A geometric meaning of a concept of isotropic Finsler spaces

By
Makoto Matsumoto

(Received June 30, 1969)

A concept of an isotropic Finsler space was introduced by H. Akbar-Zadeh [1]. In order to do so, he gave tensor equations, similar to the equation satisfied by the curvature tensor of a Riemannian space of constant curvature. The purpose of the present paper is to show a geometric meaning of the concept.

In a previous paper [4], we defined a lift \bar{G} of a Finsler metric G on a differentiable n-manifold M to the tangent bundle $T(M)$ over M with reference to a non-linear connection N in $T(M)$ (on M), which is a direct generalization of the idea of S. Sasaki [7] in the case of a Riemannian metric. It seems, however, to me that the Riemannian metric \bar{G} on $T(M)$ is not useful to consider a geometric meaning of the concept of isotropy. We shall introduce, in the following, another lift G^{*} of G to $T(M)$, and then it may be said that the isotropy is analogous, in a sense, to a concept of a space of constant curvature with respect to G^{*}.

1. Let $T(M)$ be the bundle of non-zero tangent vectors to a differentiable n-manifold M, and $\tau: T(M) \rightarrow M$ be the projection. A concept of a vertical lift is now well-known [5], and we denote by $l_{y}^{v} X$ the vertical lift of a tangent vector $X \in M_{x}$ (tangent space to M at a point x) to a point $y \in \tau^{-1}(x)$. If a vertical vector $\bar{X} \in T(M)_{y}^{v}$ (vertical subspace of the tangent space $T(M)$, to $T(M)$
at a point y) be given, there exists a unique tangent vector $X \in M_{x}$, such that $l_{y}^{v} X=\bar{X}$. Following to P . Dombrowski [2], we shall write $X=K \bar{X}$.

Let $F(M)$ be the Finsler bundle of M [6], that is, the bundle $\tau^{-1} L(M)$ induced from the bundle $L(M)$ of linear n-frames of M by the projection τ of $T(M)$. We consider the Finsler metric tensor field G, derived from a Finsler fundamental function in the usual way. G is thought of as a mapping $F(M) \rightarrow V^{*} \otimes V^{*}$ [5], where V^{*} is the dual space of a real vector n-space V, and hence $G(u)\left(v_{1}, v_{2}\right)$ ($v_{1}, v_{2} \in V, u \in F(M)$) is a real number. It is remarked that the point u is a pair (y, z) of points $y \in T(M)$ and $z \in L(M)$, such that $\tau(y)=\pi(z)$, where $\pi: L(M) \rightarrow M$ is the projection. Therefore, if we consider two tangent vectors $X_{1}, X_{2} \in M_{x}$ and a point $y \in \tau^{-1}(x)$, then the real number $\underline{G}\left(y ; X_{1}, X_{2}\right)=G(u)\left(z^{-1} X_{1}, z^{-1} X_{2}\right) \quad(u=(y, z))$ is obtained, independent of the choice of a frame $z \in \pi^{-1}(x)$. In the following, we shall use the letter G itself, instead of \underline{G}. Thus, $G\left(y ; X_{1}, X_{2}\right)$ is the scalar product of X_{1} and X_{2} with respect to the element of support y, in the sense of E. Cartan.
2. Assume that a non-linear connection N be given in $T(M)$ [5], and denote by $l_{y} X$ the horizontal lift of $X \in M_{x}$ to $y \in \tau^{-1}(x)$ with respect to N. We shall recall here a concept of the lifted Riemannian metric G of \bar{G} with respect to $N[4]$, which is a Riemannian metric on $T(M)$, defined by

$$
\bar{G}\left(X_{1}, X_{2}\right)_{y}=G\left(y ; \tau X_{1}, \tau X_{2}\right)+G\left(y ; K v^{\prime} X_{1}, K v^{\prime} X_{2}\right)
$$

where $X_{i} \in T(M),(i=1,2)$, and $v^{\prime} X_{i}$ are the vertical parts of X_{i} with respect to N.

