A remark on submersions and immersions with codimension one or two

By

Masahisa Adachi

Dedicated to Professor Atuo Komatu on the occasion of his 60th birthday

(Received June 7, 1969)

§1. Introduction

Let M and N be smooth manifolds and $f: M \to N$ a smooth map. We say that f has maximal rank if at each point of M the Jacobian matrix of f has maximal rank. If dim $M < \dim N$, then f is an immersion; while if dim $M > \dim N$, f is a submersion. According to E. Thomas [13], for convenience we call the integer $|\dim M - \dim N|$ codimension of a map $M \to N$. In [13] E. Thomas considers the following problem. Let $g: M \to N$ be a continuous map of codimension one or two. When is g homotopic to a smooth map of maximal rank? By exploiting the work of M. Hirsch [6] and A. Phillips [11] he obtains answers in terms of cohomology invariants of M and N. However, he supposes that the source manifold M satisfy the following condition (*):

Condition (*):

- (i) dim $M \leq 9$; if dim M = 9, M is open;
- (ii) $H^4(M, Z)$ has no 2-torsion;
- (iii) $H^{*}(M, Z)$ has no 6-torsion.

In the present note we shall remark that the above condition (*)

can be a little more weakened.

All manifolds in this note will be smooth, paracompact, connected and without boundary. For any such manifold V we let τ_v denote the tangent bundle of V.

Througout this note, we let a_k denote 1 for k even and 2 for k odd.

We will say that a manifold M satisfies CONDITION (#) if it has the following properties:

(a) torsion coefficients of $H^{4k}(M, Z)$ are 0 or relatively prime to $(2k-1)!a_k$, $k=1, 2, \cdots$.

(b)
$$H^{8k+1}(M, Z_2) = H^{8k+2}(M, Z_2) = 0$$
, for $k=1, 2, \cdots$.

We combine Theorem 1.1 and Theorem 1.2 in Thomas [13] with Theorem 5 in §4 to give the following results. The proofs will be given in §5. For a manifold M, we shall denote by $P^{4i}(M)$ $\in H^{4i}(M, Z)$ the *i*-th Pontrjagin class of M, and by $W^{i}(M)$ $\in H^{i}(M, Z_{2})$ the *i*-th Stiefel-Whitney class of M, $i \geq 0$.

Theorem 1. Let M be a manifold satisfying Condition (#) and let $f: M \rightarrow N$ be a map of codimension 1.

(a) Suppose that dim $M < \dim N$. Then f is homotopic to an immersion if and only if there is a class $u \in H^1(M, \mathbb{Z}_2)$ such that

$$W^{i}(M) + W^{i-1}(M) \cup u = f^{*}W^{i}(N), \quad i=1, 2,$$

and

$$P^{4i}(M) = f^* P^{4i}(N), \quad i = 1, 2, \cdots.$$

(b) Suppose that dim $M > \dim N$ and that M is open. Then f is homotopic to a submersion if and only if there is a class $u \in H^1(M, Z_2)$ such that

$$W^{i}(M) = f^{*}W^{i}(N) + f^{*}W^{i-1}(N) \cup u, \quad i=1, 2,$$

and

$$P^{4i}(M) = f^* P^{4i}(N), \quad i = 1, 2, \cdots.$$

There are similar results for codimension 2.

394

We will say that a map $f: M \rightarrow N$ is orientable if $f^* W^1(N) = W^1(M)$.

Theorem 2. Let M be a manifold satisfying Condition (#) and let $f: M \rightarrow N$ be an orientable map of codimension 2.

