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1. Introduction

The group of problems associated with vector fields on spheres

has long attracted the attention of topologists. Now that the original
problems have mostly been cleared up it seems appropriate to con-

sider generalizations. One of these has been studied in  [4 ] but the
results are mainly confined to what might be described as the stable

version of the problem. The purpose of this note is to prepare for

further investigations outside the stable range.
Let H  be a  subgroup of a topological group G. T he action of

H  on G  by left translation determines an action of H  on the factor
space F=G /H  of right cosets. Note that

(1.1) x •e=e (x E H ),

where e E F  denotes the coset of the neutral element. L et B  be a
space and let E  be a fibre bundle over B  with group H  and fibre
F .  In view of (1. 1) there exists a  canonical cross-section. L et G'
be a  subgroup of G  such that H cG 'O E G . Associated with E  we
have a bundle X  over B  with fibre Y= G /G '.  W e regard E  as  a
bundle over X  with fibre F'=G '/H , in  the obvious w a y .  Consider
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the following diagram, where a denotes the inclusion of the fibre in
the total space, and p denotes the projection of the total space on
the base.

1
F ' F '

al la
a PF  - - - >  - - >

P
P 11

Y X - - >  B
6

Under what conditions does there exist a  cross-section o f E  over
X ?

Suppose that there exists such a  cross-section h : X — > E .  By

restriction h  determines a cross-section g :  Y -->F. We describe g , or

its vertical homotopy class, as the ty pe o f h. Let f : B — >E  denote
the canonical cross-section o f E  over B .  Then pf: B — , -X  is  the

canonical cross-section o f  X  over B .  We describe h : X -->E  as
proper if

(1.2)h p f . = f.

Our approach will be to take a cross-section g: and then ask
whether E  admits a proper cross-section over X  of type g.

(Suppose, originally, that E  is a bundle with group G ' rather
than H .  The canoical cross-section f ': B — >X  is defined. I f  h : X
--->E  is a cross-section then we can reduce the group from G ' to  H
in such a way that h f ': B — >E is canonical and so h  is proper.)

When the bundle structure is  trivial there exist proper cross-
sections o f arbitrary typ e . In  general, however, the answer to our
question depends on  the choice o f  g. Assuming that the spaces

concerned satisfy the hypotheses o f a n  appropriate version of the
covering homotopy theorem, the answer depends on the vertical
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homotopy class o f g, rather than on g itself.

An automorphism * of H transforms H-bundles into H-bundles,
in the standard way. Thus E, X are transformed into * * E, * * X,
say . If E  admits a proper cross-section over X  of a certain type
then * * E admits a proper cross-section over **X of the same type.

In what follows we shall mainly be concerned with the case
where the base space is a  sphere o r other suspended space. We
show in §2 how the original problem can be converted into a more
tractable problem in  homotopy theory. Obstructions are obtained
which can be expressed in terms of the mixed products of McCarty
[ 6 ] .  These give necessary conditions for the existence of a proper
cross-section of given type. When the fibre Y and base B  of X are
both spheres there is just one obstruction, whose vanishing is both
necessary and sufficient for the existence of a proper cross-section.
The corresponding classification problem has been solved by Barcus
and B arratt [2 ], in this case.

2. The main theorem

Let A  be a  C W-complex with base-point ao . W e form  the
(reduced) cone CA and suspension SA in the usual w ay. Thus A
is embedded in CA as the base of the cone, and SA  is obtained
from CA by collapsing A.

Let G be a Lie group with closed subgroup H and factor space
F=G/ H. G iven  a map u: A---ill we construct a space E from the
union of CAxF and F  by identifying (a, x)E A xF with u(a) • x.
We define p ---- n10-  ' , as shown below, where 1 is left projection and
7 7 ,  0  are the identification maps.

o
C A x F  --. E

11 I P

CA —  S A
n
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By method described in § 3  [5 ] w e can  give E  the structure of a
fibre bundle over SA with projection p, fibre F  and group H . More-
over E  belongs to the c lass o f  bundle determined by u  in the
standard classification (see  §18 o f  [7] ) ,  and the canonical cross-
section is the map f  which makes the following diagram commuta-
tive, where i(c) ( c ,  e )  ( c  E CA).

