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1. Introduction

The problem of which martingales can be transformed to Brownian
motion b y  a  random time change has been, under various conditions
and methods considered by several authors ( [ 1 ] ,  [ 3 ] ,  [ 4 ] ) .

In this paper we consider similar problems. In particular we drop
the condition of nowhere o r  near nowhere constancy o f  paths of the
random processes, which was used previously. Our method consists of
a direct utilization of theorem 5 .3  in  [2 ] ,  and a  decomposition theorem
for square integrable martingales, due to P. A . Meyer ( [ 5 ] ,  [ 6 ] ) .  In
section 3  we state and prove two representation theorems. Representa-
tions here are  linked to an adjoining Brownian motion. In  sec tio n  4
such an adjunction will be removed. Our approach seems to be simple
and more transparent. We consider the one-dimensional case only.

2. Preliminaries

L et (Q, a ,  P )  be a  probability space. A  random process x=(x„
a t ) is a  family of random variables X „ t e  [0 , +  00 ), defined on Q, a ,
is a  family of an increasing sub-a-algebra o f a ,  and where X, is d,-
measurable. A ll a-a lgeb ras are assumed to be complete relative to  P.
A random process (x„ d ,)  is called  martingale (square integrable mar-
tingale) i f  E1X, I < + 00 (EX? <  +  00), t e [0 , +  00), E{X,Isaf s } = Xs when-
ever t> s. A  random process is continuous if the paths t X ,(o )) are
continuous for almost all co e  Q .

Let a, + =  a t + e . If (x„ a )  i s  a  continuous martingale, thenE>o
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so is (X „ ..d 1+ ). In situations like this we may and do assume that:

d 1+t  [ 0 ,  +  co) i.e . the fam ily  of a t 's

is right continuous. A  process (A„ ad  is called an increasing process
if the paths 1.-÷A, are continuous and increasing.

L et (x„ a 1)  be a  continuous, square integrable martingale. Then
th ere  is  a unique increasing (natural) process <X> „ E < X > ,< ± co ,
and such that X? — <X > , is  a martingale. This result is only a  special
case of a more general theorem due to P.A. Meyer ( [5 ],  [6 ]).

For convenience, we now state theorem 5.3 of [2].

Theorem 2.1 (Theorem 5.3 [2]).
Suppose (X„ d 1) i s  a  continuous square integrable m artingale, and

there ex ists a  nonnegative random  process (0 „ a t )  measurable i n  (t, co)
relative to  a  x a  where a is  the B orel sets of  [0, + 00), such that:

E{(X„ — X11) 2 1a11} = 4 2 0 sdsiat 1l

whenever t 2 > t 1 . I f  t h e  s e t  {(t, w): 4)(t, co)=0} h as  dt x d P measure
zero, there ex ists a  Brownian motion (B„ ad, such that:

X ,  Xo +1'  01/ 2 dB,

Even without this additional hypothesis on the v anishing of  0 , this repre-
sentation is valid, af te r a  Brownian motion has been adjoined to (X„
process.

Before proceeding to the next section, as a matter of notation, 1(A)
will denote the indicator function o f A ; i .e .  I(A) = 1 on A, = 0  off A.
The value of I (A )  a t a  is denote by I (A )(a ).  Also we write a A b for
min(a, b). Random variables will be starred when viewed on the space
obtained by adjoining to (Q, a, P)  a  space carrying a  Brownian motion.
Several statements below should be interpreted as holding almost every-
where P,
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3 .  Representation theorems

Theorem 3.1
I f  ( X „  e) i s  a  continuous square integrable m artingale satisfying

X (0 )=0 , then X P = B (< X > P ).  B  is  a  Brownian motion.

P R O O F . V —  < X > ,  is a martingale by P. A. Meyer decomposition.
<X >, is continuous by continuity of X .  Let T (t )= in f{s : <X > s >t}
where by convention inf 4)= + co. T ( t )  is a  stopping time, and so is
T (t)A  r for each positive number r. Consequently, Y(t)= X (T (t )A r ) is
a  continuous square integrable martingale. Applying the decomposition
theorem on Y(t) we obtain:

< Y> = < X > T(t)Ar

But <  >  T ( t ) A r
=

 t  A < X > r, so that

d < Y >
f — I({s : s< <x> ,.})(t)dt

This /({ s: s « X > r } )( t) , relative to  Y (t) process, satisfies the condi-
tions required on 4), in  theorem 2.1. Hence

Y *(t)=1 1
0 /* ({ s: s < < X > ,} ) 1 1 2 (t)dB,

=B (t A < X > n

where B  i s  a  Brownian m otion . O r X *(T * (t) A r )= B (t A < X > : ) .
From which follows that X *(t A r )= B (< X > t  A < X > ;.'). Letting r—*00,
X* (t)= B(< X >

Theorem 3.2
I f  (X e, e)  is  a  continuous, unbounded martingale satisfy ing X(0)=0,

then  X t = B (A P ) .  B  i s  a  Brownian m otion, and A  i s  a n  increasing
process.

R em ark. A  theorem similar to this was proved in  [ 3 ] ,  under further
condition that X , is nowhere constant.
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P R O O F . For an integer N ,  le t  T N  = infft : PO> NI then T N  is finite,
and YN (t) = X(t A TN )  satisfies the hypothesis of theorem 3.1. Hence

I 1 (0 =  B (<  IT N> 'P).

Since < YN> t = < I T N ,  > t  o n  [0 , TN ]  whenever N ' >  N , li m < YN> t = A,
N—oco

exists and is increasing process. Clearly X *(t)=B (A P )

4. Remarks.

To simplify and clarify our notation let us denote /({s: s < <X > r })(1)
by /,.(t). Using (2  pp. 449)

B = I 12 (T )d i (T ) +1(1— 1?
-1 1 2  ( T ) J *  1 / 2 ( T ) ) d f 3 * ( T )

where Yr (t )= X (T (t ) A 0 ,  r 1/2,t,) = 0  whenever /P 2 (t) = 0, and E  is  an
independent Brownian motion adjoined to Yr ( t )  process is a  Brownian
motion. This E is fixed throughout.

Defining r oo =inf{s: <X >,  i s  constant on [s, +  00)}, it is easy to
see that li m B JO= B(t)

r  co
{ X *(T * (t )), t « X >  ro e

X*(110 )- 4*(0—  1-3*(<X> ro e ), t > <X >

Being limit of Brownian motions, B  itself is a  Brownian motion. The
full Brownian motion in theorem 3.1 can be take to be this B . X (T (t )) ,

t <  < X > view ed on  (Q, 42, P )  i s  a  Brownian motion stopped at
< X > i.e . X (T (t ) )  and B(t ), t< <X > r

Œ,  have the same distribution.
Letting Bs (t)=- X(T(t)),  t< <X > r . ,

X (t )=B s e < X >  t > 0

is  a  representation of X  on (Q, ,  P ) in  terms of B ,  a  stopped Brow-
nian motion a t  <X > r o e .

The above considerations, applied to theorem 3 .2 , w ill resu lt, in
view  o f  sam ple paths unboudeness, X ( t )= B (A )  where B  i s  a fu ll
Brownian motion on (Q, d ,  P),
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