Sur l'existence des feuilletages S'-invariants

Par

Hideki IMANISHI

(Received August 19, 1971)

§ 1. Introduction.

Soit M une variété différentiable de classe C^r , $\infty \ge r \ge 1$, sur laquelle opère le groupe $S^1(=SO(2))$ différentiablement et sans point fixé. Alors M est un S^1 fibré principal sur la variété quotiente $X=M/S^1$ et, comme un S^1 -fibré, M est classifié par une classe d'homotopie d'application f de X dans l'espace classifiant BS^1 du groupe S^1 . Puisque $BS^1=CP^\infty=K(Z,2)$, M est aussi caractérisé par la première classe de Chern $c_1=f^*(x)\in H^2(X:Z)$ où x est le générateur de $H^2(CP^\infty:Z)$.

Un feuilletage \mathcal{F} sur M de codimension 1 et de classe C^r est dit *invariant* si pour chaque feuille F de \mathcal{F} et pour chaque élément g de S^1 , $g \cdot F$ est aussi une feuille de \mathcal{F} . Si \mathcal{F} est invariant alors une feuille de \mathcal{F} est ou bien transversale aux fibres S^1 ou bien stable sous l'action de S^1 . On dit qu'un feuilletage invariant est *simple* s'il est transversalement orientable et si les feuilles stables sont discrètes, c'est à dire, pour chaque feuille stable F il existe un voisinage tubulaire U de F tel que U ne contient aucune feuille stable sauf F.

Théorème 1. Sur un S^1 -fibré principal M il existe un feuilletage simple \mathcal{F} si et, quand \mathcal{F} a un nomble fini de feuilles stables, seulement si c_1^2 est d'ordre fini.

Théorème 2. De plus si le bord ∂M de M n'est pas vide, il existe un feuilletage simple \mathcal{F} qui est compatible avex le bord (c'est a dire les composantes connexes de ∂M sont des feuilles de \mathcal{F}) si et, quand \mathcal{F} a un nombre fini de feuilles stables, seulement s'il existe un élément c de $H^2(X, \partial X : Z)$ tel que $j^*(c) = k \cdot c_1$ et c^2 est d'ordre fini, où j est l'inclusion de X dans $(X, \partial X)$.

Théorème 3. S'il existe un feuilletage simple sur M avec un nombre fini de feuilles stables alors il existe un feuilletage simple sur M avec une seul feuille stable dans Int. M.

Remarque: Si c_1 est d'ordre infini, aucun feuilletage simple ne peut être analytique.

Come une application du théorème 1 on obtient le

Théorème 4. Soit G un groupe de Lie compact et soit S^1 un sous-groupe de G de dimension I. Alors pour l'operation de S^1 sur G, definie par la multiplication à gauche ou à droite, il existe un feuilletage simple sur G.

Démonstration. Soit ξ le S^1 -fibré principal défini par la projection de G sur G/S^1 . Soit i l'inclusion de S^1 dans G et on considère l'homomorphisme i^* de $H^1(G:\mathbf{R})$ dans $H^1(S^1:\mathbf{R})$. Si i^* est surjective alors $c_1(\xi)$ a l'ordre fini, donc il existe un feuilletage invariant et transversal (voire $\S 2.3$). Si i^* est triviale alors la calculation de Koszul [1] montre que $c_1(\xi)^2$ est zero en coéfficient réel et par le théorème 1 il existe un feuilletage simple sur G.

La démonstration du théorème 1 se divise en 3 propositions.

Proposition 1.1. Sur M il existe un feuilletage simple s'il existe un nombre entier k et une application f de X dans la sphère S^2 tels que $k \cdot c_1 = f^*(s)$, où s est un générateur de $H^2(S^2 : Z)$.

Proposition 1.2. Si un feuilletage simple F a un nombre fini de feuilles stables alors l'inverse de la proposition 1.1 est aussi vraie.

Proposition 1.3. La condition de la proposition 1.1 est remplie si et seulement si c_1^2 est d'ordre fini.

Dans §2 on construit quelques feuilletages et on démontre la proposition 1.1. Proposition 1.2 et Théorème 3 serons démontrés dans §3 et on montre la proposition 1.3. dans §4.

La démonstration du théorème 2 est presque la même chose que celle du théorème 1 et on l'admet.

