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O. Introduction

In a noetherian ring, every ideal can be represented as an irre-
dundant intersection of finitely many primary ideals. There are several

uniqueness properties associated with such a representation, for ex-

ample see [11; Chap. IV, §5, Theorems 6, 7, 8] . The major part of
this paper is devoted to constructing examples to show that these

uniqueness properties do not hold when an ideal is an infinite irre-

dundant intersection of primary ideals.

We begin with a discussion of the notion of associated prime
divisor of an ideal. W e consider four definitions of associated prime
divisor which appear in the literature, and show that that of Nagata

[8; p. 19] is the most general. However the Zariski Samuel charac-

terization, that P  is  an associated prime divisor of the ideal A  if
A : (x) is P-primary for some x, is  the one which is relevant when
we study irredundant primary representations.

In §2 we study irredundancy in the representation of the radical
V A  of the ideal A  as the intersection of its minimal prime divisors.
We find that, if A  has infinitely many minimal prime divisors, these

* This paper represents a portion of the author's Ph. D. thesis for the University
of Wisconsin. The thesis was written under the direction of Prof. Jack Ohm, now
on the faculty o f th e Louisiana State University. The author is grateful to Prof.
Ohm for his encouragement and helpful suggestions.
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may be irredundant and redundant primes in almost any combination.

I f  P  is a minimal prime divisor o f A, P  is irredundant in the inter-

section o f all minimal prime divisors o f A  i f  P= V A  : x for some

x i / A . W e show in § 4  that V A  has an irredundant primary

representation if V A  is the intersection of the irredundant minimal

prime divisors o f  A , and th is  is  the only irredundant primary re-

presentation o f VA
In §3  we examine briefly the representation o f  any ideal A  as

the intersection rl A (M ), where M  is  a maximal associated prime

divisor o f A  and A(M)= A•Rmr1R. W e show that A (M ) is  irre-
dundant in  this intersection if M  is  an irredundant minimal prime

divisor o f A.
By definition, the representation A = niQ „ of A  as an intersection

of primary ideals is irredundant i f  n o  QOE may be omitted and if

implies Pa,#P,, where Pa= VQ a  . In case {a} is finite, the

following hold: ( 1 )  {Pa }  is uniquely determined by A .  (2 )  For

any a o , n Q G c =A (Pao ). (3 )  I f  S  is a multiplicative system in the
Q , C P , 0

ring R which does not meet A, then A (S ) is an intersection of some
of the Qa ., where A (S )=A •R s n R . (4 )  I f  P  is a prime ideal, then

P  contains A  i f  P  contains some Pa . (5) V A  =npGt . In §4 we
show that none of these properties holds in general for infinite re-
presentations, thus answering some questions of Krull in  [6]. We
answer another question of Krull by exhibiting an integral domain in
which every ideal has an irredundant primary representation, but in
which the Q-condition (see §4) does not hold.

We also obtain some conditions under which some of the unique-
ness conditions of the previous paragraph hold.

Notation and preliminary observations. B y  a  rin g  R  we
always mean a commutative ring with identity. An  integral domain
(or simply domain) is  a ring without zero-divisors. We use c  for
proper or improper containment, and <  for proper containment. We
write x G S \ T  for x E S  and x■E T, and A : x instead of A : ( x ) .  If
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an index set I  is specified or understood, (1/3a represents the inter-

section o f all Bc, for t t E

In several o f our examples we use the relation between lattice-

ordered groups and certain integral domains as given by Jaffard in
[4; p. 7 8 ]. Let G  be an (additive) Abelian group together with a

partial order <  compatible with the operation in G .  G  is  lattice-
ordered i f  a, bE G implies inf (a, b )e G .  A  segment of the lattice-

ordered group G  is a non-void subset A  o f G+ = {xEG! x>0} which

is closed under >  and inf, i.e., a E A  and b>a  imply bE A , and
a,bEA implies inf (a, b )E A .  A  is a  prime segment if a, bGG+\ A
implies a+b Er A.

Jaffard shows that to each lattice-ordered group G  there corres-

ponds an integral domain D .  D  is obtained from G  as follows: Let

F  b e  an arbitrary field, and let R  b e  the group ring of G  with

respect to F .  R  may be regarded as the set of formal sums a.

a ,E F , g ,E G . Define a  map 0 from R\{0} onto G  b y  0(E a,Xg')
=inf {g }  R  is  a domain, and o may be extended to the non-zero
elements of the quotient field K  o f  R  b y  0(p/q)=o(p )-0 (q ).
Then D= {0} U 1y G KI 45 (Y)> 0 1. It is easily seen that there is a
1-1 inclusion-preserving correspondence between proper segments in
G  and proper ideals in D , and that prime segments correspond to

prime ideals, and conversely. In fact, if A  is a segment of G, it is
immediate that B= {0} U0 - ' (A )  i s  an ideal o f  D .  To see that
o(B\{0} ) =A  is a segment of G  when B  is an ideal o f D , we must

see that A  is closed under inf. I n  [3], Heinzer shows that given
a, bGB, there is an element cE D  such that (c) = (a, b), and o(c)
=inf(0(a), 0 (b )), thus showing that A  is closed under inf. We

construct several examples by finding a lattice-ordered group G  with
the desired prime segment structure, and then pulling back to D.
On occasion, we will apply the language of rings to ordered groups.
For example we may speak of the radical of a segment, or of a
minimal prime divisor of a segment.
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1. Associated prime divisors of an ideal

W e set down four definitions o f  associated prime divisor of an
ideal which are found, either as definitions or characterizations, in

[1 ; p . 131 ], [11 ; p. 210] , [1 ; p. 165, Ex. 1 7 ] and [8 ; p. 19] , respec-
tively.

(1. 1) Definitions.

( B )  P  is  an associated prime divisor o f  A  (in the Bourbaki

sense) if P = A :x  for some x  R.
( Z - S )  P  is  an associated prime divisor o f A  (in the sense of

Zariski-Samuel) i f  A : x  is  P-primary for some xER.
(B w )  P  is  an  associated prime divisor o f  A  (in  th e  weak

Bourbaki sense) if P  is  a minimal prime divisor o f  A : x  fo r some

x  R.
( N )  P  is an associated prime divisor of A (in the Nagata sense)

if P R s i s  a maximal associated prime divisor o f A•R s f o r  some
multiplicative system S  which does not meet A .  ( P  is  a maximal

associated prime divisor o f A  i f  P  contains A  and is  maximal with
respect to the property o f being contained in the set {XERIxyGA
for some y EE A }  o f zero-divisors modulo A) .

The above definitions are equivalent in case R  i s  noetherian.
In general we have

(1. 2) Theorem. Let A be an ideal of R, and let P  be a prime
containing A .  T hen P  satisf ies (B )  im plies P  satisf ies (Z -S ) im-
plies P  satisf ies (B w ) im plies P  satisf ies (N).

P ro o f. If P =A  x ,  then A :x  is  P-primary, and if A :x  is  P-
primary, then P  is  a minimal prime divisor o f A: x , hence the first
two implications. For the last, since P  i s  a minimal prime divisor
o f A:x, A•Rp:x has radical P•1?p, and it follows that P R p is con-
tained in  th e  set o f zero-divisors modulo A •R p . Also P•Rp i s  a
maximal ideal o f Rp, so we have the third implication.

