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§1. Introduction

The mixed problem for linear hyperbolic equations with constant
coefficients in a quarter space has been treated by S. Agmon [1],
R. Hersh [2] and L. Sarason [7]. S. Agmon treated single higher
order equations and R. Hersh and L. Sarason the first order systems.

In the present paper we consider the mixed problem for hyper-
bolic systems of first order with principal part having constant coeffi-
cients:

0 0 . 0 i,

ot
.1 { u(0; x,9)=0
Pu(t; 0,y)=0

in a quarter space {(¢, x,y); >0, x>0, y R}, where u is a N-
vector, A, B, (j=1,2, -, n) are N X N-constant matrices and A is
non-singular, and P is m X N-constant matrix and its rank m.
Already L. Sarason [7] also gave a prio.ri estimates for the system
(1.1), our approach is slightly different from Sarason’s one. Moreover
we treat the problem (1.1) under less stringent conditions in some
sense.

Our argument is based on Wiener-Hopf’s method. Taking Laplace
transformation in ¢ and Fourier transformation in ¥, the ploblem (1.1)

becomes to the problem of a system of ordinary difierential equations
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depending on parameters with a homogeneous boundary condition:

d N A . . A .
w2 { (AW+rI+zﬂB)u(r, 2 0) =f e )
Pi(z; 0,7)=0

where #(c; x, ) denotes the Fourier-Laplace image of u(¢; x, ¥).
Using a compensating function g(r; x,%) which will be constructed
later and setting #=u,+v, we transform the problem (1.2) to the
non-homogeneous equation:

(1.3) (A%-l—r]%—ivB)ﬁl(r; % 7) =F (e % m) + 2(c; %,7) in xER®

and to the homogeneous equation with non-hemogemeous boundary
condition:

(A—d‘-’x—+fl+z»73)f>(f; %) =0  in x>0

1.4) {
Pp(z; 0,9) =—Pi.(z; 0,9).

In §3 we treate the problem (1.3) and P#,(r; 0,%). Preparing
some lemmas, we determine a compensating function 2(z; x, %) such
that | P#,(c; 0,%)| (#.(x; x,%) is the solution of the problem (1. 3))
is bounded by L*norm of f(r; x,7). We construct a base of the
subspace E*(r,7) of CV, solve the boundary value problem (1.4)
and estimate the solution in L*sence in §4. In appendix we consider
a Puiseux expansion in a neighbourhood of a point such that the
characteristic equation has a real double root and characterize a pro-
perty of hyperbolic systems in a generalized sense. It is shown that
the ratios of the imaginary parts of two roots which approach a real
double root are bounded below and above. This inequality is used
for estimating P#.(z; 0,%) in §3.

The author is deeply indebted to Professor S. Mizohata [5] who
suggested the problem and contributed much invaluable encourage
ment and advice. He wishes also to thank Professors M. Yamaguti and

M. Matsumura for helpful conversations.
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§2. Assumptions and result

We consider the mixed problem

-0 O s B 9y f(h
Liu] = u+Aaxu+,§B’6y,u AGHEZR))

ot
1.1) u(0; x,9)=0
Pu(t; 0,y)=0

in a quarter space {(¢; x,y); >0, x>0, ye R"}.
We suppose the following:

Condition I

The operator L is hyperbolic in a generalized sense, that is, i)
the matrix ¢4+ 2%’3; (we write briefly é¢4+%B) has only real eigen
values for any ;:eal (&, 7)=x(0,0), ii) the matrix éA+B is diago-
nalizable and the multiplicity of any root of det(c/+i¢A+iyB)=0
in r is invariant for any real (&, %)= (0,0) where det A denotes the
determinant of a matrix A, that is,

@1 det(el+igA+inB) =T (it (¢, m)"

for any real (& %) where 4,(¢ %) (1=1,2, -+, s) are real and distinct
for any real (&, 7)(0,0), p; (¢=1,:--,s) do not depent on &, » and
pi+pot+p.=N.

Condition II

For any real % and any pure imaginary r(=iy; y: real) the real
roots of det(r/+éA+7B)=0 with respect to & are at most double
for any real (y,7%)2(0,0).

Remark 1. Let r=7"=4"(;": real), y=2" and &° be a real double

root of det(<°I+7£A+:"B)=0. Then this means that —gg,l.- &, =0
62

k=

(& %) x0. As shown in Appendix (see lemma 7.), the rank

and
0
0¢
of tI+i€A+iyB is N—p, in a small neighbourhood of (z, &, %)
= (a7, 8 7"), when (r, &, 9) satisfies det(cI+ieA+inB)=0.

