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Introduction

Ito-McKean [4] proved that the semi-linear parabolic equation

2
(1-a) %ii(t, x)=% g;'ﬁ—(t, xX)+|xrut, x){u(t, x)—1},
(1-b) 0<u(t, x)<1,
(1) u(0, x)=1, 0<t, —o0o<x<00,

has no solution except a trivial one u=1 if 0<y<2, and that if y>2,
it has a non-trivial one in addition.

The purpose of this paper is to consider a similar problem in the
following form:

(2-a) (1, x) = Aqult, x) +k()ult, ) {utt, 0)—1},
(2-b) o<u(t, <1,
2—<) u(0, x)=1, 0<t, —0o<x<00,

where A, is the infinitesimal operator of a one-dimensional symmetric

0x?

k is a non-negative continuous unbounded function on R.

2 a2
stable process with index o(0<a<2), i.e. Am=—-<-—2‘l g )/ and

One of the essential difficulties arising in the present case is caused
by the discontinuities of sample paths of a stable process. To over-
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come the difficulties, it is necessary to formulate the problem on the
basis of the general theory of braching Markov processes developed
in Tkeda-Nagasawa-Watanabe [2].

§1 is devoted to preparatory consideration on branching processes.
In §2 find §3, conditions will be discussed for (non-) explosion of
branching stable processes in connection with (uniqueness) non-uniqueness
problem of the semi-linear parabolic equation (2-a, b, ¢), where k(x) will
be taken to be |x|* or log(l+|x|") (y>0).

The author wishes to express his deep gratitude to Professor M.
Nagasawa who suggested the problem and encouraged him to write
up the paper and Professors M. Motoo, M. Tsuchiya, T. Ugaheri and
S. Watanabe who gave him useful advice in preparing the paper.

§1. Preliminary

1.1 Let S be a compact metric space, S" the n-fold product of S,

S=\J 5" the topological sum of S", where S°={d}, d an extra point,
n=0

and §=SU{4)} the one-point compactification of .

Let B(S) be the space of all bounded measurable functions on S.
and B(S) be the space of all bounded measurable functions on S
which vanish at A. The spaces B,(S) and B%(S) are defined as follows:

B\(S)={feB(S); IfII<1}",
Bi(S)={f€B(S); />0}.

B,(S) and Bf{(S) are defined similarly.
For feB,(S), a function f&B,(S) is defined by

1, if x=0,
(1) f(X)E f(xl)"'f(xn)a if X=(X1,"', xn)a
10, if x=4.

For a function f on S, a function f on S is defined by

1) llfll=§g|3 [ f()1.
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. 0, if x=0 or 4,
(2) fx)= _
fx )+ +f(x,), it x=(xy,, X,).

1.2 A Markov process X= (W, X,, P,) on S is called a branching Markov
process if it is a strong Markov process with right continuous sample

paths, and if its semi-group (T,);»0%’ on B(§) has the branching
property (B):

(B) T,fx)=TJs(x), x€8, f€B,(S).

We define some random variables concerning a branching Markov
process X as follows:

3) ZEw) =Ip(X,(w)), E€&(S)?,

and especially we denote Z,(w)=Z5(w). ZF(w) stands for the total
number of particles in the set E.

Put
4) To(W) =0,
T, (W) =1(w)=inf {1, Z,(W) % Zo(w)}¥,
(W) + T, (Wi)) s n=2, 3,
(5) ea(w)=inf {t; X,(w)=24}.

Clearly the n-th branching time 1, and the explosion time e, are
Markov times for the branching Markov process. And we can easily
show that 4 is trap, i.e.

(6) P {ey,= or X,=4, e,<t}=1, xeS

(Tkeda-Nagasawa-Watanabe [2], I).

2) T, f(x)=E.[f(X,)], where the right-hand side is the expectation of f(X,) with
respect to P.. Every semi-group associated with a Markov process is defined
similarly.

3) #(S) is the topological o-field of a topological space S.

4) When {~}=¢, define r(w)=o0, and when 7,_;(w)=oc0, define 7,(w)=00,
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Definition 1. When P,{e,=o}<1 on S, a branching Markov
process is said to be explosive, and when P,{e,=c}=1 on S, non-

explosive.