We note that it follows from  [8 ; p . 2 0 ] and [11 ; p . 210] that
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definitions (Z-S), (Bw) and (N ) are equivalent when the ideal A
has a finite primary representation. Example (1. 5) shows that (B)
is not equivalent to the other definitions in this case.

To show that none of the implications in (1. 2) can be reversed,
we list the following examples.

(1 . 3 ) Exam ple. (N )  does not imply (B w ).  Let R =K [xi, x2,
•••1, a polynomial ring in infinitely many indeterminates x-  the

field K .  Let A = ({x 1 x,), > , ) .  I f  P  is a prime divisor o f A , P  must
contain x, or x ,  for each pair ( i, j)  of positive integers. Moreover
each prime .13 0= (x1, x 2 ,  •  •  • ,  X 0 - 1 ,  X 0 + 1 , •  •  •  )  contains A , so the, P0(k =1,
2, •••) are the minimal prime divisors o f  A .  The maximal ideal
M = (x i , x 2 , •••) is an associated prime divisor o f  A  in the Nagata

sense, for if f  G M , we can write f = E c , x ,  c, G R , and x.. + 1EE A  but

f x „,,E A , so f  is a zero-divisor modulo A.
Now we show that A = V A .  Since V A =r1 P,,  it is sufficient

to show that nP0c A , the opposite inclusion being obvious. Suppose
n(1) n(m)

we have f  G  R \A .  We write f  = ao+Eai, x i+ • • • +E a., x;„+ X , where-1
a„ a,,E K  and each monomial term in X  has a factor of the form
x, x, with i> j ,  so X E A . Since fcEA , a 0 # 0  or a,, *0  fo r  some
i f  a0 # 0 ,  f  belongs to no P , .  I f  ao =0, then a,, * 0  fo r  some j,
and we see then that f  EE P,. Hence f R \ A  implies fEr npk, or

n Pk =  V A  c A , and we have A = V A .
If xE  A, then A :x =R , and M  is not a minimal prime divisor

o f  A: x. I f  x  A= VA  , th e n  x  /3
0 f o r  some k. But then if

y EA :x , y x A c P ,  so y E  Pk .  Therefore A :x c  P k C  M ,  and we have
that M  cannot be a minimal prime divisor o f A :x , so M  is not an
associated prime divisor o f A  in the weak Bourbaki sense.

(1 . 4 ) Exam ple. (Bw ) does not imply (Z -S ).  Note that any
minimal prime divisor P  of an ideal A =A :1  satisfies (B w ) .  Let P
be a redundant minimal prime divisor of an ideal A = V  A  (see §2).
I f  A :x  is P-primary, then x Et A  V A ,  and P =V  A :x  .  But then
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P=V A  :x by 2. 3, so P  is  an irredundant minimal prime divisor of
A  by 2. 1, a contradiction. Therefore P  does not satisfy (Z - S ) .

(1. 5 ) Exam ple. (Z -S ) does not imply ( B ) .  Let R =R , be a

rank one valuation ring with the additive group o f  real numbers as

value group. Let A = {zE R,I v (z)>1} , and let P =  {zE R,Iv(z)>O}
be the (only) proper prime ideal of R .  F o r  any xER,\A, A: x is
P-primary, so P  satisfies ( Z - S ) .  I f  v(x)> -1 , then xE A  and A:x
= R , * P .  I f  0 < v (x )< 1 , th ere  is  an  element y E P  such that

v (x )+ v (y )< 1 . Thus yE A : x , s o  A : x * P .  I f  v (x )= 0 , A : x
= A # P .  Therefore P = A :x  holds fo r  n o  _X E R„, so  P  does not

satisfy (B).

2. Semi-prime ideals and irredundant minimal prime divisors

Let us call a minimal prime divisor of the ideal A  an MPD of

A .  For any ideal A , V A  is  the intersection of a ll M PD's o f  A.
We say that the MPD P  o f A  is an irredundant MPD o f A  i f  it is
irredundant in the intersection of all MPD's o f A.

(2. 1 ) Theorem. Let A be an ideal o f  the  ring R  and let P
be a prime ideal o f R . T h e n  P  is  an irredundant MPD o f A  if

P=V A  :x fo r  som e X Er 1/24.

P ro o f. I f  P  is  an irredundant MPD o f A , le t  xE (r1P„)\ P,
where { P}  is the set of all MPD's o f A  except P .  I f  y E V A  :x,

then yx E  C P .  But x Er P, so y G P, and V A  : xOEP. I f  zE P,

then zx G Pn (nPc()=V A , or : x. Hence P=V A  :x.

Conversely suppose that P=V A  :x .  P  is a prime divisor o f A,
and since xEr V A  we have x  P 0,  fo r  some MPD POE o f  A .  Then

y G P  implies yx G  V A  c P a  implies y E P OE, so P c P a , and w e must

have P = P a . Thus P  is  an MPD o f A .  I f  Po # P  is any MPD of

A, there is an element zE P \Po . T h en  z G :  X ,  or zX C Po,

so x  P a . Therefore x belongs to all MPD's o f A  except P , so P
is irredundant for A.
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Theorem 2. 1 shows that the irredundant MPD's of V A  are just
the associated prime divisors o f V A  in the sense of Bourbaki.

(2 . 2 ) Theorem . I f  P  i s  an M PD of A , P  is  redundan t if
Y  A  : P= V  A  .

P ro o f .  It is sufficient to show that V A  : P= (113  w h e re  {P }
is the set of all MPD's of A  except P .  If xE  n i 3 c „  then xPE VA ,

so ri POE C  V A :P .  Conversely for each a there is an element y E P\P OE.
Hence if x E V A :P, x y E V A c P OE,  so x e P OE .  Hence V A :Pc n p a,
and we have equality.

I f  w e examine the discussion of associated prime divisors in
[11; p.211], we find that the associated prime divisors of an ideal
A  which has a finite primary representation are just those primes P
of the form P =V A :x  for some x .  This condition is  close to the

,condition in  2. 1. In fact:

(2 . 3) Proposition. Suppose x EV  A . T h e n  V  A :x C V A  :x.
I f  i / A :x  is prim e, V A:x—V A : x.

P ro o f. Let y e  1/A : x . T h e n  ykxE A  fo r  some integer k.
Therefore ykxkE A , or ye V A  : x .  Hence V A:x EV  A  : x.

Now suppose VA:x is prime. If ye V A  : x , we have (yx) k E A
for some integer k , so  (yx)k e A :x , or yx E 1/A : x . B u t xE  V A:x
would imply xE V A , contrary to hypothesis. Therefore y e  V A:x
since V A :x  is prime, hence VA-  : x  V A :x  , and we have equality.

Any prime ideal P  of R  is  an irredundant MPD of some ideal
A  of R , namely A =P . There are some primes P  such that i f  P is
an MPD of an arbitrary ideal A, then P is irredundant for A.

(2 . 4) Theorem . Suppose the prime ideal P  is  the radical of
a f initely  generated ideal. I f  P  is  an M PD of an ideal A , then
P  is  irredundant for A .

P ro o f .  L e t  P= , • • • , x„) b e  a n  M P D  o f  A. Then
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A (P)=A •R p n R = { rE R IrsE A  fo r some set P }  i s  P-primary, so
P= V A (P). For each  x ,  th e re  is  a n  integer m  (i)  such that
x7

°)
E A (P ) ,  and  th e re  is  an  element r,EEP such  that r 1x7(')EA.

