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Introduction. Hersh has made a characterization of hyperbolic
mixed problems ([1], [2]), where it seems that there are some rough
discussions, especially about analyticities. Recently, Shirota has also
made its characterization by means of Lopatinski’s determinants with
some restrictions ([3]). In this paper, we deal with the same problem
as Shirota without his restrictions.

Now we state our problems, assumptions and main results. We
consider the mixed problem

 A(D,, D,, D))u=f(t, x, y) for t>0, x>0, yes R !,

BiD,, D,, D)u=g;(t, y)(j=1,....,p) for >0, x=0, yeR"!,

P .
(P) Dlu=hyx, y)(j=0,1,...,m—1) for t=0, x>0, yeR"!
Sl p L0 p (Lo 12
(o= 2= 20 D =(Fayr T w)

where {4, B;} are differential operators of orders {m, r;} with constant
coefficients and {f, g;, h;} are given deta. We denote the principal
parts of {4, B;} by {4y, Bjo}. We assume

i) A is hyperbolic with respect to (1,0, 0), i.e.
{ AO(l, 0; 0)#()’
A(Ta é’ '1)*0 for Imt<_?09 (é’ ﬂ)ER"a
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i) Ay(0, 1, 0)=0,

iii) Bjo(O, 1,0)#0,0Sr13m—], and I.i#rj if i#j.

Remark. Assumptions ii) and iii) can be removable, but here we
assume them in order to avoid some troublesome discussions about
adjoint problems.

We say that the problem (P) is &-well posed, if for every fe
&(RTXRY), g;€&(RIxR™™T), h;e#(R}) with compatibility conditions
of infinite order there exists a unique solution ue&(RIxR%), where
#(X) means a Rréchet space of infinitely differentiable functions in X
with semi-norms

lul,xk= 2, sup|D*u(x)|,
|v]<! xeK
where / is a positive integer and K is a compact set in X. Of course,
if (P) is &-well posed, then the mapping from data to solution becomes
continuous.

Now from the assumption i), there exists no real zero or A(t, &, 1)

with respect to ¢ for Imt< —7y,, neR"!. Therefore we denote there

A & =e [T &= &5 m T €= &6, m)

=cA.(t,n;8)A(t,n, &)  (ImF(r, n)=0).

Here we define Lopatinski’s determinant of {4, B;} by

_ 1 B'(T, éa ﬂ)ék_l ’
R(7, ﬂ)—det< P j4+(1;, n; &) dé)j,k=l,....u

for Int<—7y, and nER""!. We say that {4, B;} satisfy Lopatinski’s
condition if there exists y,(=7y,) such that

R(z, n)*0 for Int< -y, and yeR""1.

Remark. Let
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BN Eens &) =TTy LB & D)o
i<j

B(l”—l)(‘ca 7”; él"”a cy)"'B(ll)(T, r]; éﬂ-l, éu)B(IO)(T’ r]; 5;4)

BYD(e, 1t Ervens £ B, 1 Eu s E)BO (e £,)
where

BO(z, 05 &) = By(x, &y 1),

B (1,15 Eujy Eucjuraenes E)°

= B(ij_.l)(Ts n; éll-—js"-’ ‘En—l)_BE‘j_l)(ra n; éu—j+1a~"s é}u)
éu—j_ép

(j=la 2a"', = l)a
then we have
R(z,n)=2(t, n; &i (T, n),..., & (z, m))  for Imt<—7o, nER"1.

Our main result is

Theorem. In order that (P) is &-well posed, it is necessary and suf-
ficient that

i) R(t,n)=0 for Imt<—y,, neR" 1,
ii) Ry(1,0)x0,

where R, is the pricipal part of R, which will be defined in §3.

§1. Necessity of Lopatinski’s condition for &-well posedness.

Lemma 1.1. In order that (P) is &-well posed, it is necessary that
there exists p>0 such that

R(t,n)x0  for Imt<—p{log(1+|t|+|n))+1}, nER"1.

Proof. 1) We assume that for any p there exist {7,,7,} such
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that
[AERT R ——
Imz,<—plog(|z,|+|n,)),
R(7,, n,)=0.