1.3 Branching Markov processes that we shall treat from now on
will be supposed to satisfy the following condition:

(C.1) Let X5 be the non-branching part on S of a branching
Markov process X. Xfs is equivalent to the e ¢:-subprocess X =
(W, X, ¢, P,) of a conservative strong Markov process X =(W, X,,
P,) on S which is right continuous and has left limit. Here ¢, is
given by

M o) = KX (s

where k is a non-negative measurable function on S. We shall call
the function k killing rate of a branching Markov process.

(C.2) The branching law of a process X is given by a stochastic
kernel n(x, I') on SxS?%),

We shall call the process with (C.1) and (C.2) (X, k, n)-branching
Markov process. Given a Markov process X, then there exists a
(X, k, m)-branching Markov process (Ikeda-Nagasawa-Watanabe [2], II).

1.4 Next we shall introduce M-equation and S-equation of a branch-
ing Markov process X. Let (T?),», be the semi-group of the non-
branching part X° of X, and a non-negative kernel Y(x, ds, dy)
on Sx [0, ©) xS be given by

(8) ¥(x, ds, dy) =P, {teds, X,edy).

The linear integral equation on B(S)

) u(z, x)=T§’f(x)+S:)Ss'P(x, ds, dy)u(t—s,y), t>0,xeS

will be called M-equation (of an initial data feB(S)). It is easy

5) A stochastic kernel II(x, I') on §XS is a kernel such that for each xS, /(x, )
is a probability measure on S, and for each I'eZ(S), I(-, ') is a measurable
function on §.
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to see that T,f(x) is a solution of the M-equation.

Let us take f, f&B,(S) as an initial data of the M-equation and
restrict in on S, then we obtain the following non-linear equation on
B,(S), which will be called S-equation (of an initial data f)

(10) (e, 9=Tgw+( | Kexids, dIFiut=s,-0,  1>0,
0JS
xe S,
where (T,)», is the semi-group of the process X, K is a non-negative
kernel on Sx[0, ©)xS, F is a non-linear mapping on B(S) into
B,(S) defined as follows:

(11) K(x; ds, dy)=P,{{eds, X,_dy}®,
(12) Fxs )= ax, ani).

u(t, x)=T,f(x) is a solution of S-equation (10).
Because

(13) K(x; ds, dy)=P{X,€dy} k(y)ds,

the S-equation (10) can be written as
(10)  u(t, x)= T;f(X)+S:) TLk(-)F(- 5 u(t—s, #))J(x)ds,  t>0, xeS.

From now on, we assume that initial data of the M-equation and
the S-equation belong to BI(S) and B1(S) respectively. Moreover if
u(t, x) € B{([0, ) xS) satisfies (9), we shall call it a solution of M-
equation (9), and if u(?, x)eB{([0, ) xS) satisfies (10), a solution
of S-equation (10). We shall call u(z, x) (#(¢, x)) the minimal (maxi-
mal) solution fo the M-equation, iff

u®, x)Su(t, x) (a(z, x)=u(t, x)) on [0, c0) xS

for every solution u(t,x) of the M-equation. The minimal solution
of the S-equation is defined similarly.

6) X<_=!i\1§1 X,._..
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Lemma 1. Let u=u(¢, x) and ii=iu(t, x) be the minimal and maxi-
mal solutions of the M-equation respectively, then u and i are given
by

y(ty X)=T,f(x),
i(t, x)=T,f(x)+P,{es<t}.

Lemma 2. (i) Let u(t,x) be a solution of S-equation (10) of
initial data f, then 4(t, x) is a solution of M-equation (9) of initial
data f.

. ~ —/\

(ii) T, I(x)=P{ey>1} =P.{ey>1}5(x)

ces =7 53—

(iii)  Py{es=oo}=P.{en=00}5(x)

(iv) P, {e,=o0} is T,-harmonic function, that is for t>0,

A

T,[P.{ea=o0}](x)=P,{ey=c0} on S.

Remark. By (iii) of lemma 2, explosion (non-explosion) of a
branching Markov process is eqivalent to the condition P, {e,=o0}<1
on S(P{ey=}=1 on S).

Lemma 3. Let u=u(t,x) be the minimal solution of the S-

equation, then u is given by
u(t, x)=T,f(x).

(cf. Ikeda-Nagasawa-Watanabe [2]).