Let r =H r,, m = E m (i).

L et zE P. For some integer k  w e  have z k E (x 1, • • •, x„ ), say
z"= t1x1+ • •• +t„x„ , t ; E R .  For each i, r,x:"Ê A , so rz ° G A  for suf-

ficiently large j ,  and z"E  A: r. Then we have zEV  A :r C V A :r
by 2.3. Hence P c V  A : r .  But r Er P, so rsE V  A c P  implies sEP,

or V A  r c P .  Therefore P=V  A :r ,  so P  is  irredundant for A  by
2. 1.

The examples which follow show that redundant and irredundant

MPD's may be present in  almost any combination when an ideal has
infinitely many MPD's.

(2 . 5 ) E xam p le . An ideal with infinitely many MPD's, a ll irre-
dundant. Example 1. 3 is such an example. We saw that the primes
P,, (k =1, 2, • ..) are  the MPD's o f A, and since x ,E  (  P,)\ P k  for
each k , each P k i s  irredundant.

(2 . 6 ) E xam p le . An ideal A with infiritoly many redundant and
infinitely many irredundant MPD's, w ith the property that VA is
equal to the intersection of the irredundant MPD's of A . We obtain
our example by constructing a  suitable lattice-ordered group G and
segment A  of G, then using the domain and ideal corresponding to
G and A as outlined in  §0.

Take G to  be the group o f all real-valued left-continuous step
functions (finitely many points of discontinuity) on (0, 00) whose
points of discontinuity are of the form n or n-1/k (n=1,2, 3, ;  k =2,
3, 4, • ••). We call these points admissible points, and denote them
by a. G is  a  group under pointwise addition, and is lattice-ordered
by the relation < ,  where f < g  i f  f ( x ) < g ( x )  for a ll xE (0, 00).

For each XE (0, 0 0 ), .73 = { fG G + If (X )>  0 }  is  a prime segment.
In addition, w e have the prime segment P o =  {f e G + I there is an M
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such  that f (x )>  0  i f  x > M 1  o f  functions which a r e  eventually
positive. If a  is  the smallest admissible point which is greater than
or equal to x, then f ( x ) = f ( a )  for all fE G + , hence P.—Pa . Thus
w e have a prime segment for each admissible point, and we have P,.
W e w ill show that there are no other prime segments in G.

First we show that each P a  is  m axim al. Suppose M > P a  is  a
proper segm ent. Then there is an f ' G M\Pa ,  so f ' (a )  =0. T h en
f '  is  zero on an interval ( a ' ,  a ]  where either a '  i s  an admissible
point or a '= 0 .  L et a > 0  b e  the maximum value attained by f ' ,
an d  le t f  be defined by f (x )  =  0  o n  (a ',  a ] ,  f ( x ) = a  elsewhere.
Then f > f ' ,  so f E M .  L et g  be defined by g (x )= a  o n  (a ',  a ] ,

g (x )=  0 elsewhere. g E P OE ,  so g E M .  Hence 0= inf ( f ,  g )  M , SO

M= G+ is not a  proper segm ent. Therefore P a  i s  maximal.
W e also see that P a  i s  m in im al, for if not there would be a

prime P < P a . Let f  P a \ P. Then f (a )>  0 , so  f (x )=  a> 0  for
a l l  x  in  som e interval ( a ' ,  a ] .  Define g  b y  g (x ) = 0 on (a ',  a ],

g (x ) =a  elsewhere. Then gEr P a , so  gE P ,  and h = f + gEr P .  But
)z (x )> a > 0  everywhere, and h EE P .  However for any f ' E P  we can
find an  integer n  such  that nh= h+ h+ • • • + h> f', which implies
nhE P, and hence hE P, a contradiction.

We now show that P o i s  the only proper prime other than the
P a . Suppose P  i s  a  proper prime, P * P a  f o r  a l l  a. Then P a ctP
for a ll a , so  for each a  there is an f a e P a \P, i.e., f ( a ) > 0 .

(2. 7 ) L e m m a . Given any positiv e number N ,  there is an
element gNEG+\P with goi(x )>1  for a ll x E (0, NJ.

P r o o f .  We may suppose that N  is  a positive in teger. For any
integer n , 1 < n < N , w e have f„G P„\P, so f „  i s  positive on an
interval (n k  „, n]. W e  a lso  have f „ , /k„$ P  w hich  is positive on
(n-1/ (k„ —1), n —1/k„], and so on to f 1 12EE P which is positive on
(n -1 , n -1 / 2 ].  Then h„ = f.+ f.-ilk„+ • • + f., 12 is  n o t in  P ,  and is
positive on (n —i, n] . Let g  hi+ • • • + hN P ,  and g  is  positive
on  (0, N ] .  Then a  suitable multiple gN =g+•••+g  can be found
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which is not in P ,  and which satisfies g N (x )>1  on (0, N ] .  This

completes the lemma.
Now each g E G  is eventually constant. Suppose g E P  is even-

tually zero, say g (x ) = 0  for x > N .  There is an integer k such that
k g ,> g , so k g ,E P .  But gwEP, so P  is not prime, a contradiction.

Therefore g E P  implies g  is eventually positive.

I f  hGG +  is eventually  positive, w e m ay assume th a t h (x )> 1
for x > N , some N .  Then (g w + h )(x )> 1  for a ll x .  For any f E  P,
there is an integer k  such that k (g ,+ h )> f ,  so  gw + h E P .  Since
gNEr P , it follows that h E P , and P = P o .

For our example we take the segment A = n p a .  Then f e A
implies f ( x ) > 0  for a ll x. Therefore A c P 0 . P o  is  an M PD o f A,
and is certainly redundant for A, so we omit P o from further con-
sideration. Since A  is  an intersection of primes, A = - / A .  We show
that P «  i s  irredundant for A  i f  a  is not an integer.

Let be an admissible point which is not an integer, and let
b e  the largest admissible point w hich  is less than  [3, or IS '=  0  if
[3= 1 / 2 .  Let f a be defined by f o (x )= 0  on (4  [3], f o (x )= 1  elsewhere.
Then f o ErPo , but . 4 E / 3 ,  for a ll a  0. T herefore P  is irredundant
for A.

Let n be a positive in teger. I f  [E P „ ,  then f (x )  = 0  fo r a l l  x
in some interval (a, n ], so there is an admissible z ' ,  a < a '< n , such
that fEEP« , . T hus w e have f E f l  P«  im plies fE  P „ , o r  P ,D n P u ,a7,- n cc•
and P .  is redundant for A.

B y  the argument of the previous paragraph w e see that if

n  P « ,  where Z + = {1, 2, 3, • ••}, then V A  . It follows

that V A = n P a ,  i.e ., V A  i s  the intersection of the irredundant
a E Z ,

M PD 's o f A.
W e now  pass to  the domain D  (see section 0 )  to obtain the

desired example.

(2 . 8 )  E xam p le . An ideal with infinitely many irredundant and
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N  (a positive integer) redundant MPD's. It is only necessary to

restrict the functions used in 2. 6 to the interval (0, N ] .  The prime
segments are just the POE f o r  a < N .  P N  takes the place of P o  as

the set of all functions which are eventually positive.