Then there exist (c,p,..., ¢,,) such that

u
2 lejpl2=1,
j=1

1 eix{éj—l
i A+(Tps "p;

0= 3 ey 7 dE (1| Iny )",
and
A(zp, Dy, n,)0,(x)=0, x>0,
{ B(t,, Dy, n,)v,(0)=0 (=1,..., ).
Now we denote
u,(t, x, y)=v,(x)-eitrrtivio
then we have

A(D,, Dy, D,)u,=0 for t>0, x>0, yeR" !,
B;(D,, D, D))u,=0 (j=1,...,n) for t>0,x=0,yeR""'.
2) Let p=1,2,.... Since jzi|cjp[2= 1, there exists p, such that
Cups Cu—1pse-s Cp—pot1p 555> 0,

Cu—pon —~— 0,

therefore we have

Cu—pop, F5x* €0

3) Now we denote
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D]u,(0, x, y)=tiv,(x)eire =h,(x, y).

Since
Sgpo ID.’;vp(x)l < Ck(ltpl + Irlpl)ka
we have

sup, _ [DxD3h,(x, )| =, |/, sup | Divy (x)]

x>0yeRn-1

S Cul|Ty] +[mp|)iHet v,

therefore we have
met —1+1
‘ZO |hjp|9‘(R:)SCl([Tp| + lr’pl)m
i=

4) On the other hand, we have

v,(0) () RPN 0 1 Cip

(Itpl+ 1,1)7* D,,(0) P g || Cap
0 :

(I,l +|n,) 71 DE~10,(0) 1 oy peeeeenes %-1p) | Cup |

where

gitn—t

=1 .
= | ey e | <.

Then we have
(ltpkl + |’1pk|)_“°Dzovpk(0)

=Cu-pop, t%1p Cu—pot1,p, 0+ U p, Cup, T €,
0%k k o k 0%k k

therefore

[Dxeu, (¢,0,0)|= | Dkov,, (0)ei*eri| = | Dkov,, (0)]e*1m e,

97
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> |D£ovpk(0)|(|‘rpk| + |;7pk|)pkr 2%(““' + |r’pk|)pk'+uo (k>ky),

which is a contradiction to &-well posedness. Q.E.D.

Lemma 1.2. If there exists p>0 such that
R(t,m)x0  for Imt<— p{log(l+|t|+[g))+1}, neR1,
then there exists y,>0 such that
R(t,1)x0  for Imt<—7y,, R 1,

Proof.
Let us denote

A(Ta é’ 11)=C{€"'+al(1:, 'l)ﬁm—l +°"+am(15 '7)},

and

m

M":{T’ ’176“---, ém; Z€i=_al(f, 17),..., !

i=1

o ]

Ci=(=D"a,(z, n),

Im¢,>0,...,Im¢, >0,
T2+ 2 <r?, Imt< —y,, nER1,
A(t, 15 &y,..., €,)=0}.
Then we have from Seidenberg’s lemma ([4])
M=¢ orlu(r)=s;{1?{—lmt}=Cr"(l+o(1)) (r—+ o).
On the other hand, we have from the assumption

u(r) <p{log(l1+r)+1},

therefore we have a<0. Q.E.D.
Here we have from lemmas 1.1, 1.2

Proposition 1.1. In order that (P) is &-well posed, it is necessary
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that {A, B j} satisfy Lopatinski’s condition.

§2 Hyperbolic functions.

In this section, we consider hyperbolic functions in general, laying
aside the matter in hand. Let us say that f(£) is a hyperbolic function
with respect to &y,(€R"—{0}), if there exists an open connected cone
C(cR"), where ({,eC and é,+CcC, and the following conditions i)
~1ii) are satisfied:

i) there exists y,>0 such that f(£) is holomorphic in R"—iC,,,

where C,,=C+7,&o,

ii) there exists f,(¢) =0, which is holomorphic in C= C\lj(o)z(R"

—iC),

fo(z&)=2z"fo(&)  for ze(C!, e,
and
z7(28) = fo(&) 557> O for ¢£eR"—iC,,,

whose convergence is locally uniform in R"—iC,,,

iii) f(&)x0 for EER—iO,, (O={A¢y; A1>0}, @y,=O +700)

fo()=x0 for éeC.
Lemma 2.1. Let us assume i),ii) in the above definition, and assume
f(€)=0 Jor £ER"—i0,,,

So(&o) %0,

then we have
fo§)%0  for EER"—ig@.
Proof. 1t is sufficient to show that
Sfo(n—idéy) =0 for n€R", Re A>0.