(a) Suppose that dim $M < \dim N$. Then f is homotopic to an immersion if and only if there is a class $v \in H^2(M, Z)$ such that

(i)
$$W^2(M) + f^* W^2(N) \equiv v, \mod 2,$$

(ii) $P^{_{4i}}(M) + P^{_{4i-4}}(M) \cup v^2 = f^*P^{_{4i}}(N), \quad i = 1, 2, \cdots.$

(b) Suppose that dim $M > \dim N$ and that M is open. Then f is homotopic to a submersion if and only if there is a class $v \in H^2(M, Z)$ such that

- (i) $W^2(M) + f^* W^2(N) \equiv v, \mod 2$,
- (ii) $P^{4i}(M) = f^*P^{4i}(N) + f^*P^{4i-4}(N) \cup v^2, i = 1, 2, \cdots$

§2. Examples

We take N to be one of the two projective spaces, real or complex, which we denote respectively by RP^n (of dimension n), CP^n (of dimension 2n). For a complex X we can compute the set [X, N]of homotopy classes of maps as follows. If dim X < n, then $[X, RP^n]$ $= H^1(X, Z_2)$; if dim $X \leq 2n$, then $[X, CP^n] = H^2(X, Z)$. In each case the correspondence is given by $f \rightarrow f^*\iota$, where f denotes a map from X into the projective space, and where ι denotes generically the fundamental class of the projective space. Thus, we have

$$\iota \in H^1(RP^n, Z_2), \quad \iota \in H^2(CP^n, Z)$$

depending on which of the two projective spaces we are referring to. We call the cohomology class $f^*{}_t$ the *degree* of the map f. Since the characteristic classes of the projective spaces are known, we now can apply Theorems 1 and 2 to determine which degrees can occur as the degree of an immersion from M into a projective space.

As an example we have the following results giving immersions

of codimension 1 or 2. We assume below that M is a manifold satisfying Condition (#) given in §1.

Theorem 3. (a) Let $f: M^m \rightarrow RP^{m+2}$ be an orientable map, $3 \leq m$, with degree $x \in H^1(M, Z_2)$. Then f is homotopic to an immersion if and only if there is a class $v \in H^2(M, Z)$ such that

- (i) $W^2(M) + \binom{m+3}{2}x^2 \equiv v, \mod 2,$
- (ii) $P^{4i}(M) + P^{4i-4}(M) \cup v^2 = 0, \quad i = 1, 2, \cdots.$

(β) Let $f: M^{2q} \rightarrow CP^{q+1}$ be an orientable map, $2 \leq q$, with degree $y \in H^2(M, Z)$. Then f is homotopic to an immersion if and only if there is a class $v \in H^2(M, Z)$ such that

- (i) $W^2(M) + qy \equiv v, \mod 2$,
- (ii) $P^{4i}(M) + P^{4i-4}(M) \cup v^2 = \binom{q+2}{i} y^{2i}, \quad i = 1, 2, \cdots.$

Theorem 4. (a) Let $f: M^m \rightarrow RP^{m+1}$ be a map, $2 \leq m$, with degree $x \in H^1(M, Z_2)$. Then f is homotopic to an immersion if and only if there is a class $u \in H^1(M, Z_2)$ such that

$$W^{i}(M) + W^{i-1}(M) \cup u \equiv {\binom{m+2}{i}} x^{i}, \mod 2, i=1,2,$$

and

$$P^{4i}(M) = 0, \quad i = 1, 2, \cdots.$$

(β) Let $f: M^{2q-1} \rightarrow CP^q$ be a map, $2 \leq q$, with degree $y \in H^2(M, Z)$. Then f is homotopic to an immersion if and only if there is a class $u \in H^1(M, Z_2)$ such that

$$W^{1}(M) + u = 0,$$

 $W^{2}(M) + W^{1}(M) \cup u \equiv (q+1)y, \mod 2,$

and

$$P^{_{4i}}(M) = \binom{q+1}{i} y^{_{2i}}, \quad i = 1, 2, \cdots.$$

EXAMPLES. (a) For $m \ge 2$, quaternion projective space QP^m can not be immersed in RP^{4m+2} .

(b) For $m \ge 2$, QP^m can not be immersed in CP^{2m+1} .

