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Introduction

Among local rings there is a hierarchy: regular complete inter-
section Gorenstein M acaulay. These concepts a re  extended to
non-local rings; for example a ring A  is regular if for all prime ideal

of A, Ap is  a  regular local ring.
In this paper, we shall investigate if these properties are conserved

under tensor product operations. It is well known that the tensor
product B O A C  o f  regular rings are not regular in  general, even if
we assume A, B  and C are fields.

But it can be shown that under a  suitable condition tensor pro-
ducts of regular rings are complete intersections. For Macaulay rings
and Gorenstein rings, it is proved implicitly in  [2 ] , that tensor product
B OAC of Macaulay rings are again Macaulay if we assume B  is  A-
flat and C  is finitely generated over A, and we shall show that the
same is true for G orenstein rings.

Part I, which is the main part of the present paper, was written
by the first author. If one assume that A is  a field, then the treat-
ment is much simpler and we have a similar result under a  weaker
finiteness condition. The case was given by the second and the third
authors and is  the contents of Part II. On the other hand, the case
o f complete tensor products over a field was observed by the last
author, who wrote Part III.
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These three groups o f authors obtained results rather indepen-
dently. But, because of the close relationship among these results,
the authors put their manuscripts together and obtained the present
paper.

P a r t  I

1. Notations and quoted theorems

A ring means always commutative Noetherian ring with unit.
A prescheme is always locally Noetherian prescheme.

(1. 1) Definition. A local ring A  is  a  complete intersection if
there exist a regular local ring B  and B-sequence (x1, • • • , xd )  such
that A B/ (x 1 , • • • , xd ).

(1. 2) Definition. A local ring A  is an S-complete intersection if
its completion Â  is a complete intersection in the sense of (1. 1).

(1. 3) Proposition. (Scheja [5] ) I f  A  is  a  homomorphie image
o f  a regular local ring, then A  is  a complete intersection <=> A  is
an S-complete intersection.

Henceforth, we shall use the word "complete intersection" for
the sense of S-complete intersection and write C.I. for short.

(1. 4) Proposition. (Scheja [5] ) I f  A  is  a lo cal rin g  an d  (x 1 ,
•••, x ,)  is an A -sequence, then:

A  is  a C.I. <=> A/ (xi, xd) is  a  C.I.

The definitions and properties of Macaulay rings and Gorenstein
rings are found respectively in [6] and [2] . W e do not refer to
them, now.

(1. 5 )  Definition. A prescheme (X , O x ) is  re g u lar (resp. C. I.,
Gorenstein, Macaulay) if for every x F X , the local ring 0 ,  is regular
(resp. C.I., Gorenstein, Macaulay).

(1. 6) Definition. A  ring A  is  re g u lar (resp. C.L, Gorenstein,
Macaulay) i f  Spec (A ) is regular (resp. C.I., Gorenstein, Macaulay).
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(1. 7 )  Definition. A  morphism of preschemes f :  X — .Y  is Goren-
stein (resp. Macaulay, C.L ) if  f  is  f la t an d  if  each fibre f - 1 (y)
= X  x y S pec (k (y )) is Gorenstein (resp. Macaulay, C.I.).

2. The theorems and proofs

Theorem 1. Let (A, n i)  and (B , n ) b e  local rings, f  : A --43
a local homomorPhism, m aking B  a flat A-module. Then:

(1) B  is  Macaulay<=>A  and B /m B  are Macaulay.
(2) B  is  Gorenstein<=>A and B /m B  are Gorenstein.
( 3 )  A  is regular and B /ntB  is  a C.I.<=>B is  a C.L

Theorem 1'. I f  f : is  a f lat and surjective morphism
of preschemes, then:

(1)' X  is  Macaulay<=>Y  and f  are Macaulay.
(2)' X  is  Gorenstein<=>Y  and f  are Gorenstein.
( 3 ) '  I f  Y  is regular and f  is  C.L , then X  is  C.1.

(The condition " f  is surjective" is necessary only to deduce that Y
is Macaulay (resp. Gorenstein) from X  is Macaulay (resp. Gorenstein)
in  (1 ) ' and (2)').