Let us assume that there exist 7, R", Re 1,>0 such that fo(no—ilo&o)
=0. Since
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(=247 (o= i2¢0) =Fo (12 + &) prmra Fo(Eo),
and fo(&o) =0, we have f,(n, —ii€,) =0, therefore
So(no—iAo)=(A—20)'0(2), ¢(4o) %0,
hence
| fo(no—idlo)| Zcld—Ao|"  for |A—Ao|<é.
Since
1= (uno —inddo) —=va> fo(no —iAo)

uniformly for |[1—4,|<é. By Rouché’s theoren, we have for any pu>
Ko, flune—iully) =0 has /-roots with respect to A within |[1—1,|<3é,
which is a contradiction to f(¢)x0 for ({€R"—i0O,,. Q.E.D.

Lemm 2.2. Let f(¢) be a hyperbolic function with respect to &, with
cone C. Then we have

=0 for EER"—IC,,,
fo(8)=0  for eC.

Proof. 1) Let noeR" ¢,eC,, be arbitrarily fixed, then f(n,—
iAo —iu€y) is holomorphic in Rel>y,, Reu>0. It is sufficient to
show that it is non-zero there. Since

No—iAlo—inlH,€R"—i0O,, for ReA>7y,, Re u=0,
we have
fno—idéo—inés)x0  for Red>7y,, Re u=0.

2) Since
Wt = 1380 = i) o (10~ 1L o= 12, ) e O

uniformly for |u|>C,l4|, and
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So(—=i&o)=(—1)"fo(Lo) %0,
then we have

Sno—irlo—inlp)=0  for ReA>y,, Rep>0, [u|>ClA|.
From 1),2), we have that the number of zeros of f(no—iA,—iucp)

with respect to u in Re u>0 is finite and independent of A in Re A>7y,.
3) Since

3 g = 1380 — ing) = fo (18-~ i —i-4-E0 ) prra O
uniformly for |u|<c|A|, and fo(—i&o)=(—i)"fo(£o) =0, then we have
f(no—iAéo—iuépy) =0 for Re A>y,, Reu>0, lul<cld, |4 > M.

4) We have

ﬂ—"f('lo—ilfo_i#fb)—fo<—’zlg‘—i—i‘éo_i§6>mm’0

uniformly for c|A|<|u|<C|i|. Let A>y, and Re u>0, then Re—i“—>0,

therefore {%éo+é’o} are contained some compact set in (R"—i®)U

(R"+i@) U C, whenever cA<|u|<CA. Hence we have from lemma 2.1
that

|f0<%éo+§b>\ >6>0  for A>7,, Reu>0, cA< |u|< CA.

Therefore we have
f(no—iréo—ipéy)=x0  for A>yy, Reu>0,

A U< CA A> M.

From 3), 4), we have
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Sno—idlo—inlp)=0  for A>yp4, Reu>0,

4> max (M, M’). Q.E.D.

Finally, we state a result of the theory of Fourier-Laplace trans-
form.

Lemma 23. Let C be an open connectted cone. Let

i) f(&) be holomorphic in R"—iC,,,

ii) for any compact set KcC,,,
fOI<ck(1+[ED= for EER"—ICk,

where Cy={A; (€K, A>1}. Then F[f]1€2'(R") is defined by
<FL/Lp>=|,  FEFLOE, (€Cry g2 (R,
and supp F[f]1cC’, where

C'={xeR"; x.(>0, V¢eC}.

§3. Lopatinski’s determinants.

Let us denote

(¢, )= max 1t for (£,n)eRn,
Ao(t, &, n)=0
o(n)=mina(¢, n) for neR"* 1,
EeR!
r={(z, & neRrR"; 1>0(¢ n},
I'={(x,neER"; 1>a(n)},

and I'y,=T+74(1,0,0), I'y,=I+70(1, 0).

