Holomorphic functions and open harmonic mappings

By
Hiroshi Yamaguchi

(Received May 9, 1969)

Introduction. It is well-known that a non-constant holomorphic function is an open mapping. ${ }^{1)}$ In this paper we consider the converse under the assumption that the real and imaginary parts of a complexvalued function are harmonic functions. Our main purpose is to show the following

Theorem. Let R be a Riemann surface and let u and v be real-valued harmonic functions on R.
[I] Assume that $R \in 0_{A B} .{ }^{2)}$ Suppose u is not constant. Then $u+i v$ is an open mapping on R into the complex plane, if and only if u has a single-valued conjugate function u^{*} on R and $v=\alpha u+\beta u^{*}+\gamma$, where α, β and γ are certain real numbers and $\beta \neq 0$.
[II] Assume that $R \notin 0_{A B}$. Then there exist u and v such that $u+i v$ is an open mapping on R, the conjugate function u^{*} of u is single-valued on R and $v \neq \alpha u+\beta u^{*}+\gamma$ for any real numbers α, β and γ.

1. Let f be a complex-valued function defined on the disk $D=\{z ;|z|<1\}$. We say that f is open at the point z in D, if, for

[^0]any open set V containing z, the image $f(V)$ contains an open set (with respect to the plane topology) which contains $f(z) . f$ is said to be open on a subset S of D, if it is open at each point of S. Under these terminologies, we have

Lemma 1. Suppose that f is continuous on D and is open on a punctured disk $D-\{0\}$. Then f is open at 0 .

Proof. It is sufficient to show that $f(0)$ is contained in the interior of the image $f(|z|<r)$ for any r such that $0<r<1$. We may suppose $f(0) \notin f(|z|=r / 2)$. Put $\rho=\operatorname{Min}_{|z|=r / 2}|f(z)-f(0)| \quad(>0)$ and $U=\{w ; 0<|w-f(0)|<\rho\}$. Since the boundary of $f(|z| \leqq r / 2)$ is a subset of $f(0) \cup f(|z|=r / 2)$, it is disjoint with U. On the other hand, U contains an interior point of $f(|z| \leqq r / 2)$. It follows that U is contained in the interior of $f(|z| \leqq r / 2)$.
Q.E.D.

The following lemma will be frequently used in what follows:
Lemma 2. Let u and v be harmonic functions on D. Write
and

$$
\begin{aligned}
& f=u+i v, \quad J_{f}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \\
& w(z)=\left(\left.\frac{d v+i d v^{*}}{d z} \right\rvert\, \frac{d u+i d u^{*}}{d z}\right)(z)
\end{aligned}
$$

where u^{*} and v^{*} are harmonic conjugate functions of u and v on D.

Suppose that u is not constant on D. Then the following conditions are equivalent:
(a) f is open on D,
(b) the set $\left\{z \in D ; J_{f}(z)=0\right\}$ consists of isolated points,
(c) $w(z)$ is holomorphic on D and the set $\{z \in D ; \operatorname{Im} w(z)=0\}$ is empty.

Proof. For convenience' sake we put $\varphi=u+i u^{*}$ and $\psi=v+i v^{*}$. Since $u \neq$ const., $w(z)=\frac{\psi^{\prime}(z)}{\varphi^{\prime}(z)}$ is a meromorphic function on D.

Observing that
and

$$
f=\frac{1}{2}(\varphi+i \psi+\overline{\varphi-i \psi})
$$

$$
J_{f}=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=\frac{1}{4}\left(\left|\varphi^{\prime}+i \psi^{\prime}\right|^{2}-\left|\varphi^{\prime}-i \psi r^{\prime}\right|^{2}\right)
$$

we have

$$
\begin{aligned}
& \left\{z \in D ; J_{f}(z)=0\right\} \\
= & \left\{z \in D ; \varphi^{\prime}(z)=0\right\} \cup\{z \in D ; \operatorname{Im} w(z)=0 \text { or } w(z)=\infty\} .
\end{aligned}
$$