L&, P¥°)X0 (z=1,2,--+,s) and a real simple root means
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Let & (j=1,2,--+,q+s+s") be all real roots of det(z[+i£A+iyB)
=0 in ¢ for pure imaginary r=<"(=4"¢"; real) and real %°, where
& (j=1,2,--,q) are real double roots and & (j=¢+1, -, g+s+5s")
are real simple roots. If £} is a real double root of det(z[+i¢A+iyB)
=0 for r=1(&, %) and »=9", & is a real root of order 2p, of
det(zI+i£A+i»B)=0 as mentioned in Remark 1. Let V be a small
neighbourhood of (i4,(&2, %°), %) and let us consider the problem (1.2)
in VN {Rer>0} after this section.

Since A is non-singular, the problem (1.4) can be written by
the form:

o2 {%m; 2,0)+ M, ), %,9)=0 in x>0

Po(z; 0,9) = — Pt (z; 0, 9)

where M(z, ) =A"'(cI+mB). Let E*(r,3) and E~(r,3) be the
subspaces of C¥ generated by the ordinary and the generalized eigen
vectors corresponding to the roots in & of det(éél+ M(z,5))=0 with
positive and negative imaginary parts respectively when Re>0. In
order to solve the problem (2.2) in L*(R)), we construct a system
of vectors {h}(zr,7)};-1..» locally which is a base of E*'(z, )
(Ret>0), and the vectors Ai(z,»), -, h}i(zr,%) are linearly inde-
pendent, continuous and homogeneous of degree 0 in = and » (Rer_>0).
This fact is shown in §4. Finally we suppose

Condition III

The absolute value of Lopatinski determinant is uniformly
bounded away from O in |r|*-+|3]>*=1 (Rer_>0), that is, there exists
a some positive constant § such that

|det PY (=, )| >0 for |z|*+ |7]|>=1, Rer >0
holds. Where J((zr,%) is a NXm-matrix (ki (z, %), -+, hi(z, 3)).

Our theorem is the following

Theorem Under the Conditions I, II and III, we have the
inequality
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. to A
e 2, 2) ety <21/ (o3 2, m) st

for any solution 4 (c; x,v) of the problem (1.2) where the constant
does not depend on - and 7.

§3. Wiener-Hopf’s method

In (1.1) we take Laplace transformation in ¢ and Fourier trans-
formation in y and denotes the Fourier-Laplace image of u(f; x,y)
by #(r; x,7), then the problem (1.1) becomes to

d ., . . .o . .
@1 {A-(—lx—u(r, x,9) + (cl+iyB)a(c; x,7) =f(r; x,3) in x>0,
Pi(z; 0,7)=0.

From now on we treat the problem (3.1) in stead of (1.1).

Lemma 1. (Hersh [2]) The roots of det(c[+itA+iypB)=0
with respect to & are never real for any Re<>>0 and real 7.

This lemma follows easily from Condition I.

Remark 2. This shows that the numbers of the roots in & of
det (r[+i€A+iyB) =0 with positive and negative imaginary part do
not change for any r (Ret>0) and real . The number m of rows
in the boundary matrix P is equal to that of the roots with positive
imaginary part.

Using the notation;

(3.2) J(%; . 77) =A—d‘—i— +ol+inB

the problem (3.1) is written in the form

d . A . o A . .
3.3) { J(W’ o 77)“(” x,7)=f(c; x,7) in x>0

Pi(z; 0,7)=0.

In order to estimate the solution of this problem (3.3), we use a
compensating function g2(r; x, )= L*(RY) with a support in K. which
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is constructed later, where = and % are parameters. Let us consider

the ordinary differential equation
G0 J( et n=fe g6y i R

The solution in L*(R') of the equation (3.4) can be represented by

o\ e E « ) f e &)+ Bes &) de

(3. 5) 721 (T; xs 7?) =
2n

where f(r; & 7) denotes Fourier image of f(r; x,7) in x. And
(3.6)  Pine; 0, 1) =5\ PAGE; &) (fles &) +E(e; & m)de.
Lemma 2. Under the Condition I, the inequality

. -1 const.
3.7 | AUE; ©,7) IS——RCT

holds for Ret>>0, where the constant does not depend on &, v and 7.

Proof. Let r=o-+ir (o, 7; real) and by the Condition I there
exists a non-singular matrix Q(¢,y) such that
QU D AUE; o, n)Q ' (& 9) =l +i(G I+ Q& 7) (EA+9B)Q (5, 7))
=(o+i(r—a(&n) 0
ot i(r— (8, 7))

0 o+iG—a(& 7))
As

QU DAGE; 7, )T Q& 1) = Q& n) AEE; 7, Q' (5, 9))7"
=( fo+iGr—n(& )} 0
otiG—aE )}
0 HoHiG—a(e )}
Hence
| AGE; 7, 0) | <0|QE D AGE; ©,7) 7' Q7 (&, 1) |

<3 {inf |o+i(r—a (6, 7)) |} g const. _ const.
IYEm o Rer
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This completes the proof.