Remark. When fe2(%), and k is a continuous function on

S, u(t, x)=T,f(x) is the minimal solution of

%(:, X)=Fu(t, x)+k(){F(x; ult, - ) —ut, x)},
(14) o<u(t, x)<l1,

u(0, x)=f(x), 0<t, xe8.
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where @ is the infinitesimal operator of a Markov process X.
(cf. Tkeda-Nagasawa-Watanabe [2]).

1.5
Theorem 1. The following two statements are equivalent.
(i) For every initial data, the S-equation has a unique solution.
(i) The branching Markov process is non-explosive.

Theorem 1 is a direct consequence of lemma 1,2 and 3, and the
proof is omitted.

Theorem 2. Let the non-linear mapping F defined by (12) satisfies
the following condition:

15) |F(x; )= F(x; @I <NIf(x)—g(x)|  on S,

for f, g B{(S), where N is a positive constant. If

(16) E [eN-De] < o0 on S,

for some t,>0, then the branching Markov process is non-explosive.

Proof. First we remark that because ¢, is non-decreasing in t,
(16" E.[eN-De) < o0 on [0, t,]xS.

Let us prove the uniqueness of solution of the S-equation up to f,
under the assumption (15) and (16). Let u, and u, be two solutions
and set

W(t, x)=|uy(t, x)—u(t, x)|.
Then w~ satisfies
0<w (6, N <N{ BTk W (—s, )100ds,
because of (15). Moreover we have

‘f_,} n=1, 2,

~

(17) 0<# (1, x) SN"Ex[e“h

DM
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by induction. When O<N<1, the right hand side of (17) tends to
zero, while in the case of N>1 since

N"E e 5 ‘.LHSEX[e-m > M]

i=n 1 i=n l!

and
oo > Ex[e(N—l)lPr] ZEx|:e_‘Pt i _(Lvil;‘ijl\o (n—)oo)’

on [0, t,] xS according to (16’), we have
w(t, x)=|u,(t, x)—u,(t, x)|=0 on [0, t,]xS.
From the uniqueness of solution of the S-equation up to t, we
have P,{e,>t,}=1 on S. Moreover by the Markov property, we have
P, {e,>nty} =1 on S,n=1,2,..,

and P {es=o0}=limP{e,>nts}=1  on S,
n—
that is, the branching Markov process is non-explosive.

§2. Non-explosion of branching stable processes

Let X=(W, X,, P,) be a one-dimensional symmetric stable process

with index a(0<a<2) and k be a non-negative continuous unbounded
0

function on R and 7 be the stochastic kernel on R x (\U R") given by
n=0

( 1 ) TU(X, dy) =6(x,x)(dy)’ XE R’ dy cS= gtj)OR”.

We call the (X, k, m)-branching Markov process (a-) branching stable
process.

In the following, two different kinds of functions will be considered
as killing rates:

(i) Ix, @) log(1+[x[")

where y is any positive constant.
For the functions of the second type (ii), we have
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Theorem 3. The branching stable process is non-explosvie when k(x) =
log(1+|x|”) (y>0).
Appling theorem 2, the theorem follows from

Proposition. If k(x)=log(l+|x|?), then
E [e?] <oo on R, for 0£t<—;‘—,
E [e?] =0 on R, for t>%.
To prove the proposition we need

Lemma 4. Let P(t, x) be the probability density of a symmetric
stable process with index o, that is

P, x)=(27c)‘1800 cos(xz) exp{—t|z|*}dz.
Then for ¢>0,
2) P(t, x)=c'*P(ct, c'*x),
and for t>0,
3) ll}m [x]|'**P(t, x)=tv(a),

where v(a) is some positive constant depending only on index o.
(2) is well known. A proof of (3) is found in Polya [6].

Corollary to Lemma 4. For a symmetric stable process with index

a,

4) E,:[IX,I?]=S°o [y|?P(t, x—y)dy < oo, 0<y<a,

=, y=2o

Proof of proposition. From the spatial homogeneity of stable
processes and from the form of the additive functional ¢,, it is enough
to prove the convergence or divergence of E[e®:]7).

First we note E[e*°]=E[e°]=1.

7) For abbreviation, we denote E, by E, and Py by P,
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Next, for O<t<-$—

Efe®] = E[cxp{tg;log(l + |Xs|7)it§—H
! \ds
<E|{ exp {rlog (14 x,} 2 ],

where we used the Jensen’s inequality for convex functions. Changing
‘the order of integration and using the space-time transformation of
stable processes:

d
%) X,=t'"Xx,, in P®),

we have

! « ds
E[e°]<\ E(1+sY/ IXIIV)’—t—
0

AR AL K PP PTG

Therefore if yt<a, then by the corollary to lemma 4 we have E[e®:] <
oo,
Now suppose t>-;‘—9’.