77
CA SA

C A F
i f

E
o

Now let G' b e  a  closed subgroup of G  such  that HOEG'OEG.
Let r :  H--->G' b e  the inclusion and let p: F— Y  b e  the natural
projection where Y =G /G ' as before. Let X  be constructed in the
same way as E  except that u  is replaced v =ru : and F  is
replaced by Y . Then a fibration

(2. 1)p = y o ( 1  X p)0 - 1

is defined, as shown in the following diagram, where ço denotes the
identification map

o
C A x F E

1Xp

C A x Y  X
g9

Let g :  11.- .F  be a cross-section and let Â, 11 be the maps determined
by 0, q>, respectively, as shown in the following diagram.

v x 1 /2
A x  Y G' x  Y  —  Y

l x g

u X1 A
A x F - -  H x F F

1 X p 1 P
A x Y G 'x Y Y

v x 1 it
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Note that the lower rectangle is commutative, and so  is  the whole

square with the centre om itted. In  the upper rectangle the two

routes from A x  Y  to  F  agree on the subspace

A v Y = A x e Uao x  Y

The purpose of this section is to prove

Theorem 2. 2. There ex ists a proper cross-section o f  E  over
X , o f  type g , if  an d  only if

,i(ux  g)=-gii(v x 1) rel A v  Y.

We first show that the existence of the homotopy implies the
existence of a cross-section. R e c a ll th a t  the identification map 0
agrees with (u X  1) on A  x F and so agrees with gu(v x 1) on A x e.
Hence there exists a m a p  ,  as shown below, which agrees with
on CA x e and with gu(v x 1) on A x Y .

C A x e lU A x F---- .E
1xpi /  P

C A x elU A x Y ---- X

In the diagram 0', y9' are the restrictions of the identification maps.

The definition of i l l  is such that both triangles are commutative.
Now

0' (lx  g): C A x elU A x

can be extended over CA x  Y  by 0(1 x g )  so that

p0 (1 X  g)--- ço(lx p ) (1  X  g)=ço,

by (2. 1). Suppose that

2 (u x  g )  g a(v x  1) rel A v  Y.

Then  0'(1 x g) / r ' ,  r e l  CA v Y , b y  a vertical homotopy (with
respect to  p: Hence, by the covering homotopy theorem,
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there exists an extension

1/r : C A x Y — .E

of ', if, '  such that p t/ r= ç . Since g9 is non-singular outside A x  Y  the
map

h=,N0 - 1:

is well-defined, and constitutes a  proper cross-section of type g.
Conversely, suppose that there ex ists such  a  cross-section h.

Then Tv and 0(1 x g ) ,  as shown below, agree on CA v  Y.

C A x Y  X
1 x g  1 h

C A x P E
o

Let 6: F — . E  denote the inclusion. We have the homotopy

k ,: A x Y — .E ( tE I )

of 62(u xg) into ag/i(v  x 1),

which is defined by

k ,(a, Y ) =o  ((a,1 -2 t), gY ) (t < 1/2),

=hyp((a,2t — 1), Y ) (t > 1/2),

where aE A, YE Y. W e w ill deform  k , in to  a  homotopy /, which
keeps A v  Y fixed and which does not move A x Y  out of the fibre.
Consider the deformation

H ,: A x Ix Y — .X ( s E l)

which is given by

II,(a, t, y) = V (a, 1- 2t), y) (2 t< 1 + s ),

=g (a, s ) , y) (1—  s<2t<1+

— w((a, 2t — 1),y)( 2 t > 1 + s ) .

We lift 1-L I A x I x e  to
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K,: A x Ix e— >E

where K. is g iven  by the same formula as H ,I A x I x e  except that
ço is replaced by O. Write kf(a, y) =k  ( a , t ,y ) .  Then k  agrees with
K o on A x I x e ,  and ph agrees w ith Ho on A x  Ix  Y , by (2 . 1 ). By
the covering homotopy theorem we can lift H , to a deformation

L,: A x IxY --->E,

extending K „ such that L o =k  and such that L , is stationary when
H , is stationary. We define lf (a, Y )=1(a,t, Y ), where 1= L 1 . Since
H , is stationary on A x  i x  Y , so is L , .  In  particular 1 agrees with
k  on A x I .x  Y, and so 1,, like k „ constitutes a homotopy of i2  (u  X g)
into dgp ( y  X 1 ) .  Similarly 1„ like k „ keeps ao x  Y  f ix ed . On A x  I
x e, 1 is given by 1(1 ,  which is constant. Hence 1, keeps Axe fixed,
as well as ao x  Y, and so constitutes a homotopy rel A V Y . F inally
pl= 1-11 ,  which is independent o f t ,  and so  1, i s  vertical. Since 1,
begins in the fibre it remains in the fibre throughout. This comp-
letes the proof o f (2. 2).