Using this lemma and (3.5) we can estimate #4,(zr; x,7);
fiaCes 2 ) vty =G 7o) Pl 600+ BCrs 003
<<%) ”f(‘t'; Y, 77) +§(r; X, 77) ”sz(Ri.) .
T

Thus we have the following

Proposition 1. If we suppose the Condition I and let #,(z; x,7)
be the solution of (3.4), then the inequality

B.8) e 20 e < [ £ £0) + 85 2, ) [t

holds, wheve the constant does not depend ond « an .

A construction of g(c; x,7%)
In order to estimate | P#,(c; 0,%)| by Hf(r; %, 7) |2ty only we
construct a compensating function g(c; x,%). For simplicity let us

put F(&) =ﬁr; &7) and g(&)=F(r; &), then
3.9 Piule 0, =\ PUGE <) (o) + 4 () de

and change the variables (r, & 9) to (<, &,%) where (,¢,%)
—2(r,&,7) and c=(lr]*+ |7, and write

Pi(s; 0,m) =\ “PAGE; )7 (o) + B (c8)) e
= o\ Pae; <) (Fleo) + B e}z,
Here we decompose det A(i&; ', %) into factors:
(3.10) det A®E; o/, 7)) =¥ det A-AY(&; o, ¥)A (& <, %)
@B1) A ) =& @)

—m

(8.12) A (& )= H(S & @, 7))
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where £ (', %) and & (<, %) are the roots of det A(i&; «/,%)=0 in
¢ with positive and negative imaginary part respectively (& =&
=y &= =E&F s, ). We define the matrix P(¢&; 7/, %) by

P 7)) — PAGE: <. 7)1
G e A G,y - A D)

and each component of P(¢; «/,%) has degree at most N—1 as a
polynomial in &  As explained in Remark 1 if A*(¢; </, 4) and
A-(&,7,%) has zeros of degree p, at £€=¢&7 (<, %) and £€=¢& (<, %)
respectively, that is,

A& ) =& ) (E— & n 7)) (=& (7))
and

A& )= E— & ) (=& 7)),
then each component of L(&; «,%) has zeros of degree p,—1 at
e=¢&(d,y) and & (¢/,%) when (/,%) lies in V' {Re<>0} and
v’ =—i~V is small, where & (</,%) and & (</,%) approach a real

double root &, %") as (<,%) tends to (4+*,%"). Hence we can
rewrite

(3.14) VGRS _ Po(&; 7o)
A O DA (&) A DA (& )

where Ai (8 ¢,7) = ILE—& 1), 45 (& <) = (& (<, 1)),
Here we changed the notation in the following way: we denotes
& ==&} simply by &, &a="=&., by &, -+, and &, &, -+, &
are all distinct roots of det A(i€, 7,4 ) =0 with positive imaginary
part.

Thus we can decompose

en o~ P& ) | Pi(E; YD)
3. 15 PJ y ) = 7/ /7 —_ /7 3
( ) & <, o) S‘(E;r,v)+Ao($;r,v)
NGRS

where e 7y

is holomorphic in Im[£]<C0 and its inverse
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Py (&5 )
As (& 7))
in Im[£]>0 and its inverse Fourier has a support in x<{0.

Fourier image has a support in x>0 and is homorphic

Hence

(3.16) P#i(r; 0,%)
_ 1 (P dy) L A 8D 7
o T+ G (et + 7 (e s
_ 1 (= [P ) Py (& 7)) 7
2 A B ) + QT Tl e,

Pr& ) Ps (& %) : .
VHGER ) and VHGTRS) the following decomposi

—oco

Concerning

tions hold:

Prg; 7 w) et (& )LPES; ) Vg 1 s
3.17 = R*(g; 7,
( ) A (& ) A E—¢&F +RUE )

Pr(e; o, y) & C;(T/,“/]/)g)o(fj—i‘r,, 7) - .
3.18 1) : Rte o
©.18) As (&5 <, 9) E E—&; + R (& %)

where &7 (</, %) denote the roots which approach the real double root
&6, 7)) (j=1,2,+,¢) and & (,v) (j=q+1, -, q+s=p) and
&, y) (j=q+1, -+, g+s’) denote the roots which approach the
real simple roots &Y, ") and &.,.(¢", %) respectively when (<, %)
tends to &y, 7%).