Let N be any integer and take fo=-%., then

N’
E[e?" 0] = E [0 e o] > E [ By, [¢"°]]

° N
> f}E[ntho<n+ 1; ExmLsup|Xs—X0| <1 ;exp{g '°log(l +|Xs|v)ds}ﬂ
n=1 0

gi(1+|n—l|7)NroE[nSX,<n+l;leo{ sup | X;—Xxol<1}].
n=1 0<S<Nto

Put Q=P osssus%:ole_XO|<l}’ then by the spatial homogeneity of

stable processes, Q is independent of y and N (note Nto=%). There-

8) This indicates that the two random variables X, and t'/*X; have the same distri-
bution with respect to P.
9) The proof given here is due to Prof. M. Motoo,
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for we have the following inequality

E[e®™ 9120 3 (14 n— 1) P{n< X, <n+1}
n=1

~0 ﬁl (It |n— 1N PLag < X, < (n+ 1) e51/%)
P2

@ (n+1)-1/a
>0 > (1+|n— 1|7)N'°S 27 'w(a)x 1 "*d x,
n=M

n-1/a
where M is an integer statisfying
P(1, x)=>2"'y(a)x~ 172, for x>Mt 1~

Existence of such M is guranteed by (3) of lemma 4. Therefore we
have
e {1+ (n—1)r}Nto 1

E[e?™" '] > (const. . .
Le 1> (const) 2 =¥ )" n¥l

Since yNt,=a,

{1+ (n—1)7}Nto
(n+1)*

=1, (n—ox),

and hence

E[e(puw1):0]=E[e¢(1+1/u)a/r]=oo’ N=1,2,-

. L o
Because ¢, is non-decreasing in t, we have for t>—y—, E[e?]=co.

This completes the proof of the proposition, and of theorem 3.

§3. Explosion of branching stable processes

In this section, following the idea of Ito-McKean [4], we shall
consider an explosion condition of branching stable processes when
k(x)=|x|".

Let G(-, f) be a mapping on B}(R) to BY(R), and k be a locally
bounded non-negative measurable function on R. Consider an integral
equation of an initial data f< B}(R)
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(1) u() =T = TG+ 0 )1as,

where (T})», is the semi-group of a symmetric stable process and
u,(x) stands for u(t, x).

Lemma 5. Every solution u, of the equation (1) (if exists) is a
continuous function on R for every t>0.

Proof. First we note that T,f(:) is a continuous function on R
because of the strongly Feller property of a symmetric stable process.
Next we set

16, )=’ dsTIKC )G up )1

=g:>+dsgc_owdyp(s’ x=)kG(y: u,_y),

and we shall prove the continuity of I(f,.). Let T be any positive
constant. Taking positive number N sufficiently large, we have from
lemma 4,

P, x—y) _ P, 7" (x—y))
P(t,y) P, =y)

=[xy - e g2l 0<t<T, |x <N, |y|=2N.
Therefore we have
2) P(t, x—y)<2t**P(t, y), 0<t<T, |x|<N, |y|=2N.
Devide I(t, x) into two parts

2

16, %)=\ as{™ dyPGs x- kG2 u-)

+(. asf dyP(s, x— Nk()G(: uy_)=11(t, x)+I5(t, ).
o+ {ly]>2N}

Because the probability density P(s, - ) is continuous and k and G(-:u,_,)
are bounded on [—2N,2N], I(t,-) is continuous. For the proof of
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the continuity of I,(t, - ), define a function ¥ (s, y) by
Y (s, y)=21*P(s, )k(y)G(y: u,_y), O0<s<t<T.

It is easy to see that ¥(s, y) is a non-negative integrable function on
(0, t] xR. In fact, because

[\ as{” aywis. =21+ as(” avpis, kGG u)
+ -0 —®©

=21+2{T, f(0) — u0)} < oo.
And using (2), we have
0< the integrand of I,(t, x)< Y (s, y),
[x] <N, |y|>2N, 0<s<t<T.

Therefore, using the theorem of Lebesgue, we have the continuity of
I)(t,©) on [—N,N], and hence on R because N is arbitrary large
number.