Consider a frame $z \in \pi^{-1}(x)$ at a point $x \in M$, and then we obtain a frame $\mathscr{D}_{N}(u)=\left(l_{y} z, l_{y}^{v} z\right), u=(y, z) \in F(M)$, at a point $y=\tau^{-1}(x)$ [4]. Let $g_{a b}, a, b=1, \cdots, n$, be the components of G with reference to z, and then components $\bar{g}_{\alpha \beta}, \alpha, \beta=1, \cdots, 2 n$, of \bar{G} with reference to $\varpi_{N}(u)$ are given by

$$
\begin{aligned}
& \bar{g}_{a b}=g_{a b}, \quad \bar{g}_{a(b)}=0, \quad \bar{g}_{(a)(b)}=g_{a b}, \\
& a, b=1, \cdots, n, \quad(a)=n+a, \quad(b)=n+b .
\end{aligned}
$$

Next, consider a local coordinate $\left(x^{i}\right), i=1, \cdots, n$, of $x \in M$, and then we have a local coordinate $\left(x^{\lambda}\right)=\left(x^{i}, y^{i}\right), \lambda=1, \cdots, 2 n$, of $y=\tau^{-1}(x)$, such that $y=y^{i}\left(\partial / \partial x^{i}\right)_{x}$. Then, the lift $l_{y} X$ of X $=X^{i}\left(\partial / \partial x^{i}\right)_{x} \in M_{x}$ is expressed by

$$
l_{y} X=X^{i}\left(\frac{\partial}{\partial x^{i}}-F_{i}^{j}(x, y) \frac{\partial}{\partial y^{j}}\right),
$$

where functions $F_{i}{ }^{j}, i, j=1, \cdots, n$, are called the parameters of the non-linear connection N. Let $g_{i j}$ be the components of G with reference to (x^{i}), and then the components $\bar{g}_{\lambda \mu}, \lambda, \mu=1, \cdots, 2 n$, of \bar{G} with reference to $\left(x^{\lambda}\right)=\left(x^{i}, y^{i}\right)$ are given by

$$
\begin{aligned}
& \bar{g}_{i j}=g_{i j}+g_{k l} F_{i}^{k} F_{j}^{l} \quad \bar{g}_{i(j)}=g_{j k} F_{i}^{k}, \quad \bar{g}_{(i)(j)}=g_{i j}, \\
& i, j, k, l=1, \cdots, n, \quad(i)=n+i, \quad(j)=n+j .
\end{aligned}
$$

3. Now, we shall introduce another lift G^{*} of a Finsler metric G to $T(M)$ by the equation

$$
\begin{align*}
G^{*}\left(X_{1}, X_{2}\right)_{y} & =G\left(y ; \tau X_{1}, \tau X_{2}\right)+G\left(y ; \tau X_{1}, K v^{\prime} X_{2}\right) \tag{1}\\
& +G\left(y ; K v^{\prime} X_{1}, \tau X_{2}\right)+G\left(y ; K v^{\prime} X_{1}, K v^{\prime} X_{2}\right) .
\end{align*}
$$

The symmetric tensor field G^{*} of (0,2)-type on $T(M)$ will be called the natural lift of G with respect to the non-linear connection N. It follows from (1) that

$$
\begin{align*}
& G^{*}\left(l_{y} X_{1}, l_{y} X_{2}\right)_{y}=G\left(y ; X_{1}, X_{2}\right), \\
& G^{*}\left(l_{y} X_{1}, l_{y}^{v} X_{2}\right)_{y}=G\left(y ; X_{1}, X_{2}\right), \tag{2}\\
& G^{*}\left(l_{y}^{v} X_{1}, l_{y}^{v} X_{2}\right)_{y}=G\left(y ; X_{1}, X_{2}\right),
\end{align*} \quad X_{1}, X_{2} \in M_{\tau(y)},
$$

which shows that, in terms of the above frame $\Phi_{N}(u)$, the components $g_{\alpha \beta}^{*}$ of G^{*} are given by

$$
\begin{equation*}
g_{a b}^{*}=g_{a b}, \quad g_{a(b)}^{*}=g_{a b}, \quad g_{(a)(b)}^{*}=g_{a b} . \tag{3}
\end{equation*}
$$