We know the characteristic classes of QP^{m} (cf. Hirzebruch [7]), therefore, these are obtained by Theorem 3.

§3. Lemmas on characteristic classes

We precede the proofs of Theorem 1 and 2 by a classification theorem.

In this and next sections we shall study the problem of classifying O(n)-bundles over complexes K of a certain kind. It is well known (Steenrod [12], Part II) that the set of equivalence classes of O(n)-bundles over K is in one-to-one correspondence with the set $[K, B_{o(n)}]$ of homotopy classes of maps from K into the classifying space $B_{o(n)}$ for othogonal group. Thus we have reduced our geometric problem to the computation of $[K, B_{o(n)}]$.

In order to study $[K, B_{o(n)}]$, we need to recall the following results of Bott [3], [4]:

(a)
$$\pi_i(B_{U(n)}) \cong \begin{cases} 0, & \text{fer } i \text{ odd, } i \leq 2n, \\ Z, & \text{for } i \text{ even, } i \leq 2n, \end{cases}$$

(b)
$$\pi_{2n+1}(B_{U(n)})\cong Z_{n!}$$

(c) the groups $\pi_i(B_{o(n)})$, 2 < i < n, are as follows;

We shall denote by $E_{o(n)} = (E_{o(n)}, p_{o(n)}, B_{o(n)}), E_{U(n)} = (E_{U(n)}, p_{U(n)}, B_{U(n)})$ the universal O(n)-, U(n)-bundle, respectively. We shall denote by s^n the fundamental class of $H^n(S^n, Z) \cong Z$.

Lemma 1. Let $f: S^1 \to B_{O(n)}$ be a representative map of a generator of $\pi_1(B_{O(n)}) \cong Z_2$ (1<n). Then the Stiefel-Whitney class W^1 of the O(n)-bundle $f^*E_{O(n)}$ induced by f is equal to $s^1 \mod 2$.

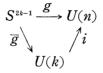
Lemma 2. Let $f: S^2 \rightarrow B_{o(n)}$ be a representative map of a generator of $\pi_2(B_{o(n)}) \cong Z_2$ (2<n). Then the Stiefel-Whitney class W^2 of the O(n)-bundle $f^*E_{o(n)}$ induced by f is equal to $s^2 \mod 2$.

Masahisa Adachi

Lemma 3. (a) Let $g: S^{2k} \to B_{v(n)}$ be a representative map of a generator of $\pi_{2k}(B_{v(n)}) \cong Z$ (0<k<n). Then the k-th Chern class C^{2k} of the U(n)-bundle $g^*E_{v(n)}$ induced by g is equal to $-(k-1)!s^{2k}$.

(β) Let $f: S^{4k} \rightarrow B_{O(n)}$ be a representative map of a generator of $\pi_{4k}(B_{O(n)}) \cong Z$ (0<4k<n). Then the k-th Pontrjagin class P^{4k} of the O(n)-bundle $f^*E_{O(n)}$ induced by f is equal to $(-1)^{k+1}(2k-1)!a_ks^{4k}$.

PROOF. (a) Let $g: S^{2k-1} \to U(n)$ be the characteristic map of the U(n)-bundle $g^*E_{U(n)}$ and $i: U(k) \to U(n)$ be the inclusion map. Then $i_*: \pi_{2k-1}(U(k)) \cong \pi_{2k-1}(U(n))$. Therefore, there exists a map $\overline{g}: S^{2k-1} \to U(k)$ such that the following diagram



is homotopy commutative, and the homotopy class $\{\overline{g}\}$ of \overline{g} generates $\pi_{2k-1}(U(k))\cong Z$.

