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1. Introduction.

Let M be a connected complete Riemannian manifold with dimM 2>
2. Let p be a point in M and let Q(p) (resp. C(p)) be the conjugate
locus (resp. the cut locus) in the tangent space T,(M) to M at p.
(For the precise definitions of Q(p) and C(p), see section 2.) We say
that M satisfies condition (C) at p or the pair (M, p) satisfies condition
(C) if Q(p) and C(p) do not have common points.

In this paper, we study the structure of the cut locus C(p) and the
topology of the Riemannian manifold M assuming that M satisfies
condition (C) at a given point p.

A. D. Weinstein [8] showed that any compact manifold M with
dimM >3 always admits a Riemannian metric g which satisfies condi-
tion (C) at some point p in M. Therefore, for our purpose, we need
some further assumptions on the Riemannian manifold. The principal
tool in our study is the map N,: C(p)»NU{+ oo} defined by

N ,(v) =#{w e C(p); exp,v =exp,w}

for all veC(p), where exp,: T(M)—M denotes the exponential map.
The main results are stated as follows.

Theorem A. Assume that (M, p) satisfies condition (C). Then we
have

(1) The set N;'(2)={veC(p); N(v)=2} is open and dense in
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C(p):
(2) Define a map f: N;'(2)-»N,'(2) by f(v)#v and exp,f(v)=
exp,v, then f is a homeomorphism.

Theorem B. Assume that (i) M is compact, (ii) (M, p) satisfies
condition (C) and (iii) N,=2. Then we have

(1) The fundamental group of M is of order two;

(2) The universal covering space of M is homeomorphic to a
sphere.

Theorem C. Assume that (i) (M, p) satisfies condition (C) and (ii)
each geodesic emanating from p is a simple periodic curve with a
common length. Then M is diffeomorphic to a real projective space.

Theorem D. Assume that (i) M is a 2-dimensional compact
Riemannian manifold and (ii) (M, p) satisfies condition (C). Then M
is not simply connected.

Let H, denote the group of isometries of M which fix a point
pin M.

Theorem E. Suppose that M is a 3-dimensional compact Rieman-
nian manifold and that there is a point p in M such that dimH,>1.
Further suppose that (M, p) satisfies condition (C). Then M is not
simply connected.

Combining Theorem D and Theorem E with Rauch’s comparison
theorem (cf. [5] p. 76 Theorem 4.1), we obtain

Theorem F. Let k be a positive number. Suppose that M is a
compact simply connected Riemannian manifold and that the sectional
curvature of M is at most k. Further suppose that the following
(i) or (ii) holds.

(i) dimM=2.

(i) dimM =3 and there is a point p in M such that dimH,21.
Then the diameter of M is at least n/ k.

Remark 1. Given a point p in M, the Riemannian manifold M
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is called a C,manifold with a common length 2/ if it satisfies condi-
tion (ii) in Theorem C at the point p and if the common length is
21. Theorem C is a partial refinement of R. Bott [3] in which the
cohomology groups of C,-manifolds were studied by the application
of the Morse theory. We will prove in section 4 that if M is not
simply connected and if M is a C,-manifold for some point p in M,
then the pair (M, p) satisfies condition (C) (Proposition 4.1). Therefore
this fact combined with Theorem C yields the following.

Theorem C'. Assume that (i) M is not simply connected and
(i) M is a C,-manifold for some point p in M. Then M is diffeo-
morphic to a real projective space.

A theorem of L.W. Green (cf. [2] VIII. 9) states that if M is
homeomorphic to the 2-dimensional real projective space and if M
is a C,-manifold for any point p in M, then M is isometric to the
2-dimensional real projective space with the standard metric.

Remark 2. Theorem D was first proved by S. B. Myers [7] in the
real analytic case. We will give a different proof which is useful in
the proof of Theorem E.

Remark 3. Let k be a positive number and let K,, be the sectional
curvature of M. In case of even dimension, we know the following
fact: (x) If M is a simply connected Riemannian manifold with 0<
Ky <k, then the diameter of M is at least n/\/?. This follows im-
mediately from the next theorem of W. Klingenberg [4].

Theorem. If M is an even-dimensional compact simply connected

manifold and if 0<K, <k, then we have d(p, C(p))zn/\/k for any
point p in M, where d denotes the distance on M and C(p) is the
cut locus of p. (For the precise definition of C(p), see section 2.)

In case of odd dimension, the assertion of the above theorem is
false in general. In fact, M. Berger [1] presented a 1-parameter family
of counter examples SU(2)xR/H, (0<a<a,) which are diffeomorphic
to the 3-dimensional standard sphere, However Theorem F indicates
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that the weaker assertion (*) remains true even for the examples of
M. Berger.