3. T he mixed product

Let F  be a space, with basepoint e, and let H  be a  topological
transformation group acting on F .  W e denote the transform of
x  F  under g E H  by g • x .  Suppose that

(3.1) g•e=e (g E H ).

Then the m ixed product <a, iS > E n „, ( F )  of an  element aE n p ( H )

with an element j3 27 ,(F) can be defined as follows. Take repre-
sentatives

u: S ' —>F

of a, respectively, and let

h ,k : SP  X Sq—.F

be the maps given by
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h(, 72) =u($) v(>7 ),

k (E, 72) =v(72),

where EE S', E  Sq. S ince h  and k  agree on S1'VSq, b y  (3. 1), their
separation element d ( h ,  k ) E n ( F )  is defined. W e  w r i t e  d(h, k )
= <a, after checking that the element is independent of the choice
of representatives. For the basic properties of th is product, such as
linearity in  both variables, the reader is referred' )  t o  [61.

As an illustration take  F= H , acting on itself by conjugation.
The action satisfies (3. 1) and it  is  e a s y  to  show th at th e  mixed
product in  this case is equivalent to the ordinary Samelson product
in the homotopy groups of H.

The main example, fo r present purposes, is when we have a
topological group G containing H  a s  a  subgroup. The action of H
on G, by left translation, determines an action of H  on the factor
space G/ H of left cosets, satisfying (3. 1), and so the mixed product
pairs rp (H )  with r ,,(G / H) to n p ,( G /  H ) .  Among the properties of
this pairing the main ones we need are as follows.

L et Jr b e  a n  automorphism o f  G  which maps H  into itself.
Then 'Jr induces automorphisms o f  H  and G / H , which we also
denote by 'Jr, and the mixed product satisfies

(3. 2) 11,*<tr, R> = <11, *a, Air*R>

where a e rp ( H ) ,  E n g (G/ H).
Let G' be a  subgroup of G such that H c G ' Œ G . Consider the

inclusion r: and the inclusion and projection

G ' 6  G  P   G 
H  H  G '

If aE rp ( H )  then it follows at once from the definition that

a) 4<a, <(X, a,a> / H ) ) ,
(3. 3)

13) P*<ce, [3> =<r*a, ()* > (i3 7r,(G/ H)),

1 )  M cCarty works i n  a  somewhat different framework b u t  his proofs cover
everything needed here.
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as indicated in the following diagram, where the verticals are mixed
product pairings of appropriate type.

np(H)07c,(G' / H) —  7r,,(H )0 7 ,(G / r.,(G907r,(G/G')
106* 7*OP*

7r,+, (G7 II) +,(G/H) 77p+ q (G/G9
6* P*

An important example is when G  acts transitively on S q  with
G ' as stability subgroup so that G /G ' can be identified with Sq.

Then

(3. 4) ca> rcP(G')),

where c,,En a (S a) is  the class of the identity and where

J: np(G)--. n„,,(S0

has its usual meaning.

4. The obstruction

Having defined the mixed product we now return to the situa-
tion  o f  §2. R ecall that g :  Y  F  i s  a  cross-section and so, for
r> 2, we have a direct sum decomposition

nr(F9ED tr(17 ) -~  ,(F )

given by a* on the first summand and by g* on the second.
As before, let E  be the bundle over B = SA  with fibre F  defined

by u: A —.11, and let X  be the bundle over B  with fibre Y defined
b y  v =ru: G '.  We fibre E  over X  as in  (2 . 1 ). Consider the
mixed product

<u*a, gj> E n „,(F),

where tv 7r,,(A ) ,  E l .r, ( Y ) .  The component of this product in the
second summand is <v* .x, 5), b y  (3. 3b). W e now show that the
component in the first summand is an obstruction to  the existence
of a proper cross-section of E  over X , of type g.
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For convenience of reference we repeat the main diagram studied
in §2.

v x1 it
A x  Y G' x  Y Y

1 X g i g

A x F , H x F  F
u x1

If we replace 2, t t  by the right projections A ', it ' then

(4. 1)( u  x  g) —  get' (v  x1).