Because u,(x)=T,f(x)—I(t, x), the assertion of this lemma is now
proved.

Corollary to lemma 5. Every solution u, of the S-equation of a
branching stable process is a continuous function on R. Here the
S-equation is of the form

3) w0 =T+ Tlku 1 (ds

=T )= Tlk(us—uz JIGds

Lemma 6. (0-1 law of the explosion probability)
Let X be an o-branching stable process (1<a<?2), then

P.{e;=c0}=0 or 1, on R.

Proof. In the case a=2, a proof is found in Ito-McKean [4].
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For a proof of the case |<wa<2, define hitting times, j, of the
symmetric stable process and j, of the branching stable process by

ju=inf{t>0; X,eU},
T~
Ju=inf{0<t<e,: (1-1y)(X,) =0},

where U is an open set in R. It is known (cf. e.g., McKean [5])
that for 1<a<2 and for Ux¢, P{jy<o}=1, on R, then we can
show for a-branching stable process (I <a<2),

(4) P {jy=o0, ey=00}=0, on R.

Let U and V are arbitrary open intervals in R. Using (4), we have

(3) Px{eA=°°}=Px{jV<°°’ epa=00} =P {j, <oo, eA(W}LV)=°°}
=E.[iy <o, Px(j,){ea= 0 }]<P,{jy < oo} 'ig‘Ppy{eA= oo}
S:;ll}/‘)Py{eA=00}.

Taking the supremum of the left hand side of (5) in U, we have

sup P {ey=0c0} <sup P, {ey=co}.
xeU yEV

Because U and V are arbitrary open intervals, we have

(6) supP,{e,=oc0}=c
xey

where ¢ is a constant independent of U. Because of (iv) of lemma 2,
P,{e,=oo} is a stationary solution of the S-equation, and P, {e,=o0}
is a continuous function on R on account of corollary to lemma 5.

Therefore we have
(7) P.{e,=00}=c, on R.
Because

c=P{1<o00,epy=0}=P {1<00, es(wi)=0c0}
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=E[1<o0; Py {es=}]=c?,
we conclude ¢=0 or 1 which completes the proof.
Lemma 7. In the case k(x)=|x|?,
E. [e?] =0, on R, fort >0.

Remark. In this case, theorem 2 gives no information whether
the branching stable process is explosive or not.

Proof. Let N be an integer satisfying Ny>a, then

E[ew']zg'ds,g' dsy{!
0 5 R

SN-

dsyE[1X, 71X, 171 X0 7]
1
because
© ] N t t t '
er= 5 Lz abor = ds, [ dsp (sl 120
. . St SN-1
However we have
(8) E[lellYIst““'lele]

=E[[Xsl|y I(st_Xsl)+Xsl|y'”|(XsN_XsN-|)+"' +(st—Xsl)|y

oo

o @
=S wP(SZ_Sl’ )’2)d}’2"‘g_wP(SN—SN—1, J’N)deS_wl)’lleH

+yo|7 iyt yalPP(sy, yi)dyy,

Because of |y,|"|y +yal' - [yi4+yat-+yn7=0(y "), (yil—=00)
and of corollary to lemma 4, the right hand side of (8) diverges, which
proves E[e®:]=co.

Here we shall give the main theorem of this section.

Theorem 4. Let X be an a-branching stable process (1<a<2)
with killing rate k(x)=|x|?, then we have

(i) In the case 1<a<2, the branching stable process is explosive
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with probability 1 when y>2af(a—1).
(ii)) (Ito-McKean [4]) In the case oa=2, the branching Brownian
process is non-explosive when y<2, and explosive with probability 1

when y>2.

Before proving theorem 4, we shall prepare several lemmas. Define
two events 4, and A, of the branching stable process by

A, ={w; Xo(W)=x, ea(W)< oo},

Il
Cs

A {w; Xo(w)=x, lim inf l( —oo, k)X (W) =0},

g
k=00 05t<

1
-

n

for xeR.

Lemma 8. For A, and A, defined above,

P.{A4.\4.}=0 on R.