Remark 3. One of the roots which approach a real double root
&Y, v°) has a positive imaginary part and the other has a negative
imaginary part in V' {Re<>0} where V’=—i—V and V is a suffi-
ciently small neighbourhood of (4, %*). This will be shown in
Appendix. We have denoted the roots with a positive and a negative
imaginary part by &/ (z',%") and &; (¢, %) respectively.

We prepare some lemmas in order to estimate P#,(r; 0, 7).
The following lemma 3 is concerned about the above decompositions
(3.17) and (3.18).

Lemma 3. Under the Condition II, we have
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)1 ENI=0(mte)  for =120

e

& —¢&5
R CICAT o
ii) o) < const. for j=1,2,--- ¢q
iii) et (/, %) | <const. for j=q-+1,--- qg+s
ICJ'_(T/y 77’) |<C0nst. fo}’ j:q+ 1, ...’q_|_s’
V) IR ) I<E2S for real ¢

1+ [¢]
for any (<,%) in V' {Re<>>0}, where constants do not depend
on (r/, 77’).
Proof. Multiplying As (¢; </, v) A; (&; </, %) to (3.14) and using
(3.15), (3.17) and (3.18), (3.14) becomes to
g:)O(S; T/» 77/)

=2 A 7 ) AV ) ¢ (7, v/?sgjg;; o)

(3.19)

+q§1 Y RGER ) RG] , 77')5%05(5 5.7
+Ar (& ) AT (& ) {RYE )+ R(&; L))}
and let us set £€=¢&7, then

(3.20) Po(&r; o, y)=Pu(&r)

= kl;li (EF =& A5 (& o 9t (& v Po(€7).

Hence

@2 aE@ D=y (er—e:)ln E—&)
ki k

This shows that ¢ (z/,%") depends only on A (¢&; <, v)As (& <, 7).
i), ii) and iii) of lemma 3 are obvious by (3.21). Next we show
iv) of lemma 3. & (<, %), -+, &},,(z',%") are simple roots and approach
real roots &y, %), -, (€2..(Gr", ") respectively when (z/,%") tends
to (47, %") and other roots move in a fixed closed curve c; which
has a strictly positive distance from the real axis. Here we use a

lemma to show iv) of lemma 3.
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Lemma Let (&, -, &5.) and (&)vci, *++, &m) be variables and
move in compact sets whose distance is positive and in addition let

(3.22) QO;i($)=a;jkl:11($—Ck) (a:;%0, v depends on i and j; r<<wm')

where Po;;(€) denotes the (i,j)-component of P,(&; </, v). Define

(3.23)  A©-T-&), 4@ = T (&)
and set
ooy B0 _ P PHE | PHE

HG) d (& ) Al A.(8)
where the degree of A.,(&) in & is higher than that of P§(€)
(k=1,2). Then the coefficients of P§)(¢) (k=1,2) are continuous
Sfunctions of (&,&) (1=1,2,--,m’, j=1,2, -, 7).

Proof. Write Pg;(¢) by Ps (&) briefly. The proof is due to
the induction with respect to (g+s, m'—qg—s). We assume the
lemma is correct for (k,, m,), then the lemma is also correct for
(ko+1, my). In fact let us set A,(§) =(6—¢&h.1)A,(&) and Py (€)
=(§—&5)Q(E) +R(&), then
o5 PO (E—e)QE +RE©

Ay (&) (668 An(8)A:(8)

_ew® R(®)
A,OAG T E H A@AE

QO L Q©® . RO [ , Q®
AL T AE <s—e:0+1>{A,m(s> * Az<e>}

where the coefficients of (&), @.(&), Q. (&) and Q,(&) are continuous
in &, -+, &, &y, =+, &, by the assumption of the induction. The last
term of (3.25) is written by

R Q.8 _ Q . Q.®
E—&ha A8 R(E){s—e:ﬂn +Az(e)}

and we obtain

RGN S QA Q.0
Q——————A2 G and Q.(¢) T ,




350 Takashi Sadamatsu

then QA,(&) —Q,(&) is devided by é—¢éi.1. Hence the coefficients of
PP (¢) (k=1,2) are continuous in (&},&;). Similary the lemma is
correct for (k,, m,+1). Thus the lemma is proved.

Now let us return to the proof of lemma 3. We set

R+(5)= m[ﬁ(f) X
I 1(4-‘—5,*)

Then the coefficients of ﬁ(s) are continuous in &, -+, &, &, -+, &,
by the above lemma. When (¢, %) varies in V' {Re<’ >0}, & (<, 7)),
-+, &,(<,%) move in a bounded set and the coefficients of R(&) are
bounded, and further &;....(<’, %), =, éx(z’,%") do not approach the
real axis for (<,%) in V' {Re<>>0}. Therefore let & be restricted
in the real axis we have

(3.26) R @) <

This completes the proof of lemma 3.