We simply denote by E the second part of the right hand side. Since the set $\left\{z \in D ; \varphi^{\prime}(z)=0\right\}$ consists of isolated points and each connected component of E is clearly a continuum (cf. the footnote on page 387), we see that (b) is equivalent to (c). Also Lemma 1 implies that (b) induces (a). It thus remains to prove that (a) \rightarrow (c), namely, if w is holomorphic on D and E is not empty, then f is not open on D. Since E consists of continuums, we can find a point z_{0} in E such that there exists a small disk with center at z_{0} on which φ is one to one. By change of variables:

$$
z \longrightarrow \zeta=\varphi(z)-\varphi\left(z_{0}\right)
$$

and by $J_{f}(z)=J_{f}(\zeta) \cdot\left|\frac{d \zeta}{d z}\right|^{2}$, we can reduce our assertion as follows:
Let $f(z)=x+i v(z)$, where $z=x+i y$ and let $v(z)$ be a (realvalued) harmonic function on D. If $J_{f}(0)=0$, then f is not open on D.

To prove this, we may suppose that $v(0)=0$ and that v does not depend on only x, i.e., $\frac{\partial v}{\partial y} \neq 0$ on D. Note that

$$
J_{f}(z)=\frac{\partial v}{\partial y}(z)
$$

and denote by C the connected component containing 0 of the set $\left\{z ; J_{f}(z)=0\right\}$. Since $\frac{\partial v}{\partial y}$ is a nonconstant harmonic function, C is an analytic curve ${ }^{3)}$ which does not reduce to a point.

First suppose C contains $Y=\{i y ;-1<y<1\}$. Then $v \equiv 0$ on Y. Since $v \neq$ const. on D, we find a point $i y$ in Y at which $\frac{\partial v}{\partial x} \neq 0$. If $\frac{\partial v}{\partial x}(i y)>0$, then there exists a small square with center at $i y$ whose image by f is contained the first and the third quadrants. Hence f is not open at $i y$.

Next suppose C does not contain Y and $\frac{\partial^{2} v}{\partial y^{2}} \equiv 0$ on C. Since

$$
\psi^{\prime}=\frac{\partial v^{*}}{\partial y}-i \frac{\partial v}{\partial y} \quad \text { and } \quad \psi^{\prime \prime}=-\frac{\partial^{2} v}{\partial y^{2}}-i \frac{\partial^{2} v^{*}}{\partial y^{2}}
$$

we have

$$
\operatorname{Im} \psi^{\prime}=\operatorname{Re} \psi^{\prime \prime} \equiv 0 \text { on } C .
$$

We find points z on C at which the slope $(=\tan \theta)$ of the tangent of C is not equal to ∞. Since

$$
\psi^{\prime \prime}(z)=\lim _{\substack{h \rightarrow 0 \\ z+1 \in C}} \frac{\psi^{\prime}(z+h)-\psi^{\prime}(z)}{h}=\lim _{|k| \rightarrow 0} \frac{\psi^{\prime}(z+h)-\psi^{\prime}(z)}{|h| e^{i \theta}} \cdot \frac{|h| e^{i \theta}}{h}
$$

we see from $\lim _{h \rightarrow 0} \frac{|h| e^{i \theta}}{h}=1$ that a pure imaginary number $\psi^{\prime \prime}(z)$ is equal to $\alpha \cdot\left(1 / e^{i \theta}\right)$, (α : a real number). Because of $\tan \theta \neq \infty$, we have thus $\psi^{\prime \prime}(z)=0$. It follows that $\psi^{\prime \prime} \equiv 0$ on D. Hence $v=\alpha x+\beta$ where α and β are certain real numbers. This contradicts the fact that $\frac{\partial v}{\partial y} \neq 0$ on D.