P ro o f . (1 )  is in  [2 ]  (VI. 6. 3. 5.).
( 3 )  A s A  is regular, in is generated by an  A-sequence (x1, • • •, xd)
(d= dim A ) .  As f  is  f la t, (x1, ••-, x d )  is  a  B-sequence. By (1. 3),
B  is a  C.I.<=>B/mB is a  C.I.

( 2 )  We prove th e  assertion by induction on d= d im (B /m B ) . By
(1 ) , we may assume A, B  and B /m B  are Macaulay.

Case 1. d= O.

Let q be an ideal of A , generated by a  parameter system. As
A  is  Macaulay, ci is generated by an A-sequence. A s B  is A-flat,
an A-sequence is also a  B-sequence. So, A  is Gorenstein<=>A/q is
Gorenstein, and B  is Gorenstein<=>B/qB is Gorenstein.

Thus we may assume dim A = 0  and dim B = O. A s dim A =0 , A
is  Gorenstein<=>0: -__A /m <=>H om n(A /in, A )=A /in. Now, let us
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assume A  and B /m B  are G orenstein. Then:

Horn., (B/n,B) HomB (B/n, HomB (B /mB, B))
=Hot% (B /n,HomA (A/ at, A )0 A  B)

HomB (B /n , A /m 0 A  B)
HomB (B/n, B /

Thus B  is Gorenstein. Conversely, let us assume A  or B/mB is not

Gorenstein. Then Hom B At t B (B  / 11 ) b (B/rt)P, Hom A (A/m, A)
(A/ m)a , pq>1. Then by the same argument as above, HomB (B /n ,B )

- -=- - - (B/n)" and B  is not Gorenstein.

Case 2. d>0.
A s  B/mB is  Macaulay and d im (B /m B )> O , we can find an

element x B  such that x  is not a zero divisor in  B/mB. Then by

[2] ((Oui. 10. 2. 4.) x  is not a zero divisor in  B  and ff=B lxB  is A-
flat. B y  the induction hypothesis, .B is  Gorenstein<=>A and R. /m B
are Gorenstein. But as i i / m k - - -=- (B /m B )/x (B /m B ), I3- /trtill is Goren-
stein<=>B/n1B is Gorenstein. Thus B is Gorenstein<=>ff is Gorenstein
<=>A and T3/mT3 are  G orenstein. <=>A and B /m B  are  Gorenstein,
and we are done.

R em ark. It is clear that in the proof of ( 3 ) ,  the following is
included:

( 4 )  A  is regular and B  is a  C.I. B /m B  is a  C.I.

Corollary 1. I f  A  i s  a Gorenstein ring (resp. is  a C.I.), so
is  A [X ].

P ro o f .  T h e  natural map Spec (A[X])---> Spec ( A )  is clearly
G orenstein. A s fo r  th e  C.I. property, we may assume A  is  local,

B  is regular and (xi, • • •, xd) a  B-sequence. Then
A [X]._- - -_- B [X ] /(xi, •••, x d )B [X ], B [X ] is regular and (xi, •••, xd) a
B [X] -sequence. So A [X ]  is a  C.I.

Corollary 2. If  A  is  Gorenstein ring (resp. is  a C.I.) having
a subfield k, and if K is  a f initely  generated ex tension of k, then
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A O ,If  is again Gorenstein (a C.L).

Corollary 2'. I f  f : X — .Y  is  a Gorenstein morphism (resp.
is  a morphism o f C.L ) and if is  a morphism of finite type,
so  is f or, ) :

Pro o f . By the induction on the number of generators of K  over
k , we may assume K =k ( x ) .  I f  x  is transcendental over k , then
A O ,K  i s  a  localization o f A [X ] and our assertion follows from
Corollary 1. I f  x  is algebraic over k , then / f (X ) )  and
AO,K=-24 [X ] ( X ) A  [ x ]  f (X ) is  n o t a zero divisor in  A [X ]
and again our assertion follows from Corollary 1.

Theorem 2. Let B  and C be A -algebras, B is flat over A and
C is f initely  generated over A. Then:

(1) If A, B  and C  are Gorenstein, then BOA C is Gorenstein.
(2) I f  B  is  a C.I. and A and C are regular, then B OA C is

a C.I.

