,21= = Ex [M r i E x ,[M , 1

] 1 = 1 ,  a n d  repeating this
we have Ex  [Mr* ] = 1  for every k. Next we have

( 5 . 2 3 )  M tk+,-ice,„A ‘o-
 fM r k + i , i f rk < t < r k + i, (k  < n )

i f  t r„,
and hence

°, J(0 , . ) (
0 A )
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E x [M o v . i   _ x ,[ MtAr.Exr.At [ M T 1 ]

=Ex[MtAT„M,,(19Aiw)(0T„ ,\tw)]

—Ex[]W,A,-„,r,(8At,v)]
-1

=  E E . rk <  t < r k + i i  E x [M r .., ;  t> r . ] •k = 1

Also, i f  k < n - 1 ,

E,, []t4, 1 ; Tv< t

= E x [M ,,E ,„ , [ ]1 1 T — J ; rk

t < rk + ii

= E x [M ,..,; <  t <rk+i] •

'Therefore we have

E x [M iA ,.] =  j E r [M , „ ;  r k _ t < r k + d + E [ M „ ;  t > r „ ]

=  E x [ Mr..] =1,

which proves the lemma.
From this lemma we see that if  E ,[M r ] = 1  for every xE S, then

E x [M , ]< l i r n  E , ,  [M ,, v ]  = 1  and E,, [Me] = 1  i f  {M i A T., n = 0 , 1, 2, •••}

is uniformly integrable. Summarizing we have the following

Theorem 5 .3 .  L et X  be a branching M arkov process and X °
= { W1 , i2  w „  X t ,  t <z-, x e S }  be th e  non-branching part o f  X.
Let m , be a multiplicative functional o f  X °  satisfying either
(i)
Or

(ii) .E [TnT ] =1 , xG S .

Then M, (w) defined by (5. 12) is an T,,0-multiplicative functional
.of  X  which is o f  branching type in  the  weak sense satisfying

M t<1
Or

( i i ) '  E x [M t ]< 1 ,  x G S

according as  m t satisfies ( i)  or (ii).
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I f  f u rth e r {M,A , n=1, 2, •••} is unif orm ly  integrable, then w e
hav e in the case of  (ii)
( i i ) "  E.„[M,] =1,

§ 5 .4 .  Transformation of drift

Let X= (Xi, -Of, -P,.) be a H unt process o n  S  Tith a  reference
measure' )  an d  B , be a  continuous additive functional of th e  process
X  such that F,[13 <c o  and E [B ]  =0.8) Then it is known that
there exists a unique non-negative continuous additive functional <B>,
such that E ,IB I1=E [<B >,]. Set

( 5 .24) 1mt = exp — <B>,} .2

Lemma 5 . 5 .  L et a  be a f inite v alued M arkov t im e  o f  X  sa-
tisfy ing f o r every  t >0

(5. 25) {t <6}  C  {6<t+6(0,w )} . 9 )

I f  supE., [<B >]<oo, then E,[m o]=1 f o r every  xES .

P ro o f ." )  Set o.„— inf {t; > n }  A n, n=1, 2, • • •, where C, =
1 — <B>,; then we have2

(5.26)E , I m A 0 . „]  = 1 ,  n =  1, 2, • • •.

For, by a formula on stochastic integrals (c f . [271)

m,— 1 = eci —1 =

=:m sclBs .

1 
 s

t m d<B>
s

 +  1  m  d<B >
"2 o 2  0  

0- A a .
T h en , n c t in g  m, < e  f o r  t <  6 A a„ , w e  have E [ "

proving ( 5 .  2 6 ) .  Next we shall prove

7) Cf. §0.1.
8) The class o f such additive functionals was studied in [32].
9) If 0- is a quasi-hitting time or o--=t. (5.25) is clearly satisfied.

10) W e have borrowed the essential part of the proof from Dynkin [6 ] .
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(5. 27) inf E ,[mr] > 0.
e S

For, by the assumption sup E, [<B>] <co, w e have

Px [C < - 2 k ]< P x [I C „I>2k ]< p r B crl>k ]+ P.,[ - <B >„>ki

< k 1 "
E  [B 21+ 

 2 k

1   E (  
 le

1  +  1

2k )
z [ < B > c r i  <  1 

 • 2

for all x  i f  k  is sufficiently large. Then for all x S

E x [m ]> E x [m„; C„ -2 k ] e-- "Px [C,„>- 2 k ]

= e- "(1—  Px [C ,<- 2 k ]) >  e

proving (5.27).

Now by (5. 25) we have 6 < a - l- a(0 W ) and hence by the super-

martingale inequality" )

E, [m,; a„<a ]>E [m ,„ + ,,,,, „) ; a„<a]

=Ex[nz ,Ex„„[m d; a .c r ]> d Z [m r„ ;  a „

Therefore we have, (noting a„t 00),

(5.28) lim E,[ni0„; a„<a] =0.

Then

1= Ex[mcrA ,]= Ex rin,r; a < 6 . ]  +E, [me,; 6 . < 6 ]

and by (5. 28)

lim E.,[m ,„; < a „ ]  =E x [m„,] =1.