Proof.
9) AN\A, = U {Xy=x, ea=00, lim inf 1( o, k)( X)) =0}
n=1 K—-o® 0<t<n
= 6 @ {Xo=x, 1, <n<Tpyy, hm inf I( w,k)(X)=0}.
n=1 m=0 o 0<t<n

Using the conservativity of stable processes, we have

(10) Px{X():x, ‘C,,,Sn<‘rm+1, llm Olsnf I( w0, K)(Xt) O} 0

for n:l, 2,...;m’=0, 1,2,---.
From (9) and (10), we have the assertion.

Let p=(W, p,; po=0) be a Poisson process with parameter 1, and
p and the symmetric stable process X be independent. Now define a
random time { of X by

(11) {(w)=inf{t>0; p(p (W), w) =0},
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which is the life time of the e ¢:-subprocess X of X.

By the general theory of construction of branching Markov processes
(Ikeda-Nagasawa-Watanabe [2], I1I), we can construct a branching stable
process by piecing out the process X by the instantaneous distribution
O(X,-, X, )dy). We need the fact that the symmetric stable process
is continuous at { as is proved in the following lemma.

Lemma 9. Let X be a symmetric stable process, then

X,_(w)=X/w) a.s.(P,), xeR.

Proof.19) Set Y,=X(¢;!), where ¢;! is the inverse function of ¢,
that is ¢7!=sup{u; ¢,<t}. Then by the general theory of random
time change of a Markov process, the process Y=(W, Y, P,) is a
standard Markov process.

Define &=inf{t>0; p,=1}. Because ¢, is a continuous and strictly

increasing function in f, then we have
P{X, =X }=P{Y,_ =Yg} =S:Px{yt— x Y }edt.

Because the process Y is standard, it has no fixed discontinuites and
then

PAY,_xY}=0, for t>0.

Thus we have P.{X,_ %X,}=0 and we have proved lemma 9.

Remark. It is easy to see that the above proof can be applied
for a wider class of Markov processes.

Next, we define Markov times j5 and j, of the branching stable
process, and j3 and j, of the symmetric stable process. For x<y,

i¥=inf{0<t<e,; f[x,y](xt) =0},

j,= lim 3,
X——00

10) The author’s original proof was lengthy. The proof given here was suggested
by Prof. S. Watanabe.
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j;=inf{t>0; I[X,y](Xg) :0},

Jjy= lim j3.

X=>—0
Lemma 10. For x<y and z€R,

P, {jz< oo, ZR\=(jX) >2} =0.

Proof.

(12) P, {ji<oo, ZRLw(j)

>2}=P,{j;=0, ZEC1>2)+ §P.fr, <fi<r,0,, ZRNG) 22},

n=

Obviously the first term of the right hand side of (12) is zero, and for
the second term,

(13) PZ{T,,<j;ST,,+|, ZR\[x,y](j;)Zz}
=E.[7,<j5; Pxe{ii<t, ZRE(j3) >2}]
+E.[7,<i5; Py liy=1, ZR02(55) >2}]

In the right hand side of (13), every coordinate of X(z,) is in the in-
terval [x, y] because of the condition 7,<j;. Then by lemma 9, the
second term is equal to zero. For the first term, because of the mutual
independence of every branch before the branching time t and no fixed
discontinuities of a stable process, it is equal to zero.

Therefore we have
P {1, <ji<t,4, ZRIDN(j3) >2} =0, n=1,2,,
which completes the proof.
Lemma 11. For x<y and t>0,
P.{j,> 1} <P.jy>1}.

Proof. First we define a sequence of random times of the process
X by
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Low)=0, C,(w)=L(w), L,(w)=L(W)+{u- (W)
n=2 3,--.
Then,
P.{i,>t}=P.{j,>t, 1>t} +P.{j,>t>1}

=P {j,>t, (>} +E[t<t, 1<j,; Py {0<t—u<j,}.,=.]

=Px{jy>t’ C>t}+3 dPxP(Xc—,Xg—-){jy>t_u}|u=c

({<6,0<jy}

<P{j,>1, §>t}+g AP Py {i,>t—ut}s.

{<t,0<jy}

In the last step we used the structure of the branching measure (Ikeda-
Nagasawa-Watanabe [2], I). Using lemma 9, we have

(14) P {j,>1}<P.{j,>t (>t}
dP.Py{j,>t—u} .=
S(;sx,gqy) x Xc{.ly uJ'Iu—C

By induction of (14), it is easy to prove

(15) P {i,>t}<P.{j,>t (,>1}
dP. Py {j,>t— -, =1, 2,
S(g,,.sr.c.,<jy) x XC{JY u}|u—;,, "

Define {,=1im{,, then from (15)

P>t <P, Ee >+ Pu{EL <t}

Because P.{{,<oo}=0, we have the assertion of the lemma.