Pro o f . By Theorem 1 ,  the m orphism  Spec(B) — Spec(A) is
Gorenstein. So, by Corollary 2', Spec(BOAC)—Spec(C) is Gorenstein.
And again by Theorem 1 , the theorem follows. The same argument
for the C.I. case.

R em ark s . 1. The assertions of Theorem 1 ;  "A  and B /m B  are
Gorenstein B  is Gorenstein" is  in Hartshorne [3] , and "B  is Goren-
stein A  i s  Gorenstein" i s  in  Iversen [ 4 ] .  The proof is different
from ours.

2. In the notations of Theorem 1 ,  w e shou ld  like to  assert;
"B  is  a C.I.<=>A and B /m B  are C .I ."  By means of the characteri-
zation of C.I. in [5] , the assertion is valid, for example, if we assume
n tB =  n . But we cannot determine the general case, yet.

P a r t  I I

In th is part we shall prove the following

T heorem . Let A and B  be two Gorenstein (resp. Macaulay)
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rin g s containing a common field K . A ssum e that A®,,B  is no-
etherian and A /at is f initely  generated over K  f o r each maximal
ideal m o f  A . Then A®,,B is also a Gorenstein (resp. Macaulay)
ring.

From now on, a "ring" always means a commutative noetherian
ring with an identity element.

We begin with an easy

L e m m a . Let R be a 0-dimensional local ring w ith the maximal
ideal m . Then the following conditions are equivalent:

(1) R  is  a  Gorenstein ring, i.e. 0 is irreducible.
(2) 0 :
(3) There exists a large*) principal ideal aR such that (0 : a)

is irreducible.

P ro o f . (1) (2) : Let x and y  be non-zero elements in (0 :
Then x R n y R *0 . If rx=sy is  a non-zero element in  xRnyR, then
s  and r  are  units o f R  and hence x R = y R . Therefore (0 : in )  is
simple.
(2) (3) : Obviously (0 : ni) i s  the required principal ideal.
(3) (1) : I f  0  is reducible, then 0= xRrlyR fo r some non-zero
elements x, y  of R .  Since (0 : a) = (xR : a) fl ( Y R : a)  and (0 : a)
is irreducible, we may have (0 : a) = (xR : a ) .  It follows easily that
a R n xR = 0 . Thus aR being large, xR=0 which is a contradiction.

Proposition 1. I f  R  is  a Gorenstein (or M acaulay ) ring, so
is  the Polynomial ring  R [X 1 , —,

Pro o f . In the case of Macaulay rings, this is well known ( [6]).
Also for Gorenstein rings it seems to be known, but, having been
able to find no reference, we shall sketch a proof which is a  modifi-
cation of one in Macaulay case. First we may assume n=1 . Let Di
be a maximal ideal of R [X ] .  We may further assume that R  is  a

*) A n ideal a o f R  is called la rg e  if  R  is  an  essential extension of a, that is
ar -lb -0  for each non-zero ideal 11 of R.
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local Gorenstein ring with the maximal ideal R .  The image
of M  in  (R / m )[X ] i s  generated by a n  element f  modulo m  of
(R /m ) [X ], where f  is an irreducible monic polynomial in R [X ] and
a ll  o f i t s  coefficients are units o f R .  Then we have M =m R[X ]
+  R [X ]  .  L et q= (ai, • • • , ad) R  b e  a n  irreducible ni-primary ideal
generated by a  system  of parameter in  R .  Now we have to prove
th a t (q R [X ] +  R [X ]) is irreducible. C h an g in g  R  in to  R/ q, we
may assume that R is  0-dimensional and q = 0 .  Therefore it is suffi-
c ien t to  prove R[X] /9i1= ( R[X] : an) /  R [X ] .  B y  th e  above
Lemma, R/m-=:(0: ni) =aR and (R /m  [X] =aR [X ] as R[X] -modules.
Under this isomorphism, f  modulo m  corresponds to  af. Hence
R[X] /T1= (R /m ) [X] / (f  modulo m ) (R /m ) [X]=aR[X] / a f R[X]
= aR[X] / (aR[X] n fR [X ] ) =  (aR [X ] +  R [X ]) /  R [X ] . On the
other hand , w e h av e  a R [X ] + fR [X ]= (fR [X ] : VS). For, let
h E (fR [X ] : D I) and h = fg + r , deg r < d e g f .  Then m rEfR [X ]
for each M E ni. C o m p a ir in g  the degrees, we have mr=0, and hence
r  (0  : m )R [X ]= a R [X ], th a t  is  h E a R [X ]+ fR [X ].  Therefore
(fR [X ] :  an) g a R [X ]+ fR [X ].  The opposite inclusion is obvious.