Lemma 4. Let a and B be not real, then the inequality

(3.27) Sl—f—};-—%}de: — 2ui 1[_3» for Im[a] <0, Im[g] <0

a—

J 2ni;_1_—§» for Im[a]>0, Im[8]>0

0 for Im[a]-Im[B]<<0
holds. In particular

@z (| = e - oy sen(mal)
holds when a=3.

We omit this proof.

Lemma 5. Under the Condition I, we have
(3.29) |[Imé&(<’, ') | >const. Rer’

where (<, v') is a root of det A(i¢; </, %) =0 in & and the constant
does not depend on ' and 4.
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This lemma dues to P. D. Lax (see, P. D. Lax [3]).

Lemma 6. If we assume the Condition I and II, then

+ 4 /
(3.30) ————ig: g’_ g,’ Z,g% <const. (7=1,2,+,9)
hold for (</,%)s V' {Ret’>0} where the constants do not depend
on (<, 7).
This lemma is proved in the appendix.

Again we treat P#,(r; 0,%). By the decompositions (3.17) and
(3.18)

Pﬁl(r; 0, 77) :LS {'%5 ¥ (r/’ .ﬂ/)g)o(ff) +R+(€; ‘L'/, v/)}fg«(cs)dg

2 = i
N 21ng {Z Gl S”/f &) | R(s; v, 7/)} fle)ds
21_n S E{c «, ;)g«sm(c@ LG ,;)gocs,) f@)} de
(3.31) %S’ Gw%%)%mwﬁm
i { 3, (T/’sﬁ)?@’) R v’)}’é’(ce)ds
1 Sm {2 GEDRE) LR, v’>}f(c5>ds

771:— oo lj=g+1 5_5,'

Using above lemmas, we shall estimate (3.31). By the Schwarz in-

o

equality

(3.32) |the 3-rd term of (3. 31)|§const.{ % (Sm

j=q+1

() (L reora)”

< const. {f:é;ll—/ﬁn‘%—ﬁ + 1} <Sl | Z ()| za'e)l,2

SE,

<ot ({ "1z ey rae) "

similary we have
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(3.33) Ithe 4h term of (330|205 ([" 1 7ce) az)”

(3.34) |the 2-nd term of (3. 31)|g%(gl|?’<cs)|2de>m

concerning the 1-st term of (3.31), let us choose a compensating

function g (c&) such that

(3. 35) g Siw{ C;_(T,vg"];>§.)0($;> 2—'(65) + ci_ (71,677;)?0(6;‘) f’\{(CS)}dE:O

holds and that the following properties:
19 "1z rdeoonst|” 7o 2 ae
2°) the support of g(r, x,%) is contained in R.

hold. The condition (3.35) is called ‘“reflection condition”.

We search g'(c£) under the form

d 1 1 1
G‘ ( = b = ) ‘..’ = )
§—& T E—& §—¢&7
where G is an unknown N Xg-matrix having (Jj, k)-element g,
(j=1,2,++, N; k=1,2,--+,¢) and * denotes transposed, and let I;, be

. 1 1 .
3.3 ;1,=S 1 T =+ ,k=1,2,-~', .
(3.36)  Lu=\ mgagde Gk ‘Y

Then the reflection condition (3.35) is written in the form

@30 BRED | DG U, L)

oo

+c7 (7, 77')8 L Feo dé} =0.

- E— &

Now let us put

3.38) @ NG Uy B e ()| L Flearde=0
(=1,2, )

and from this formula (3.38), we can determine G.
In fact the A-th components of (3.38) are written by
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-
Ix1gk1+ Ilzgk2+"'+llqgkq= - z}g,: Z,g S_w P fk((f)df
__ &) S
(3.39) | Ligutlegut - +18u e () e E— 52_ SACILS
ot __ &) g‘”
Iqlgk1+ Iq2gk2+ u Iqqgkq C;(T’, 77/) - E Sq_ fk<c$>d5

(k=1,2, -+, N) where f,(c&) denotes the k-th component of f(cg).
Let D be the determinant |I;|i<;;<, formed by the coefficients of
(3.39), then we get by the Cramer formula

AR A —ig“’ Fiee)de, I v, -+, L,
1 —e E— &1

(3’ 40) gln‘ — 7 ............................................................