Next, we consider the components $g_{\lambda \mu}^{*}$ of G^{*} with reference to
the local coordinate $\left(x^{\lambda}\right)=\left(x^{i}, y^{i}\right)$. If we pay attention to the fact that $K v^{\prime}\left(\partial / \partial x^{i}\right)_{y}=K\left(F_{i}^{j}\left(\partial / \partial y^{j}\right)_{y}\right)=F_{i}^{j}\left(\partial / \partial x^{j}\right)_{x}, x=\tau(y)$, we obtain

$$
\begin{aligned}
g_{i j}^{*} & =G^{*}\left(\left(\partial / \partial x^{i}\right)_{y},\left(\partial / \partial x^{j}\right)_{y}\right) \\
& =G\left(y ;\left(\partial / \partial x^{i}\right)_{x},\left(\partial / \partial x^{j}\right)_{x}\right)+G\left(y ;\left(\partial / \partial x^{i}\right)_{x}, F_{j}^{k}\left(\partial / \partial x^{k}\right)_{x}\right) \\
& +G\left(y ; F_{i}^{k}\left(\partial / \partial x^{k}\right)_{x},\left(\partial / \partial x^{j}\right)_{x}\right)+G\left(y ; F_{i}^{k}\left(\partial / \partial x^{k}\right)_{x}, F_{j}^{l}\left(\partial / \partial x^{l}\right)_{x}\right) \\
& =g_{i j}+g_{i k} F_{j}^{k}+g_{k j} F_{i}^{k}+g_{k l} F_{i}^{k} F_{j}^{l},
\end{aligned}
$$

and the similar way leads us to the equations

$$
\begin{align*}
& g_{i j}^{*}=g_{i j}+g_{i k} F_{j}^{k}+g_{k j} F_{i}^{k}+g_{k l} F_{i}^{k} F_{j}^{l}, \\
& g_{i(j)}^{*}=g_{i j}+g_{k j} F_{i}^{k}, \tag{4}\\
& g_{(i)(j)}^{*}=g_{i j} .
\end{align*}
$$

It should be noticed here that the natural lift G^{*} is not Riemannian, but quasi-Riemannian metric with vanishing determinant on $T(M)$. The following will be easily verified.

Proposition 1. With respect to the natural lift G^{*} of a positive-definite Finsler metric G, (1) the null vector on $T(M)$ is expressed by $l_{y} X-l_{y}^{v} X, X \in M_{\cdot(y)}$, (2) a horizontal vector $l_{y} X_{1}$, $X_{1} \in M_{\tau(y)}$, is orthogonal to a vertical vector $l_{y}^{v} X_{2}, X_{2} \in M_{\tau(y)}$, if and only if X_{1} is orthogonal to X_{2} with respect to the original Finsler metric G and the element of support y.
4. Let (Γ, N) be a Finsler connection of M, which has been fully treated in a previous paper [6]. Γ is a connection in the Finsler bundle $F(M)$ with the base space $T(M)$ and the structure group $G L(n, R)$, and N is a non-linear connection in the tangent bundle $T(M)$. Further, we defined [4] the bundle mapping $\mathscr{D}_{N}: F(M)$ $\rightarrow L\left(T(M)\right.$) (the bundle of linear $2 n$-frames over $T(M)$) by $\Phi_{N}(u)$ $=\left(l_{y} z, l_{y}^{v} z\right), u=(y, z)$. Hence, a linear connection $\Gamma^{\prime}=\Phi_{N}(\Gamma)$ is induced in $L(T(M)$), which was called the linear connection of Finsler type.

Here, we shall write down the parameters $\Gamma_{\mu \nu}^{\prime \lambda}$ of the connection Γ^{\prime} in terms of a local coordinate $\left(x^{\lambda}\right)=\left(x^{i}, y^{i}\right)$. Let $F_{j k}, F_{j}^{i}$ and $C_{j k}^{i}$
be the parameters of the Finsler connection (Γ, N), where $F_{j}{ }^{i}$ are parameters of the non-linear connection N, and functions $F_{j k}^{i}(x, y)$, $C_{j k}^{i}(x, y)$ are such that the respective lifts of $\left(\left(\partial / \partial x^{i}\right)-F_{i}{ }^{j}\left(\partial / \partial y^{j}\right)\right)$, and $\left(\partial / \partial y^{j}\right)$, to a point $u=(y, z)=\left(x^{i}, y^{i}, z_{a}^{i}\right)$ with respect to Γ are given by

$$
\frac{\partial}{\partial x^{i}}-F_{i}^{j} \frac{\partial}{\partial y^{j}}-z_{a}^{k} F_{k i}^{j} \frac{\partial}{\partial z_{a}^{j}} \text { and } \frac{\partial}{\partial y^{i}}-z_{a}^{k} C_{k i}^{j} \frac{\partial}{\partial z_{a}^{j}} .
$$

