A geometric meaning of a concept of isotropic Finsler spaces

By

Makoto Матѕимото

(Received June 30, 1969)

A concept of an isotropic Finsler space was introduced by H. Akbar-Zadeh [1]. In order to do so, he gave tensor equations, similar to the equation satisfied by the curvature tensor of a Riemannian space of constant curvature. The purpose of the present paper is to show a geometric meaning of the concept.

In a previous paper [4], we defined a lift \overline{G} of a Finsler metric G on a differentiable *n*-manifold M to the tangent bundle T(M) over M with reference to a non-linear connection N in T(M) (on M), which is a direct generalization of the idea of S. Sasaki [7] in the case of a Riemannian metric. It seems, however, to me that the Riemannian metric \overline{G} on T(M) is not useful to consider a geometric meaning of the concept of isotropy. We shall introduce, in the following, another lift G^* of G to T(M), and then it may be said that the isotropy is analogous, in a sense, to a concept of a space of constant curvature with respect to G^* .

1. Let T(M) be the bundle of non-zero tangent vectors to a differentiable *n*-manifold M, and $\tau: T(M) \rightarrow M$ be the projection. A concept of a vertical lift is now well-known [5], and we denote by $l_{y}^{v}X$ the vertical lift of a tangent vector $X \in M_{x}$ (tangent space to M at a point x) to a point $y \in \tau^{-1}(x)$. If a vertical vector $\overline{X} \in T(M)_{y}^{v}$ (vertical subspace of the tangent space T(M), to T(M)

Makoto Matsumoto

at a point y) be given, there exists a unique tangent vector $X \in M_x$, such that $l_y^* X = \overline{X}$. Following to P. Dombrowski [2], we shall write $X = K\overline{X}$.

Let F(M) be the Finsler bundle of M [6], that is, the bundle $\tau^{-1}L(M)$ induced from the bundle L(M) of linear *n*-frames of M by the projection τ of T(M). We consider the Finsler metric tensor field G, derived from a Finsler fundamental function in the usual way. G is thought of as a mapping $F(M) \rightarrow V^* \otimes V^*$ [5], where V^* is the dual space of a real vector *n*-space V, and hence $G(u)(v_1, v_2)(v_1, v_2 \in V, u \in F(M))$ is a real number. It is remarked that the point u is a pair (y, z) of points $y \in T(M)$ and $z \in L(M)$, such that $\tau(y) = \pi(z)$, where $\pi : L(M) \rightarrow M$ is the projection. Therefore, if we consider two tangent vectors $X_1, X_2 \in M_x$ and a point $y \in \tau^{-1}(x)$, then the real number $\underline{G}(y; X_1, X_2) = G(u)(z^{-1}X_1, z^{-1}X_2)$ (u = (y, z)) is obtained, independent of the choice of a frame $z \in \pi^{-1}(x)$. In the following, we shall use the letter G itself, instead of \underline{G} . Thus, $G(y; X_1, X_2)$ is the scalar product of X_1 and X_2 with respect to the element of support y, in the sense of E. Cartan.

2. Assume that a non-linear connection N be given in T(M) [5], and denote by $l_x X$ the horizontal lift of $X \in M_x$ to $y \in \tau^{-1}(x)$ with respect to N. We shall recall here a concept of the lifted Riemannian metric G of \overline{G} with respect to N [4], which is a Riemannian metric on T(M), defined by

$$G(X_1, X_2)_y = G(y; \tau X_1, \tau X_2) + G(y; Kv'X_1, Kv'X_2)$$

where $X_i \in T(M)_r$ (i=1,2), and $v'X_i$ are the vertical parts of X_i with respect to N.

Consider a frame $z \in \pi^{-1}(x)$ at a point $x \in M$, and then we obtain a frame $\varphi_N(u) = (l, z, l_y^v z), \ u = (y, z) \in F(M)$, at a point $y = \tau^{-1}(x)$ [4]. Let g_{ab} , $a, b = 1, \dots, n$, be the components of G with reference to z, and then components $\overline{g}_{\alpha\beta}$, $\alpha, \beta = 1, \dots, 2n$, of \overline{G} with reference to $\varphi_N(u)$ are given by

406

A geometric meaning

$$\overline{g}_{ab} = g_{ab}, \quad \overline{g}_{a(b)} = 0, \quad \overline{g}_{(a)(b)} = g_{ab},$$