Iqu ) Iq i—-1y T Cq S—-w E_& fk(65>d$y g ity °7°y Iqa

(k:l’ 2’ ...’ N; i:]" 2’ ..-7 q)'

In order two prove the property 1°), we must estimate g,. If
V’ is small, then the inequality |D| >%l+ L+ -I,, holds because I,
becomes large as we want and I, (i=k) is bounded by the definition
of I, and lemma 4. Using the Laplace expansion, the Schwarz in-

equality and lemma 3 ii), we have

(3.41) |g,,..|2gconst.{<1m[5h1n>l gml[fx )t (Im] slzl D [§Im|[€'+])2

L mIED L (mlE ) AmIE D) (" 7 ey
oo (T ey USRI 1Pl e

(k=172) ) Ny i=1y 2; ) q)'

On the other hand by the definition

(3.42)  FueO=%5 (k=12 N),

and we have by (3.41) and lemma 6

@43 ([ 1zceorrde) "<const ({7 17icee)12a2) "
(k=1,2,+, N)
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This proves the property 1°) and the construction of & (c¢) shows
the property 2°).

Thus we have the following

Proposition 2. If we suppose the Condition I and II, then
the inequality

.o const. ((® | 7oy 12 7.\
G481 PinGs 0, S SE([" 170 1202

holds for (c,7)€ VN {Rer>0} where the constant does not depend
on v and 7.

§4. Lopatinski determinant

In this section we consider the boundary value problems of the
ordinary differential equations depending on parameters r and 7
(Rew>0, y&R"). As shown in §2, 9(z; x,9) =4 (r; x,7) —d.(z; %,7)

satisfies

e { oG 9+ M, i e 2,7 =0
Pt(z; 0,7) = —Pii(z; 0,9)

where M(z,7)=A"'(zI+iyB). Let E*(r,7) and E (z,%) be the root
spaces corresponding to the roots in & of det(Z¢l/+ M(z,5)) =0 with
positive and negative imaginary parts respectively. E*(z, ) and
E~(r,7) are named by the positive and negative root spaces respec-
tively. In order to search for the solution of the problem (4.1) in
L*(R.), we construct a base of E*(z,7). Let (r,%) be in VM {Rer>0}
and & (r,7) be the root mentioned above (j=1,2---,¢+s). Then
we can choose eigen vectors ki (z,7), -+, i (z,7) of —M(z, ) corres-
ponding to & (z, ), -*-, &5+:(zx, 1), where p denotes the number of the
roots including the multiplicity which approach the real axis when
(z,7) tends to (7 %"). In fact in the identity

(4.2)  (cI+i8A+iyB) -‘cof (eI +icA+inB) =det(c[+icA+iyB) -1

where cof A denotes the matrix which consists of the cofactors of a
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matrix A, we substitute & by a root &} (r,%). If a root & (r,) is a
pi-tuple root, there exist p, eigen-vectors of —M(r, %) corresponding
to a root &/ (r,7) by lemma 7 shown in the appendix. These vectors
are continuous in (r,%) € V() {Rer >0} and homogeneous in r and 7.
Normalizing these eigen vectors and setting them by Af(z, %), -,
hy(e,w), {hi(z,n), -+, hi(r,5)} are linearly independent, defined on
V’M {Rer>0}, continuous and homogeneous of degree O in r and 7.

On the other hand the other root vectors of — M(r,y) corres-
ponding to the roots which lie a set away from the real axis can be
constructed as following: let (r,%)=(z1,7.) be fixed (Rer,>0), we
choose a base (h}.1(z1,71), -+, By (v, 7)) of the subspace generated
by all root vectors of — M(z;, 1) corresponding the above roots.
Define

@8 ) = § Gel+ M) i () de

(]=p+1’ Tt m)

where (z, %) is near (zi, ) and ¢ is a simple closed curve containing
only the roots away from the real axis. As M(z, %) is continuous in
v and 7, these Af(c,%) (j=p+1, -, m) vary continuously in r and
». By the construction (4.3), %/ (c,7) is defined in V() {Rer>0}
and homogeneous of degree zero in r and ». Thus we can obtain a
base {hi(z,7n), -, hi(r )} of E*(r,5) in V() {Rer>>0} which is
linearly independent, continuous and homogeous of degree zero with
respect to r and 3 in V() {Rer>0}. (see, S. Mizohata [6] and M.
Matsumura [4])

We estimate the solution #(r; x,%) in L*(R.) of the problem

(4.1). As 9(r; 0,7) should be in E*(z,7), #(r; 0, %) can be written
in the form

(4.4) D(r; O, p) =cihi (e, ) + i (o, 9) + -+ cn by (z, %)
and by the boundary condition

(4.5)  Po(r; 0,9) =c:Phi (<, %) + co Phi (<, o) + -+ . Pht (<, 7))
:_Pﬁl(T; 0,77).
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Using the Condition III and the Cramer formula
(4.6) le:(<', %) | <const.| P, (z; 0,7) .
The solution #(r; x,%) in L*(R.) of the problem (4.1) is

