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§ 1 .  Introduction

Let M  and N  be smooth manifolds and f : M -->N  a smooth map.
We say that f  has m ax im al rank  i f  at each point of M  the Jacobian
matrix of f  has maximal ra n k . I f  dim M<dim N , then f  is  an  im-
mersion; while i f  dim M >dim N , f  i s  a subm ersion . According to
E. Thomas [13], for convenience we call the integer I dim M— dim NI
codimension o f  a  m ap M -->N . In  [1 3 ] E. Thom as considers the
following problem. Let g  : M---, N  be a continuous map of codimension
one or two. When is g  homotopic to a  smooth map of maximal rank?
By exploiting th e  work o f M . Hirsch [ 6 ]  an d  A . Phillips [11 ] he
obtains answers in  term s of cohomology invariants of M  and  N.
However, he supposes that the source manifold M  satisfy the follow-
ing condition (*) :

CONDITION (*) :
( j  )  dim M . 9 ;  i f  dim M = 9, M  is  open;
(ii) 1-14 (M , Z ) has no 2-torsion;
(iii) H 8 (M , Z ) has no 6-torsion.

In the present note we shall remark that the above condition (*)
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can be a  little more weakened.

A ll manifolds in this note will be smooth, paracompact, connected
and without boundary. For any such manifold V  w e l e t  z-v denote
the tangent bundle o f  V.

Througout this note, w e le t  a„ denote 1 for k  even and  2 for
k  odd.

We will say that a manifold M  satisfies CONDITION (# )  i f  it has
the following properties:

(a) torsion coefficients of H "(M , Z ) are 0  or relatively prime
to (2k— 1) ! tz,„ k= 1, 2, • • •.

( ) )  H ' 1 (M, Z2) = H 8 k + 2

Z2) = 0, fo r  k = 1, 2,

We combine Theorem 1. 1 and Theorem 1. 2 in Thomas [13] with
Theorem 5 i n  §4  to  g ive  th e  following results. T h e  proofs will
b e  g iven  in  §5 . For a m anifo ld  M , we shall denote by .13 4 1 (M )

H 4 1 (M , Z ) t h e  i-th Pontrjagin class o f  M , a n d  b y  W . '( M )

(M, Z2) the i-th Stiefel-Whitney class of M ,  

Theorem 1. Let M  be a manifold satisf y ing Condition (#)
and let f :  M --.N  be a m ap of codimension 1.

(a) Suppose that dim M<dim N .  Then f  is  homotopic to  an
immersion if and only i f  there is a class WE H' (M, Z 2) such that

W 1 (M ) + W i - 1 (1 1 4 )U u =f *  W i(N ), i =1, 2,

and
13 4 i (M )  f  * 1 3 4 i (N ) ,  i = 1, 2, • • •.

(b) Suppose that d im M >d im N  and that M  is  open. Then
f  is hom oto pic t o  a submersion if and only i f  th e re  is  a class
uE 11'(M ,Z ,) such that

V (111) = f *  W i(N )+f *  W 1 (N ) U u , i=1 , 2 ,
and

P 4 ' (M)—  f *13 4 ° (N ) ,  i= 1, 2, • • •.

There are  similar results for codimension 2.
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We will say that a map f : i s  orientable i f  f* W 1 (N )
W 1 (M ).

Theorem 2. Let M  be a manifold satisfying Condition (#)
and let f :  M— >N be an orientable map of codimension 2.

( a )  Suppose that dim M < dim  N. Then f  is homoto pic to  an
immersion if and only i f  there is a class v E H z (M ,Z ) such that

(i) W2 (M ) +f * W 2 (N)=-- --v, mod 2,
(ii) p4i (M ) - =U 2V f * P l i ( N ) ,  i - 1 ,  2, • ••.

( b )  Suppose that dim M > dim  N  and that M  is open. Then
f  is hom oto pic t o  a  submersion if and  only i f  there is a class
yE .112 (M , Z ) such that

(i) W2 (M) + f* W 2 (N ) v ,  mod 2,

(ii) / 3 4 '( M ) =f  */3 4 "(N) + f * Ph' (N) Uv 2 , i =1, 2,

§ 2 .  Examples

We take N  to be one of the two projective spaces, real or com-

plex, which we denote respectively by R P " (of dimension n), C F "
(of dimension 2 n ) .  For a complex X  we can compute the set [X, N]
of homotopy classes of maps as follows. I f  dim X <n ,  then [X, R P ]
= H' (X, Z 2 ) ;  i f  dim X  2 n ,  then [X, CP'] = 11 2 (X ,  Z ) .  In  each
case the correspondence is given by f  f  * c , where f  denotes a map
from X  into the projective space, and where c denotes generically
the fundamental class of the projective space. Thus, we have

t E Hi (RP', Z 2 ) , t E  H 2 (C P ,  Z )

depending on which of the two projective spaces we are referring to.
We call the cohomology class f *e the degree of the map f .  Since
the characteristic classes of the projective spaces are known, we now
can apply Theorems 1  and 2  to determine which degrees can occur
as the degree of an immersion from M  into a projective space.