 $a, b = 1, \dots, n, \quad (a) = n + a, \quad (b) = n + b.$

Next, consider a local coordinate (x^i) , $i=1, \dots, n$, of $x \in M$, and then we have a local coordinate $(x^{\lambda}) = (x^i, y^i)$, $\lambda = 1, \dots, 2n$, of $y = \tau^{-1}(x)$, such that $y = y^i (\partial/\partial x^i)_x$. Then, the lift $l_x X$ of $X = X^i (\partial/\partial x^i)_x \in M_x$ is expressed by

$$l_{y}X = X^{i}\left(\frac{\partial}{\partial x^{i}} - F_{i}^{j}(x, y)\frac{\partial}{\partial y^{j}}\right),$$

where functions F_i^{j} , $i, j=1, \dots, n$, are called the parameters of the non-linear connection N. Let g_{ij} be the components of G with reference to (x^i) , and then the components $\overline{g}_{\lambda\mu}$, $\lambda, \mu=1, \dots, 2n$, of \overline{G} with reference to $(x^{\lambda}) = (x^i, y^i)$ are given by

$$\overline{g}_{ij} = g_{ij} + g_{kl} F_i^k F_j^l \quad \overline{g}_{i(j)} = g_{jk} F_i^k, \quad \overline{g}_{(i)(j)} = g_{ij},$$

$$i, j, k, l = 1, \dots, n, \quad (i) = n + i, \quad (j) = n + j.$$

3. Now, we shall introduce another lift G^* of a Finsler metric G to T(M) by the equation

(1)
$$G^*(X_1, X_2)_y = G(y; \tau X_1, \tau X_2) + G(y; \tau X_1, Kv'X_2) + G(y; Kv'X_1, \tau X_2) + G(y; Kv'X_1, Kv'X_2).$$

The symmetric tensor field G^* of (0, 2)-type on T(M) will be called the *natural lift* of G with respect to the non-linear connection N. It follows from (1) that

$$G^{*}(l_{y}X_{1}, l_{y}X_{2})_{y} = G(y; X_{1}, X_{2}),$$
(2) $G^{*}(l_{y}X_{1}, l_{y}^{v}X_{2})_{y} = G(y; X_{1}, X_{2}),$ $X_{1}, X_{2} \in M_{\tau(y)},$
 $G^{*}(l_{y}^{v}X_{1}, l_{y}^{v}X_{2})_{y} = G(y; X_{1}, X_{2}),$

which shows that, in terms of the above frame $\mathcal{O}_N(u)$, the components $g^*_{\alpha\beta}$ of G^* are given by

(3)
$$g_{ab}^* = g_{ab}, g_{a(b)}^* = g_{ab}, g_{(a)(b)}^* = g_{ab}.$$

Next, we consider the components $g^*_{\lambda\mu}$ of G^* with reference to

Makoto Matsumoto

the local coordinate $(x^{\lambda}) = (x^{i}, y^{i})$. If we pay attention to the fact that $Kv'(\partial/\partial x^{i})_{x} = K(F_{i}^{j}(\partial/\partial y^{j})_{x}) = F_{i}^{j}(\partial/\partial x^{j})_{x}$, $x = \tau(y)$, we obtain

$$g_{ij}^* = G^*((\partial/\partial x^i)_y, (\partial/\partial x^j)_y)$$

= $G(y; (\partial/\partial x^i)_x, (\partial/\partial x^j)_x) + G(y; (\partial/\partial x^i)_x, F_j^*(\partial/\partial x^k)_x)$
+ $G(y; F_i^*(\partial/\partial x^k)_x, (\partial/\partial x^j)_x) + G(y; F_i^*(\partial/\partial x^k)_x, F_j^\prime(\partial/\partial x^\prime)_x)$
= $g_{ij} + g_{ik}F_j^* + g_{kj}F_i^* + g_{kl}F_i^*F_j^l,$

and the similar way leads us to the equations

(4)
$$g_{ij}^{*} = g_{ij} + g_{ik}F_{j}^{*} + g_{kj}F_{i}^{*} + g_{kl}F_{i}^{*}F_{j}^{t},$$
$$g_{i(j)}^{*} = g_{ij} + g_{kj}F_{i}^{*},$$
$$g_{i(j(j))}^{*} = g_{ij}.$$

It should be noticed here that the natural lift G^* is not Riemannian, but quasi-Riemannian metric with vanishing determinant on T(M). The following will be easily verified.

Proposition 1. With respect to the natural lift G^* of a positive-definite Finsler metric G, (1) the null vector on T(M) is expressed by $l_{y}X-l_{y}^{v}X$, $X \in M_{\tau(y)}$, (2) a horizontal vector $l_{y}X_{1}$, $X_{1} \in M_{\tau(y)}$, is orthogonal to a vertical vector $l_{y}^{v}X_{2}$, $X_{2} \in M_{\tau(y)}$, if and only if X_{1} is orthogonal to X_{2} with respect to the original Finsler metric G and the element of support y.