(2. 9) E xam ple. An ideal with no irredundant MPD's. Let R

be the polynomial domain K [x 1 , x 2 , •••] in  infinitely many indeter-
minates x , over the field K ,  and let A= (x i  x3, x3x4, • • • , x2,.1 x2,, • •.)•

We see immediately that the primes P =  ( X l + d „  X 3 - F r l y ,  •  X 2 , 1 - 1 - F d . ,  •  •  • ) ,

where d, = 0 or 1 for each i, are the MPD's o f A.
Let fE  R  be written as a sum o f  monomial terms, no two of

which can be combined. Then no two monomial terms o f f ' ,  the

image of f  in R / P ,  can be combined unless one term is 0, because

R /  P  is a polynomial ring over K  in the indeterminates x ;  which are

not generators o f  P .  We see then that f  belongs to a particular
prime P  (an MPD o f A ) if each monomial term of f  does.

To see that each P  is redundant, it is enough to see that if a

monomial f  does not belong to one of the MPD's o f A , then it does

not belong to at least two of the MPD's. Suppose then that f  is a

monomial not belonging to P 1 . Let u s  illustrate with a  specific

prime, say  P 1 = (x 1 ,  x 5 ,  x 5 , •••, •••)• Now f  can be written

f = a x r ) x : " ) •••x;,2 ") , since fE r 13 4. But then also f  EE 1 3 2 =  ( x 1 ,  x 3 ,

x 2 . - 1 ,  x 2 , , - F 2  X2n+ 3 , • • • )  * P 1 .  It fo llow s that P 1 is redundant for A,
and by symmetry, all MPD's o f A  are redundant.

(2. 10) Exam ple. A  suitable modification of 2. 9 gives an ideal

w ith  N  irredundant MPD's and infinitely many redundant MPD's.
We merely need to take R =K [t i ,  • • • ,  tN , xi., x 2 , • • • ] and A = (to n
(to n n (t,o n (x, x2, x3 x „ The prim e ideals ( t , )  a re  irre-
dundant fo r  A , and the primes of the form (1.

 
X 3 - 1 - d 2 ,  •  •  . )  as in

2. 9 are redundant.

Because o f 2. 4 we m ight conjecture that a  finitely generated

ideal A  would have only irredundant MPD's. To see that this is

false we need only reduce to R / A  in the above examples. Then we
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have A '= (0 ), where A ' is the image of A  in R/ A.

3. P-components of an ideal

Let A  be an ideal o f  R .  We will call a maximal associated
prime divisor of A  (in the sense o f Nagata, see §1 ) an MAPD of
A . If P is an MPD of A, the ideal A (P) = A • RpnR= {x RI xy E A
for some y EE P} is called the P-component of A . An  element xE R
which i s  not a  zero-divisor modulo A  is said to be prime to  A.
In [5], Krull proves the following:

(3 .1 )  Theorem. Let A be an ideal of the ring R .  Then:
( a )  Every element or ideal o f R  w hich is not prime to A  is

contained in an M A PD of A.
(1: ) I f  P  i s  a prime containing A and x E R \P , then x  is

prime to A (P).
(c) Ev ery  M PD o f  A  is contained in  at least one MAPD

o f  A.
(d) A =r1A (M ), w here M  runs over the set of all M A PD's

o f  A.

(3 . 2 ) Theorem. I f  {Ma }  is the set of all M A PD's of A and
M c,0 i s  an irredundant M PD of A , then A(114, 0 ) is irredundant in
the representation A= r iA (M a ).

Proof. Since M OE,  is  an irredundant MPD of A , there is an x
belonging to all MPD's of A  except MOE„  and M a 0 = V A :  x . For
each ce#tro ,  M a  contains an MPD (not M a o )  of A, hence we see that
_TE n M a . Note that x€E M OE, implies x*Er A(MOE,) for all k>0.

cc*ao

Since Ma , is maximal with respect to being contained in the set
of zero-divisors modulo A , and since xEr M a o , the ideal ( M a „  x )

( - -« —M a o /contains an element m +rx  m rE R )  which is prime to A.
Then m +rx  belongs to no MAPD of A, so mEEMa for each ce* a o ,

because m  M „  and x  M a  w ou ld  im p ly  m + r x E M „ .  Now

» z E M  V A :x , so mkxk E A  for some integer k. But M k M a  for
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a l l  tr # a o ,  s o  xkE A (Ma ) fo r  a l l  t t # a o .  Therefore we have
.xk E ( f l  A (11/1))\A (M oco ) ,  and A ( M )  is irredundant in the represen-

arao

tation of 3. 1(d).

I f  M a ,  i s  a  redundant MPD of A, A (M ) )  m ay be either re-
dundant or irredundant in  the representation above. For examples,
see  [10; p. 29].

We need one further observation about the ideal A (P).

(3. 3 )  Proposition. I f  P  is any  prim e containing A , and if
A =1/ A ,  then V  A ( P )  A ( P ) .

Proof. Since for any ideal B  and multiplicative system S  not

meeting B  w e  h a v e  V  B (S ) — 1/13(S ), it fo llo w s  th a t  A (P)
= V A (P)= V  A (P) .

4. Irred u n d an t primary representation

In th is  section we consistently u se  Q  fo r  a  prim ary ideal and

P  for a prime. If we use Pc, in context with Qa , we mean P a = 't/ Q .

We say that the ideal A  has an irredundant primary representation
A = ncja i f  ( a )  f o r  each ty0, (L011) ( n Q a ) ,  an d  ( b )  POE,* P a ,  if

aao
Except in  Lemma 4. 10, the notation A = nQc, is used to

denote an irredundant primary representation o f  A . With A = nQ,
w e call {Pa } the set of  primes corresponding to this representation.

In [6] Krull proves that if  R  i s  a ring w ith  Q-condition, every
ideal of R has an irredundant primary representation. The Q-condition
i s  t h i s :  fo r  every multiplicative system  S  o f  R , an d  fo r every
id ea l A  o f  R ,  th e re  is  a n  x E R  su ch  th at A ( S ) =A :x , where
A ( S ) =  E RI r s E A  for some s E S } .  When R  is  an  arbitrary ring
Krull then raises questions 4. 1 (a-d) below, to which we add 4. 1
(e-g).

(4. 1 )  Questions.
(a) If A = n QOE= nch, is  {P } = {P,31?
(b) Suppose A = n (4 . L et M  be a  non-void subset o f {Pa}
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w ith the property that P a i c P a ,  and P a a E M  implies P a i E M .  For

each such M, is  f l  Qa independent of the particular Q„ used in the
per.fri

primary representation o f A?
(c) I f  A = nc2Œ, is every ideal A ( S ) ,  where S  i s  a multipli-

cative system not meeting A, an intersection of some set of the (4c ?
(d) Is there  a ring R  which does not have the Q-condition,

but in which every ideal has an irredundant primary representation?
(e) I f  A = nQa and P  i s  a prime ideal containing A, does P

contain some P a ?
(f) I f  A = nQa, i s  V A = n P.?
( g )  I f  A = n Q .= nQo, i s  nPOE--- n Pa?

In the case of finite primary representations, the answers to these
questions are yes, except fo r  (d ).  W e will show that in general the
answer to (d )  is  yes, and the answers to the other questions are no.
Our examples, moreover, are in integrally closed integral domains.