As an example we have the following results giving immersions
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o f codimension 1 or 2. W e assume below that M  is  a manifold
satisfying Condition (# )  given in §1.

Theorem  3 . ( a )  Let f : b e  an orientable map,
w ith degree x E H l(M ,Z 2 ). Then f  i s  homotopic to  an

immersion if  an d  only i f  there is a class vE I-12 (M, Z )  such that

(i) W 2 (M )+ ( m + 3 )x 2 ...v , mod 2,
2

(ii) (M ) +  P 4 - 4 (M) U v 2 =  0 , i = 1, 2, • •

( 8 )  Let f :  M 2 ' --->CPq+1 b e  an orientable m ap , 2 q , w ith
degree yEH 2 (M , Z ) .  Then f  i s  homotopic to  an im m ersion if
and only i f  there is a class vE H 2 (M , Z ) such that

(i) I47 2  (M) + q y ,  mod 2,

(ii) p4i (M ) ±  
P

- 41-4 (M )U v 2 =( q t
2

)y 2 i i = 1 ,  2, •••.
z '

Theorem  4 . ( a )  Let f :  M - - - . R P "  be a  m ap, 2 m, w ith
degree xE1-11 (M ,Z 2 ). Then f  is  homotoPic to  an immersion if
and only i f  there is a  class uE111 (M, Z 2 )  such that

W ( I I ) + W - 1 (M )U u -= ( r n - 1.- 2 ) x ' ,  m od 2, i = 1, 2,

and
P 4 (M )= 0 , i=  1, 2, •

( 8 )  Let f :  M 2 - - - -C P g  b e  a m a p ,  2 q ,  w i t h  d e g re e
y.1-1 2 (M , Z ) .  Then f  is  homotoPic to an im m ersion if  and only
i f  there is a class uEH 1 (M ,Z2) such that

W (M) + u=0,

W  (M ) + W 1 (M)Uu= (q + 1)y , mod 2,

and
(m ) _  ( ± 1) y „ ,

z
i = 1, 2, • • • .

EXAMPLES. (a ) F o r  ni 2, quaternion projective space QP -  can

not be immersed in R P ' .

(b ) For Tifi 2 ,  QP -  can not be immersed in C P 2 '.
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We know the characteristic classes of Q P "  (cf. Hirzebruch [7]),
therefore, these are obtained by Theorem 3.

§ 3 .  Lemmas on characteristic classes

We precede the proofs of Theorem 1  and 2  b y  a classification
theorem.

In th is and next sections we shall study the problem of classify-
in g  0(n)-bundles over complexes K  of a certain k in d . I t is  w e ll
known (Steenrod [12], Part II) that the set of equivalence classes of
0(n)-bundles over K  i s  in  one-to-one correspondence with the set
[K, Bo ( ,,) ]  of homotopy classes of maps from K  into the classifying
space B o ( ,)  for othogonal group. Thus we have reduced our geometric
problem to the computation o f [K, Bo( ,)].

In  order to  study [K, Bo ( ,) ], w e  n eed  to  reca ll the following
results of B ott [3 ], [4 ]

{0, fer i  odd, i 2n,
(a) ni(Btno) -= Z ,  for i  even , i 2n,

(b) 7c2„ , (Ago)
( c )  the groups ni (130 ( ) ) ,  2 < i< n ,  are as follows;

i mod 8  0  1  2  3  4  5  6  7

7E,(B0(0) Z  Z 2  Z 2  0  Z O  O  O .

W e shall denote by ,E 0 0 0 =  (E0(), 13 0( ) 7 B O W )  Eu(n)
= ( E u ( , ) ,  PU(”),

B u („ )) the universal 0 (n )- , U(n)-bundle, respectively. We shall denote
by s" the fundamental class of H "(S ", Z )=- Z.