Let $p: U(k) \rightarrow U(k)/U(k-1) = S^{2k-1}$ be the natural projection. Then, as is easily seen, the Chern class $C^{2k}(g^*E_{U(s)})$ is equal to $-(\text{degree of } p \circ \overline{g})s^{2k}$ (cf. Milnor [9]; Steenrod [12], Part II, Theorem 35.12). Now we consider the homotopy exact sequence of the bundle $p: U(k) \rightarrow U(k)/U(k-1) = S^{2k-1}$:

Then $\{\overline{g}\}$ generates $\pi_{2k-1}(U(k))$, therefore, we obtain (degree of $p \circ \overline{g}$) = (k-1)! by the table (a), (b). Thus (α) is proved.

(β) Let $f: S^{4k-1} \to O(n)$ be the characteristic map of the O(n)bundle $f^*E_{o(n)}$ and $\rho: O(n) \to U(n)$ be the canonical injection. By Kervaire [8], we know that the composite map $\rho \circ f: S^{4k-1} \to U(n)$ represents the class $a_k \sigma$, where σ is the generator of $\pi_{4k-1}(U(n)) \cong Z$. By (α) the Chern class C^{4k} of the U(n)-bundle ($\rho(O(n), U(n)) \circ f$)* $E_{U(n)}$ induces by $\rho(O(n), U(n)) \circ f$ is equal to $(2k-1)!a_k s^{4k}$, where $\rho(O(n), U(n))$ denotes the canonical map $B_{O(n)} \rightarrow B_{U(n)}$ induced by $\rho: O(n) \rightarrow U(n)$. Therefore, by the definition of Pontrajagin classes, we obtain

$$P^{4*}(f^*E_{O(n)}) = (-1)^k C^{4*}((\rho(O(n), U(n)) \circ f)^*E_{U(n)})$$
$$= (-1)^{k+1}(2k-1)! a_k s^{4k}.$$

Thus the lemma is proved.

Lemma 1 and 2 are easily proved by the same way as the proof of Lemma $3(\alpha)$.

REMARK. This Lemma gives another proof of Theorem 26.5 in Borel-Hirzebruch [2] (the case of Sp(n)-bundles we can easily prove by this method), and Theorem 5.1 in Peterson [10].

§4. A classification theorem

In this section we shall use the terminologies and notaions in Wu [15].

We shall consider the classifying space $B_{o(n)}$ as the Grassmann manifold $R_{m,n} = O(m+n)/O(m) \times O(n)$, where *m* is sufficiently large. We shall consider two celluar subdivisions $K_{(x)}$ and $K_{(x^*)}$ of $R_{m,n}$ which are dual to each other (cf. Wu [15], Chapitre I, §4).

Theorem 5. Let K be a complex of dimension $\leq n-1$, and ξ_0 , ξ_1 be O(n)-bundles over K. Assume that

i) the torsion coefficients of $H^{4k}(K, Z)$, $k=1, 2, \cdots$,

are 0 or relatively prime to $(2k-1)!a_k$, and

ii) $H^{s_{j+1}}(K, Z_2) = H^{s_{j+2}}(K, Z_2) = 0, \quad j = 1, 2, \cdots.$

Then ξ_0 and ξ_1 are equivalent if and only if

(1)
$$\begin{cases} W^{1}(\xi_{0}) = W^{1}(\xi_{1}), \\ W^{2}(\xi_{0}) = W^{2}(\xi_{1}), \\ P^{4k}(\xi_{0}) = P^{4k}(\xi_{1}), \quad k = 1, 2, \cdots. \end{cases}$$

Masahisa Adachi

PROOF. Assume that ξ_0 , ξ_1 satisfy the relations (1). We know that O(n)-bundles ξ_i over K are induced by mappings f_i of K into $B_{O(n)}$ (i=1,2). Let K^i be the *i*-dimensional skeleton of K and I be the unit interval. It is sufficient to construct a mapping F of $K \times I$ into $B_{O(n)}$ such that

(2)
$$F(x,0) = f_0(x), \quad F(x,1) = f_1(x),$$

We shall construct such a mapping F skeletonwise. Since $R_{m,n}$ is arcwise connected, we can define a mapping

