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Introduction

Let G be a connected real semisimple Lie group with Lie algebra
g. Denote by CF(G) the set of all indefinitely differentiable functions
on G which vanish outside some compact sets. For a differential

operator D on G, we define its adjoint D* as

[ OA@f&)dg= [ /&) Dfie)dg  (fu aECTEO)),

where dg is a Haar measure on G. For any distribution = on G, we
put (Dm) (f)==(D*f)(fECF(G)). A differential operator on G is
called Laplace operator if it is invariant under both left and right
translations. As usual, let us identify every X &g with a left-invariant
differential operator on G. Then the center 3 of the universal en-
velopping algebra U(gc) of the complexification g, of g is the algebra
of all Laplace operators on &. The correspondence D— D* on U(gc)
is its anti-automorphism generated by X——X (X =g).

A distribution 7 on G is called invariant if it is invariant under any
inner automorphism of G. It is called eigendistribution if there exists
a homomorphism A of B into C such that Zz=A2Z)7 (Z€3). Here
A is called the infinitesimal character of 7. Let Z; be the center of G.
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If there exists a homomorphism y of Z; into C* such that n(zg)=
x()m(g)(eEZs), 7 is called Zg-simple.

Now let g—7(g)(g€G) be a representation of G by bounded
operators on a Hilbelt space J{. Put for any f&C5(G),

T(h= [ T(f(g)de.

A representation (7, 4) is called (topologically) irreducible if 9 has
no closed invariant subspace except {0} and ¥ itself. An irreducible
representation (7, K) is called quasi-simple [2(a), I] if there exist homo-
morphisms y of Z; into C* and A of 3 into C such that

T()=X(a (zE25), T2 =XNZ)la (ZEB),

where 4(° is the Garding subspace of 4 spanned by all 7(f)v (f €CF(G),
ved) and lgo denotes the identity operator on H° The character
7 of such representation can be defined as to be the distribution #(f)
=tr(T(Nfels(GN[2(a), II]. Then = is a Zg-simple invariant
eigendistribution corresponding to x and A. Call it simply zrreducible
character.

Denote by A(A)(or €(A)) the set of all invariant eigendistributions
on G (or linear combinations of irreducible characters) with infinitesimal
character A. Then AA)DE(). One of the purposes of this paper
is to study the problem whether ()= E(A) for all A or not. Here
we give an elementary proof of existence on SZL(%, R) (7 > 3) of tempered
invariant eigendistributions which can not be expressed as linear
combinations of irreducible characters. Moreover for SZ(z, R), all
irreducible characters and all invariant eigendistributions with certain
infinitesimal characters A are obtained. Therefore we know exactly
the difference of AQ) and €(A) for such A. For complex classical
groups SL(n, C), SO@n+1, C), Sp(n, C) and SO2n, C), we see that
if <3, AN)=EC() for any X and that if »_>4, AQA)~E() for some
A,
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§1. Preliminary results

Let us introduce some notations and make some general statements.
Let G, g be as before and Y a Cartan subalgebra of g. Denote by
P the set of all positive roots of (ge, §e) with respect to a lexicographic
order. A root a is called real (or imaginary) if it takes only real (or
imaginary) values on f). Denote by Pz (or P;) the set of all real (or
imaginary) positive roots. Let W, be the Weyl group of (ge, o).
Let A be the Cartan subgroup of G corresponding to ) and We(H)
the factor group of the normalizer of § in G by the center Ho of H.
For any root a, let X,&g, be its non-zero root vector and put Ad(#)X,
=t X, (hEH). Define for A& H,

A0 A= A&, A= I A&,

Replacing G, if necessary, by a certain covering group which covers
G finitely many times, we may assume that there exists a connected
complex semisimple Lie group G, with the following two properties.
(a) Let p be the half-sum of all a€ P and A, the Cartan subgroup of
G, corresponding to he. Then &ylexp X)=ef) (X &Y,) defines a
one-valued function on H,. (b) The injection j of g into g, can be
lifted up a homomorphism 7’ of G into G,. The function £,07" on A
is denoted again by £,. Now put

(1. 2) V(B =Ep(R)sign(dx(i)A' () (hEH).

Then for any we W(H), there exists e(w)=+1 such that F(wk)
=e(w)V(A).