Proposition 2. L et R be a Gorenstein (resp. M acaulay ) ring
containing a  f ield K , an d  le t L  be a f initely  generated extension
f ield over K . T h e n , R OK L  is also a  Gorenstein (resp. Macaulay)
ring.

P ro o f . B y induction, w e m ay assume that L  i s  a simple ex-
tension field over K .  Say L= K ( a ) .  When a  is transcendental over
K , w e have RO KL=R [X ] s ,  where S  i s  a m ultiplicative set in
R [X ] consists of the non-zero elements of K [X ] .  When a  is alge-
braic over K , w e have ROKL-- - - R [X ]/ fR [X ], where f  i s  a  non-
zero element in  .K [X ] .  Therefore th e  result follows immediately
from Proposition 1.

Proof  o f  th e  Theorem:
L et T Z  b e  a m axim al ideal o f  AOKB. W e m ust prove that

(AG)KB),J )1  i s  a local G orenstein (or M acaulay) ring. Without loss
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of generality, we may assume that A  and B  be local rings with the
maximal ideals nt and II respectively and WM A = nt, 9NriB=n.
Suppose dim  A > l, and a  i s  non-zero divisor in in , th en  a0 1  is  a
non-zero divisor in  9..T1 and AOKB/(001)(AOKB)=-- - (A/aA)OKB.
By induction, we may assume that dim A = 0 .  Similarly we may also
assume that dim B = 0 .  Since dim(AOKB) =0, we need nothing to
say in the case of Macaulay rings. In the Gorenstein case, by Lemma

: n t)  and (0 : i n )  i s  large in A .  Hence (A/m0,,B) siit

(A ®  B )  (at® K B) git S  isomorphic to a  la rge  principal ideal

a(AOKB) sjs o f  (A 0 ,13),J il . On the other hand, (A/mO K B) 93t i s  a

0-dimensional Gorenstein local ring by Proposition 2, hence ((0 : a)
in (AO K B),m )=  (1110 ,B ) aTt is irreducible. Therefore again by Lemma,

(AO K B) s  is Gorenstein.

R e m a rk : The assumption in Theorem that AO KB is noetherian
and A/nt is finitely generated over K  for each maximal ideal nt of

A , is  satisfied, for instance, when A  i s  a ring of finitely generated
type over K , that is a quotient ring of a finitely generated ring over
K.

P a r t  I I I

Let (R,V,,, 9.712, • • • , ( R ' ,  9g , • • • , a l() are  semi-local rings

which are modules over a field k .  Set T = R O ,R 1 . If one of R/9N1

and R' /ajr, is finitely generated over k , th en  T / (931,T H-V,R,T) is
noetherian and every prime divisor o f Ç.IYZ, T+ K T  i s  a minimal

prime divisor. Then we see the following lemma.

L em m a 1 . T/(9)11 T+931, T) = (R/9,10 k (R 7 K )

Now, we assume that R , R ' are the Gorenstein rings and that
t1, t2, • • • , t, and t;,t, • • • ,t: are the system o f parameters, in the sense
th at E t ,R  and E t :4 r  are the prim ary  ideals belong to 1J1, and

respectiv ely . Then k= R/ (t i , t2, •••, tr )  and T?'=./?'/(t;.,
have only one minimal ideals W, and 9Z, respectively. W e denote
the local tensor product of R  and R ' by  Rx R'.
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Lemma 2 .  N otation as above. If  R 19J-6  is finitely generated
over k , then every minimal ideal in  k x R  is contained in the ideal
(R 096) R  x  R ' generated by VZ,096= { EnOn'InE96, n'E 9'6} .