Lemma 1. Let f :  .5 1 -->B o ( „) b e  a  representative map of a
generator of 761(.13000) -- Z 2  ( 1 <n ) .  Then the S tiefel- Whitney class
W 1 of the 0(n)-bundle f*E0 ( n) induced by f  is equal to .51 mod 2.

Lemma 2 .  Let f :  S 2 —Bo( n ) b e  a  representative map of a
generator of 7E2 (B 0 ( ) )

=—
Z 2  ( 2 < n ) .  Then the S tiefel- Whitney class

W 2 of the 0(n)-bundle f *E0 ( „) induced by f  is equal to s ' mod 2.
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Lemma 3. ( a )  L e t g  : S" - - - Buc,,, be a  representative map of
a generator o f  7r2,(Bu( „) ) '= -Z  (0 < k < n ).  Then the k-th Chern class
C" of  the U(n)-bundle g*Eu („) induced by g  is equal to -  (k 1 ) !s 2 '.

( ) Let f :  S"->Bo ( n) be a  representative map o f  a generator
o f  7c4fr(B 0 (,))= Z  (0 < 4 k < n ). Then the k-th Pontrjagin class P "  of
the 0(n)-bundle f*E0 ( „) induced by f  is equal to (-1)k+ 1 (21?-1)! a ks4k.

P R O O F . ( a )  Let g  : S 21- 1 -> U (n ) be the characteristic map of the
U(n)-bundle g*Eu ( „)  and i : U (k ) - > U (n ) be the inclusion map. Then

7r2k_i(U(k))-`=- ----"n2k-i(U(n)). Therefore, there exists a map -g : S 2 - - 1

---.U (k) such that the following diagram

s 2k--1 ,g) ,(1 ( 11)

"g \
U(k)

is homotopy commutative, and the homotopy class {k- }  of generates
7r2k-i( U (k ) )= Z .

Let p : U(k) , U(k) / U(k-1) = S 2 k- 1  b e  the natural projection.
Then, as is easily seen, the Chern class C " (g * Ev(,,)) is equal to
- (degree of Pogr)s" (cf. Milnor [9] ; Steenrod  [ 1 2 1 , Part II, Theorem
35. 12). Now we consider the homotopy exact sequence of the bundle
p : U (k )-.U (k )/ U (k -1 ) = S 2 k- 1 :

• ••----> TC2k-1
i * P*( U (k -1 ))— >  7r2k-1( U (k )) - > 7r

i * *----> ( U (k -1)) 11(10))2k-2 „ • • •

Then {k} generates n21--1( U (k )),  therefore, we obtain (degree of poe
= (k - 1 )!  by the table (a), ( b ) .  Thus ( a )  is proved.

(f3) Let f :  S 4 - - 1 -> 0 (n ) be the characteristic map of the 0 (n) -

bundle f  E o ( „) and p : 0 ( n ) - * U  (n ) be the canonical injection. By
Kervaire [8] , we know that the composite map p o f  s 4 k

-
1 _ >  U (n)

represents the class a i ,  where a  is the generator o f 7-c4k _ i(U (n )) -=- - - Z
By ( a )  the Chern class C" of the U(n)-bundle (p(0 (n), (n ))4  )*  E u
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induces by p(0 (n) , U(n)) f  is equal to (2k — 1) !a, .9", where p(0 (n) ,
U (n)) denotes the canonical map Bo(,,)- - >Bu(,,) induced by p: 0(n)
--->U ( n ) .  Therefore, by the definition o f  Pontrajagin classes, we
obtain

P 4 k (f*E0(0)---( - 1) k C4 k ((19(0(n),U (n))4) * Eu(o))
=(-1 )H - 1 (2k -1)!ak s 1 k.

Thus the lemma is proved.
Lemma 1 and 2 are easily proved by the same way as the proof

of Lemma 3(a).

REMARK. This Lemma gives another proof of Theorem 26. 5 in
Borel-Hirzebruch [2] (the case of SP (n)-bundles we can easily prove
by this method), and Theorem 5.1 in  Peterson [10].

§ 4 .  A classification theorem

In  this section we shall use the terminologies and notaions in
Wu [15] .

We shall consider the classifying space Bo ( „)  as the Grassmann

manifold R ,„=0(m + n) / 0 (m ) x 0 (n) , where m  is sufficiently large.
W e shall consider two celluar subdivisions K w  and K ( )  o f  R„„„
which are dual to each other (cf. Wu [15] , Chapitre I , §4).