§ 2. Construction des quelques feuilletages.

2.1. Feuilletage de Reeb sur S^3 (Reeb [2]).

Soit $\eta: S^3 \to S^2$ le S^1 -fibré principal de Hopf. Soient D_0 et D_1 les hémisphères nord et sud réspectivement qui sont identifiées avec le disque $\{z \in C \mid |z| \leq 1\}$, alors $S^2 = D_0 \cup D_1$, $\partial D_0 = \partial D_1 = S^1 = \{z \in C \mid |z| = 1\}$ et, en fixant une trivialisation de $\eta \mid D_i \ (i=0,1)$, on a $S^3 = D_0 \times S^1 \cup_{\varphi} D_1 \times S^1$ où φ est un difféomorphisme de $S^1 \times S^1 = \partial D_0 \times S^1$ sur $S^1 \times S^1 = \partial D_1 \times S^1$ défini par

$$\varphi(x, y) = (x, x \cdot y), \quad x, y \in S^1 = \{e^{2\pi it} \mid t \in \mathbf{R}\}.$$

Soit s_i : Int. $D_i \rightarrow$ Int. $D_i \times S^1$ une section de $\eta \mid$ Int. D_i , définie par

$$s_i(x) = (x, e^{2\pi i g(|x|)}), \quad x \in \mathbb{C} \text{ et } |x| < 1$$

où g est une fonction de [0, 1) dans R telle que g(t) = 0 pour $0 \le t \le 1/2$ et $g(t) \to \infty$, $\frac{d^n g}{dt^n}(t) \to \infty (n \le r)$ lorsque $t \to 1$.

Alors la famille des sous-variétés $\{g \cdot s_i(\text{Int. } D_i)\}_{g \in S^1, i=0,1}$ avec le tore $\eta^{-1}(S^1) = S^1 \times S^1$ définit un feuilletage sur S^3 et il est claire que ce feuilletage est simple.

2.2. Feuilletage induit de feuilletage de Reeb.

Soit $\xi: M \to X$ un S^1 -fibré principal induit de η , c'est à dire il existe une application f_{ξ} de X dans S^2 telle que $\xi = f_{\xi}^* \eta$. On peut supposer que f_{ξ} soit transversalle à l'équateur S^1 de S^2 . Soit X_i l'image réciproque de D_i par l'application f_{ξ} alors X est la réunion des sous-variétés X_0 et X_1 et $\partial X_0 \cap \partial X_1 = f_{\xi}^{-1}(S^1)$ est une sous-variété de X de codimension 1. Soit $f_{\xi}^* s_i$ la section de ξ sur Int. X_i induite de la section s_i de η^+ Int. D_i alors, comme dans la section précédente, $\{g: f_{\xi}^* s_i(\operatorname{Int}. X_i)\}_{g \in S^1, i=0,1}$. et $\xi^{-1}(f_{\xi}^{-1}(S^1))$ déterminent un feuilletage sur M qui est simple.

Par suite on obtient

Lemme 2.1. S'il existe une application f de X dans S^2 telle que $c_1(\xi)=f^*(s)$ alors il existe un feuilletage simple sur M où s est un générateur de $H^2(S^2:Z)$.

2.3. Feuilletage réciproque du feuilletage de Reeb.

Soit Z_k le sous-groupe cyclique d'ordre k de S^1 . Alors, si $\xi: M \to X$ est un S^1 -fibré principal, la variété quotiente M/Z_k est aussi un S^1 -fibré principal ξ_k sur X et il est facile à voire que $c_1(\xi_k) = k \cdot c_1(\xi)$. La projection naturelle p de M sur M/Z_k est un difféomorphisme local, donc s'il existe un feuilletage \mathcal{F} sur M/Z_k , p induit un feuilletage $p^*\mathcal{F}$ sur M et si \mathcal{F} est simple $p^*\mathcal{F}$ aussi. En particurier si $k \cdot c_1(\xi) = 0$ alors ξ_k est isomorphe au fibré trivial $X \times S^1$, donc il existe un feuilletage sur M, induit du feuilletage trivial sur $X \times S^1$, invariant et transversal, c'est à dire toutes les feuilles sont transversaux aux fibres.