4D 0 =3 el M )06 0, s
i=1 4T cy
to-§ e Ger MGz, )05 0, de
7T [

where ¢; is a small circle with center & (j=1,2, -+, ¢+s=p) and
¢, is a simple closed curve containing only & (j=p+1,--+,m). The
L*norm of the first term of (4.7) is

4.8  \Tlesionae, 0,012
0

gCODSt.l Pﬂl (1-; 0’ 77) ' ZS e—zlme}'(r.n)xdx
0

<__C01lst;* A . 2 const. Al . .
=Im[$7<f,77>]|Pul(T’ 0)‘”)[ —_ Ref !Pu (r, 0,7})'

and that of the second term of (4.7) is
w9 )& eters Mo 0, mde| ax
0 A

-,

< SO | p(ee’s 0, ) [t | Py (e 0,9

§ et GET M@, ) 0(e's 0, ex)de|

by lemma 5 and (3.6) where ¢=1"|z|*+ [4]?. Consequently from
proposition 2, we have

A 2 const. (7 17 .y 2
10) (oG ) 1P des S0 (7o) 10

We have obtained this estimate (4.10) locally in = and ». How-
ever we can also obtain a global estimate by using the homogeneity
and the continuity of a base {A{(z,%), -+, hi(r,7)} and a partition
of unity in |z]|*+ |9]|*=1 (Rer>0).

By proposition 1, (4.10) and 4(z; x,%) =#.(c; x,7) +0(z; x,7)
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we have the following;

Theorem Let #(c: x,v) be a solution of (3.1) and the Con-
ditions I, II and III be supposed, then the inequality

@10 il 50 e < S f s 2 ) s

holds where the constant does not depend on r and . Also we have
4.12) (G ) ey 0 fes 2, 9) s

Remark 4. In the case that the Lopatinski determinant det P.H
(<, %) tends to infinity when (</,%’) tends to (&",%"), the solution
c=(cy, *+, cn) of (4.5) is the following;

PN~ 4;: (', 7') Py (e =1, e
ci(r>77)_j§ det Pﬂ{('t‘l, 77/) { Pul(fy 0, 77)}1 (Z 1) )m>

where #; denotes the j-component of a vector #='(u,, -+, #%,). Let
us suppose that

Ajt' (T’) 7/)

SN | = . f=1, e, m; =1, e,

det PH (7', v) =const (J=1,-,m; i=1,-,p)
4;:( ) l< const. e

det PH(, 7)) 1= (Rec) " (J=1,,m; i=p+1,-,m)

hold in (<, %) € V' Re{c’>0} where the constants do not depend on
(</,%). Since &} (<,%) (j=p+1,:,m) do not approach the real
axis by the definition, there exists a positive constant & such that
min Re[¢} (<, ¥)]>a in (,7)€E V' {Rer>0}. Therefore (4.9)

p<jgm
follows immediately. In fact

SO |(§>rei$z(i51+ M, 7)) e (s 9D Ry (7 9)) A+
(e R 1)} derdx
B So |(§‘-'e“€.T (i51+ M(T/» 77/) )_1 {Cp+1 (7.'/, 77/) hp:1(f/, 77’> + e

Fen(e, (e n’)derdx
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< const. N 2 <const. Ao 2
=CaReT/ IPu1<T) O!ﬂ)l = ReT IP%[(T, 0,77)| .

Hence under the above assumption, the same inequalities (4.11) and
(4.12) in the theorem hold as well.

Appendix
Puiseux Expansion

Proof of lemma 6
We recall the Condition I:

(A1) det(el+igA+inB) =T (c—it,(¢, )" for any real (¢,7)

where 1;(¢,7) (j=1,2, ---,s) are real and distinct for any real
(&7)x(0,0), p, (=1,2,-++,8) do not depend on &, » and P+ po+ -
+p.=N. Let us r=4° and =% (;°, °: real) and suppose that
My, »") admits a pure imaginary characteristic root ¢£°. Then we
can suppose j=1 without loss of generality. Let us set

(A.2) pt+i=c—i"=ih(&n) —14(& 1) (u,v: real; p=>0)

and expand (A.2) in a small neighbourhood of (&°,"):
(A.3)  v—in=h(& D= k(& 1)+ -2 (&) €~

. N ) |Gt
21 g

and write
(A4 v—in=bi(n) +b:(n) (6—€) 1 b:(9) (§—€)*+ -+

13
where b,(9) =0(€% ) — (&7, b(») =-]3—, aa—skh(é", ) (k=1, 2, --+),
b.(») (k=0,1,---) are all real valued and b,(%") %0 or b.(3*) =0 by
the Condition II (see §2).