 $F_0: (K \times \partial I) \cup (K^0 \times I) \rightarrow R_{m,n}$

satisfying (2). By the relation $W^1(\xi_0) = W^1(\xi_1)$, there exists a 0-cochain D^0 of K such that¹⁾

$$f_1^* \{\omega_1^n\}_2 - f_0^* \{\omega_1^n\}_2 = \delta D^0.$$

We shall replace F_0 by a mapping $F_0': (K \times \partial I) \cup (K^0 \times I) \rightarrow R_{m,n}$ such that

- $(lpha) \quad F_{\mathfrak{o}}' | (K imes \partial I) = F_{\mathfrak{o}},$
- (β) for a 0-cell $\sigma^0 \in K$, $F_0'(\sigma^0 \times I)$ and $F_0(\sigma^0 \times I)$

from a sphere homotopic to²⁾ $\{D^0(\sigma^0) - I_2([\omega_1^{n*}]_2, F_0(\sigma_0 \times I))\} \cdot S_2^1$ where I_2 denotes the intersection number mod 2 in $R_{m,n}$ and S_2^2 the spherical cycle mod 2 representing a generator of $\pi_1(R_{m,n}) \cong Z_2$. By Lemma 1 we can deduce from this

$$I_2([\omega_1^{n*}]_2, F_0'(\sigma^0 \times I)) = D^0(\sigma^0).$$

Therefore, for a 1-cell $\sigma^1 \in K$,

$$\begin{split} I_2([\omega_1^{n^*}]_2, \, F_0'(\partial\sigma^1 \times I)) &= D^0(\partial\sigma^1) = (\delta D^0) \, (\sigma^1) \\ &= \! f_1^* \{\omega_1^n\}_2(\sigma^1) - \! f_0^* \{\omega_1^n\}_2(\sigma^1). \end{split}$$

Consequently we have

400

¹⁾ $\{\omega_1^n\}_2$ denotes a cocycle of $W^1(E_{O(n)}) \in H^1(K_{(\infty)}, \mathbb{Z}_2)$. For the precise definition, see Wu [15], Chapitre I.

²⁾ $[\omega_1^{n*}]_2$ denotes a cycle mod 2 in $K_{(x^*)}$ which is dual to $\{\omega_1^n\}_2$. For the precise definition, see Wu [15], Chapitre I.

401

$$I_2(\lceil \omega_1^{n^*} \rceil_2, F_0'(\partial(\sigma^1 \times I))) = 0.$$

By Lemma 1 it follows that

 $F_0'(\partial(\sigma^1 \times I)) \simeq 0$, for any 1-cell $\sigma^1 \in K$.

Therefore, we can extend F_0' over $K^1 \times I$. We shall denote it by

 $F_1: (K \times \partial I) \cup (K^1 \times I) \rightarrow R_{m,n}$.

Using Lemma 2 and the relation $W^2(\xi_0) = W^2(\xi_1)$, we can extend F_1 over $K^2 \times I$ by the same way as above:

$$F_2: (K \times \partial I) \cup (K^2 \times I) \rightarrow R_{m,n}$$
.

Moreover, it can be extended over $K^3 \times I$, because $\pi_3(R_{m,n}) = 0$. Thus we have a mapping $F_3: (K \times \partial I) \cup (K^3 \times I) \rightarrow R_{m,n}$, satisfying (2). By $P^4(\xi_0) = P^4(\xi_1)$, there exists an integral 3-cochain A^3 in K such that³⁾

$$f_1^* \{ \omega_{2,2}^n \}_0 - f_0 \{ \omega_{2,2}^n \}_0 = \delta A^3.$$

Suppose that for a 4-cell $\sigma^4 \in K$ the sphere

$$F_3(\partial(\sigma^4 \times I)) \simeq B^4(\sigma^4) S_0^4$$
,

where S_0^4 is the spherical cycle representing a generator of $\pi_4(R_{m,n}) \cong Z$. Then we can consider B^4 as an integral 4-cochain of K. Let us define another integral cochain C^3 by

$$C^{3}(\sigma^{3}) = I_{0}([\omega_{2,2}^{n^{*}}]_{0}, F_{3}(\sigma^{3} \times I)).$$