Lemma 12. For x<z<y and t>0, the following inequalities hold:
n—1
PZ{Z:n}Szn—] ZOPZ{CKS(j;/\t) <Ci+l}9 h= la 2""9
=

where {{;} is the family of random times defined in lemma 11, and
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Z is a random variable of X defined by
Z=Z(J5A0).

For a proof of lemma 12, the structure of branching measure
plays the essential role but the proof is ommitted here.

Lemma 13. Let X be a symmetric stable process with index less
than 2, then

(16) P{ sup |X,|>1}=¢ @E\0)th,
0<s<t

Proof. First we decompose the symmetric stable process X into
mutually independent symmetric Lévy processes X(1) and X®) as

follows: ’
xg')=1img uN([0, 11, du),
n=+o0 J{uin~1<|u|<2}
X = uN([0, 1, du),
fuzul>2)

where {N(4, B); A= ([0, «)), B€ Z(R\{0})} is family of Poisson
random measures (cf. Ito [3]). Next we define random times j and &
concerning to the processes X1 and X(®) respectively by

j=inf {t>0; | X|>1},
E=inf{t>0; XD %X},

Then by the properties of X and X(?) and by the definition of j
and ¢,

X |l<1
(17) P{oi‘i‘s’,l J<1}

=P{j>t, &> 1)+ P{ sup |X,|<1,j<t}

+P{ sup |X,|<1,j>t &<t}
0<s<t

11) f(o)=<e (:\0)¢:>0<1i_mt"‘f(t)sl§t"f(t)<oo.
N0 N0
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In the right-hand side of (17), the second term and the third term
are obviously zero, and hence

P{ X | <1}=P{j>t t
{sup |X,|<1}=P{j>1, {>1}
—P{j>1}-P[¢>1)
=1-P{j<t}—P{{<t}+P{j<t} - P{{<t}.
Here we used the mutual independence of X(!) and X(?). And we have
(18) P{ sup [X,/>1)
0<s<t
=P{j<t}+P{é<t}—P{j<t}-P{<t}.

Now we shall investigate P{j<t} and P{{<t} when 1\/0.

. — (1) (1)) — 21—¢.c )
(19) P{j<t} P{ossligth‘ |21} <Var(X{V)=-"5—= 1.

Kolmogorov’s inequality implies
Because N([O0, t], [—2, 2]¢) is a Poisson random variable with mean
(ct/2%), ‘

(20) P{¢<1}=1—-P{N([0, 1], [—-2,2]°)=0}
=1—exp{—ct/2%a} <t (1\0).
Combining (18), (19) and (20), we obtain (16).

Finally we shall introduce some sequences of numbers {h,}, {H,},
{t.} and a sequence of events {B,} of the branching stable process.
We assume that they satisfy the following conditions:

1) 0<h,\0 (n>o0), and f}lh,,:oo,
Ho=0 and H,= Y. h,  n=1,2,-.
i=1

(22) 0<2,\0 (n—oo0), and i= 3.1, < co.
n=1
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(23) B,={w;X,=0, ju, <t, and Y, =PX(jn,)),
for a branch starting from Y, at jy,
inpry, <tz and Yo =@ Xy, +s,))s ooeeeee ,
for a branch starting from Y, , at jy, _,in._,
iv.i+n,<t, and Y, =®X(y,_,+n))},
n=1,2,,

where & is a mapping from C)JR" to R defined by
n=1

&(x) =max{x;; 1<i<n}, if x=(x,"--, x,)ER".
Obviously {B,} is a decreasing sequence of events, then we can define

a sevent B =limB,. Clearly B,cA,CA, Therefore by lemma 6,

n—wo

if we show Py(B,)>0, we can conclude P(4,)=1 on R, ie. the
branching stable process explodes with probability 1. Now we have
finished the preparation.

Proof of theorem 4. First of all we shall calculate Py(B,) using
the strong Markov property of the process.