P ro o f. W e see that TZ,(EK  g  R a R 'g R x  R', a n d  see that
R O M . ; is  an ideal in Re), R '.  Now we consider the ideal generally
by 9 ,O9V;  in  R xr?' which is denoted by (91,0 g )  R x R'. We identify
maximal ideals git, and an; with subsets all,0 1  and 109N , in RO„R',
respectively. Let c =  ap011„ where a, E /7 and I f  e ( 1 0 0 )
= 0  and c(T 1 ,01) = 0  then CE . Because; c(109.% ) =0 means
(E ap0b,,) (109)0=0 namely Ea,0b,m' =0  for all m' E an; . Now,
let a, a, • • • , a, be the linearly independent basis for E a, R , then we
can see a„.,_,=E a B A,a  (A m E k). Therefore Ea,0b,=a1Ob1+a2Ob 2„
±  •  •  •  +  anO bu+ (E  A to® b „÷ I ) =Ed,Ob; , thus we may assume that/ /3-1 p =i

all the a, are linearly independent over k .  Since E a,0b, m ' =0, and
since a, (p=1, 2, •••, u )  are the linearly independent we see that

bprn'=0 which means bpEÇ.TC,. Similarly we get a,E9i, and therefore

c = E ap ® b p  Wi ØSN; . Thus, i f  w e assume that
-R o l?  is contained in a minimal ideal o f koR
kok-_, -kxr? ,  is  an injection and since k x k  is
of k O k , every minimal ideal of Px k ,  lies over
k orr  and we have the result.

the element c  of
then cEVZ; 09Z .

a ring of quotient
a minimal ideal of

(q.e.d.)

Lemma 3. With the same notation as above, (9 6 0 g )R x R '
x (R19Yri )  as Rxk '-m odules.

P ro o f. Let a be a non-zero element in Then 0 * a k c 9 1 1 .
is  a minimal ideal in  T? and therefore aR=Vi i . On the other

hand an i 0  an d  therefore S i m i l a r l y  w e  g e t  VZ;— / r /9 3 ,
therefore (VZ,OVCJ ) k x k =- - - (R/aTti ) x  (R 19)1) as kx R'-modules.

(q.e.d.)
Now we see that R  x  = Lal • -EBL,, where LOE are the local

rings and d  is the number of prime divisors of zero.



422 K . Watanabe, T. Ishikawa, S . Tachibana, K . Otsuka

L em m a  4 . L et f f t be one of  m ax im al ideals in x k and p«
the m axim al ideal o f  L a. T hen w e can see that there is a suitable
[3 such that (R x  k ) 9 1 = (L 34,2 .

Pro o f . We can assume th at gft= LieL2 ED • • • /43-1(131)30)-La+i@
• • • eL, ,  therefore ( x ) =  (L 3 ) pfl for suitable 19.

L e m m a  5 . L et OR ,OV Dk x R' = NiEDN2e• • •@Nd , then each
Na contains a unique minimal ideal in La, and conversely, a minimal
ideal in  -1?- xT?' is contained in one of  N ,9 f o r suitable 8.

P ro o f .  By Lem m a 3 ,  w e  se e  th a t (sTZ1O 9; ) X k=(R/9...k)
x (R '/9 J) as k x '-modules. Since R /VIZ, and R' /93r, are fields (R79Jr,
being finitely generated), we see that (R /9R ; ) x  (R '/9K ) is Gorenstein.
Therefore each Na contains a unique ideal in L « .  A minimal ideal
in R x  R ' is contained in  OR,OWDR x R ', hence contained in  some
N . (q.e.d.)

Let be the Jacobson radical of R  x  R ' and set a = n„ ,;5'". Then
complete tensor product R JR ' = (the completion o f R x R' / a )  i s  a
semi-local ring, because every maximal ideal of R R '  h a s  a finite
basis.

Thus, we can get the next theorem.

T h eorem  6 . ROR' is  Gorenstein rin g , prov ided that R' /931,
is f initely generated f o r every j.

C o ro lla ry  7 . Under the same assumptions as above, let R " be
the sem i-local ring w hich is a dense subspace o f  R O R ', then R"
is  Gorenstein.
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