Then, $\Gamma_{\mu \nu}^{\prime \lambda}$ are given by

$$
\begin{aligned}
& \Gamma_{j k}^{\prime i}=\Gamma_{j k}^{i}\left(=F_{j k}^{i}+C_{j l}^{i} F_{k}^{\prime}\right), \\
& \Gamma_{j k}^{\prime(i)}=\frac{\partial F_{j}^{i}}{\partial x^{k}}+F_{j}^{l} \Gamma_{l k}^{i}-F_{l}^{i} \Gamma_{j k}^{l}, \\
& \Gamma_{(j) k}^{\prime i}=0, \quad \Gamma_{j(k)}^{\prime i}=C_{j k}^{i}, \quad \Gamma_{(j) k}^{\prime(i)}=\Gamma_{j k}^{i}, \\
& \Gamma_{j(k)}^{\prime(i)}=\frac{\partial F_{j}^{i}}{\partial y^{k}}+F_{j}^{l} C_{l k}^{i}-F_{l}^{i} C_{j k}^{l}, \\
& \Gamma_{(j)(k)}^{\prime i}=0, \quad \Gamma_{(j)(k)}^{\prime(i)}=C_{j k}^{i}, \\
& i, j, k, l=1, \cdots, n, \quad(i)=n+i, \quad(j)=n+j, \quad(k)=n+k .
\end{aligned}
$$

5. Now, we consider a pair $\left(G^{*}, \Gamma^{\prime}\right)$ of the natural lift G^{*} of a Finsler metric G, and the linear connection Γ^{\prime} of Finsler type derived from a Finsler connection (Γ, N). It follows from (3) that the Finsler decomposition ($G_{11}^{*}, G_{12}^{*}, G_{22}^{*}$) of G^{*} [5] is given by

$$
G_{11}^{*}=G_{12}^{*}=G_{22}^{*}=G .
$$

Therefore, the Finsler decomposition of the covariant derivative $\Delta^{\prime} G^{*}$ of G^{*} with respect to the connection I^{\prime} is given by

$$
\begin{aligned}
& \left(\Delta^{\prime} G^{*}\right)_{111}=\left(\Delta^{\prime} G^{*}\right)_{121}=\left(\Delta^{\prime} G^{*}\right)_{221}=\Delta^{h} G, \\
& \left(\Delta^{\prime} G^{*}\right)_{112}=\left(\Delta^{\prime} G^{*}\right)_{122}=\left(\Delta^{\prime} G^{*}\right)_{222}=\Delta^{\prime} G,
\end{aligned}
$$

where Δ^{h} and Δ^{v} denote h - and v-covariant derivatives with respect to the Finsler connection (Γ, N) respectively [3]. Thus, we obtain

Proposition 2. The linear connection Γ^{\prime} of Finsler type derived from a Finsler connection (Γ, N) is metrical with respect to the natural lift G^{*} of a Finsler metric G, if and only if (Γ, N) is metrical with respect to G.
6. With respect to the metric G^{*}, we shall denote by $|X|^{*}$ the length of a tangent vector $X \in T(M)_{y}$, and by $\left(X_{1}, X_{2}\right)^{*}$ the inner product of tangent vectors $X_{1}, X_{2} \in T(M)_{y}$.

Definition. Let R^{\prime} be the curvature tensor of the linear connection Γ^{\prime} of Finsler type on $T(M)$, derived from a Finsler connection (Γ, N). Then, (Γ, N) is called (1) h-, (2) $h v$-, (3) v-isotropic with respect to a Finsler metric G at a point $y \in T(M)$, if there exists a scalar K such that

$$
R_{*}\left(X_{1}, X_{2}, X_{1}, X_{2}\right)=K\left[\left(\left|X_{1}\right|^{*} \cdot\left|X_{2}\right|^{*}\right)^{2}-\left(\left(X_{1}, X_{2}\right)^{*}\right)^{2}\right]
$$

holds good for any tangent vectors $X_{1}, X_{2} \in T(M)_{y}$, where R_{*} is the covariant curvature tensor constructed from R^{\prime} and G^{*}, and (1) X_{1}, X_{2} are horizontal, (2) X_{1} is horizontal and X_{2} is vertical, (3) X_{1}, X_{2} are vertical, with respect to the non-linear connection N respectively.