N ow  assume that the non-branching part X °  o f  a  (X°, 7r) -

branching Markov process X is equivalent to an e''-subprocess of a
Hunt process X = (X „ g „ Px ) ,  where A, is a continuous non-negative
additive functional o f  X .  Then X °  is equivalent to the process
{X „ 13,} defined by (0. 12) and (0 . 13 ). By enlarging _0, if necessary
we can assume that the life time defined by (O. 12) is a g t -Markov

1 1 )  It is easy to see that (nit, g c )  is a supermartingale for every Px ; w e have
Ex[m c,h,„] =1 just as (5.26) and  hence Ex [m c]<1im Ex [m tA ,,,,]=1 for every t. Thus
Ex[m c,slgs]=E.K Enit7 • nts in,, as.
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tim e for which (5. 25) is  easily  verified . If further the condition

(5.29) sup E [<13> ] <0.0
.•Es

is satisfied, then we have

Z [T n ]  = 1 .

Now m,A can be considered as a multiplicative functional of X ° and
applying Theorem 5. 3 w e have a multiplicative functional M , of X.
W e shall call th is M , a  multiplicative functional of  drif t.

Example 5 . 4 .  Let X= {x,—(x . , x, •-•, xn, /3,} b e  an N-dimen-

sional Brownian motion' )  and A l t le(x s )d s , w here kE C ( S )  such
0

that k (x )> c >  O. Let

g_o

where b,(x ), i=  1, 2, • • •, N , are bounded continuous functions on RN .

Then <B>,— lb ,1 2 (x ,)d s . In th is case the conditions (5 .2 9 ) c an
—1 0

be easily verified, and hence we have a multiplicative functional of
drift M ,  for every branching Markov process X  whose non-branch-
in g  part is  eq u iva len t to  X ' .  T h e  backward equation o f  X  is
given by

au ——   1  du+ k(x)• {F(x; u)—u},at 2

while the backward equation of Xm is given by

au1 - 1 - 1 b, + k (x )(F (x ;
=1 ux,at 2

Thus M ,  induces a drift.

§5.5. Another transformation.

u)—u).

The following transformation is a generalization of a well known
transformation for a branching process o f a  s in g le  typ e  (S =  {a}),

1 2 )  We take as S  the one-point compactification of R N . cf . Chapter III Ex. 3 (A ),
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(cf. Harris [8], p 14 ).
Let X  be a  branching Markov process with th e  semi-group T,

such that q (x )<  1 for every x  S  where

(5. 30) q(x)—limT,Ô(x)—  P, [es <0.o] .")

Theorem 5.4. T here ex ists a (unique) branching semi-group
—
T , (and hence a  branching Markov process) such that

(5.31)- 1 ' , : ( 1 5 ( x ) — 11 — (x )  {  T t(q +f (1—  q))(x) —  q(x)}  .

P ro o f .  It is sufficient to to show that there exists a substochas-
tic kernel p i(X , dy ) on S X S such that the right-hand side of (5. 31)

is  equal to  .'((y)kt,(x, dy), since, then by Lemma O. 3 there exists a

unique substochastic kernel T t (x, d y ) on S x S such that

d.Y)./fZ.Y) = ( dY )? (Y ) (X ) ,

and the semi-group property o f T, is obvious from (5. 31). First we
/ N -

note l ' , 4 =  since T4 =lim  T T,0 = lim T s= 4. Then

1 { T,(q + f1— q (x) (1— q))(x)—  q(x)}

1
1 _ q ( x )  s T,(x, dy)[(q + f  (1—  q))(y ) q (y )]

1 r
1  q ( x ) . \s  T t(x, d.Y) f 4()P i ) (1 —  q)(Y")frZY" ) } 24 )

But for fixed x  and t,

14(g) T  ,(x , dy ){E V (y ')(1—  q )(y ")g (y ")} ,  gE B(S)
11'

defines clearly a  non-negative linear functional o n  B (S )  and hence

13) q ( x )  is called the extinction probability .
14) For fixed y E S , y = [y i .  •  •  • ,  y n ] , we denote y '  y  if y ' =  [y , k <n ,

such that y =y 1 , for some li, 1 < l i< n  and a l l  l ,  i =1, 2, •••, k  are different. y" =
is the remainder o f y  excluding y ',  i.e., y ' a n d  y "  define a partition of y.

E *  denotes the sum (fo r  fixed y )  over all y ' such that y ' <  y  and y * y .
11'4.11
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it is  g iven  by  a  non-negative R adon  measure ,c2i (x ,  d y ).  ,a, is  a
substochastic kernal on S>< S  since

p t (x , d y)iN(y) — 1  
1 — q ( x )

( T 3 ( x ) — q ( x ) ) < 1 .

s

F ro m  (5 .3 1 ) w e  have( x ) =   1
 l

q ( x )  {q (x ) — q (x )}  =0;

i.e., f o r the transformed branching process the extinction probability
is identically  zero.
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