Let G’ be the set of all regular elements of G and put #/'=H NG,
Gu= U gH'g™!. Define for any f=C3(G), a function Fr on H' as

(1. 3) FyW=VG) [, fehsaz,

where g=gHo, dg is an invariant measure on G/Hy and a denotes the

complex conjugate of a=C.
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Let g=t+p be a Cartan decomposition of g and a a maximal
abelian subalgebra of p. Moreover let §)° be a Cartan subalgebra of
g such that )°=a+-5H°NE  Assume that the order in the set of roots
of (ge, Be) is compatible with one in the set of roots of (g, ac). Put

ne= 3 CX, n=uNag.
aEP,a| %0
Let K, A and NV be the analytic subgroups of G corresponding to f,
a and n. Then G=KAN is Iwasawa decomposition of G. The

Cartan subgroup corresponding to §° is denoted by AZ°% We see easily
that for A=HY,

Fry=&®) [ &A™ /N /MG F(khnk=Ndk dn,

where £=#Z;, dk and dn denote appropriate invariant measures on

K/Zg and N respectively. Hence,

Lemma 1.1. For H=HC, the function Fr on H' can be extended
to an indefinitely differentiable function on the whole H with compact
support.

Now let 7(Yc) be the subset of U(f.) consisting of all We-invariant

elements.

Lemma 1.2. (See [2(b), p. 118] and [2(c), Th.3].) There exists
unique isomorphism y=y" of B onto I(Y) such that Frr=y(Z)Fy
(Ze B This y satisfies that y(Z*)=(p(2))*.

A homomorphism of /(f¢) into C is always induced by some pEbhy,
where B is the dual of be. Denote this one by A,. Then A,=A,/
if and only if p'=op for some o€ W,. We say A, is regular if ps~ou
for all oW, not equal to the identity. We sometimes identify the
homomorphism A of 3 into C and the one Aoy~ of 7(4.). For a fixed A,
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let us consider an analytic function x on A9 satisfying for some p& (h2*

such that A=A,cy the following equations:
1. 4 k(wh)=e(w)x(h) (we We(H), he HY),
1. 5) D=, (D)« (DelUEG)).

Define a function 7 on G from « as follows: for any ge&EGao, n(g)=0;
for g&Gye, m(g)=F (4g))! k(hy), where kg H® is an element such
that g=gokggo~! for some go=G. Consider the distribution defined as

m(f)=<m f>= / J@meag  (fECTG)).
Then using the above two lemmas on Ff, we obtain

Proposition 1. The distribution w defined above is an invariant
eigendistribution on G with the infinitesimal character A=MA,oy which

vanishes identically outside the closure of Ggo.

Proof. Chose a Haar measure &% on a Cartan subgroup A

appropriately, then for any integrable function ¢ on G,

/ c,f(g )dg= /H /G/H., o(ghg=")dg |V (%)|*dh.

Therefore applying this formula for A=H?,
<m f>=| Fyxdh.

<Zm f>=<m Z¥>= [ Foeprdh= [ Z*)Fyrdh
= | @ Fprdh= [  Fry(Z)dh

— /Han')‘,,(y(Z))Kd/z=)\(Z) L, f>.
Q.E.D.
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Denote by zo(A,) the set of all invariant eigendistributions =
obtained from the analytic functions k on A° as above. Using Lemma
2.4.in §2, we can prove as in [3(b)] the following proposition (see [3(c)]).
But this one is not used to prove that for SZL(#%, R) (1 >3), UN)F£ECQ)

for some A.

Proposition 2. 7/e set Wyo(A,) is equal to the set of all invariant
eigendistributions on G with infinitesimal character A=MN,oy which

vanish identically outside the closure of Gpe.

§ 2. Review on known results

Here we summalize some known results in the form of a certain
number of lemmas. Two quasi-simple irreducible representations
T;on J;(7=1, 2) are said to be infinitesimally equivalent [2(a), I, p.230]
if the corresponding representations of U(ge) on HA7=3X59%:(8) (al-
gebraic sum) are algebraically equivalent, where 8 denotes an equivalent
class of irreducible representations of X and %;(8) denotes the subspace

consisting of all vectors transformed under 73(#) (4 K) according to
8. Then,

Lemma 2.1 [2(a), I11]. T7wo gquasi-simple irveducible represen-
tations of G have the same character if and only if they are infinitesimally
equivalent. Two wunitary irreducible represemtations have the same

character if and only if they are unitary equivalent.