(4 . 2 ) Proposition. S uppose A = n Q a . F o r  each a  there is
an element x  such that A :x=Q ,:x  and A:x is Pa -prim ary . Each
P a  i s  an associated prime div isor of A in the (Z-S) sense, hence
also in the sense of Na  gala.

P ro o f. Fix cuo ,  and let xE ( f l  Q a )\Qa a . Then A :x = (n Q a ) :x
, a0

(Q a:x ) . But if x  Qa  , Q ,:x=R , so A:x=Q a a :x .  Since xE QOE„
Qa a :x  is  P au-primary.

We see then that i f  P  is  a prime corresponding to an irredund-
ant primary representation o f  A , th ere  is  an element x  such that
P = V A : x .

(4 . 3 ) Theorem. Suppose A= nQa. I f  P  is  a prime ideal of
the f o rm  - VA: x , in  particular if A : x  is  P-primary, then Pc P a

fo r some a.

P ro o f. From A = nQc, w e have A : x= n (Q .: x) n (Q„:x).

Since xE Qa im plies -1/Qa :x =P a ,  we take radicals an d  get
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(4.4) p = 1 / A : x  Vn (QOE:x) c n VQ„:x =n P .
z ,V2a xe ce

Since x E  Q. f o r  some a  (otherwise we would h a v e  x A  and

V  A :x  =R *P), P is contained in  at least one P .

Note that the containment in  4. 4 becomes equality if  th e  inter-

section is finite. S in ce  P= np, implies P =PP  for some i, 4 .2  and

4. 3 yield  th e  well-known result that i f  a n  ideal A  i s  a  finite

irredundant intersection of primaries, the corresponding primes are

uniquely determined, and are just those prim es of the form V A:x
Several corollaries to 4. 3 show that some prim es corresponding

to a  particular irredundant primary representation of A  must corres-

pond to every such representation. In  4. 5-4. 8, we suppose that

w e  h ave two representations A = f l  Q„ Qa o f  A .  W e omit the
proofs of 4. 5-4. 7.

(4. 5) Corollary. A ny  Pa  w h ic h  is  m ax im al in  {Pa } i s  in
{Po} , and is  m ax im al in  {Po }.

(4. 6) Corollary. I f  th e  Pa an d  th e  P o are  a l l  M PD's of  A ,
then { Pa } = {Po}.

(4. 7) Corollary. I f  th e  Pa are  all M PD's o f  A , then so are
the Po ,  an d  { PO= { Po} .

(4. 8) Corollary. I f  only  f initely  m any  Pa  a re  not M PD's of
A , then every  P3 is  a  Pa .

P ro o f. Fix a  P 3 .  P o = V A: x  for some x ,  and by 4.4 we have
n Pa . If x EE Q , for only finitely many a ,  the inclusion becomesxT e“

equality, and P 3  must equal some Pa . If xEE Q„ for infinitely many
a ,  then there is an  ao such that .x■E Qa o a n d  POE° i s  an  MPD of A.
Moreover P 3E 13 „ , ,  so Pa = Pc,  by minimality of P“0 .

(4. 9) Corollary. I f  A = nQa an d  M  is  an  M A PD o f  A  o f
the f o rm  M =V  A :x  , then M i s  a  Pa .

P ro o f. By 4. 3 Mc Pc,  fo r som e it. But P OE i s  a n  associated



84 D. H. Underwood

prime divisor of A  in the sense of Nagata, and M  is maximal among
the associated prime divisors of A , so M = P a .

We insert the following lemma for later reference.

(4 . 10) Lem m a. S uppose Q  is primary an d  Q = nQc, (not
necessarily an  irredundan t representation). If  Q „ID  (1Q a, then

VC2 =

Proof. We may assume that there is more than one Q .  Since

Q.010 n Qa, there is an x E ( n Q .)\ Q c „. As in the proof of 4.2 we
cc cro cx,cxo

have Q :x = n ( Q a :x ) = Q , :x .  But V Q :x  =V Q  , and '/Q „: x

=V  Q a „  so V  Q =V Q: x x =V Q „.

We return for a moment to  the problem of semi-prime ideals
which we considered in section 2.

(4 . 11) Proposition. Suppose A = VA  = n P a , an irredundant
prime representation. Then {P a } = { irredundant M PD 's of  A}.

Proo f. F ix  P 0 . B y  irredundancy there is an xE ( n P0\13.0,
ce*cco

and A :x  is  P ao-primary. S in c e  .x.E P a o , xEEV A = A .  But then

Pa ô = V A: x A : x  by 2 . 3 , and by 2 . 1  Pa o i s  an irredundant
MPD of A.

No intersection of MPD's of A  can equal V A = A  if an irre-
dundant MPD of A  is missing, so we see that {P a } is the set of all
irredundant MPD's of A.

(4 . 12) Theorem. I f  A = V A =  nQ„, then {Qc,} = { irredundant
M PD's o f  A}.

Proo f. B y  4. 11, it is sufficient to show that Qa = Pa  for each
a .  Fix Q .  W ith  x  an element of all the primaries except Q ,  we

have VA :  x  = Pa  by 4 . 2 . But xeE A = V A ,  so P a = V A: x  by 2. 3,
and P a  is  an irredundant MPD of A  by 2. 1.

Since P a  i s  an MPD o f A , A (Pa )  is  P a-primary. Moreover
y E A (P a )  implies y z e A c Q a  for some z ,$ P a . But then y E Qa  , so
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A (Pa ) c Q a c P a  . By 3 .3  A ( P a ) = -/  A (P a )  =Pa, s o  w e  have
P a cQ a c  P  ,  or Qa =P a ,  and the theorem is proved.

Our next theorem and its corollary have a relation to question
I t

4. 1 (b). In  a  finite irredundant primary representation A = fl Q ,,

w e have f l  Q ,—  A (Pi). Although the "component" ( - 1 Q. not
Q ,c p ,

generally independent of the particular representation in the infinite

case, we see that Fl Q, may be replaced by A (Pi)  to yield an irre-
Q,cP,

dundant (not primary) representation o f A  in the sense of the next

theorem.

(4. 13) Theorem. Let A = nra„, and f ix  a o . T h e n

(*) A = A (Pao) n( 1- 1 Q.)
Q a P a o

is  an irredundant representation of A in the sense that i f  A (P 0)
or any Q a ct Pa o is om itted, the intersection of the rem aining ideals
is no t A.

P ro o f. W e first note that A ( P „) c  n Qa . This follows im-
a„zpa ,

mediately from the fact that A cQ a c  P a „ implies A (P„) cQQ .  Since

A c A (P „) , it fo llow s that (*) is va lid . A ls o  f l  Q a J  n Q a, so
QaCPao Oc„

A (Pa)1D n QOE, and A ( P ,)  is irredundant in  (*).

I f  ( * )  were not irredundant, there would be some Qa i cr Pa., such

that Q „D [A (P a o ) n (  n Qa ) ] .  Let zE ( n Q a )\ Q ,.  I f  z w e re  in
a a IQ aV 'cto

cc oci

A (P,) , we would have z e  [A
P(Pao) (- 1 ( n Q a ) l c Q a r ,  a contradiction,Q„,xeeo 

cc a l

so z e  A ( P „) .  Let s e Q , .  Then sz E A , and since z e  A (P„) we

have sE Pa o. But then Qai c Pa o , a  contradiction. Therefore (*) is
irredundant.