Finally suppose that C does not contain Y and $\frac{\partial^{2} v}{\partial y^{2}} \neq 0$ on C. We find a point $z_{0}=x_{0}+i y_{0}$ on C at which $\frac{\partial^{2} v}{\partial y^{2}} \neq 0$ and the slope of the tangent of C is not equal to ∞. It is proved that f is not open at z_{0}. For, if $\frac{\partial^{2} v}{\partial y^{2}}\left(z_{0}\right)>0$, then $\frac{\partial v}{\partial y}\left(z_{0}\right)=0$ implies that there exists a $\delta>0$ such that

$$
v\left(x_{0}, y\right) \geqq v\left(x_{0}, y_{0}\right)
$$

for any y which satisfies $y_{0}-\delta<y<y_{0}+\delta$. It follows that f maps a neighborhood of z_{0} into the upper part with respect to the following curve:

[^1]$\left\{f(z) ; z \in C\right.$ and $\left|z-z_{0}\right|<\varepsilon$, where ε is a small positive number $\}$. Q.E.D.
2. We shall now prove the theorem stated in Introduction:

Proof of [I]. If u^{*} is single-valued and $v=\alpha u+\beta u^{*}+\gamma(\beta \neq 0)$ on R, then we see that, on each parametric disk: $\{z ;|z|<1\}$, we have

$$
\left(\frac{d\left(v+i v^{*}\right)}{d z} / \frac{d\left(u+i u^{*}\right)}{d z}\right)(z)=\alpha-i \beta .
$$

It follows from Lemma 2 that f is open on R. Let us prove the converse under the assumption that $R \in 0_{A B}$. Suppose that $f=u+i v$ is open on R. Consider the following holomorphic differentials on R :

$$
\omega=d u+i\left(d u^{*}\right) \quad \text { and } \quad \sigma=d v+i(d v)^{*} .
$$

Then the quotient σ / ω is a meromorphic function on R, which we denote by w. This notation is compatible with that in the proof of Lemma 2. For, on each parametric disk: $\{z ;|z|<1\}$, we have

$$
\frac{\sigma}{\omega}(z)=w(z)=\left(\frac{d\left(v+i v^{*}\right)}{d z} / \frac{d\left(u+i u^{*}\right)}{d z}\right)(z) .
$$

On account of Lemma 2, we see that w is holomorphic on R and $\operatorname{Im} w \neq 0$ at each point in R. It follows that $\operatorname{Im} w>0$ on R or $\operatorname{Im} w<0$ on R. Since $R \in 0_{A B}$, the function w must be a constant c such that $\operatorname{Im} c \neq 0$. Hence

$$
v=(\operatorname{Re} c) u-(\operatorname{Im} c) u^{*}+\gamma
$$

where r is a real number.
Proof of [II]. Since $R \notin 0_{A B}$, there exists a nonconstant holomorphic function w on R such that $\operatorname{Im} w>0$ on R. We can choose a single-valued branch of $\log w$. If we set

$$
u=\operatorname{Re}(\log w) \quad \text { and } \quad v=\operatorname{Re} w
$$

then we have, on each parametric disk,

$$
\frac{d\left(v+i v^{*}\right)}{d z} / \frac{d\left(u+i u^{*}\right)}{d z}=d w / d(\log w)=w .
$$

Since $\operatorname{Im} w>0$ on R and w is nonconstant, we see from Lemma 2 that $f=u+i v$ is open and $v \neq \alpha u+\beta u^{*}+\gamma$ for any real numbers α, β and γ.
3. By making use of the theorem and Lemma 2 we find some results:

Corollary 1. Assume that $R \in 0_{A B}$. Let P be a point in R. Let u and v be harmonic functions on $R-\{P\}$ and have Laurent developments at P as follows:

$$
u(z)=\operatorname{Re} \sum_{n=-\infty}^{\infty} a_{n} z^{n} \quad \text { and } \quad v(z)=\operatorname{Im} \sum_{n=-\infty}^{\infty} b_{n} z^{n}
$$

If $f=u+i v$ is open on $R-\{P\}$ and $a_{n}=b_{n} \neq 0$ for some $n \neq 0$, then f is holomorphic on $R-\{P\}$.

Proof. Since $R-\{P\} \in 0_{A B}$, Theorem [I] implies that $v=\alpha u$ $+\beta u^{*}+\gamma$. Hence we have, in a neighborhood of P,

$$
-i \sum_{n=-\infty}^{\infty} a_{n} z^{n}=\alpha \sum_{n=-\infty}^{\infty} a_{n} z^{n}-i \beta \sum_{n=-\infty}^{\infty} a_{n} z^{n}+c
$$

where c is a complex number. We have thus $-i b_{n}=(\alpha-i \beta) a_{n}$ for all $n \neq 0$. Our assumption implies $\alpha=0$ and $\beta=1$. Consequently, $f=u+i u^{*}+i r$.