Then for any 4-cell $\sigma^4 \in K$, by Lemma 3, (β) we have

$$I_0([\omega_{2,2}^{n^*}]_0, F_3(\partial(\sigma^4 \times I))) = 2B^4(\sigma^4).$$

On the other hand

$$I_{0}([\omega_{2,2}^{n^{*}}]_{0}, F_{3}(\partial(\sigma^{4} \times I)))$$

= $I_{0}([\omega_{2,2}^{n^{*}}]_{0}, F_{3}(\partial\sigma^{4} \times I)) + I_{0}([\omega_{2,2}^{n^{*}}]_{0}, F_{3}(\sigma^{4} \times \partial I))$
= $(\delta C^{3})(\sigma^{4}) + (\delta A^{3})(\sigma^{4}).$

³⁾ $\{\omega_{2,2}^n\}_0$ denotes a cocycle in $P^4(E_{O(n)}) \in H^4(K_{(x)}, Z)$ and $[\omega_{2,2}^{n*}]_0$ is the cycle in $K_{(x^*)}$ which is dual to $\{\omega_{2,2}^n\}_0$.

Masahisa Adachi

Therefore, we have

$$2B^4 = \delta(C^3 + A^3).$$

By the assumption we have that B^4 is cohomologous to 0. By the classical obstruction theory (Eilenbeg [5]) we can replace the mapping F_3 by another mapping

$$F_{3}': (K \times \partial I) \cup (K^{3} \times I) \rightarrow R_{m,n}$$

such that

i)
$$F_3'|(K imes \partial I) \cup (K^2 imes I) = F_3$$
,

ii) $F_3'(\partial(\sigma^4 \times I)) \simeq 0$, for any 4-cell $\sigma^4 \in K$.

Consequently this mapping F_3' can be extended over $K^4 \times I$, and we denote an extended mapping by F_4 . Since $\pi_5(R_{m,n}) = \pi_6(R_{m,n}) = \pi_7(R_{m,n}) = 0$, we can extend F_4 over $(K \times \partial I) \cup (K^7 \times I)$. We shall denote an extended mapping by F_7 . By the same method as in dimension 3, we can extend F_7 to $F_8: (K \times \partial I) \cup (K_8 \times I) \rightarrow R_{m,n}$, using Lemma 3, (β) .

We know that $\pi_{\theta}(R_{m,n}) \cong \pi_{10}(R_{m,n}) \cong Z_2$ (for n > 10), and we assume that $H^{\theta}(K, Z_2) = H^{10}(K, Z_2) = 0$. Therefore, we can find a mapping $F_{10}: (K \times \partial I) \cup (K^{10} \times I) \rightarrow R_{m,n}$, satisfying (2). In virture of the assumption, the periodicity of $\pi_i(B_{0(n)})$ and Lemma 3, (β), we can easily obtain a mapping $F: K \times I \rightarrow R_{m,n}$, satisfying (2) by repeating this method.

REMARK. By this way we can also prove Peterson's Theorem ([10]), using Lemma 3, (α) (cf. Adachi [1]).

§5. Proof of Theorem 1 and 2

Now we shall prove Theorem 1 and 2.

Recall that 1-plane bundles over a complex X are in 1-1 correspondence with $H^1(X, Z_2)$. For each class $u \in H^1(X, Z_2)$ let $\eta(u)$ denote the 1-plane bundle such that $W^1(\eta(u)) = u$. Similarly oriented 2-plane bundles over X are in 1-1 correspondence with $H^2(X, Z)$.