Let M be the centralizer of 4 in K. Take p*=af and a finite-
dimensional irreducible representation v of M. Then L=(u¢, v)
defines canonically a representation of MAN. Inducing this one
from MAN to G, we obtain a representation 74 on a Hilbert space
HE consisting certain vector-valued functions on K(see e.g., [3(a)]).
Let 9, and 4, be two closed invariant subspaces of H* such that
HiDYl,. If the representation induced on /¥, is irreducible, it
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is called irreducible constituent of 7%4. Then we know from Th.4 of
[2(a), II] the following

Lemma 2.2. For G=SL(n, R) or a connected complex semi-
stmple Lie group, any quasi-simple irreducible representation of G is

infinitesimally equivalent to an irreducible constituent of some T+
We use the following lemmas in §5.

Lemma 23. Let 74, 75, ..., Tq be the set of quasi-simple irve-
ducible representations of G any two of whick are not infinitesimally

equivalent. Then their charvacters are linearly independent.

Lemma 2.4 [2(d)]. Any invariant eigendistribution w on G
cotncides with a locally summable function on G which is analytic on
G'.  Moreover for every Cartan subgroup H, the function k0W=V-(m|z")
on H'=H NG’ can be extended to an analytic function on H'(R)=
{heH, Adx%)+0}.

Let A be the infinitesimal character of 7 and chose phebh¥ such

that A=A,peyn. Then «% on A'(R) satisfies the analogous equations
as (1. 4) and (1. 5):

@. 1) w(wh)=e(w)i(h) (wEWH), he H'(R)),
@. 2) Div=Aa(D)v  (DEI(He)).

Suppose that Hh=b_+5h, where h-=bhNt, Hr=bhNp. Then putting
H =HNK, H=H_exp h;. For any connected component # of
H'(R), take hoy= H- on the boundary of /. As a solution of (2. 2),

kY is expressed as
2. 3) k(Ao exp X):——UE‘?V Po(X) exp {u(cX)}

if X &Y is sufficiently small and %y exp X € F, where p, 's are some
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polynomial functions on Y. If K is compact or 7 is Zg-simple, all p,
can be taken as not to depend on §)—, because #=/F exp §—. Define A’'(A)
(or A”(A), in case when K is compact) as the subset of A(A) consisting
of such 7 that for any # and #, all p, in the expression (2. 3) can be

taken as to be constants (or polynomials with constant terms zero).

§3. Invariant eigendistributions on SZ(#», R)

In this section, let G=SL(z, R) and A° its Cartan subgroup
consisting of all diagonal matrices in G. Let us calculate all analytic
functions k on /9 satisfying (1. 4) and (1. 5). Denote by d(a1,az, ..., an)
the diagonal matrix with diagonal elements ay, @y, ..., ay. For A=
d(a, az ..., an)EH,

3.1 Po=1 ]I (a1—ap)l.

The Weyl group We(H°), simply denoted by W, is isomorphic to W,
and to the symmetric group &, of order » as permutation group of a;,
az, ..., an.  Let ¢g=411<j<#) such that ee,...e,=1 and put
e=(ey, €, ..., €). Denote by H%e) the connected component of AH°
containing d(ejeh, e, ..., egeln), where & R. Put [p={1, 2, ...,
2k}, Je=42~+1, 2£+2, ..., n} and let €®) be such row e that ¢g=—1
for /eIy and =1 for j& Jx. Put Hy=H®). Any H%e) is
conjugate to some A $ under W. It is sufficient to determine the re-
strictions kg of xk on Hy for 0<A<[#[2] because for A= H%e)=wHY,
(weW), w(h)=«ri(w=kh). The subgroup Wi={weW,;, wHS=H}}
is isomorphic to &y X S, and (1. 4) is rewritten as

3. 2) ki(wh)=kp(h)  (wE Wy, hEHY).