4. Let (Γ, N) be a Finsler connection of M, which has been fully treated in a previous paper [6]. Γ is a connection in the Finsler bundle F(M) with the base space T(M) and the structure group GL(n, R), and N is a non-linear connection in the tangent bundle T(M). Further, we defined [4] the bundle mapping $\varphi_N : F(M)$ $\rightarrow L(T(M))$ (the bundle of linear 2*n*-frames over T(M)) by $\varphi_N(u)$ $= (l, z, l_y^u z), u = (y, z)$. Hence, a linear connection $\Gamma' = \varphi_N(\Gamma)$ is induced in L(T(M)), which was called the linear connection of Finsler type.

Here, we shall write down the parameters $\Gamma_{\mu\nu}^{\prime\lambda}$ of the connection Γ' in terms of a local coordinate $(x^{\lambda}) = (x^i, y^i)$. Let F_{jk}^i , F_j^i and C_{jk}^i

408

409

be the parameters of the Finsler connection (Γ, N) , where F_i^i are parameters of the non-linear connection N, and functions $F_{ik}(x, y)$, $C_{jk}^i(x, y)$ are such that the respective lifts of $((\partial/\partial x^i) - F_i^j(\partial/\partial y^j))_y$ and $(\partial/\partial y^j)_y$ to a point $u = (y, z) = (x^i, y^i, z^i_a)$ with respect to Γ are given by

$$rac{\partial}{\partial x^i} - F_i{}^j rac{\partial}{\partial y^j} - z^k_a F_{ki}{}^j rac{\partial}{\partial z^j_a} \quad ext{and} \quad rac{\partial}{\partial y^i} - z^k_a C^j_{ki} rac{\partial}{\partial z^j_a} \,.$$

Then, $\Gamma^{\prime\lambda}_{\mu\nu}$ are given by

$$\begin{split} \Gamma_{jk}^{\prime i} &= \Gamma_{jk}^{i} (=F_{jk}^{i}+C_{jl}^{i}F_{k}^{i}), \\ \Gamma_{jk}^{\prime (i)} &= \frac{\partial F_{j}^{i}}{\partial x^{k}} + F_{j}^{i}\Gamma_{lk}^{i} - F_{l}^{i}\Gamma_{jk}^{l}, \\ \Gamma_{(j)k}^{\prime (i)} &= 0, \quad \Gamma_{j(k)}^{\prime (i)} = C_{jk}^{i}, \quad \Gamma_{(j)k}^{\prime (i)} = \Gamma_{jk}^{i}, \\ \Gamma_{j(k)}^{\prime (i)} &= \frac{\partial F_{j}^{i}}{\partial y^{k}} + F_{j}^{i}C_{lk}^{i} - F_{l}^{i}C_{jk}^{i}, \\ \Gamma_{(j)(k)}^{\prime (i)} &= 0, \quad \Gamma_{(j)(k)}^{\prime (i)} = C_{jk}^{i}, \\ i, j, k, l = 1, \dots, n, \quad (i) = n + i, \quad (j) = n + j, \quad (k) = n + k. \end{split}$$

5. Now, we consider a pair (G^*, Γ') of the natural lift G^* of a Finsler metric G, and the linear connection Γ' of Finsler type derived from a Finsler connection (Γ, N) . It follows from (3) that the Finsler decomposition $(G_{11}^*, G_{12}^*, G_{22}^*)$ of G^* [5] is given by

$$G_{11}^* = G_{12}^* = G_{22}^* = G.$$

Therefore, the Finsler decomposition of the covariant derivative $\Delta' G^*$ of G^* with respect to the connection Γ' is given by

$$(\varDelta'G^*)_{111} = (\varDelta'G^*)_{121} = (\varDelta'G^*)_{221} = \varDelta^h G,$$

$$(\varDelta'G^*)_{112} = (\varDelta'G^*)_{122} = (\varDelta'G^*)_{222} = \varDelta^v G,$$

where Δ^{*} and Δ^{v} denote *h*- and *v*-covariant derivatives with respect to the Finsler connection (Γ, N) respectively [3]. Thus, we obtain

Proposition 2. The linear connection Γ' of Finsler type derived from a Finsler connection (Γ, N) is metrical with respect to the natural lift G^* of a Finsler metric G, if and only if (Γ, N) is metrical with respect to G.

Makoto Matsumoto

6. With respect to the metric G^* , we shall denote by $|X|^*$ the length of a tangent vector $X \in T(M)_r$, and by $(X_1, X_2)^*$ the inner product of tangent vectors $X_1, X_2 \in T(M)_r$.