Po(B,) =Eolin, <t1; Eoxu,nliv,+n, <2

s Boxqy +ngnlivaens St35 o

5 P¢>(X(jyn_z+;."_1)){jY,,_,+h,.Stn}IY,._|=¢(X(jy"_2+;.n_,))-"

]lyz=¢(x(.iY|+nz))]|Y1=¢‘(X(jﬂl))]‘

Then we have
n . .
Po(B,) =11 inf Py{jyss, <t:},

i=1 Hi- <Y

and taking n— oo,

(24) Po(Bo)= I inf Py{jy+s, <t:}.
=1 Hyo,<Y
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For YR and h, t>0,

. . t
(25) PY{JHhﬁt}2PY{JY+::(W+(1§;ﬁ /\é—)) ST}

. t
=1- EY[Px(j,‘;;ﬁ A%)} Iy+n >—2—}:|

. t %! . t %1
21—EY|:PY—h{]Y+h>T} ]ZI—EY[P{]211>—2_'} ],

by lemma 10 and 11, where Z = z(,m L ) Then from (24) and (25),

Po(B)>T1 {1- sup By| P{ja>44" 7 ],

H;- <Y

where Z,; Z(]”,, AT)'

Set I= io} sup Ey[P{jn,>t;/2}%21]. 1In order to prove Py(B,)

i=1 H{-1<
it is sufficient to show I<o. Let positive numbers h and ¢t be such

that 0<q=P{j,,>1/2}<1/2 (¢'=1-2¢>0). Then by lemma 12, we
have

E',,[P{jz,,>t/2}z‘1]="§0q"PY{Z=n+l]
Soi:: (2q)"Z PY{C <JYahA 5 <Ci+l}
=%§: (29) PY{ (?]Hh t7>=i}
=2 S e v {eae(t )} exp{ - o(53aEn 4}
Er[exp{-ao(i¥in)} |

sy t P
Ey[] HST; exp{—q so(/M)}]

1 iy-hs L. {__ ' (L)H
+ 7 EY[]Y+I1> 3 ; €Xpy—q ¢ > .
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Therefore

I<Z sup_ —q—E[exp{ il Y —hil7j7h}]

i=1 Hy-1<

o t
—g.|Y—=h y__t_}
+i§1 H?l_l?sy q; { 9i | 2
2 -
;7’ [exp{_qilHi—l—hi”]hii}]
X 1 t;
;T {"‘h/H'—l—hily—z'—}
=11+12,

where q,-=l-:’{j2,,‘>ti/2}, q.=1-2q; and positive numbers h; and t; are
choosen as 0<g;<1/2.
Now take {h;} and {#;} of (21) and (22) in the following way.

(217) hi=ci™®, i=1,2,---,0<a<l1, ¢>0.
22) t,=i"t i=0,1,2,-,b>1.

Using the space-time transformation of stable processes ((5), §2), we
have

= P{ sup | X,<2h;}=P{ sup. X,<(2'*1/ac)jbla=a},
0ss<t;

Take a, b and ¢ of (21’) and (22') as
(27) bla—a=0, c; sufficiently small constant,

then we can take q(i=1, 2,---) to be a constant independent of i and
0<g<1/2. For such {h} and {t;}, we have

(28) I =;1,—;|H1—1 _hilysoeXP{_qui—l—hi|yu}' P{jyt<u}du

= Texp{~ /| Hi-s —hlhiu} -, P{ sup |X,|> 1}

1
q
S_ql_zg exp{—K,it=7bu}d, P{ sup [X,|> 1}
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@9) L=~ Texp{—q | H = hl'ti/2) S - Texp(~ Kzt =71},

where ¢’ =1-—2¢>0 and summations of right hand sides are taken over
all sufficiently large i, and K, and K, are some positive constants.
Using lemma 13 and the Abelian theorem (Widder [7]) for the esti-
mate of Iy, we have

(28") I'y <(positive constant) J i~(1=a)r=b,
i

Therefore suppose a, b and c¢ satisfy (27) and
(30) (1—ay—b>1,

then Iy <o and I35 <oo hold by (28) and (29), I<e hold by (26),

which implies Py(B,)>0. It is easy to show that in the case l<ua

<2, when y>2u/(x—1) we can choose a and b as they satisfy (27)

and (30). Now we have completed the proof of (i) of theorem 4.
A proof of (ii) is found in Ito-McKean [4].

Remark. The author has not succeeded in proving that if 2o/
(x—1) is critical or not for explosion in the case 1<a<2, and does
not know if there is positive y for which a-branching stable process
explodes in the case O<a<I.
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