Theorem 5. Let K  be a complex o f dim ension<n-1 , and Eo,
e , be 0(n)-bundles over K. Assume that

i) the torsion coefficients of H "(K , Z ) , k =1 , 2, •••,

are 0 or relativ ely  Prim e to (2k -1)!a k , and

ii) H " ' (K , Z 2 ) = H 8 ' 2 (K, Z 2 ) = 0 ,  j= 1, 2, • •-.

Then e o and ei are equivalent if and only  i f

(1)

{

W ( o) = W 1 (E1)
Tv2(E 0 )._  w .2( 1) ,

R i k  (. 0) pavo , k= 1, 2, • • • .
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P R O O F .  Assume th at Ço, Ei satisfy the relations ( 1 ) .  We know
that 0(n)-bundles over K  are induced by mappings f1 o f K  into
..60( „)  ( i=1 , 2 ) .  Let K ' be the i-dimensional skeleton of K  and I  be
the unit interval. It is sufficient to construct a mapping F  of K x I
into 130() such that

(2) F (x , 0) =f  o(x), F (x  ,1) =fi(x )

We shall construct such a mapping F  skeletonwise. Since R,„,„

is  arcwise connected, we can define a mapping

: (K  x u (K° x ,

satisfying ( 2 ) .  By the relation W 1 (E0) = W 1(E1), there exists a 0-

cochain D° of K  such that' )

f i *  {wi}2 — f0 *  {04}2= 8D°.

W e shall replace F 0 b y  a  mapping Fo' : (K  xal)U(K ° x  1)— )1?„,,„
such that

(a ) (K  x v )  F Q  ,

(19) for a 0-cell a°
 E  K, Fo' (a° x  / ) and Fo (a° X I )

from a sphere homotopic to2) {D° (00 ) — 12( [04* ] 2 FO (0.0 X I))}  • S  where
12 denotes the intersection number mod 2 in R,„,„ and S  the spherical
cycle mod 2 representing a generator of n1(R„,,„) -==Z2 • By Lemma 1
we can deduce from this

/2( [0)141 2 FO f (6° X i ) )  = D° (o-') .

Therefore, for a 1-cell 61 E K,

/o ( [Wr] 2 ,  Fo'
 ( e e l  x  I ) )  = D o ( v )  ( 0 0)  ( a l)

f i * {0 , 1' } 2 ( 0 1 ) — fo* 2(60 •

Consequently we have

1) t(07} 2 denotes a cocycle o f W I(Eoon)E1/ 1 (K (.), Z 2 ). For the precise definition,
see Wu [15 ]. Chapitre I.

2) [ a i' ] 2 denotes a cycle mod 2  in K (..) which is dual to {a ; } 2 .  For the precise
definition, see Wu [1 5 ], Chapitre 1.
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I (  [ ( 0 11 2, FO I (a (61 X /))) = 0.

By Lemma 1 it follows that

F o ' (a (61 x I)) 0, for any 1-cell al E K.

Therefore, we can extend F 0 '  over I f 1 x I. We shall denote it by

F1: (K  xa l)U  (K i x .

Using Lemma 2  and the relation W 2 ($ 0 ) = W 2 (E1), we can extend
F , over K 2 x I  by the same way as  above:

F2: (K  I) U (K 2 x .

Moreover, it can be extended over K 2 x I ,  because 7s3 (R  ,„ ) =0 . Thus
w e  h av e  a  mapping F 3 : ( K  x  I) U (IC x I)--->R„,,„ satisfying ( 2 ) .

B y P 4 ( 0 )  = P 4 ( 1 ) ,  there exists an integral 3-cochain A ' in  K  such
that' )

fi* { ,,2 } ° —f0 {W, 2 } 0 =8.A3 .

Suppose that for a 4-cell a4  K  the sphere

F, (a (64  x I)) —  B 4 ( 6 4 )  S t !  ,

where Scl is  the spherical cycle representing a  generator o f i r 4 ( R . )

Z. Then we can consider B 4 a s  an  integral 4-cochain of K .  Let
us define another integral cochain C3 by

(a.') h ([04:2] 0, F3 ( 6 3  X ) •

Then for any 4-cell 04 K , by Lemma 3, we have

/0 ( [06 ] 0 ,  F 3 (a(a4  x i) ))  =2 B 4 ( 4).