Lemma 3.1. R(t, 1) is holomorphic in R"—il..
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Proof. Since
A(Ts ﬁa ’7)*0 for Im7< —7Yo» (és ﬂ)ER",
AO(T’ 69 ")#0 for (Ty év ﬂ)EF,

we have from lemma 2.2 that A(z, £, n) is a hyperbolic function with
respect to (1,0,0) with cone I'. Let us denote for (, n)ef

émax(t’ Y])= sup €~ fmin(r’ '7)= inf _69
(v, &, mel (r, & el

then
F={(t,&MER™; (t, MET, Emin(t, 1) <E<Lmax(T, M)},
therefore the zeros of A(r, &, n) satisfy
Im&f(r, n)>Enax(me, Imy)  j=1,.., 4,

Im&G(t, ) <Emin(Imt, Imp)  j=1,...,m—p

for (z, n)eR"—if,o. Hence, denoting

'3
At O = T1(C=Sf(r, m) =& +ai(r, mE" + - +aji(z, n),
=
{af(z, n)} are holomorphic in R"—if",o. Q.E.D.

Lemma 3.2. Let K be a compact set in R"—il’ , then there exists
Ax>0 such that

R(z, A= {Ro(%, 1)+ Ry (%, 1) + 5 Ra(, m)+++-}

(h=1§1rj_ #(#2— = )’

whose convergence is uniform in Kx{A€C';|1|> A}, where

i) {R,(t, n)} are holomorphic in I'=s v zZ(R"—il’),
zeC1-{0}

i) R(r, )=i"iRi(x,n)  for (r,mel’, 1eC'~{0}.
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Remark. Let
Ro(t, M) =R (1, M)=--=R_1(7, n) =0,
{ Ry (7, n) =0,

then we denote R, (7, n)=Ro(t,n)  (ho=h—k).

Proof. We denote

A(T, éy "’)=A0(T, és ’1)+A1(T’ 63 ’1)+”' +Am$

where A,(t, &, ) is a homogeneous polynomial of order m—k. Then

A0, 2, I =27 A0(5, &M+ AL (5 & )+

Now let us introduce a real parameter v and consider

A(‘,)(T, éa ”)=A0(Ts C, ’7)+VA1(1'-3 6a ’1)+ o +vam'

SinCC A(‘,)(T, 6’ ’1)=va <—L‘Ta ‘17'69 %’1), A(v)(Ta fs ’1)1\‘?0 for (T, é; r’)

eR'—il,, and 0<v<|1, therefore the zeros of A(,(7, ¢, n) are in
the analogous situation to those of A(t, ¢, n), which we denote by
{C'}(T, n, v)}j=l,...,u’ {C;(Ta ’7; v)}j:l....’m—u:

Im {$ (7, 75 V) >Emax(Im 7, Im ),
Im {5(z, 15 v) <Emin(Im 7, Im 1)
for (t,n)ER"—il,, 0<v<I.
Then, denoting
jﬁl(é—i}-‘(r, n;v) =& +bi(t, n; v)E T+ +bi(T, M5 V),

we have that {b}(7,n;v)} are holomorphic in {R”—if,o} x{0<v< 1}
Since

1 . 1
&0m, =225 (x, m: =), afCin, =200 (. s )
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for (7, 11)€R"—if“,,0 and A>1, we have
aj (e, i) =23 {ajo(t, ) +—-afi(t, ) +5-afa(t, 1)+ },

uniformly in Kx{ieC!; |i|>ix} (K:any compact set in R"—il, ).
it is easily shown that af(7, n) are holomorphic in R"—iI, , and

at(At, ) =Ai*a%(1,n)  for (r,))€R"—il and A>1,

therefore the homogeneous extensions of a%.(7,7) into I' are also
holomorphic there. Q.E.D.

Proposition 3.1. Let the problem (P) be &-well posed, then we have
Ro(1,0) 0.

Proof. Let Ry(1,0)=0 and Ry(tg, 7o)%0. From the expansion of
R, we have

— sh tL b ) R ( t. ot ) }
R(s+1tty, tny)=s °{R0<l+s Tos Mo )+ R, l+s To, 1o )+
for |—t—’<l, ‘—l—|<c.
s s
Now since

Ro(1+wtg, wno) +zR (1 +wtg, whg) + -

is holomorphic at (w, z)=(0, 0), its zeros are given by

e i
W= Lozt (lal<eo),
which become zero at z=0. Set

wmen( 1) (<)

then we have

|1(s)|>C|s|'-7,
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R(s+1t(s)T0, t(s)no) =0.
Now set
s,=—ip (p:integr, p>po)
and
T,=8p+(5,)T0, M,=1(5,)M0

then we have

Irlpl < C| Im Tp| l—q,
R(z,, n,)=0,

and zeros of A.(t,, n,; £) have positive imaginary parts. Here we are
in an analogous situation to that in the proof of lemma 1.1, that is,
we can find {c;,};=1,..,u,p2p, Such that