402

For each $v \in H^2(X, Z)$, let $\xi(v)$ denote the oriented 2-plane bundle with Euler class $X^2(\xi(v)) = v$.

For a bundle ξ we let (ξ) denote the stable equivalence class determined by ξ .

Now let M and N be manifolds and $f: M \rightarrow N$ a continuous map of codimension one or two. We consider separately these two cases.

Case 1: Codimension f=1. By the work of Hirsch [6] and Phillips [11], E. Thomas [13], [14] gives the following:

Theorem 6. (a) Suppose that $\dim M = \dim N - 1$. Then f is, homotopic to an immersion if and only if there is a class $u \in H^1(M, \mathbb{Z}_2)$ such that $(\tau_M \oplus \eta(u)) = f^*(\tau_N)$.

(b) Suppose that dim $M = \dim N + 1$ and that M is open. Then f is homotopic to a submersion if and only if there is a class $u \in H^1(M, \mathbb{Z}_2)$ such that $(\tau_M) = (f^* \tau_N \bigoplus \eta(u))$.

Case 2: Codimension f=2, f orientable.

Theorem 7. (a) Suppose that dim $M = \dim N - 2$ and that $f: M \to N$ is an orientable map. Then f is homotopic to an immersion if and only if there is a class $v \in H^2(M, Z)$ such that $(\tau_M \oplus \xi(v)) = f^*(\tau_N)$.

(b) Suppose that dim $M = \dim N + 2$, that M is open and that $f: M \rightarrow N$ is orientable. Then f is homotopic to a submersion if and only if there is a class $v \in H^2(M, Z)$ such that $(\tau_M) = (f^*\tau_N \oplus \xi(v))$.

Again E. Thomas [13], [14] shows that the result follows from Hirsch [6] and Phillips [11].

If a manifold M satisfies Condition (#) in §1, it also satisfies the hypotheses of Theorem 5. Consequently, Theorem 1 and 2 now follow by computing the characteristic classes of the bundles in Theorem 6 and 7 and then applying Theorem 5. Here we need the fact that for $v \in H^2(X, Z)$, $P^4(\xi(v)) = v^2$, and that by the assumption $H^{**}(M, Z)$ has no 2-torsion for any $k \ge 1$. We leave the details to the reader.

References

- M. Adachi, A remark on Chern classes, Sugaku, 11 (1959-60), 225-226 (in Japanese).
- [2] A. Borel-F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math., 81 (1959), 315-382.
- [3] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
- [4] R. Bott-J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc., 64 (1958), 87-89.
- [5] S. Eilenberg, Cohomology and continuous mappings, Ann. of Math., 41, (1940), 231-251.
- [6] M. Hirsch, Immersion of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242 -276.
- [7] F. Hirzebruch, Über die quaternionalen projektiven Räumen, S.-Ber. math.naturw. Kl. Bayer Akad. Wiss. München, (1953), 301-312.
- [8] M. Kervaire, Non-parallelizability of the n-sphere for n>7, Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 280-283.
- [9] J. Milnor, Some consequences of a theorem of Bott, Ann. of Math., 68 (1958), 444-449.
- [10] F. Peterson, Some remarks on Chern classes, Ann. of Math., 69 (1959), 414-420.
- [11] A. Phillips, Submersions of open manifolds, Topology, 6 (1967), 171-206.
- [12] N. Steenrod. The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
- [13] E. Thomas, Submersions and immersions with codimension one or two, Proc. Amer. Math. Soc., 19 (1968), 859-863.
- [14] E. Thomas, On the existence of immersions and submersions, Trans. Amer. Math. Soc., 132 (1968), 387-394.
- [15] W.-T. Wu, Sur les classes caractéristiques des structures fibrées sphériques, Actual. Sci. Ind., 1183 (1952), 1-89.

MATHEMATICAL INSTITUTE Kyoto University