I am very grateful to Professor Y. Tsukamoto for his suggestion
and for acquainting me with several important results in the global
analysis of Riemannian manifolds. 1 would also like to thank Professor
N. Tanaka for his advice and encouragement.

2. General properties of the cut locus.
Let v be a non-zero tangent vector at a point p in M. We define
u(v) by
u(v)=sup {[Irvl}: d(p, exp,rv) =|rof},

where d denotes the distance function on M. Let T,(M) denote the
tangent space to M at p.

Proposition 2.1. The map p: T,(M)—{0}—>R U {+ 00} is continuous.
(cf. [S] p. 98 Theorem 7.3.)
We define the cut locus C(p) of p in T, (M) by

C(p)={ve T (M)—{0}; u(v)=|vll}
and the cut locus C(p) of p by
C(p) =exp,(C(p))-

The point in C(p) is said to be a cut point of p. The conjugate
locus Q(p) of p in T,(M) is defined by

Q(p)={ve T,(M); exp, is not of maximal rank at v}.

For each veQ(p), the point exp,v is said to be a conjugate point
of p along the geodesic exp,tv (0=t=1).

Let &(p) denote the subset of T, (M) consisting of vectors w such
that d(p, exp,w)=|w|l. By Proposition 2.1, we can easily prove the

following.

Proposition 2,2. (1) C(p) is the boundary of (p).
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2) #(p)—C(p) is homeomorphic to the n-dimensional open ball,
where n=dim M.
Since we have assumed that M is complete, we obtain

Proposition 2.3, The map exp,: #(p)—M is surjective.

Proposition 2.4. The map exp,: F(p)—C(p)»M—C(p) is a diffeo-
morphism. (cf. [5] p. 100 Theorem 7.4.)

Proposition 2.5. Let q be a cut point of p such that d(p, q)=
d(p, C(p)). Let c,(t) and cy(t) (0<t=<1) be distinct geodesics from p
to q. Suppose that the lengths of ¢, and c, are equal to d(p, q)
and that q is not a conjugate point of p along c¢; (i=1,2). Then
the curve c(t) (0ZtZ1) defined by

c(f)=c,(20) (0=r=1/2)
af)=c,(2-21)  (12=2t=1)

is smooth at q=c(1/2).

Proof: Let ¢(f) be the tangent vector of the curve ¢; at the point
() (i=1,2). We clearly have |¢()]=II¢,(D)I=d(p, q). Suppose that
¢,(1)# —¢,(1). Then there is a tangent vector v at g such that both
g(é,(1), v) and g(¢é,(1), v) are negative, where g denotes the Riemannian
metric. Let y(a) (0Za=a,) be a curve emanating from g with the
initial tangent vector v. Since ¢,0)¢ Q(p), there is a curve y(a) (0=
a<a; =) in T,(M) emanating from ¢,(0) such that exp,y(x)=y(x)
(i=1,2). Let c¢;,(t)=exp,ty(x) and let L(ax) denote the length of the
curve c;,(t) (0=t<1). By the variation theory, we have

d ( ¢i(1) )

——L;(0)=g( =5, v )<0

doa O =\

(cf. [5] p. 80 Theorem 5.1). Hence there is a positive number o,
such that Lia,)<Ly(0) (i=1,2). Since ¢, and ¢, are distinct geodesics,
we may assume that ¢, ,,(f) and c¢,,,(f) (0=5t=<1) are distinct geodesics
from p to y(a;). Moreover we may assume that L,(a;)<L,(x;). Then
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we have pu(y,(a;)) < Ly(x,), which implies that

d(p, C(p)) < u(y2(22)) < Ly(o3) < Ly(0) =d(p, q).

It contradicts the choice of q.

3. The map N,.

The following proposition is clear by the definition of N,.

Proposition 3.1. If (M, p) satisfies condition (C), then the map
N,: C(p)»NU {+ o} is upper semi-continuous.

Proposition 3.2. If (M, p) satisfies condition (C), then for any
ve C(p) we have 2= N (v)<oo. (cf. [5] p.97 Theorem 7.1.)

Lemma 3.3. Assume that (M, p) satisfies condition (C). Let u
and v be two vectors in C(p) such that exp,u=exp,v. Assume that N,
is locally constant around u. Then, for any neighborhood U of v in

C(p), there exists a neighborhood U(u) of u in C(p) such that exp, (U
(u)) =exp,(U).

Proof: Suppose that the conclusion is not true. Then we have

a sequence {u;};_,,. .. of vectors in C(p) such that limu;=u and

expyu; ¢ exp,(U) for any i. We have N,=N,(u) (which we denote by
m) around u. Hence we can find vectors ufeC(p) (1<j<m) having
the properties that u!=u;, exppu{=exppu,- and ui#u* (j#k). We
may assume that the sequences {u{}i=,,2,___ are convergent. Let limuj=
ui. By the choice of uf, u/ (j=1,2,...,m) are not contained in U.