We consider the cases that b,(y) vanishes or not.

1) The case that 5,(»*) *0.

Let |v—in| and |7—%"| be sufficiently small. Then b:(») never
vanishes and the solution with respect to ¢—¢&° of (A.4) is uniquely
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determined in |§—¢&°| <<d; for some small §,>0. This ¢ is a simple
root in our sense of det(zI+i£A+iyB)=0 when (r,%) varies in a
small neighbourhood of (#r°, %°).
2) The case that b,(3") =0.
We consider first the case:
i) b:(»)=0 in a small neighbourhood of »*. (A.4) becomes to

(A.5) v—bo(n) —ip="0b:.() (E—&)*+ by () (E— &)+ .

By 5.(#") %0 and the analyticity of 4,(§,%) in & and » there exists
o1 and p.=>0 such that when |y—7"|<<p: and |v—5,(%) —in| <<p:, we
have the development

(A.6) E—8 =2+, (9) 2+ () 2+ -+ for |£—&|<p.
where z= (w—>b,(y) —in)/b:(3) and c¢;(3) ((=1,2,---) may be taken

all real values. Define ¢* and ¢~ by the branches of V/ z with posi-

tive and negative imaginary part respectively, then

(A7) = %{+1/Iz|—lmz—1/|z|+1mz}
+—;—{ V' |z|—Imz +1/Iz|—|—Imz} for Rez

(A.8) c—:%{ 1/|z|—Imz+1/]z|+Imz}
+é-{ 1/|z|—Imz——1/|z|+Imz} for Rez

We have

(A.9) ol z| P> Ime*| >0, 2| 2 for Re 2<0

and

(A.10)  oiplz]™*=|Ime&*| =0, | 2|7  for Rez>0
where 0y, 8., 0] and 8, are some positive constants. Let us define
(A.11) & ==+ @)+l @)+ -

where £* denote the branches such that Im[£]>0 and Im[&]<<0
respectively for each of ¢*. Using (A.10) and (A.11) we have also
for small |z|
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(A.12) K |z|"*=|Im[¢*] | > K, | z|'? for Re2<<0
and
(A.13)  Kiplz|Y*>|Im(&] | >Koiplz|7V? for Rez>0

where K,, K., K{ and K, are some positive constants.

i) b(y)=0.
1 &

Since £=¢° is a double root, that is, bz(77°)=-é,—wh($°,7]°)#0,
0 0
o6 4 (& (), 7)

=0 in a neighbourhood of (&° %"). Let |—%"| be small and regard

there exists a real analytic function £€=¢£°(y) satisfying

2 (&,7) as a function of & and we expand (&, %) in a neighbourhood
of £€=¢&°(y), there holds

R R OB B S OIICD
g k(€ (), ) (=€) o

Since aigxl GO

(A.14) %F/h(fo(v), 7) =b.() (6 =& () +by(9) (6= (%) )°+ -+
holds, where b,(%°) 0, &(3")=¢" and A", 7°) =4 ¥") ="
Put c—i'=u+1iv, (A.14)’ becomes to

(A.15)  by(p) =4(& (%), 7) —r" and b(»") =0.
This is the case treated before. Thus (A.12) and (A.13) show

lemma 3.

Remark 5. The proof of this lemma shows that one of the two
roots which approach a real double root when (r,7) tends to (&, 7")
has a positive imaginary part and the other has a negative imaginary
part in V() {Rer>=0;}.

Lemma 7. If we suppose the Conditions I and II then the
rank of tI+i€A+iyB is N—p, in a small neighbourhood of (z, £, 7)
=09, & 9°) when (t,€ ) satisfies det(z[+i€A+iyB)=0.

Proof. From the proof of lemma 6,
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(A.16) =80 +2"+ ()2 + ()2 +

where z= <1Z'.——/h & ),n) + (&, 7]0)>/b2<7]>. Let T'(z; &%) be a minor
of the matrix (¢/+i&A+iyB) of order N—p,+1, T(z; & 9) is a
homogeneous polynomial in 7, &£ and » and let » be fixed in a neigh-
bourhood of %° and substitute € in 7T'(z; & %) by (A. 16), then we can
regard T(r; &,7) as a function of 2z, that is, T(2)=T{(z; & 7).
T (z) can be written by the puiseux expansion of z. In a segment
where z is positive real, ¢ is pure imaginary and €* is also pure real.
From the Condition I, M(z)=0 for some small non-negative real
value z. Hence M(z)=0 for &>|z|>0 where ¢ is some positive

constant. (q.ed.)
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