Let E :  S"--->. A , 72: Sg Y  be representatives o f  a, respectively.
The maps

2 (u x g )(E x 7 2 ), g it(v x 1 ((x v ): S Px S q —  A

agree on SP\,/ Sg, and so their separation element is defined. I assert

that

(4.2)d G i ( u x  g )  ( E  x y i ) ,  g  /2(v x 1) ($ 72))

gO> — g* <v* ty,

For by definition of the mixed product we have

Ot*cr, g *ig> = d (2(u X g) (E x 72) , ( u  x  g) ($ x72)) ,

<v *cE, d(p(v x 1)($ x72), (v x1) ($ x72)) .

By naturality

g* <v*a, (3> d(gel(v x 1) ($ x72), gkt' (v x 1) ($ x72))

= d ( g tt(v x 1) ($ x72) , A' (u x x >2)) ,

by (4. 1). Hence (4. 2) follows at once from  the addition formula
for the separation element.

Combining (4. 2) with the first part of (2. 2) we obtain

Theorem 4. 3. Suppose that E  adm its a proper cross-section
over X  o f ty pe q. Then

<u*cv, go> - - g* <v*ty, f3)
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f o r all elements a E n p (A ) , s gE n ,(Y ) .

Now suppose that A =S P, 17 =SP• W e  ta k e  E and ï  t o  b e  the

identity maps, and so can omit them from (4. 2). Then

A (uxg)=--g p (v x 1 )  rel SbVSg,

if, and only if,

d(2(u x g), g ti(v x 1)) =O.

Hence, using both parts of (2. 2) we obtain

Theorem 4 . 4 .  L e t B =S " 1 , Y = S .  L e t  OEnp(H ), r*OEn f i (G ')
denote th e  c lasse s  o f  u , v , an d  le t  rE n a ( Y )  be th e  class o f  a
cross-section. Then E  admits a  proper cross-section over X  of
type if , and  only if,

<0, r > -1-* <r*O, ei >.

The situation can be interpreted as follows. Use the canonical

cross-section to embed SP+ 1 in  X, so that the intersection with Sg is
the basepoint. The complement o f S P '  VSg is a  ( p+ q +1)-cell and
so we can give X  the structure of a complex, as shown in  §3 of

[5 1. The cross-sections f : SP - 1 --.E  and g: SP--->F determine a cross-
section o f E  over S P 'V S q . By classical theory the only obstruction
to extending this over the whole o f X  is  an element o f  7r p+ , ( F

Although it is unnecessary to do  so for present purposes it can be

shown, as might be expected, that this element is given by

61. 1 (<0 r> — r*<r*O, ce>)

where rE ng (  Y ) is the class o f g.

5. Frame - bundles

We adopt the same conventions as in [3 ] for the Stiefel mani-
folds and the various constructions associated with them. Thus 0„,
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denotes the group of orthogonal in  x in m atrices. W e w rite  Vn,k

= Om /Om — k (1 <k  <m ) ,  where 0 . ,  denotes the subgroup in which
the last k  rows and columns (apart from the diagonal) are trivial.
We represent points of V„,., by orthogonal matrices with in rows and
k  columns, so that the projection p : 0„.---> V„,,k is defined by taking
the last k  columns of the in  x in matrix.

Let E be an R - -bundle over B .  Let E, (k= 1, 2, • • • ) denote the
associated bundle of orthonormal k-frames. Consider the fibration
19: Ek — > i  given by taking the last vector of each k-frame to form a
1-fram e. In  [4 ] we have studied the problem of whether this fibra-
tion admits a cross-section. Let us suppose that the group of $ has
been reduced from 0„, to 0 _ ,  We take

(G, G ', H)=(0„,,0„,_,, 0
— k )

in the general problem, so that

(F', F, Y ) = (Vm-1,1-1, V m ,k■S ' — ' ) .

Thus our diagram now takes the following form

1
Vm-1,k-1 — >  Vrk-1,1-1

o!6 1 0 6

Vm ,k  - - - - ->  E k  - - >  B
P 1 I P I i

S m - 1  - - - >  E1 - - ->  B
6 P

Most of the results o f  [4 ]  can be translated into the preseat
frame-work, with suitable modifications. However, the only applica-
tion of the methods o f [4 ] we shall make is to prove

Theorem 5. 1. L e t B  b e  a  f in ite  com plex  such  that d im
B  <m  — 2k . L et E be an l?'-bundle ov er B  such that E1, adm its a
cross-sectionover $ 1 . T hen Eh adm its a  cross-section over E .1 of
any  giv en type.