Thus, R_{*} is defined by $R_{*}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\left(X_{2}, R^{\prime}\left(X_{1}, X_{3}, X_{4}\right)\right)^{*}$. In terms of an n-frame $z \in \pi^{-1} \tau(y)$ on M and the $2 n$-frame $\Phi_{N}(u)$, $u=(y, z)$, on $T(M)$, the components of the curvature tensor R^{\prime} are expressed [4]

$$
\begin{aligned}
& R_{b, c d}^{\prime \prime t}=R_{(b), c d}^{\prime(t)}=R_{b, c d}^{a}, \quad R_{b . c d}^{\prime(a)}=R_{(b) . c d}^{\prime d}=0, \\
& R_{b, c(d)}^{\prime \prime a}=R_{(b), c(d)}^{\prime(a)}=P_{b, c d}^{u}, \quad R_{b, c(d)}^{(c a)}=R_{(b), c(d)}^{\prime a}=0, \\
& R_{b .(c)(d)}^{\prime a}=R_{(b) \cdot(c)(d)}^{\prime(a)}=S_{b . c d}^{a}, \quad R_{b,(c)(d)}^{\prime(a)}=R_{(b) .(c)(d)}^{\prime a}=0,
\end{aligned}
$$

where $R_{b, c d}^{a}, P_{b, c d}^{a}, S_{b, c d}^{a}$ are components of the curvature tensors of (Γ, N). It then follows from (3) that

$$
\begin{aligned}
& R_{* a b c d}=R_{a b c d}, \quad R_{*(a)(b)(c)(d)}=S_{a b c d}, \\
& R_{* a(b) c(d)}=R_{*(a) b(c) d}=P_{a b c d} .
\end{aligned}
$$

On the other hand, $X \in T(M)$, is horizontal, if and only if the components of X are ($X^{1}, \cdots, X^{n}, 0, \cdots, 0$) in terms of a frame $\mathscr{\Phi}_{N}(u)$. Therefore, (Γ, N) is h-isotropic, if

$$
\left[R_{a b c d}-K\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)\right] X_{1}^{a} X_{2}{ }^{b} X_{1}^{c} X_{2}^{d}=0
$$

is satisfied for any $X_{1}{ }^{a}, X_{2}{ }^{a}, a=1, \cdots, n$. Thus we know that the concept of h-isotropy coincides with that of partial isotropy due to H. Akbar-Zadeh [1]. Next, observe that $X \in T(M)$, is vertical, if and only if the components of X are ($0, \cdots, 0, X^{(1)}, \cdots, X^{(n)}$) in terms of a frame $\mathscr{D}_{N}(u)$. Thus, (Γ, N) is $h v$-isotropic, if

$$
\left[P_{a b c d}-K\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)\right] X_{1}^{a} X_{2}^{(b)} X_{1}^{c} X_{2}^{(d)}=0
$$

is satisfied for any $X_{1}{ }^{a}, X_{2}{ }^{(a)}, a=1, \cdots, n$. Finally, (Γ, N) is v isotropic, if

$$
\left[S_{a b c d}-K\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)\right] X_{1}^{(a)} X_{2}^{(b)} X_{1}^{(c)} X_{2}^{(d)}=0
$$

is satisfied for any $X_{1}^{(a)}, X_{2}^{(a)}, a=1, \cdots, n$.
Remark. If we treat the lifted Riemannian metric \bar{G}, then the covariant curvature tensor \bar{R} constructed from R^{\prime} and \bar{G} is given by

$$
\bar{R}_{a b c d}=R_{a b c d}, \quad \bar{R}_{a(b) c(d)}=0, \quad \bar{R}_{(a)(b)(c)(d)}=S_{a b c d},
$$

which is the inconvenient circumstances for our purpose.

References

[1] Akbar-Zadeh, M. H.: Les espaces de Finsler et certains de leurs généralisations, Ann. scient. Éc. Norm. Sup., 80 (1963), 1-79.
[2] Dombrowski, P : On the geometry of the tangent bundle, J. reine angew. Math., 210 (1962), 73-88.
[3] Matsumoto, M.: Affine transformations of Finsler spaces. J. Math. Kyoto Univ., 3 (1963), 1-35.
[4] -: Connections, metrics and almost complex structures of tangent bundles, ibid. 5 (1966), 251-278.
[5] -: Theory of Finsler spaces and differential geometry of tangent bundles, ibid. 7 (1967), 169-204.
[6] -: On F-connections and associated non-linear connections, ibid. 9 (1969), 25-40.
[7] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J., (2) 10 (1958), 338-354.

Institute of Mathematics, Yoshida College, Kyoto University