(4. 14) C orollary. Let A= nQa. If 13 ,  is an M PD of A, then
A has the irredundant prim ary  representation A = A (1 3 « )n (n (2 „) .

ag-ao

Corollary 4. 14 shows that i f  A  h as  an irredundant prim ary
representation A= nQ a  , any Q a  w hose radical P a  i s  an M PD  of
A  may be replaced by A (P a ) ,  and the result is still an irredundant
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primary representation o f  A . In  the finite case, Qa  must be A ( P ) ,
but this is not true f o r infinite representations.

T here is a condition w hich im plies an af f irm ativ e answer to
4.1 ( b )  in case M  is  of  the  f orm  M = {Pa ! P a c P a o  f o r  some ao }

(4. 15) Proposition. Let A = n QOE and f ix  a o .  If  Pa o 1DQ

th e n  r1 Qa= A (Pa 0 ).
QaCPao

P ro o f. We have seen that A (P a o ) c  f l  Q a .  Let y  (  n
(1,,CPct0 Q a  P ce ,

For an y z E  n Q ., y z  A .  But y E PŒ„ so  z E A (P„o ). Therefore

n Q ac A (Pa o ) ,  and we have equality.
eacP.0

The Q-condition implies that certain primaries in a representation
A = nea are uniquely determined by A .  To prove this we need the

follow ing lem m a. Th is lem m a is a  generalization o f  a  result of

Nakano in [ 9 ] .  Nakano's proof is easily generalized to our case with
the help o f 3. 1 (b).

(4. 16) Lem m a. I f  P  is a prim e ideal containing A , an d  if
there is an  x  such that A ( P ) =A :x ,  then X E VA (P ) .

(4. 17) Theorem. Suppose R  has Q-condition, A = nQOE is  an
ideal o f  R , and suppose that Pao i s  an  M PD  o f  A  which is con-
tained in no other Pa . T h e n  Qa o = A (Pa o ).

P ro o f. We know that A (13  ,o) cQ c„.

By the Q-condition we have A ( P a o ) = A :z  for some zE V  A (Pa o )
=Pa o .  I f  a # a o , A (P a o ) P „  ,  as A (Pa o) c  Pa  implies POEG P a .  Thus
for any a # a o th ere  is  an element y E  A (P a 0 ) \ P a . Since y E A (P c„)
= A :z ,  y z e A c Q „.  But yE .P c„  so z t Q a . Hence z ( n Q „)\P OE„
or /3

0,0 1D n Q .  Then by 4. 15, Qa ,= A (Pa ,).
,,co

W e are now  ready to  g ive  the examples which answer the
questions 4. 1. W e use K it, x1, x2, • • •] to denote the polynomial
ring in the indeterminates t, x 1 ,  x2, ••• over the field K  o f charac-
teristic zero.
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(4. 18) Example. T h is example shows th a t th e  answers to

4. 1 (a , c , e , f , g) are no.
Let R = K  [t, x 1 , x 2 , • ] ,  Q o = (4  x 3 , x4, x 5 , • • ) ,  and Qk x,—  k,

x2, x3, • , x 42, x ,,,, • • •) for all k>1.

The Q , are primary with radicals Po= (x2, X 3 ,  X 4 ,  • - • )  and Pk = (t,

x i — k , x 2 , x ,, • • •) for k > 1 .  L et A = n Q1. T h e  P ,  are  all different,
i = 0

and for each k > 0  we have xk,2E  n Q„, so A = fl Q,. is  an irre-
170, 1=0

dundant primary representation.

F or k > l ,  le t, a —  ( t 0k ,  x t ,  X 3 ,  X 4 ,  •  •  ,  X k + 2 ,  • ' ) •  Q k  is Pk -

primary, hence so is Q;,— Qk n  a  for k > 1 .  Moreover xk=2E ( n (2:)\qk
for each k > 1 .  It can be seen that Qo = Qi ,  and it follows that

- i = 1

A = nQ: is another irredundant primary representation of A.
i

Then A = n Q,—  n Q . P o corresponds to the first, b u t not to
i= 0 1 =1

the second, of these representations, giving a  negative answer to

4.1 (a ).
Consider A = fl Q .  We have Po D  A , but P,.ll:, Pi fo r  i> 1 , hence

a  negative answer to 4. 1 (e).

We see that t E n , but t E n , so we have a counter-
1= 11 = 0

example to 4 . 1  (g ), so also certainly to 4 . 1  ( f ) .  In fact it is easy

to see that V  A  P o  ,  because if  fE  P o , PEA .
-

Turning to 4. 1 (c), we consider the representation A = nQ: , and
g =I

le t S = R —  P o .  Then A (S )= A (13 0). Po is an MPD o f A , so A ( P 0 )

is primary for P 0 ; b u t  A ( P o )  is not the intersection of any set of
th e  Q :,  a s  such an intersection would be irredundant, and by 4. 10
we would have P0= P ,  fo r some i .  Hence the negative answer to

4.1 (c ).

Professor Ohm has suggested how the above example might be

modified to give a  counterexample to 4. 1 (a )  in  a  two - dimensional
dom ain . In  a one-dimensional domain, every proper prime ideal is

maximal, and from 4. 7 we see that 4. 1 ( a )  cannot be contradicted
in dimension one.
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First we om it the  indeterminate t  from 4. 18. W ith this change
we still have a counterexample to 4. 1 ( a ) .  Choose K  to be the field
ko (t o , t4, t o , •••), where t h e  t, a r e  indeterminates over th e  f ie ld  ko .
L e t  P = (x - t,3.4,.4 - t4.4,•••, t „  4 ,  •  • • ) .  P c ( , ) ,  for 1 > 0 , so
P c  A . We will show that P  is prime, and  that there a re  not three
p rim e  ideals 01, Oz, 0 3  i n  R  such that P< O i< 0,- -( 0 3 < R . T hen
it fo llow s that D = R / P  is  a  two-dimensional dom ain , and  reduced
m odu lo  P  4. 18 g ives t h e  counterexample to 4. 1 ( a )  i n  a  two-
dimensional domain.

To see that P  is  p r im e , le t  T=  {t 3 , t4 , • «}, X = {x1, x2, x3, •••) ,
and consider th e  ideal P '= (.4 — t 3 4 , t4 x24, • • •) in  R '= k o [ T, X ].
L e t  ko [X ] *  b e  th e  m u ltip lica tive  system  of non-zero  elements of
k 0 IX ], a n d  le t  P "  • R ", where R "  is  the ring of quotients R O [x ] *.
I f  we regard R "  a s  k o (X ) [T ] ,  w e see that th e  generators
of P "  in  R "  are first-degree polynomials in  T , so P "  is  prim e in  R".
It fo llow s that P '  i s  p r im e  in  R ' .  P  i s  t h e  extension o f  P '  to
R=./rkan *, so P  is  prim e  in  R.

Suppose there are prim e ideals 0 , such that P<0 1 < 0 2 < 0 3 <R.
L e t  f1 01\P, f 2 0 2\0 1 ,  f 3 E 0 3\0 2 ,  f 4 R\0 5 , a n d  choose n  so
th a t f i GK [x i , •••, x ,] =R , i= 1 ,  2, 3, 4. D en o tin g  B F IR  by .g for

an y  id ea l B  o f  R ,  w e  h a v e  P < 0 1< 02< 0 3< k .  W e see that
P =  ( 4 -  t ,  •  •  •  ,  t „  x , ) .  Let P u )  be the prime ideal of k generated
by the  first i  generators of P  for 1 =1, • • • , n - 3 . Then (0)<F0><F,2)
<•••<P 0 - 3>< P < 0 ,< 0 2 < 0 :3< R , a  chain of n+2 primes (including
( 0 ) )  i n  R .  B u t this implies that R  has dimension greater than or
equal to n--1, while we know that k has dimension n .  We conclude
th a t D =R /P has dimension tw o , and  w e have the modification of
4. 18.