Corollary 2. Assume that u and v are harmonic functions on a punctured disk: $D-\{0\}=\{z ; 0<|z|<1\}$ which have essential singularities at 0 . Let they have Laurent developments as in Corollary 1. If $f=u+i v$ is open on $D-\{0\}$ and $a_{-n}=b_{-n}$ for sufficiently large n, then f is holomorphic on $D-\{0\}$.

Proof. Let $a_{-n}=b_{-n}$ for all $n \geqq n_{0}$ and set

$$
w(z)=\frac{d v+i(d v)^{*}}{d u+i(d u)^{*}}=\frac{-i \sum_{n=-\infty}^{\infty} n b_{n} z^{n-1}}{\sum_{n=-\infty}^{\infty} n a_{n} z^{n-1}} .
$$

Since f is open on $D-\{0\}$, Lemma 2 implies that $\operatorname{Im} w(z)>0$ on $D-\{0\}$ or <0 on $D-\{0\}$. Hence 0 is a removable singularity of $w(z)$. On the other hand, we have

$$
w(z)=\frac{i \sum_{n=n_{0}}^{\infty} \frac{n a_{-n}}{z^{n+1}}-i \sum_{n=-n_{0}+1}^{\infty} n b_{n} z^{n-1}}{-\sum_{n=n_{0}}^{\infty} \frac{n a_{-n}}{z^{n+1}}+\sum_{n=-1}^{\infty} n n_{0} z^{n-1}}=-i+\frac{w_{1}(z)}{\sum_{n=-\infty}^{\infty} n a_{n} z^{n-1}}
$$

where $w_{1}(z)$ has at most a pole at 0 . If we assume that $w_{1}(z) \neq 0$ on D, then 0 must be an essential singularity of $w(z)$. This is a contradiction. Hence $w_{1}(z) \equiv 0$, namely, $w(z) \equiv-i$. We have thus $v=u^{*}+r$ on $D-\{0\}$, where r is a real number.
Q.E.D.

Corollary 3. [I] Assume that $R \in 0_{A B}$. Suppose that u is a harmonic function on R whose conjugate is not single-valued. Then there is no harmonic function v such that $f=u+i v$ is open on R.
[II] If $R \notin 0_{A B}$, we can find a harmonic fnunction u on R which satisfies the following two conditions:
(a) the conjugate of u has arbitrarily given periods,
(b) there exists a harmonic function v on R such that $u+i v$ in open on $R{ }^{4}$

Proof of [II]. Consider a non-constant holomorphic function w on R such that $\operatorname{Im} w(z) \neq 0$ at each point z in R. Write simply $W(z)=\frac{1}{w(z)}$, which is also holomorphic on R. It is well-known
4) For arbitrary harmonic function u we cannot always find v such that $f=u+i v$ is open. For instance, suppose R is the punctured disk: $\{z ; 0<|z|<1\}$ and put $u(z)=\log |z|$. Since any harmonic function v on R is of the form:

$$
\operatorname{Re}\left(\sum_{n=-\infty}^{\infty} a_{n} z^{n}\right)+c \log |z|
$$

where c is a real number, we have

$$
\begin{aligned}
w(z) & =\frac{d v+i(d v)^{*}}{d u+i(d u)^{*}}=d\left(\sum_{n=-\infty}^{\infty} a_{n} z^{n}+c \log z\right) / d(\log z) \\
& =-\sum_{n=1}^{\infty} \frac{n a_{-n}}{z^{n}}+c+\sum_{n=1}^{\infty} n a_{n} z^{n} .
\end{aligned}
$$