Par suite s'il existe une application f de X dans S^2 telle que $f^*(s) = c_1(\xi_k) = k \cdot c_1(\xi)$ alors il existe, par le lemme 2.1, un feuilletage sur M/Z_k et donc il existe un feuilletage sur M qui est simple. Ainsi on a démontré la proposition 1.1.

§ 3. Démonstration de la proposition 1.2 et du théorème 3.

Soit \mathcal{F} un feuilletage simple sur un S^1 -fibré principal $\xi: M \to X$

alors l'image Y des feuilles stables de \mathcal{F} par la projection ξ est une sous-variété de X de codimension \mathbb{I} et $\mathcal{F}|\xi^{-1}(X-Y)$ est un feuilletage invariant et transversal. On remarque que le fibré normal de Y dans X est trivial puisque \mathcal{F} est transversalement orientable.

Lemme 3.1. Soit $\xi: M \to X$ un S^1 -fibré principal et supposons que X soit connexe alors il existe un feuilletage invariant et transversal sur M si et seulement si $c_1(\xi)$ a l'ordre fini.

Démonstration. On considère X comme un complexe simplicial et on fixe une trivialization de $\xi \mid X_1$, où X_1 est le 1-squelette de X. Pour chaque 1-simplexe σ , l'intersection de $\xi^{-1}(\sigma)$ avec les feuilles de \mathcal{F} definit un flot sur $S^1 \times I$ et si on considère le revêtement $R \times I$ de $S^1 \times I$, \mathcal{F} definit un flot \mathcal{F}' sur $R \times I$. On définit une fonction f_{σ} de R dans R par $f_{\sigma}(x) = y$ ou (x, 0) et (y, 1) appartiennent à la même trajectoire de \mathcal{F}' , alors $f_{\sigma}(x) - x$ ne depend pas à x et on peut définir une cochaine $\alpha \in C^1(X : R)$ par $\alpha(\sigma) = f_{\sigma}(x) - x$. On définit une cochaine β par $\beta = \delta \alpha$ où δ est l'opérateur de cobord. Alors β appartient à $C^2(X : Z)$ et coı̈ncide au cocycle d'obstruction pour étendre la trivialization de $\xi \mid X_1$, autrement dit, β représente la classe de Chern $c_1(\xi)$. Donc $c_1(\xi) = 0$ en coéfficient réel.

Remarque. Si l'on suppose seulement la transversalité de feuilles aux fibres on a le résultat suivant.

Proposition. Si le groupe fondamental de X est fini ou abélien alors il existe un feuilletage de codimension 1 sur M avec les feuilles transversaux aux fibres si et seulement si $c_1(\xi)$ est d'ordre fini.

Pour le cas où $\pi_1(M)$ est abélien la démonstration est presque la même que celle du lemme. On définit la cochaine α par le nombre de rotation de la fonction f_{σ} . Si $\pi_1(M)$ est un groupe fini, il est suffit de considérer le revêtement universel de X.

Lemme 3.2. Soit \mathcal{F} un feuilletage invariant et transversal sur M et Y une sous-variété de X de codimension 1, alors il existe un feuilletage invariant \mathcal{F}' sur M tel que \mathcal{F} $\xi^{-1}(X-Y)$ est un feuilletage invariant et transversal et que les composantes connexes de $\xi^{-1}(Y)$ soient des feuilles de \mathcal{F}' .

Démonstration. On considére un voisinage tubulaire N de Y de rayon 1 pour une métrique riemannienne sur X. On définit une application h de $\xi^{-1}(X-Y)$ dans \mathbf{R} par

$$h(x) = \begin{cases} 0 & \text{si } \xi(x) \in \mathbb{N} \\ g(\xi(x)) & \text{si } \xi(x) \in \mathbb{N} \end{cases}$$

où g est la fonction définie dans § 2.1. Alors h définit un difféomorphisme \tilde{h} de $\xi^{-1}(X-Y)$ par $\tilde{h}(x)=e^{2\pi i h(x)}\cdot x$ et $\tilde{h}(\mathcal{F}|\xi^{-1}(X-Y))$ et $\xi^{-1}(Y)$ définissent un feuilletage \mathcal{F}' sur M qui satisfait la condition du lemme.

Lemme 3.3. Soit Y une sous-variété de X de codimension l avec le fibré normal trivial, alors il existe des sous variétés X_0 et X_1 de X telles que X soit la réunion de X_0 et X_1 , et que $\partial X_0 \cap \partial X_1 = X_0 \cap X_1$ contient Y.