1 eixééj—l
7”' A+(Tpa r’p; é)

un n .
j;llcjpp:], v,,(x):lglcjp 3 de(|T,|+ In,l)H i,

A(z,, Dy, 1,)0,(x)=0, Bj(z,, Dy, 1n,)v,(0)=0 (=1,..., n),

and then u,(¢, x, y)=v,(x)e**»*»1» will lead us to a contradiction to
&-well posedness. Q.E.D.

Example 1. Let
A=12—§2_p2,
B=¢+1+1,
then
R(r,m=&(r,m+1+1,  Ro(t, n)=&u(t, n)+7,

therefore
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R(z, 1) =0 1= — ’722“
and
Ro(7, 1) =0, Ry(1,0)=0.
Example 2. Let
A=),
B,=¢,
] B,=8(r+12—n?+1,
then
R(t,n)=1, Ry(z,n)=0.
§4. Existence theorems.
Hereafter we assume
i) R(t,n)=0 for Imt<—y,, e R* 1,
{ ii) R,(1,0)=x0.
Let us denote
a(n) if Ry(z, n)=0 for 1> a(n),

_ sup otherwise,
Ro(r,1)=0,t>a(n)

0'0('1)={
for ne R 1, and
3= {(t, ) ER"; 1> 0a4(n)}.
Example. Let

A=12-¢2—|n?, B=&+bn  (bER™Y),

then
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R(t, n)=&*(t, n)+b-n,

{InI2+(b'f1)2}% if b-n>0,
Uo(ﬂ)={
I3 if b-1<0.

Remark. From lemma 2.1, we have
Ro(t,m)%0  for Imtx0, ne R !,

Therefore, since Ry(t, 1) is analytic on (t, q)(‘—.‘f, oo(n) is continuous.

Since XTI’ and ):'+(l, O)C.Sf, we have from lemma 2.2

Lemma 4.1. R(t,n) is a hyperbolic function with respect to (1,0)

with cone 3.

Lemma 4.2. Let K be a compact set in by v.» then there exist cx>0,
ax>0 such that

[R(z, M| =ck(|t]+n))7ex  for (zr,n)ER"—iCy,
where

Cx={(t, n); (z, MEK, A>1}.

Proof. Let (19, n9)€2,,, then there exists ¢>0 such that
U,(to, 10)={(7, n) ER"; IT—To|2+|’1“’70|2<32}C2.'7,,
therefore
AU(tg, o),  for A>1.
Now let us denote
2,(t9, No; &) ={t=1"—idt", n=n'—idn"; (v, ') ER", (7", ") EU,(70, 7o)

A1, 7|2+ g2 <r2} R =i, ,
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and
G,(10,M05 &) ={(1, NN E D, (T0, N0 &), ({1,..., EW) EC™;
2= —ay(t, ), iéé;éﬁaz(r, M)seees HE;=(—1)"a,(z, 1)
Im¢,>Imé,>-->Imé,},
where
A(r, &, my=c{ém+a (v, n)Em 1t + - +a,(z, n)}.
Since
Im &4 (z, ) >Im Ex(z, 1) for (z, ) eR"—il,,,
we have
R(t, 03 Eraees E)=R(, ) in G (1, 705 ),
therefore

'@(Ta ”;61""’ éu)#o in gr(TO, ’10;8)0
From Seidenberg’s lemma, we have

1 1
su =Ssup——m-——
PR, w3 Er G e IRCE, M

=Cr*(1+o(l)) as r— + co. Q.E.D.

Let us denote

. _ 1 4 R (1'-9 11) é‘i—l
PO = B R A D

where

. k-1
R (7, n): (k, j)-cofactor of( L - B,(z, ¢, m¢ d&) .
2mi Jik=1,p

Ai(t, ;&)

Then the solution in H™(R1) of the problem
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A(t, Dy, n)fi(x)=0, x>0,
) {
Bj(Ta Dx’ 'I)ﬁ(o):é,, j=]""9 ”;

is given by

1) = 3 5 -§e (e, 1: D20, x>0,

Now let us denote
I={(t,¢,merl; (1,n) e},

then we have

Lemma 4.3.