Then the set $\{z \in R ; \operatorname{Im} w(z)=0\}$ is not empty. In fact, if 0 is an essential singularity of w, then by the Picard's theorem we find z in R such that $\operatorname{Im} w(z)=0$. Next, if 0 is a pole of w, the image $w(|z|<1)$ contains a neighborhood of ∞ (with respect to the Riemann sphere). Consequently, $\{z \in R ; \operatorname{Im} w(z)=0\}$ is not empty. Finally, if 0 is a regular point of w, then, observing that c is a real number, we analogously find z in R which satisfies $\operatorname{Im} w(z)=0$. Hence $u+i v$ is not open on R.
that there exists a harmonic function p on R whose conjugate has arbitrarily given periods. Put $\tau=d p+i(d p)^{*}$ and denote by $\left\{P_{n}\right\}$ and $m(n)$ the set of 0 -points of holomorphic differential $d W$ and its order at P_{n} respectively. By Mittag-Lefflerscher Anschmiegungssatz ([3], p. 257) for open Riemann surfaces, there exists a holomorphic function g on R such that the order of zero of the holomorphic differential $d g-\tau$ at P_{n} is at least $m(n)$. Therefore the quotient

$$
\frac{d g-\tau}{d W}
$$

is a holomorphic function on R, which we denote by ψ. Since the equality

$$
W d \psi=d(W \psi)-\psi d W=d(W \psi-g)+\tau
$$

holds, the holomorphic differential $W d \psi$ has the periods of τ. If we put

$$
u(P)=\int^{P} \operatorname{Re}(W d \psi) \text { and } v=\operatorname{Re} \psi
$$

then the conjugate of u has the given periods and $f=u+i v$ is open on R. In fact, on each parametric disk, we have

$$
\operatorname{Im} \frac{d v+i(d v)^{*}}{d u+i(d u)^{*}}=\operatorname{Im} \frac{d \psi}{W d \psi}=\operatorname{Im} w \neq 0
$$

Consequently, u is one of the desired functions.
Q.E.D.

Let E be a compact set in the complex plane. It is well-known that, if E is linear measure zero, then E is $A B$-removable (see [1], p. 121). Using this fact, we shall prove

Corollary 4. If E is linear measure zero, then E is $O B$ removable. Namely, let G be a conne sted open set u iich contains E and suppose that $f=u+i v$ is a bounied open harmonic mapping on $G-E$. Then it is possible to find an extension of f which is bounded and open harmonic on all of G.

Proof. Since $f=u+i v$ is open on $G-E$, Lemma 2 implies that, if we put $w(z)=\frac{d v+i(d v)^{*}}{d u+i(d u)^{*}}$, then $w(z)$ is a holomorphic function
on $G-E$ and $\operatorname{Im} w(z)>0$ on $G-E$ or <0 on $G-E$. We may suppose $\operatorname{Im} w(z)>0$ on $G-E$. Using the fact that E is removable for all $A B$-functions, we can find an analytic function $\hat{w}(z)$ on G which is equal to $w(z)$ on $G-E$. By maximum principle we have $\operatorname{Im} \hat{w}(z)>0$ on G. For simplicity we write $\hat{w}(z)=\operatorname{Re} \hat{w}(z)+i \operatorname{Im} \hat{w}(z)$ $=p(z)+i q(z)$ on G. We have on $G-E$,

$$
d v+i(d v)^{*}=(p+i q)\left(d u+i(d u)^{*}\right)
$$

and hence

$$
d v=p(d u)-q(d u)^{*}
$$

By virtue of $q \neq 0$ at each point in G, we can write

$$
(d u)^{*}=\frac{p}{q}(d u)-\frac{1}{q}(d v)
$$

Observing that

$$
\frac{p}{q}(d u)=d\left(\frac{p}{q} u\right)-u d\left(\frac{p}{q}\right) \text { and } \frac{1}{q}(d v)=d\left(\frac{1}{q} v\right)-v d\left(\frac{1}{q}\right),
$$

we obtain, on $G-E$,

$$
(d u)^{*}=d\left(\frac{p u-v}{q}\right)-u d\left(\frac{p}{q}\right)+v d\left(\frac{1}{q}\right) .
$$