We turn now to 4. 1 ( b ) .  We see immediately that 4. 1 (1)) must

be altered because of the negative answer to 4. 1 ( a ) .  If we consider-
the two representations A = n Q. =  n Q; from 4. 18, t h e  s e t  {P ,}  is

i = 0, 1

a valid choice for M  in  the  first representation, but not in the second.
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In fact the only situation in which 4. 1 (b) is an unambiguous question
is when we have A = nQa= n(2 3 w ith {POE} =  {Po}, and  in  this case
the question becom es: is f l  Q a = f l  Q ?  L e t  u s ,  then, strengthen

P,,EM PgE M

4. 1 (b) to the following: Suppose A .---rvoc=nQ, implies {P}  =  {Pa}.
I s  n Qa = n  Q ?  T h e  answ er is still n o . I n  4. 20 w e w ill have

A/ P E A/

an  ideal A  w ith  th e  irredundant primary representation A =r - )Q,,
with each Pa an  MPD of A .  It follows from 4. 7  that i f  A = r- 42,,
{Pa} = {P } .  W e  w ill show that one of the primaries Qa, is not equal
to A (P a,) . However, we know from 4.14 that A =A ( P 0) n (  n  Qa)

cc ao

is another irredundant primary representation of A , and we may take

M —  {Pao} to find our counterexample.
We need the following proposition.

(4 . 19) Proposition. Suppose that A= nQ a, Pa, is  an  M PD
o f  A ,  a n d  ( a )  Pao D ( ), a n d  (b) (2«,cr ( U Q c,)•

OE OE° OE,OED
A (P„,).

Then

P ro o f. Let x E Q. 0\ ( U Q . ) .  If xy E A, then xy EQ0, for each a.

But if a  a ,  x  Q O E ,  so y EPa. Hence xy E A implies y ( fl P O E )  c P c , , ,

so x E . A . ( P a o ) ,  and Qao #A (Pa o ).

(4. 20) Example. We find a counterexample to the strong form
o f  question 4 . 1  ( b )  by finding a n  id ea l A =r1 Q a satisfying the
hypotheses of 4. 19, and w ith  a ll Pa MPD's of A .  By the remarks
preceding 4. 19, this gives the required counterexample.

This example is  based on an  example given by Gilmer in  121
L et R = K [{ X X ,  where a  funs over a ll rationals in  th e  interval
(0 , 1 ), an d  th e  .X„ a r e  indeterminates over th e  fie ld  K .  For the
remainder of this example, a subscript a, b, or r  will denote a rational
in  (0, 1).

F o r  th e  p r im e s  w e  ta k e  P= ({ X ,}  an ,) a n d ,  f o r  e a c h  r,
P,=({ X ,}  „<„ {X, — 1} ).

Our primary ideals are Q =  ( {X ''} 11 ,) , where 112 (a) = 2  if a< 1 /2 ,
and m (a)=1  i f  a > 1 /2 , and, for each r, Q ,=({ X :(')} , < „ { X ,-1 }
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where n ( a) =1  i f  a < 1 / 2 ,  and n(a) = 2  if a>1 /2 .  Q  is P-primary,
and Q , is  P r -primary for each r.

Let A =Q ri ( rit9r). To simplify the discussion, we list several

facts about these primaries.

(1) For each r, X , I ,EEQ„ b u t X314EQ.
(2) x i,4 E rQ , and X 1 1 2 -1 P , h e n c e  X 1 1 4(X1 1 2- 1 ) Q.
(3) X 1 1 4  ( 2 ,  i f  1 / 4 < r .  X 1 12- 1 E Q r  i f  r < 1 / 2 .  Therefore

X114(X1 12- 1 ) E Q ,  for all r.
(4) For fixed r 1 ,  X r

2,E Q , so X ,(X , 1 - 1 ) E Q .
(5) For fixed r 1 ,  X E Q r ,  i f  r i < r .  X , , - 1 E Q ,  i f  r i >r.

Hence X ( X , - 1 ) E Q ,  for all r  * r i .
(6) X , E W  and X „— lE E P,„ so X ( X „ - 1)(=EQ, 1 .
( 7 )  If 0 < a < b < 1 , X ! E Q , so Je (X b -1 )  E Q . Moreover X !E Q ,

i f  a < r,  and X ,- 1 E Q , i f  r < b .  It follows that X 2 ( X b -1 )E Q , for
all r ,  so X !(X ,-1 )E A .

W e now show that th e  hypotheses of 4 . 19  a r e  satisfied with

Qa0 =Q, Pa. 0 = P ,  and that all P , are  M PD 's of A.
Irred u n d an cy . The prim es P ,  P r  a r e  d is t in c t .  B y  (2 ) , (3 ) ,

Q D  in Q „  s o  Q  is irredundant. B y  ( 4 ) ,  ( 5 ) ,  ( 6 ) ,  w e  have

D(?n( n Q , ) ,  so each Qr, is irredundant.

P  is an MPD o f A .  Suppose P 'c P  is  a prim e divisor of A.
Given aE  ( 0 ,  1 )  there is a  bE ( 0 ,  1 )  such that a G b .  B y  (7),
X!(X, — 1) EAOEP'. B u t  X b- 1 P', s o  X E P ' .  Therefore

P= ({ .7(} c  P ' P ,  and P' = P .  Therefore P is an  M PD of A.
Condition ( a ) .  Proved in  [ 2 ;  p. 196 1.

Condition ( b ) .  By (1), X314EQ \( L iQr), so (2(= ( U Q ).
To see that each P , is an MPD of A, suppose P :c P ,  is a prime

divisor o f A .  For any a < r ,  X ( X , - 1 ) E A c P ',  but X , - 1 P ,
so  X , , E P : .  Similarly fo r  b >r, .X .2, . ( X b - 1 ) E rr,  b u t  X;EE P : ,  so
X ,— lE  /3 :. Then P r = ({X,}  { X , - 1 }  r . , b ) c P 'rc P „  so P 'r= P r  and
P , is an  M PD  of A.

This completes example 4. 20.
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Just as we found a counterexample to 4. 1 (b) in case the primes

corresponding to an irredundant primary representation o f  A  are

uniquely determined by A, we may find counterexamples to 4. 1 (c,
e ,  f )  in a similar situation.

(4 . 21 ) Example. Another counterexample to 4 . 1  (c , e , f). Let

R—K[xl, X 2 9  X 3 /  •  •  •  1a n d  Q 2  (Xl, X 3 ,  X 4 /  • • • ) /  Q 3 X 2 .,  X I ,  • ••)

• • • Q k
=

 ( 4  X 2 , • •  •  , X  k - 1 , X k +1 , •  •  • )  ,  •  •  •  .  For each k>2, Q k is prim ary
for Pk —  ( X 1 ,  X 2 /  •  •  • ,  X k - 1 ,  X l e + 1 ,  •  •  • ) •

-
Let A = n Q. S in c e  xi, ( fl Q s ) \ Q h  for each k > 2 , and the Pk

:=2
are distinct, we have an irredundant primary representation o f A.