The dimensionality restriction ensures that the group of ç can
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be reduced from 0,„ to 0 „ ,, and that all such reductions are equiva-

lent. Hence every cross-section o f $ , over $1 is equivalent to a
proper cross-section and so this condition can be ignored. By hypo-

thesis $  admits A-structure, i n  t h e  terminology o f  [4] . By

(1 . 6) o f [4 ], the elements of the group K R (B ) which are represen-
table by bundles with A-structure form a  subgroup. Hence there
exists a  bundle 72 such that the W hitney sum $6)72 is  trivial and
such that 72 admits Ak-structure. Take any cross-section of 7)1, over 72,
a n d  le t  G r„_ 1 ( V„, k )  be its type, where n= dim 72. Let aE n„ , -i(V,,,,k)

be the given class of cross-section. Then the intrinsic join

fr  m + n - 1 (

is also th e  class o f  a  cross-section. N o w  ($6)72), admits a  cross-
section over ($ n ) ,  o f any given type, since $ is  trivial. I n
particular ($61)72), admits a  cross-section over ($ 16)72)1 of type a * ,
and so it follows from the proof of (1 . 6 ) o f  [ 4 ]  that $ , admits a
cross-section over $1 o f a  type a , as asserted.

Outside the stab le range, as we shall see, there may exist a
cross-section of one type but not o f another. B e fo re  w e  look at
some particular cases there is one more result o f  a  general nature
which it is convenient to mention here.

In 0,„ le t  d denote the diagonal matrix with — 1 in  th e  last
place and + 1  elsewhere. Conjugation by d leaves elements of a n - k

fixed (k > 1 )  and so induces a  map c: V , „ , k .  T he effect of c
is to change the sign o f th e  last row an d  th e  last column. We
prove

Theorem 5 .2 . Let e  be an R"-bundle over B  with group reduced
from  O . to 0”,_,. Suppose that ek admits a  Proper cross-section
over e i  of type a i r , . (  V . , k ) .  Then C,, admits a proper cross-sect-
ion over e i  of typ e-c *a.

Since d commutes with the elements of t h e  group of $, it
follows that d  determines a  bundle map $ = $  which in  turn
determines bundle maps as  shown below.
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I3k
Ek Ek

P P

I f  h: Ei---)-Ek is a proper cross-section then so is kh19371 . To deter-
mine the relation between the types we examine the case when B
is a point. The result is as in (5. 2).

In the next section we determine c * in case k =2. W hen  m  is
even and m >  4  there are two classes of cross-sections of V „2 .  We
shall calculate the action of c* on these two classes and as a result
we shall obtain

Corollary 5.3. L e t  m > 4  and m . - .0  mod 4 . Let $  be an R --

bundle with group reduced from O . to  0._2 . Let $ 2  admits a
cross-section over E, of one type then $ 2  admits a  cross-section
over Ei of the other.

We shall also give an example to show that (5 . 3 ) can break
down when m--=2 mod 4.

6. Row and column operations

The Stiefel manifold V„,, r, consists of orthogonal matrices with
m  rows and k  columns. Let

p , q : 1 7 ,0 —>

denote the operations of changing the sign of a row, column respec-
tively . The map, of course, depends on the choice of row or column,
but the free homotopy class is independent of this choice, as pointed
out in §1 o f  [3] . Basepoints can be ignored when m > k +  2 , since

the manifold is simply-connected, and then the induced automor-

phisms

P*, q * : nr(

are defined without ambiguity. The automorphism c* o f  gr( V.,k)
is defined, as a t  the end of the last section, for m >  k :  when
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n z >k +2  we have the relation

(6.1)c = p q .

The purpose of the present section is to determine these  automor-
phisms when m  is even and k=2.

Let 7r,, (  V , 2 )  (m  even) denote the homotopy class of the
cross-section g : S " '' -  V , , 2  whose value on

x = (x1, •-., x ) E S '" 1

is the transpose of the matrix

( X2X l . — X,,,X ,,,1

Let denote the class of the inclusion of the (m -2 )-
sphere V _ 1 ,1 c  V ,,,,2. Then every element of i r , (  V , ,2 )  can be expres-
sed uniquely in the form

(6.2)

whereO E i r , ( S " ' 2 ) ,  E i r ( S " ' 1 ).