Definition. Let R' be the curvature tensor of the linear connection Γ' of Finsler type on T(M), derived from a Finsler connection (Γ, N) . Then, (Γ, N) is called (1) h-, (2) hv-, (3) v-isotropic with respect to a Finsler metric G at a point $y \in T(M)$, if there exists a scalar K such that

$$R_*(X_1, X_2, X_1, X_2) = K[(|X_1|^* \cdot |X_2|^*)^2 - ((X_1, X_2)^*)^2]$$

holds good for any tangent vectors $X_1, X_2 \in T(M)_y$, where R_* is the covariant curvature tensor constructed from R' and G^* , and (1) X_1 , X_2 are horizontal, (2) X_1 is horizontal and X_2 is vertical, (3) X_1 , X_2 are vertical, with respect to the non-linear connection N respectively.

Thus, R_* is defined by $R_*(X_1, X_2, X_3, X_4) = (X_2, R'(X_1, X_3, X_4))^*$. In terms of an *n*-frame $z \in \pi^{-1}\tau(y)$ on M and the 2*n*-frame $\emptyset_N(u)$, u = (y, z), on T(M), the components of the curvature tensor R' are expressed [4]

$$\begin{aligned} R_{b,cd}^{\prime a} &= R_{(b),cd}^{\prime (a)} = R_{b,cd}^{a}, \qquad R_{b,cd}^{\prime (a)} = R_{(b),cd}^{\prime a} = 0, \\ R_{b,cd}^{\prime a} &= R_{(b),cd}^{\prime (a)} = P_{b,cd}^{a}, \qquad R_{b,c(d)}^{\prime \prime a} = R_{(b),cd}^{\prime a} = 0, \\ R_{b,c(c)}^{\prime a} &= R_{(b),c(c)}^{\prime (a)} = P_{b,cd}^{a}, \qquad R_{b,c(c)}^{\prime \prime a} = R_{(b),c(c)}^{\prime a} = 0, \end{aligned}$$

where $R^{a}_{b,cd}$, $P^{a}_{b,cd}$, $S^{a}_{b,cd}$ are components of the curvature tensors of (Γ, N) . It then follows from (3) that

$$R_{*abcd} = R_{abcd}, \qquad R_{*(a)(b)(c)(d)} = S_{abcd},$$

 $R_{*a(b)c(d)} = R_{*(a)b(c)d} = P_{abcd}.$

On the other hand, $X \in T(M)$, is horizontal, if and only if the components of X are $(X^1, \dots, X^n, 0, \dots, 0)$ in terms of a frame $\mathcal{O}_N(u)$. Therefore, (Γ, N) is *h*-isotropic, if

$$[R_{abcd} - K(g_{ac}g_{bd} - g_{ad}g_{bc})]X_1^{a}X_2^{b}X_1^{c}X_2^{d} = 0$$

410

is satisfied for any X_1^a , X_2^a , $a=1, \dots, n$. Thus we know that the concept of *h*-isotropy coincides with that of partial isotropy due to H. Akbar-Zadeh [1]. Next, observe that $X \in T(M)$, is vertical, if and only if the components of X are $(0, \dots, 0, X^{(1)}, \dots, X^{(n)})$ in terms of a frame $\phi_N(u)$. Thus, (Γ, N) is *hv*-isotropic, if

$$[P_{abcd} - K(g_{ac}g_{bd} - g_{ad}g_{bc})]X_1^{a}X_2^{(b)}X_1^{c}X_2^{(d)} = 0$$

is satisfied for any X_1^{a} , $X_2^{(a)}$, $a=1, \dots, n$. Finally, (Γ, N) is v-isotropic, if

$$[S_{abcd} - K(g_{ac}g_{bd} - g_{ad}g_{bc})]X_1^{(a)}X_2^{(b)}X_1^{(c)}X_2^{(d)} = 0$$

is satisfied for any $X_1^{(a)}, X_2^{(a)}, a=1, \cdots, n$.

Remark. If we treat the lifted Riemannian metric \overline{G} , then the covariant curvature tensor \overline{R} constructed from R' and \overline{G} is given by

$$\overline{R}_{abcd} = R_{abcd}, \quad \overline{R}_{a(b)c(d)} = 0, \quad \overline{R}_{(a)(b)(c)(d)} = S_{abcd},$$

which is the inconvenient circumstances for our purpose.

References

- Akbar-Zadeh, M. H.: Les espaces de Finsler et certains de leurs généralisations, Ann. scient. Éc. Norm. Sup., 80 (1963), 1-79.
- [2] Dombrowski, P: On the geometry of the tangent bundle, J. reine angew. Math., 210 (1962), 73-88.
- [3] Matsumoto, M.: Affine transformations of Finsler spaces, J. Math. Kyoto Univ., 3 (1963), 1-35.

- [6] . On F-connections and associated non-linear connections, ibid.
 9 (1969), 25-40.
- [7] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J., (2) 10 (1958), 338-354.

Institute of Mathematics, Yoshida College, Kyoto University