Now, let S be any subregion of G which is bounded by a Jordan curve in $G-E$. Let β be an arbitrary simple closed analytic curve in $S-E$ and denote by S_{β} the subregion of S which is bounded by β. For a given $\varepsilon>0$ à priori, let $\left\{\beta_{\nu}\right\}$ be the peripheries, of total length $<\varepsilon$, of circles in S_{β} that enclose the subset of E contained in S_{β}. Since β is homologous to a cycle $\sum_{\nu} \beta_{\nu}^{\prime}$, where β_{ν}^{\prime} is a certain subarc of β_{ν}, we have

$$
\begin{aligned}
\int_{\beta}(d u)^{*} & =\int_{\sum_{\nu \beta_{\nu}^{\prime}}}(d u)^{*}=\int_{\sum_{\nu} \beta_{\nu}^{\prime}} d\left(\frac{p u-v}{q}\right)-u d\left(\frac{p}{q}\right)+v d\left(\frac{1}{q}\right) \\
& =\sum_{\nu} \int_{\beta_{\nu}^{\prime}}(-u) d\left(\frac{p}{q}\right)+v d\left(\frac{1}{q}\right) .
\end{aligned}
$$

On the other hand, by the assumption u and v are bounded on $G-E$, and the function p / q and $1 / q$ are continuously differentiable on G.

We have thus, on any arc γ on $S-E$,

$$
|(-u) d(p / q)+v d(1 / q)| \leqq|u||d(p / q)|+|v||d(1 / q)| \leqq M|d z|
$$

where $|d z|$ is the line element of γ and

$$
M=\sup _{z \in \bar{S}-E}\left\{\begin{array}{c}
|u(z)| \sqrt{\left(\frac{\partial(p / q)}{\partial x}(z)\right)^{2}+\left(\frac{\partial(p / q)}{\partial y}(z)\right)^{2}} \\
+|v(z)| \sqrt{\left(\frac{\partial(1 / q)}{\partial x}(z)\right)^{2}+\left(\frac{\partial(1 / q)}{\partial y}(z)\right)^{2}}
\end{array}\right\}(<\infty) .
$$

Consequently,

$$
\left|\int_{\beta}(d u)^{*}\right| \leqq M \cdot\left(\sum_{\nu} \int_{\beta_{\nu}^{\prime}}|d z|\right)<M \varepsilon
$$

We let $\varepsilon \rightarrow 0$ and hence

$$
\int_{\beta}(d u)^{*}=0
$$

Moreover, since the region S is simply connected, it follows that u has a single-valued conjugate function u^{*} on $S-E$, that is, $u+i u^{*}$ is an analytic function on $S-E$. Observing that E is an $A B$ removable singularity and u is bounded, we can find an analytic function $u_{s}+i u_{s}^{*}$ on S which is equal to $u+i u^{*}$ on $S-E$.

Analogously, there exists an analytic function $v_{s}+i v_{s}^{*}$ on S which is equal to $v+i v^{*}$ on $S-E$. Obviously, we see that

$$
\operatorname{Im} \frac{d v_{s}+i d v_{s}^{*}}{d u_{s}+i d u_{s}^{*}}=\operatorname{Im} \hat{w}(z)>0 \text { on } S .
$$

Hence the mapping $u_{s}+i v_{s}$ is open on S.
Since S is arbitrary Jordan subregion of G, if we set

$$
\hat{u}=u_{s} \text { and } \hat{v}=v_{s} \text { on each } S,
$$

then \hat{u} and \hat{v} cleary define harmonic functions on G. If we consider $\hat{f}=\hat{u}+i \hat{v}$ on G, then the mapping \hat{f} is the desired extension of f.
Q.E.D.

References

[1] L. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null sets. Acta Math., 83 (1950), 101-129.
[2] L. Ahlfors and L. Sario: Riemann surfaces. Princeton Univ. Press, Princeton, N. J., 1960, 393 pp.
[3] H. Behnke und F. Sommer: Theorie der analytischen Funktionen einer komplexen Veränderlichen. Springer, Berlin-Göttingen-Heidelberg, 1955, 582 pp.
[4] G. T. Whyburn: Topological analysis. Princeton Univ. Press, Princeton, N. J., 1958, 113 pp.

Kyoto University

[^0]: 1) From the viewpoint of openness of a mapping, for exemple, G. T. Whyburn [4] shows theorems about the theory of functions of one complex variable.
 2) $R \in 0_{\Delta B}$ means that R is a Riemann surface on which every bounded analytic function reduces to a constant (see, for example, [2], p. 200).
[^1]: 3) C may have branch points.