Any element peB)* is expressed uniquely as p=(u1, g2, ..., ta),
where p;&eC and py+pz+...4+pr=0, in such a way that

(3 3) f"(al(tl! fa, ..y tﬂ)>=l<12<nl"’ftf=(/"" t) (put)'
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To study the equations (1. 4) and (1. 5), it is convenient to replace
G by the reductive group *G={g&GL(n, R); det g=>0}. The results
in §1 can be translated for *G word for word. Denote by *§° A9,
+HO%e), THY, tF, *x and *kg the analogous objects as §°, H°, H%e),
HY,V, x and «y respectively. Then for z=d(ay, aa, ..., an)EYHY,

3. 4) +V(/1)=(ala2...an)_ﬂglli];[j(ai—aj)‘.

The Weyl groups are the same for G and *G. Denote by #; the dif-
ferential operator 9/d#; on *H°. Then /(*hY), considered as the algebra
of differential operators on /A9, is nothing but the symmetric polynomials
of t, ts, ..., ty. For any p=(ui, 2, ..., pn) ECtHD* and D(t)=7(*HY),
A(D(#)=D(n). We restrict ourselves to treat pu such that pi+p2+
...+pn=0. Then for any such u, there exists a one-one correspondence
between the set of all solutions « of the equations (1. 4), (1. 5) on H°
and that of *x of the corresponding equations on *A°, by restricting
+xk on H° Therefore it is sufficient for us to study the following

equations: for 0<A<[#/2],
@3.5) trp(wh)="rrp(k) (hetrHY, weWy),
3.6  DWya—=D@h  (DEICHY).

Put Wwy={reW; ru=p} and 6=0cW(u) for c€W. Any

solution of (3. 6) is expressed uniquely as follows: for z=d (eeh, e¢’,

caey enet”)e.'-H%,
3.7 hal)=_ 3 palt) exp ((om, 1),
GEW /W (u)
where p; ’'s are some polynomials of z=(#, ¢, ..., tz). Let us rewrite

(3. 5) and (3. 6) in terms of p; 's. The equation (3. 5) is written as
3. 8 Whs=puws (weE Wy, cEW),

where wp;(#)=p;(w1¢). Take a complete system 3 of representatives
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of the double coset space Wi\W/W(u). Then (3. 8) means that it is
sufficient to determin p; for s> and that for any c€ 3],

3. 9 wps=ps  (wE Wi W (o).

Now let ay, ay, ..., ap be the set of different numbers in ui, o, ..

un and put Ar={j; pj=ar}. Define o(z) as (o7'w)i=posu. Then
cAr={s; (op)j=as}. For any subset 4 of {1, 2, ..., »}, put

Dp(A)= 1", WA)={weW,;, wA=A, w(E)=i for any i A}
€4
Using the same method as in [3(b), §9], we can prove the following

Lemma 3.1. The system of equations (3. 5) and (3. 6) is expressed
in terms of p; (cEX) as
whs=ps (weWrNW(cAdy), 1<rN),

(3. 10) {
Dm(oAdps=0  (m>1, 1<r<N).

Fix €3 and » and put A=04,N7x, B=0AsN [k, p=ps, then

ANB=¢ and the above equations for o and » are

{ wp=p  (wEWA)NW(B)),
3. 11)

Dm(ANBpy=0 (m>1).
if 4 or B=¢, the polynomial p does not contain the variables (7 &4 N

B) explicitely (see [3(b), §9]). If A%¢ and B4, the equation (3. 11)

has the following solution:
@G- 12) rO=A)" T 4—#B) T 4,
jEA jeB

where 44 denotes the number of elements in 4. Restricting this
solution p(#) from *HY to HY, we always obtain non-zero function.
Now denote by ye(A) and y.(A) the sets WgyA)NA'(A) and
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W) NA'A). Then we obtain from the above arguments the

following

Proposition 3. For SL(n, R), Wu,AN)=WyA)+AyA) (direct
sum). When n=2, always Wy(A)={0} and WuyQ)=WyA). When n
>3, Wyu(N)=A{0} or ~{0} according as X is regular or not.