Démonstration. Puisque le fibré normal de Y dans X est trivial il existe un plongement i de $Y \times [0, 1]$ dans X tel que $i(Y \times \{0\}) = Y$. Il suffit de mettre $X_0 = i(Y \times [0, 1])$, $X_1 = X - i(Y \times (0, 1))$.

Il est facile à voir que s'il existe un feuilletage invariant \mathcal{F} sur M tel que $\mathcal{F}|$ Int. M est transversal alors il existe un feuilletage transversal sur M. Donc par les lemmes $3.1 \sim 3.3$ on obtient

Proposition 3.1. S'il existe un feuilletage simple sur M avec nombre fini de feuilles stables alors il existe des sous-variététes X_0 et X_1 de X et un nombre entier k tels que $X=X_0 \cup X_1$, $X_1 \cap X_1=Y$ est une sous-variété de codimension l de X et $k \cdot i \cdot (c_1) = 0$ ou i_{ε} est l'inclu-

sion de X_{ϵ} dans X ($\epsilon = 0, 1$).

Démonstration de la proposition 1.2. On considère la suite exacte de Mayer-Vietoris pour $(X; X_0, X_1)$

$$H^1(Y:Z) \xrightarrow{\Delta} H^2(X:Z) \xrightarrow{(i_0^*, -i_1^*)} H^2(X_0:Z) \oplus H^2(X_1:Z).$$

Par la proposition 3.1 il existe un élément x de $H^1(Y:Z)$ tel que $\Delta(x)=k\cdot c_1$. De fait que $H^1(Y:Z)=[Y,S^1]$, x est représenté par une application f de Y dans S^1 . On considère S^1 comme l'équateur de $S^2=D_0\cup D_1$ et soient p_0 et p_1 les pôles de nord et de sud de S^2 , alors $D_i=S^1\times[0,1]/(y,1)\sim p_i$ ($y\in S^1$, i=0,1). On définit une application \tilde{f} de $(X:X_0,X_1)$ dans $(S^2:D_0,D_1)$ par

$$\tilde{f}(\mathbf{x}) = \begin{cases} p_i & \text{si } x \in X_i \text{ et } x \notin j_i(Y \times [0, 1]) \\ (f(y), t) & \text{si } x = j_i(y, t) \end{cases}$$

où j_i est l'inclusion du col $Y \times [0, 1]$ de X_i . Alors par la définition de Δ on obtient $\tilde{f}^*(s) = k \cdot c_1$.

Démonstration du théorème 3. Pour simplicité on suppose que M n'ait pas du bord et on suppose que dim. X>2 (si dim. $X\leq 2$ le théorème est trivial). Par la proposition 3.1 $X=X_0\cup X_1$ et $k\cdot c_1(\xi\mid X_i)=0$. Si X_0 n'est pas connexe, on choisit des chemins γ_i dans X_1 tels que les points extrêmes de γ_i appartiennent à ∂X_0 et $X_0\cup \gamma_1\cup\ldots\cup \gamma_s$ soit connexe. Soient U_i ($i=1,2\ldots s$) des voisinages tubulaires de γ_i tels que $\bar{X}_0=X\cup U_1\cup\ldots\cup U_s$ soit une sous-variété fermée et connexe de X. Soit $\bar{X}_1=X-\mathrm{Int}$. \bar{X}_0 alors $k\cdot c_1(\xi\mid \bar{X}_i)=0$ (i=0,1). Si $\partial \bar{X}_0$ n'est pas connexe on choisit des chemins δ_j ($j=1,2,\ldots t$) dans X_0 et ses voisinages tubulaires N_j tels que $\tilde{X}_1=\bar{X}_1\cup N_1\cup\ldots\cup N_t$ et que $\partial \tilde{X}_1$ soit connexe. On définit $\tilde{X}_0=X-\mathrm{Int}$. \tilde{X}_1 alors $X=\tilde{X}_0\cup \tilde{X}_1$, $\tilde{Y}=\partial \tilde{X}_0=\partial \tilde{X}_1$ est une sous-variété connexe de X et $k\cdot c_1(\xi\mid \tilde{X}_i)=0$. Donc par les lemmes 3.1 et 3.2 il existe un feuilletage simple sur M avec une seule feuille stable $\xi^{-1}(\tilde{Y})$.