Examination o f th e Q k  shows us th a t x x k E A  fo r  each k>2,
and x,x,E  A  fo r  2 < j< k .  Then it is easy to  see that each PR is
an MPD o f A, so by 4 . 7  {P k } 7=2 i s  the set of primes corresponding
to any irredundant primary representation o f A.

Since no power of x 1 be longs to  a ll Q„ x,Et V A .   B u t  xi E
for a ll k > 2 , so there must be an MPD P  o f A  such that .x1 ,$ P.
T hus PD A , but P  contains no P,„ so  4. 1  (e) fa ils , and in this
example P  cannot correspond to  any irredundant primary represen-
tation of A . Also x i  E ( n Ph)\ V A ,  s o  VA P,„ giving a counter-

k=2 k=2

example to 4. 1 (f).

Finally we see that A ( P )  is primary, but cannot be an inter-
section o f any set of the (),, by 4. 10, so 4. 1  (c) fails.

(4 . 22) E xam ple . W e g ive an example o f  an integral domain
in which every ideal has an irredundant primary representation, but

which does not have the Q-condition, thus showing that the answer
to 4. 1 (d )  is  y e s . M o tt  [7 ]  has given such an example in a ring

with zero-divisors.
We obtain our domain from a lattice-ordered group by applying

Jaffard's theorem . Let G b e  the additive group o f real-valued left-
continuous step functions defined on (0 , 1 ] with jumps at the points

1 —  1/k, k = 2, 3 , 4 , • Our discussion of 2 .6  c a rr ie s  over, with
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the modifications necessary because of the restricted domain of the

functions, to show th a t Pa —  { f  EG + f  (a)> O } and P1 —  { f  G + f  (1 )
> 0 }  are the only proper prime segments o f  G .  Moreover P ,  is
redundant and the Pa are irredundant in the intersection Pi ncn

L et D be the domain corresponding to G .  The non-zero prime

ideals o f D are P 1 and the Fa , which correspond to  the prime seg-

ments P , and PG, o f G .  Each Pa is irredundant in  any intersection

o f primes in which it occurs.

Let A  b e an y  non-zero id ea l o f D, A *  D .  A ny prime P o f D
which contains A  is  bo th  an MPD and an MAPD o f A .  L et {P a}
be the set of prime divisors o f A, where each 13 is  e ither 1  or an a.

By 3. 1 ( d ) ,  A = f iA (P f3), and each  A(Pa) is  p r im a ry . For R #1,

A (
5

a)  is irredundant in this representation by 3. 2. I f  Pi  is  one of

the P a , 24(Fi ) m ay be redundant, in which case w e omit it, or irre-
dundant, in which case we retain it. I n  either case, A h as an irre-
dundant primary representation.

Now we wish to see that D does not have the Q-condition. Let

B = F i n ( n R ) .  B #  (o), because the corresponding intersection of

prime segments of G  is  non-vo id . W e a lso  see that B = i/B , and

P i is  an MPD o f B .  Let S =D — P i . Then B (S ) —  B (P,), and also

B ( P )  is  P s-prim ary. S ince B = -1/ B , 3 .3  im p lies  th a t B (P i) = P i .

I f  x E B , B :x — D # B ( P i ) .  If x B = V B ,  the equality B :x — P,
would im ply that Pi is  an irredundant MPD o f B  by 2. 1, which is

not the case. Therefore B :x#B (P i) for any x , so  D does not have

Q-condition, and w e have our example.

We conclude this paper by raising some questions.

(4. 2 3 )  Questions. Suppose th at the ideal A  has an irredundant
primary representation A = n Q .

( a )  What characterizes those prime ideals P  w ith the property
th a t th e re  is  an irredundant primary representation A = n(2, with
P= P3  for some R ?
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( b )  What characterizes those primary ideals Q with the property
th a t th e re  is  an irredundant primary representation A=11 Q6 w ith
Q=Q 0  fo r  s o m e  ?

We know that i f  A = na3, for each t h e r e  i s  an element x E A
and a primary ideal Q (=Q 3 )  such that A :x = Q :x  is  P s-primary.
This leads to the conjecture: I f  A = DQ, and if P  is  a prime such
that A :x =Q :x  is P-primary for some X E A  and some P-primary ideal
Q, then there is an irredundant primary representation A = nQ, with
P =P 0 fo r  some

Looking at 4.23 (b ) we might even conjecture that i f  A: x =Q : x
is primary, then A  has representation A = n(23 with Q=Q,3 for some
j .  This is  fa lse , even  in  a  noetherian r in g . To see this, suppose

w e have prime ideals 13 1 , P 2  in  a  noetherian ring, w ith  P1<P2.
Suppose further that B=Qi nQ2 is  an irredundant primary represen-
tation , w ith  Q i prim ary fo r  P , .  B y  [11; p .2 3 1 ] th e re  is  a  P 2 "

primary ideal (X <Q2 such that B =Q in ( X .  Let xEQ 1 \Q2 . Then
EE (X , and B :x =(Q 1nQ 2):x — (Q 2 :x )n (Q 2 :x )=Q 2 :x . B u t also

B :x =(Q in (X ):x  - q : x .  Now let A =Q 2 . Then there is an element
.xE A and a primary ideal Q; such that A :x =Q ;:x , but (2; appears
in  no  irredundant primary representation o f  A  because A  h as the

unique representation A = Q 2 .

Let us consider examples 4. 18, 20, 21 to  test our conjecture

concerning the characterization o f corresponding primes. In 4. 20 and

4. 21 the corresponding primes are a ll MPD's of the ideal in question,

so by 4. 7 every irredundant primary representation must have the

same set of corresponding primes. In 4. 18 we can see that the only

primes of the form V A :z  with A :z  primary are ju st P  P  P-  0 , -  -  2 ,  • • • •

I f  P =  V A :z  and zE Po, then y E P  implies y hz E A  fo r  some k.
But then yhz E Po, so y E Po . Hence Pc Po ,  so P= Po since Po is
an MPD o f A.

I f  P= V A: z  w ith  z E P0, w e  c a n  w r it e  z =r2x 2+---+r„x .,
r, E R .  But then zE Qk fo r  k >n , and (20: z = R for k > n .  Therefore
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A: z  (Q0: z) n  (Q, : z) n  • • • n  (Q. : z). This finite intersection of primary
ideals can be reduced to an irredundant intersectinn by omitting any
redundan t ideals. T hen  w e see by 4 . 10  that A: z  is not prim ary

unless V A: z = P  f o r  some i=0, 1, • ••, n .  T hus our conjecture is
not contradicted.

One question in [6 ] remains unsettled. Is there a simple criterion
(C ) su ch  th a t a ring R , in w hich  every ideal has an irredundant
primary representation, satisfies the Q-condition if (C ) is satisfied  ?
Our discussion of 4. 22 shows that if R  has an ideal w ith a redundant
MPD, then R  does not satisfy the Q-condition. Hence a  necessary
condition for the Q-condition is that every M PD  o f each ideal of R•
be irredundant. Moreox er, i f  th is  is  the case, every semi-prime ideal
o f R  has an inedundant primary representation.
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