§4. Irreducible characters of SZ(#, R)

In this and the next sections, we calculate all irreducible
characters of G=SL(», R) with certain infinitesimal characters A. Let
us apply Lem’s 2.1 and 2.2. Put a=§)° and K=S0(n), then M=
{d(e1, €2, ..., en)} and MA=H°. Take p=(u1, p2, -.-, pn)EOHY* and let
v=(v1, vz, ..., vn) be arow of ;=0 or 1. Then v determines a character

of M and the pair (u, v) determines a character y#¥ of H°=MA as
@ 1 x# = 11 la;l#i(asllas1)"s,
1<j<n

where /£=d(a, az, ..., an). Consider the induced representation of
x* defined in §2 and denote it by 7# (see also [1]). Then we see
that 7#¥ and its character ##¥ satisfy

T @) =u(D)] (:€25), TrY(Z)=(2)] (ZEB);
i (ag) =@y (g) (s€Ze), Zmtr=N(Z)mt* (ZEB).

This character is a function on G which vanishes identically outside

Gyo and is given on Gy as follows:
17%”(}1):7(/1)‘1;(2’,(}5) (heH°N G,
where putting W=W(H"Y),

4. 2) k()= 3yt (wh).
wWEW

Therefore it follows from the results in §3 that for any pe(h)*, the
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space Ukyo(Ay) is spanned by ##*, when v runs over all possible rows,
whence €(A,)DWjo(A,). Note that w*=m=#""" if and only if there
exists some w& W(H° such that y*' V' (h)=x""(wh) (hEHO).

To apply Lem. 2.2, we must decompose 7#* into irreducible con-
stituents. We call p=(B* imaginary if it takes on §H° only pure-
imaginary values. If p is imaginary, 7#" is unitary and its irreduci-
bility is studied in [1]. Put 6={gEGL(n, R); det g=41} and let
HPO be its subgroup consisting of all diagonal matrices in G. Extend
x* from H° to H° by (4. 1) and construct its induced representation
Trv of G analogously as 7#*. Then the restriction of Tk on G is

exactly 74V,

Lemma 4.1 [1]. The representation T of G is always irredu-
cible if p is imaginary.

Put #o=d(—1, —1, ..., —1) if # is odd and #,=d(1,1, ..., 1, —1)
if 7 is even. Then G=G N Guo. Using the general theory of group

representations, we obtain from the above lemma the following

Lemma 4.2. When n is odd, T is always irreducible. When
n is even, if it is reducible, it is a direct sum of two inequivalent irre-
ducible representations T and T' such that T' is wunitary equivalent

to the representation g — T (uogus")(gEG).
Note that A,=A, if and only if u'=ou for some o W,. Then,

Proposition 4. Suppose n is odd. If pneOD* is imaginary,
the characters ¥ give all irreducible characters of G with infinitesimal
character A, and C(A)=Wyo(Ay).

Thus, Prop’s 3 and 4 give us an elementary proof of the following
theorem in the case when 7 is odd, because UAj.(A,)7{0} for some
Ap-
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Theorem 1. For SL(n, R)(n>3), there exist tempered invariant
eigendistributions on it whick can not be expressed as linear combina-

tions of trreducible characters (for the definition of temperedness, see

(2D

Note that for SZ(%, R), every element in A(A,) is tempered if p
is imaginary.

Apply Lem. 2.4 and consider the equations (2. 1) and (2. 2) for
every H=H"(0<r<[#/2]). Then, using Prop. 2, we obtain

Proposition 5. When n is odd, UA)=WUz(A,) if pe®)* s

imaginary.

§ 5. Irreducible characters of SZ(z, R) for even »

Now suppose z=2s is even. To calculate all irreducible characters,

we apply Lem’s 2.3 and 2.4. Put

cosf§ —siné
u(0)=
sin 6 cos 8
and let
d (e u(0,), e 2u(By), ..., €€ru(ly), erels, ..., et ..., ey _prebn-er)

be the blockwise diagonal matrix with » blocks of 2X2. Denote by
HT the set all such matrices in ¢. Then A° A1, ..., H" form a com-
plete system of Cartan subgroups of G which are not conjugate to each
other under inner automorphisms.

Suppose that p=(H2)* is imaginary as before and 7#* is reducible.
Let 7, 7' be as in Lem. 4.2 and let 7, 7’ be their characters. Then,

G. 1 ' =atv, 7'(g)=n(uoguy’) (ge).

When 0<»<s, wohug'=h for any A& HT", whence ='(k)=mu(4) on
H"=H"NG'. Therefore,
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m=m" =277t on HY;

5. 2)
r=7'=2"1gt¥=0 on H" for 0<r<s.
Moreover, since 7" is not equivalent to 7', m=~7'. Hence n=—="5~0
on HS.