§ 4. Démonstration de la proposition 1.3.

Pour un CW-complexe X on écrit X_i le i-squelette de X et on identifie $H^2(X_i:Z)$ avec $H^2(X:Z)$ ($i \ge 3$). Soit x le générateur de $H^2(\mathbb{C}P^\infty:Z)$ et soit $s=i^*(x)$, où i est l'injection naturelle de S^2 dans $\mathbb{C}P^\infty$, alors s est un générateur de $H^2(S^2:Z)$.

La nécessité de la proposition 1.3 est claire et on va chercher l'application f quand c_1^2 a l'ordre fini.

Lemme 4.1. Soit f une application de X dans \mathbb{CP}^{∞} alors il existe une application f_4 de X_4 dans S^2 telle que $f_4^*(s)=f^*(x)$ si et seulement si $f^*(x^2)=0$.

Démonstration. On considère la fibration $S^2 \xrightarrow{i} CP^{\infty} \xrightarrow{j} BS^3$ alors il existe une telle f_4 si et seulement si $j \circ (f \mid X_4)$ est homotope à zéro. L'ensemble $[X_4, BS^3]$ est équivalent à l'ensemble $[X_4, S^4]$ et un élément g de $[X_4, S^4]$ est caractérisé par $g^*(s_4)$ ou s_4 est un générateur de $H^4(S^4: Z)$. Par suite, puisque $j^*(s_4) = \pm x^2$, l'existence de f_4 est équivalent à $f^*(x^2) = 0$.

Pour un nombre naturel n on définit $\bar{n} = \min\{m \mid n \text{ divise } m^2\}$. Alors si $f^*(s)$ est d'ordre m, il existe une application f_4 de X_4 dans S^2 telle que $f_4^*(s) = \bar{m}f^*(x)$. Sous cette notation on peut préciser la proposition 1.3 comme suite;

Proposition 4.1. Si X est de dimension n $(n \ge 4)$ et si, pour une application f de X dans CP^{∞} , $f^*(x^2)$ est d'ordre m alors il existe une application \tilde{f} de X dans S^2 telle que

$$\tilde{f}^*(s) = \bar{m}\bar{k}_4 \,\bar{k}_5 \dots \bar{k}_{n-1} \quad f^*(x)$$

ou k_i est l'ordre de $\pi_i(S^2)$ qui est fini (Serre [3]).

Cette proposition est la conséquance de la proposition suivante.

Proposition 4.2. Soit f_i une application de X_i dans S^2 alors il

existe une application f_{i+1} de X_{i+1} dans S^2 telle que $f_{i+1}^*(s) = \bar{k}_i \cdot f_i^*(s)$ $(i \ge 4)$.

Et celle-ci est la conséquance du

Lemme 4.2. Soit ι_i la classe d'homotopie d'identite de S^i alors pour tout élément α de $\pi_i(S^2)$, $i \ge 4$, on a

$$(\bar{k}_{i}\iota_{2})\circ a=0.$$

Démonstration. L'application de Hopf η induit un isomorphisme de $\pi_i(S^3)$ sur $\pi_i(S^2)$ $(i \geq 4)$, donc pour un élémnt a' de $\pi_i(S^3)$ on a $a = \eta \circ a'$ et $(\bar{k}_i \iota_2) \circ a = (\bar{k}_i \iota_2) \circ \eta \circ a' = \eta \circ (\bar{k}_i^2 \iota_3) \circ a'$. Mais S^3 est un H-espace donc $(\bar{k}_i^2 \iota_3) \circ a' = a' \circ \bar{k}_i^2 \iota_i$ et par suite on a $(\bar{k}_i \iota_2) \circ a = a \circ \bar{k}_i^2 \iota_i = \bar{k}_i^2$ a = 0.

KYOTO UNIVERSITY

Références

- [1] J. L. Koszul: Sur l'homologie des espaces homogènes, C. R. Acad. Sci. Paris 225 (1947), 477-479.
- [2] G. Reeb: Sur certaines propriétés topologiques des variétes feuilletes, Actua. Sci. et ind..., Hermann, Paris, 1952.
- [3] J. P. Serre: Homologie singulière des espaces fibrés, Ann. Math, 54 (1951), 425-505.