Clearly c,, leaves a,,, fixed. We shall prove that

(C,f = —3,, (m=_2 mod 4),
(6.3)

= — + o ( m O  mod 4),

where generates ,,, 1 (S" 2 ). In  v ie w  o f (6. 2) this determines c,,,
in all dimensions.

Our proof of (6. 3) will be by induction on m , raising the value
by multiples of 4. The result is elementary when m = 2. Consider
the case m = 4. T h e  automorphism  c  acts on 0 4  so that p C  =  Cp,

where p: O 4 — V 4 , 2 .  The group i r 3 (O 4 ) is freely generated by ele-
ments ,  S such that

P* 4°2, P*1 4

where i , ir 3 (S 2 ) denotes the Hopf class. Now c , 3 = - 9 ,  by (22. 7)
o f  171, and so
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C*,e 4= C*P* = P*CJ' = P*ce P*I3  =  r —

This proves (6 . 3 ) when m =4. Recall that c  ac ts  on 0 4  through
conjugation by a diagonal matrix of determinant — 1 . Hence

04-->04

where c' acts through conjugation by the non-trivial element of 0 .
Now ic e  p p, where p  changes the sign of the first row o f V4,2, and
so pp= pC = C p. Since = /9* it follows that

(6. 4) PO4 = C*4 —  $4,

To establish (6 . 3 ) in general we use the intrinsic join structure. It
is easy to check that

a)
(6.5)

b )

where m, n are even and where m > 4  i n  ( 6 .  5 a ) .  T ake n = 4 in
these relations. Directly from the definition of the intrinsic join we
have that

e 0 , ---c*(194*„,)= (q04)*( c*19.)

=194*(c*Q.),

b y  ( 6 .  4 ) .  Suppose now that (6 . 3 )  is  t ru e  fo r  some value of m.
We express 4*(c*49,„) in standard form, using  (6 . 5 )  and the ele-
mentary properties of the intrinsic join. T h e  re su lt is  (6 . 3 )  with
m+ 4  in place of m .  By induction, therefore, (6 . 3 )  is established.
A  similar argument shows that

(6. 6) P>N3.= ■s.+ a. ° 77

for all even values of m  such that m> 4.
Let m  be even and let m> 6. Then the only elem ents of

7c„,_4 (  V .,2 )  which are representable by cross-sections are 13„, and
(3 .+a„, 0 72=  4  , s a y  B y  (6 . 3 ), the autom orphism  —c* leaves these
elements fixed when m-=-2 mod 4 , and interchanges them when m==- 0
mod 4. This last result is the one needed to complete the proof of
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(5. 3).

A s  another application, consider euclidean bundles over the
circle S 1 . In each dimension there is one class of orientable bundle
(the trivial class) and one class of non-orientable b un d le . A  repre-
sentative $  o f th e  la tte r , w ith dim  $ = m, can be constructed as
follow s. Let aE O , be the non-trivial element, which acts on R  by
changing the sign of the first coordinate. T h e n  $  is formed from
the cylinder R ' x  I  by identifying (x , 0 ) w ith (ax, 1) for a ll x e R '.

The bundle structure of $, over 5 1 = / / i ,  is defined in  th e  obvious
w a y . Now a acts on  V ,  through 0,— k , by changing th e  sign of
the first ro w . We construct $1 from V„,,,, x I  by identifying ( y, 0)

with (ay, 1 ) for a ll y e V„,,,,. From first principles (without using
(2 . 2 )) a  cross-section o f  $1 over $1, s a y  o f  ty p e  g:
determines a free homotopy of g  into g ',  where

g 'x =ag (x a - 1 ) ( x G S - 1).

Let m  be even an d  le t  m >k + 2. Then the existence of such a
fre e  homotopy is  eq u iv a len t to  the condition p o = — ,  where
(3E n„,( 17„,. k )  is  the class of g .  When k=2 we obtain a  contradic-
tion from this whatever the choice of [3, by using (6 . 6 ). Therefore
$1 does not adm it a cross-section over $1 for  k =2, a n d  hence does
not do so for k > 2.