We note here that it follows from (5. 2) that any non-zero element
in Aj/e(A,) can not be expressed as a linear combination of irreducible
characters, which proves Th. 1 in the case when # is even.

On the other hand, a study of the equations (2. 1), (2. 2) for A=
Agey on H=H"(0<»<s) gives us more exact results. Denote in
general a solution kb on H=H" by «". For 0<r<s, always «"=0
on H"(R). Let M? be the set of all p'=(u}, pj, ..., pn)=®dH* such
that pi=ph, u3=pns ..., pas—1=p3s. When oudM;s for any o€ W,,
always «$=0 on H¥(R)=H?3. When p'=ocopeM; for some oo We,

k% is a constant multiple of
©- 3) ) =2""" 1 expi(uas—itra)mon},

where A=d(e"u(0,), e*2u(0,), ..., e¥su(ly)).

Let v (1 <7< MV,) be the set of all different ##>*. Then it follows
from the above arguments and Lem. 2.3 that dim €(A,) < Vo+1 and
that at most one 7#* is reducible.

Suppose peM; and v'=(1,0,1,0, ..., 1, 0). Let us prove that
7Y is reducible. Put

tG,={8&€GL(2, R); det 6>0}, Ds={d(8,, 83, ..., 85)EG; ;E7GL},

and Ps=DsN. ‘Denote by Di,, . the irreducible unitary representations
of *G, with the following characters respectively: for o(ee’, ee?2) and
eu()e+G,,

€eC(tittz) Fe2er
T Tti—t:  _ti—tz| and 0 =it

Consider the representation L of Ds obtained from the Kronecker
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product Df}z,#l@) D‘fﬁz'm@...@Df}Z’#“_l with Bj=+. Extend L to
the parabolic subgroup Ps and induce it from P; to G, then we obtain
a unitary representation 7% of G(see [3(a)]). Its character =% is
given by Th. 2 in [3(a)] as follows. Let ¢ be the number of B; such
that Bj=-. Then,

(— -1y on HS;
5. 4) mt= 0 on H"(0<r<s);
2 iV on H°.

Let 7% be the induced representations for which Bi=4, B,=B:=...
—=Bs=- and let 7y be their characters. Then #k+nf=n#"". The-
refore 7#* is equivalent to the direct sum of 74 and 7% and the

latters are irreducible. Thus,

Proposition 6. Swuppose n=2s is even and p=H* is imaginary.
(a) When ouE Ms for any oW, all TH are irreducible and =** s
give all irveducible characters of G with infinitesimal character X, and
CQAL)=WUyAp). (b) When pe My, let 7tV (1 << No) be all different
av and y'=(1, 0, 1,0, ..., 1, 0). Then Tt is equivalent to the
direct sum of T% and TY and all other TV are irreducible. All
irreducible characters on G with infinitesimal character N\, are n%, w

and 7 (i £ 1), and C\)=Wy(A )+ Clal—n).
Analogously as Prop. 5, we obtain also

Proposition 7. Swuppose that psOD* is imaginary. In the
case (a), AN)=Wxo(Ap). In the case (b), UML) =Uu(Ay)+ Clali—nL).

Moreover we can prove for SL(n, R) the following generalization

of Prop. 3(cf. [3(c)]).
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Proposition 8. For any homomorphism X of B into C, AA)=
WA)+A"(A) (divect sum) and CN)DUA'QR). Especially when n=2,
always W' A)={0} and AN)=WA)=CN). When n>3, A'N)={0}

or<~={0} according as X is regular or not.

We proved in §4 and §5 that on G=SL(n, R) CQA,)=A'(A,)
for any imaginary pe(hd*.