1) 2j(z, n; &) are holomorphic in R**'—i%, ,

ii) let K be a compact set in 3, , then there exist cy>0, ax>0
suct that

12;(t,m5 &) | <ex(ltl+nl+1ED*x — for (7, &, n)ER™1 —iCy,
where
Cxk={(A1, 2¢, An); (1, &, MEK, A=1}.

From lemma 4.3 and lemma 2.3 we have P;=F[2;]€92'(R"*")
and supp [P;]c2’. Therefore, if g;€2'(R") and supp [gj]cf’, u=
"
2. Pix{g;®6,}€2'(R"™*") and supp[u]c3’, moreover if g,E&(R"),
i=t

then ue&(R?*'). Now we denote for a set S in R"+!
Ts=I"+S, $5=5"+TI%, Ks=T5UZs,
then we have

Proposition 4.1. Let the supports of data be contained in S, then
there exists a solution of (P), whose support is contained in Kg. More-
over, let the data be infinitely differentiable with compatibility conditions,
there exists an infinitely differentiable solution of (P).
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§5. Adjoint problems.

At first, we shall construct an adjoint system of {4, B;} as fol-
lows. Here we may assume that A4,(0,1,0)=1 and B; (0,1,0)=1
(j=1,..., ) without loss of generality. We denote

B;=Dy (j=p+1,...,m),

where {r;}jus1,.,m is the complement of {r;};—; . in {0,1,...,m—1},

and denote
B,(z, &) 1
: =B(t,m| : |,
B (1, & 1) gm1

then we have

det B(r, 11)=sgn( rll T )

'm

Now we denote

A G- AT ) 8 g (e g, mBy(e, E ),

E—E
that is,
By(t, ¢, n) 1 1
: 0
o'. a (T, 'I) é
='{B'1(‘t, ,,)} D ! . .
Bi(t, &, 1) 1 ay(x, M)y (z, 7)) | €

¢
=B'(t, 1) : s

o



112 Reiko Sakamoto
where

A(r, E,my=Emta, (1, PEm 1+ +a,(T, n).

Here denote

Bi(z, &, 1) By(1, ¢, n)
: - , AX(z, & m=A(s, & ),
Bi(z, &, 1) B.(7, &, 1)

and we say that {4*(D,, D,,D,); B¥.,(D,, Dy, D,), ..., B}(D,, Dy, D,)}
is an adjoint system of {4(D,, D,, D,); B,(D,, D, D,),..., B,(D,, Dy, D,)}.
Since we have

Az, &, m)=A.(1,m; ) A(1, 15 8),
A(t,n; &) =8"+ai(r, P&+ +ai(t, n),
A(t,m; O =&t +ai(r, PEm+ 1+ agu(T, 1)
for Imt<—y,,neR"!
we denote, (7, 7) being fixed,
AQ) =A(z, & m),
A4: (&) =A44(t, 15 0),
A, (O =¢m+ai(e, mE 4+ +af(z, ),
A= Ern 4 EEH M e+ Gy T,

and
(u, v)=S:u(x)Hx‘)dx,

<u, v>=u(0)-v(0),

then
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(A(D,)u, v)—(u, A(D,)v)

m

=i

113

...”_.1
2 ag{<Dp 14, (D)u, v> +--+ <A, (Du, Dr+*1y>}
k=0

p—1 _ _
+i Jat{<Di*'u, A(DJv> +-++ <u, Di*1A_(D,)v>}.
K=0

Here we denote

u(0) D41 A_(D,)v(0)
D,u(0) DY 24_(D,)v(0)
D 'u(0) A_(D,)v(0)
U=l ampu© |V pDrete©) |
D, A, (D,)u(0) Dm=#=29(0)

Dm=r=1 4. (D,)u(0) v(0)

1

at’ 0

P e A

o= Gimrat 1 | _ ,
ay
0 N 0 o _
a;_.,‘_p a; 1
then we have
(A(D)u, v)— (u, A(D,)v)=iV*U.
Let us denote