These results enable u s  to compute th e  mixed product with
(36en5(17 6,2) of an arbitrary element OE np(04). I assert that <0, i96>
= 6 0E6+' for some element (YE nfi + 4 (S 4 ). In  fac t e'= Jo, a s  shown
in  §3, but this w ill not be used. F irst take p = 3  and consider the
generators a ,  e n3(04), as before. W e can p u ll 0  b ack  to  7r3( U2)
and j , b ack  to  ir5 (1/3 / U2 ). H ence w e can p u ll <0, ,e6 >  back to
n8(U3/ U2) , and the assertion fo llo w s  a t  once in t h i s  case. Now

c*(3 = a— i 3 , and c , =  — (36 , by (6 . 3 ). Therefore

<a, 06> = <0, 06> + <C*0, 06>

= <0, 06> — c*<0, 0a>.
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Since the assertion is true for 0 = j3 it follows that the assertion is
tu re  for 0 = -a . By n atu ra lity  the assertion remains true i f  we com-
pose either o f these generators with an element o f n1 (S 3 ). Since
an arbitrary element 0 E7r,(0 4 )  can be expressed in the form

ce0ç ±j3 0 r (g0,11PE np(S 3 ) )

it follows that <0, 196> = i960E0', as asserted. Consider the direct sum
decomposition

n,(V6,2).-=---- -- , ( S 4 ) nr(S 5 )

determined by 13 . W e  have shown that <0, has no component in
the first summand and so, as an application of (4 . 4 ), we obtain

Theorem 6. 7. Let E be an R 6 -bundle over S+ 1 ,  with group
reduced from 0 6 to 0 4 . Then E2 admits a proper cross-section over
E, of type

7. Variation of the obstruction

We focus our attention on the case of R"-bundles over SP',
with group reduced from 0„ to 0 „ , ,  for k > 2 . I f  OE 7-cp(0„_,) then

Kr* O, c„_i > = Jr* 8 = Ek- ' Jo ,

by (3 . 4 ) and the properties of the J-hom om orphism . The obstruc-
tion to the existence of a proper cross-section of type r ,  as defined
in §4 , can therefore be written as

(7. 1) Ik(0, r> — roEk - iJo ,

where r V „ , ) .  Clearly the obstruction is linear in  O. W h a t
happens when we vary the choice of r?

Suppose that V„,,, admits a cross-section over S" - - 1 . Then

6 * :  r( V.-1,k-1) — >7rr(

is a monomorphism. If r ,(i=  0, 1) is the class of a cross-section then

ro —  = --- a*a, where tr rc„._,( V „ _ ,, , , ) .  By (3 . 3 a ) we have
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<0, To> —  <O, ri> <O, a*a> = 0.*<0 , tv> ,

and since k > 2  we have

ro o Ek - i j oE k - i J o_  ( a * c ) 0  Ek- i J o _ 6 * ( a .E k - 7 0 ) .

By (7. 1), therefore,

(7.2)* ( 0 ,  T o )  — *(O, ri)— M P' (0 i ev)

where A pi(0, a) = <0,a> — aoE k - 1 0 .

In particular, take k =2  and n > 6, and take a =72, the generator

o f n„_1 ( S " ' ) .  W e have

<0, 72> = <0, e2> 0 EP72= JO. E 'v  ,

by (3. 4), and so

(7. 3) 11/(0, 72) = J00E P72-720E J0 .

For example take 0 =  E n 3 (0 4 ) , a s  in  §6, so that JO= v 7r7 ( S 4 ) ,

where y denotes the Hopf class. Then (7. 3) gives

, P1 (13, 7y) =1,0E 372— v0E1d .

Now r o ( S 4 ) =  Z 2 +  Z 2 (s e e  [8 0 ,  with one summand generated by

v0E 372 and the other by 720E1). Therefore '4,1 (0, .)2) *0 in  this case,

and so we obtain the following conclusion from  (4. 3) and (7. 2).
Consider the Hopf fibration o f  S 7 o v e r  S4 , a s  a  3-sphere bundle.

T a k e  to  b e  the Whitney sum o f th e  associated /24 -bundle and a

trivial R 2-bundle. Note that admits almost-complex structure. In

n s(V 6 ,2 ) there are tw o  classes of cross-section. Our conclusion is
that E2 admits a  cross-section over E of one type but not of the

other.
T h e  methods we have been using seem inadequate for the

determination of the obstruction beyond a few special cases. In a
subsequent paper a  different method will be used to compute the
mixed product, and hence the obstruction, in many more cases.
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