§ 6. The case of complex semi-simple Lie groups

In this section let G be a connected complex semisimple Lie group
and A=H? its Cartan subgroup. Then we can apply Prop’s 1 and
2. For any root a of (g, b)), define &Y as a(X )= <H,, X >(X €)h),
where <,> denotes the Killing form of g. Let X—X(X &b) be
the conjugation of ) with respect to the real subalgebra spanned by
H (aeP). Denote by h* the dual space of h) over C. Then any

character y of A can be expressed uniquely as

x(exp X)=exp {p(X)+¢(X)} (X&),

where p, g=b*. (Note that / is connected.) Denote x by (p, ¢) and
consider it also as an element of Hh*. Let W be the Weyl group of
(g, ). It operates on y=(p, ¢) as wy=(wp, wqg)(w&W). The
Weyl group We of (ge, Ye) is isomorphic to WX W in such a way that
o=(w, w") (w, w' &W) operates on x=(p, ¢) as ox=(wp, w'g). Let
T* be the induced representation of y on a Hilbert space * defined
in §2 and #* its character. Let /() be the set of W-invariant analytic
differential operators on /. Then 7(f;) is generated by /(9¢) and
J(Be). We see from these facts that Zn*=M(Z)n* (Z € B), and that
wt=n"(or \y=>Ay) if and only if y'=wy (or=0y) for some we& W (or
oEW,). A study of the equations (1. 4) and (1. 5) gives us the

following

Lemma 6.1. For any character x=(p,q), UQ) =W+
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A’ (y) (direct sum) and W (Ny) is spnned by {7¥'; x'=(p, wq), wE W},
whence E(A)DA'(Ay).

We want to prove C(A)='(Ay). Meanwhile we obtain from
[3(b), App. II] (*) the following

Proposition 9. Let G be any of SL(n, C), SO@nr+1, C), Sp(n,
C) and SO(n, C). When n=2 or 3, W'(N)={0} for any X. When
n>4, there always exist some A for which N'(X)s£{0}. Moreover
W'A)=A{0} for any A=Ay with imaginary x=(p, ¢)Ebs.

As a corollary of the last assertion of this proposition, we obtain

Theorem 2. For any complex classical group G, a tempered
invariant eigendistribution of G is always a linear combination of the

characters of its irveducible unitary representations.

Now, to determine €(A), we apply Lem’s 2.1 and 2.2 and some
results of D.P. Zhelobenko in [4(a), (b)]. Suppose, for simplicity,
that G is simply connected. Then a pair of p, g=b* defines a character
of H if and only if p,—¢, is integer for any a & P, where p,=2<p, a>/
<la, a>. A character y=(p, ¢) is called discretely positive if for any
aeP, p, and ¢, are not negative integers at the same time. D. P.
Zhelobenko [4(a), §l1] defined for any discretely positive character
X, ‘‘the minimal representation u(y)' as the restriction of 7* on an
invariant subspace JI* of H* with a stronger topology than the one

induced from H* and proved the following facts.

Lemma 6.2. 7/e representation u(y) is completely irreducible
in the sence of R. Godement and the two u(x) and u(x') are equivalent
if and only if theve exists some weW such that x'=wy[4(a), §11].
Any quasi-simple irreducible representation of G is infinitesimally
equivalent to some p(x) [4(b), Th. 7].
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Define the character of u(x) as that of the restriction of 7% on the
closure of J* in H* and denote it by u(x). Then it follows from Lem.
6.2 that for any A, the set of all irreducible characters with infinitesimal
character A does consist of all different p(y) with discretely positive
x such that Ay=A. This gives us the dimension of €(A). On the
other hand, by Lem. 6.1, the dimension of A'(}) is equal to the number
of different 7* such that Ay=A. Thus we see that dim €Q)=dim
A'(A), whence EQA)=A'(A).

Theorem 3. Let G be a connected complex semisimple Lie group.
For any A, AN)=UWN)+A"'QA) (direct sum) and EA)=U'(A).

This theorem and Prop. 9 give us the following

Theorem 4. For SL(n, C), SO2nr+1, C), Sp(n, C) and SO(2n,
C), if n >4, there always exist invariant eigendistributions on it which
can not be expressed as linear combinations of irreducible characters.

No such distribution is tempered.

(*) Errata. In [3(b), App. II]; p. 60, the 2nd line from below
should be “p(¢; p)=p(r't ;7 'pr) (pEW, 7€Z(c), 7'€Z(d))"; p. 63,

n
the right hand side of (17") should be multiplied by []| (¢?#i—e=%i);
j=1

p. 60, the 4th and 5th lines from below should be ‘in another
cases, p(#) is symmetric with respect to the union of #(jEA4}N B
and —# (7€ Ay N By) and with respect to the union of #(GZEA4EN
By) and —#(iE Az N BH.
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