On the other hand

/0 ( [con] , F 3 (6(a4 x / )))

= h ( [04;] o, F3 (aa4 x  /))  +  /0 ( [a 1 , F 3 (d4 x a n )
= (aC3 ) (64 ) + (8,43) (4)•

3 )  (c )0  denotes a c o c y c le  in  P 4 (Eo(n)) H 4 (K o o ,Z ) and [64 :2 ]o  is the cycle in
K(x*) which is dual to {co',',2}0.
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Therefore, we have

2134 = ô (c3 + A 3 ).

By the assumption we have that B 4  i s  cohomologous to  O . B y the
classical obstruction theory (Eilenbeg [5] ) we can replace the mapping
F, by another mapping

F3 ' : x 8I)U  (K 3 x ,
such that

) F 3
1 1 (K u (K 2 x I) = F0 ,

ii) F 0 ' (a (64 x  / ))= -0, for any 4-cell a' E K .

Consequently this mapping F 3 1 can be extended over K 4  x I, and we
denote an extended mapping by F , .  Since 7C5 (R„„„)= 7C6 = 7C7

=0 ,  we can extend F4 over (K  x0 I)U (K 7 x I ) .  We shall denote
an extended mapping by F 7 . By the same method as in dimension
3 , we can extend F 7 to  F8 :x a I ) U  ( K 0 x using Lemma
3, (13 ).

We know that 7C5 -=-7C15 (R„„„)=- --Z, (for n> 10), and we assume
that 119 (K , Z2) = H"(K , Z 3 ) = 0 .  Therefore, we can find a  mapping
F70 : (K x 6I)U  (K " x  I)---.1?„„ satisfying (2). In  v irtu re  of the
assumption, th e  periodicity o f 7r,(B o ( ,,))  and Lemma 3, we can
easily obtain a  mapping F : K xI--.1?„„„, satisfying (2 )  by repeating
this method.

REMARK. By this way we can also prove Peterson's Theorem
( [10] ), using Lemma 3 , ( a )  (cf. Adachi [1] ).

§ 5 .  P roo f o f  Theorem 1  and 2

Now we shall prove Theorem 1  and 2.

Recall that 1-plane bundles over a  complex X  are  in  1 - 1  cor-
respondence with H 1 (X , Z 2). For each class uE I-11 (X, Z 2 )  le t 72(u)

denote the 1-plane bundle such that HP- (-,2(u)) = u .  Similarly oriented
2-plane bundles over X  are in  1 - 1  correspondence with 112 (X , Z ).



A  remark on submersions and immersions 403

For each yE I-P(X , Z ), le t  E(v) denote the oriented 2-plane bundle
with Euler class X 2 (E(v))= v.

F o r a  bundle we let denote th e  stab le  equivalence class

determined by Ç.

Now l e t  M  and N  be manifolds and  f: M .— .N  a  continuous

map o f codimension one o r two. We consider separately these two
cases.

Case 1: Codimension f= 1 .  B y  th e  work o f Hirsch [6] and
Phillips [11] , E. Thomas [13] , [14] gives the following:

Theorem 6. ( a )  Suppose that dimM=dimN— 1. Then f
is'', homoto pic t o  an immersion if and only i f  there is a  class
uE1-11 (M, 22) such that (rmEN(u))—f *  ( r N )  •

( b )  Suppose that dim M= dim N + 1 and that M is open. Then
f is homotopic to a submersion if and only if there is a  class
uEl-P(M, .Z2) such that (rm)=Cf* , - NED72(u))•

Case 2: Codimension f= 2 , f  orientable.

Theorem 7. ( a )  Suppose that dim M= dim N - 2  and that
f: M --> N  is  an orientable map. Then f is homotoPic to an im-
mersion if a n d  only i f  there is a class vE I1 2 (M, Z) such that

( cm@ E CO) f* (rN )•
( b )  Suppose that dimM=dimN+ 2, that M is open and that

f :  M - -N  is  orientable. Then f is homotopic to a submersion if
and only i f  there is a class v 1-12 (M ,Z) such that (T M ) =  (f*T- N

e$ (v ))•

Again E. Thomas [13] , [14] shows that the result follows from
Hirsch [6] and Phillips [11] .

If a m anifold M  satisfies Condition (# ) in  §1, it also satisfies
the hypotheses of Theorem 5. Consequently, Theorem 1 and 2 now
follow by computing th e  characteristic c lasses o f  th e  bundles in
Theorem 6 and 7 and then applying Theorem 5. Here we need the
fact that for VE 11-2 (X, Z), .13 4  (ç(v)) = v 2 , and that by the assumption
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H "(M , Z ) has no 2-torsion for a n y  k 1 .  W e  l e a v e  th e details to

the reader.
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