Bl(_Dx)u(O) /3-11 """ l?lll ﬁ1u+1 """ I?lm u(p)
B,(DJu©) | | Bus-Buw BuwersroBum || DET'u(0)
’B#'tl(Dx)u(O) B.M+ll'“ﬁ.ll+lu ﬁu+1u+1“'ﬁu+1m Af(Dx)“(O)
Bu(DYu©) | \ B Bus BurrBum | | DIF1A(DIu(0)
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%2
U=4U,

<-@n
5221 5222

then we have

i) det.@=sgn< L2 "'m>,

rlrz cee rm

ne—1)
2

ii) R=(_1) det.@“,

because i) follows from

and

and ii) follows from

Now let us denote
V*tU=(B'V)* BU
where
AB )=2",

then we have

1 |
| W%mdé

1 gr-t
W%W“

1 éﬂ—l
2w A %

] 62#—2
2_m§ VR
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By(©) #14(0) #1A)
B | | Axw | [T el 4l
Ba® | | et | ey, agnl| o
Bi®) i i

Let us denote

AN R s
R = : : ,
A e A B
then we have
iii) R'=det 2},,
because
2I—m- %d& ...... 2;. 62/;':2;1’ az
R =det %%, : :
7]?7(&7?](?)‘15 %%%dﬁ

=dct.@’22.

Now we denote

then

‘g <M+ ><9f11 9f12> <-9[+-W11 -ﬁ’+9f12>
g Har K A_Hyy H_H;;

therefore we have

115
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det .@'22=det.9f’22.

On the other hand, we have

% 11 i% 12 H 11
0 .'°1 oy,
therefore we have
det #,, 1
det #
Hence we have
iv) det@y, =98P0

Here we have from i)~iv)

Lemma 5.1.

R, m=sgn(, 7 7
rl )

ra
Now let us consider
A*(_Dn _st _Dy)u=f

(F*) B’Jk(_Dt’ _st—Dy)u=g]

Dju=u; (j=0,1,...,m—1)

We remark that

‘*12

‘#22

1 0
= 'l ,
‘#21 XZZ
=det-}f22.

) (=D T R, .

for t>0, x<0, yeR" !,

(=u+1l1,..., m)

for t>0, x=0, yeR"1,

for t=0, x<0, yeR" 1,

A*(_ta —éa -ﬂ)zA(—f', _Er _ﬁ)=A+(—fa _ﬁ; _g)A—(_fa -

B% (=1, =&, —n)=Bj(—%, =&, —17),

n; —6)9

where zeros of A,(—7, —7n; —&) with respect to ¢ have positive ima-
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ginary parts and zeros of A_(—7%, —n; —&) with respect to ¢ have
negative imaginary parts for (7, n)eR"—ié,o. Here we denote

vie v —dot| L L BICE —E gt
R*(z, ﬂ)—det< 27ti<§> A(-t, —7; - &) d€>’

j=u+l,...,m
k=1,...,m—pu

then we have

Lemma 5.2.

R¥(t, ’1)=(—l)"“2“sgn< Lo '")R(—z",—v_?).

rl ...rm

Proof.

S 1 [ By(—t, =& —7)E1
R*(1, W)—de‘<zm' A (-7, —7; =9 d€>

_ (m—p)(m—h~1) 1 [ Bj(—1t, & —q)kt
=(=0) 2 d°t<2m‘ A%, =05 ) dé)

(m—p)(m—p—1)
2

=(-1) R(—-7, —7).

Corollary. R*(z, n) is hyperbolic function with respect to (1,0) with
cone Z

In fact, since (-7, —r—]’)ER"—iZ.;yo is equivalent to (t,n)ER"
—iYly, R(—%, —7) is holomorphic in R"—iY,..
Here we have

Proposition 5.1. Let the supports of data be contained in S, then
there exists a solution of (P*), whose support is contained in K 5

Let us denote
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A*(D,, D,, D )u=f for t<0, x>0, yeR" 1,
(P*){ B¥(D,, Dy, D)u=g; (j=u+1,..., m) for t<0, x=0, yeR" 1,
Dju=u; (j=0,1,...,m—1) for t=0, x>0, yeR" 1,
then we have

Corollary 1. Let the supports of data be contained in S, then there
exists a solution of (P*), whose support is contained in — K_g.
From this corollary, we have

Corollary 2. A solution of (P) in S depends the data in — K_g.

Here we have the theorem stated in the introduction.

NARA WOMEN’Ss COLLEGE
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