And condition (C) implies that u/s#u* (j#k). Hence we have
{we C(p); exp,w=expu}>{u’', .., u", v},
implying that N, (u)>m. It is contradictory to the assumption.

Lemma 3.4. Let u and v be the vectors as in Lemma 3.3. As-
sume that (M, p) satisfies condition (C) and that N, is locally constant
around u, Then we have neighborhoods U(u) and U(v) of u and v
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respectively in C(p) such that the map f,,=(exp,|U(v))”'o(exp,|U(u))
is well defined and a homeomorphism of U(u) onto U(v).

In order to prove the above lemma, we need the following theorem
in the dimension theory.

Theorem 3.5 (Brouwer’s invariance theorem of domain). Let
Y and Y' be subsets of R". Let f be a homeomorphism of Y onto
Y'. If p is an inner point (resp. a boundary point) of Y, then f(p)
is also an inner point (resp. a boundary point) of Y'.

Proof of Lemma 3.4: Let U’ be a neighborhood of v in T,(M)
such that the map exp,|U’ is a diffeomorphism onto some open set
of M. Let U=U'nC(p). Then, by Lemma 3.3, we obtain a neighbor-
hood U(u) of u in C(p) such that exp,(U(u))cexp,(U) and such that
the map exp,|U(u) is injective. It is clear that the map

Jou=(exp,|U)™"o(exp,|U(u)) =(exp,|U")~ '(exp,|U(u))

is well defined and a continuous injection. On the other hand, by
Proposition 2.1, we know that C(p) is a submanifold of T,(M) (in
the C° sense). Especially C(p) is a locally compact Hausdorff space,
implying that f,, is a homeomorphism. Hence we can apply Theorem
3.5 to the map f,,: Uu)-f,.(U()) and we can conclude that f,, is
an open map. Therefore f,, is a homeomorphism of U(u) onto an
open set of U. Put U(v)=f,(U(u)).

Lemma 3.6. If (M, p) satisfies condition (C) and if N, is locally
constant around a vector u € C(p), then N ,(u)=2.

Proof: By Proposition 3.2, we have a vector ve C(p) such that
expv=exp,u and u#v. By Lemma 3.4, we have neighborhoods U(u)
and U(v) of u and v respectively in C(p) such that

(i) the maps exp,/U(u) and exp,|U(v) are injective,

(ii) the map f,,=(exp,|U(v))~'e(exp,|U(u)): U(u)-U(v) is a homeo-
morphism,

(iii)y there is a homeomorphism h:B" !'={xeR"!; |x|<I1}
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- U(u),
where “——" denotes the closure and dimM =n. Hence we can
define a homeomorphism H from B""!x(0,1) onto an open set of

M as follows:
H(x, t) =exp,((1/2+)h(x)) 0<t£1)2),
H(x, t)=exp,((3/2—1) fuuoh(x)) (12=t<1).

If N,(u)=3, there is a vector we C(p)—U(u)U U(v) such that exp,w=
exp,u. Since exp,u is an inner point of H(B""!'x(0, 1)), the geodesic
exp,tw (0=<t<1) must intersect the boundary of H(B"~'x(0, 1)) which
is contained in {exp,ry; yeUm)uU(v) and O<r=I}. By Proposi-
tion 2.4, we see that {exp,tw;0=<r<1} and exp,(U(u)) (=exp,(U(v))
do not have common points. If {exp,tw;0=<t<1} and {exp,ry;
yeUm)U U@) and O<r<I1} have a common point, Proposition 2.4

implies that we U(u)U U(v). It is contradictory to the choice of w.
By the lemmata and propositions above, we obtain Theorem A.

Proof of Theorem B: Let dimM=n. Since M is compact, we
can define a homeomorphism H: V"={ve T(M); [[v]| £1}->(p) by

H(v)=p(v)v for v#0,
H(0)=0.

Since N,'(2)=C(p), we can extend the map f defined in Theorem A
to a map f: T(M)-T,M) in such a way that

f(rv)=rf(v), where veC(p) and r=0.

Let us identify T,(M) with R" with respect to an orthonormal basis
n+1

and define a map F: S"={(x;,..., x,+ )R ;¥ x?=1} -> M by
i=1

F(xy,..., X,1,) =exp, H(xy,..., X,) for x,,,=0,
F(xy,..., X,41) =exp, fH(xy,..., x,) for x,,,=0.

It is clear by Theorem 3.5 that F is a local homeomorphism. Hence
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F:S"—>M is adouble covering and the theorem follows.
4. C -manifolds.

Proposition 4.1. Suppose that M is a C,-manifold for some point
p in M and that M is not simply connected. Then (M, p) satisfies
condition (C).

In fact, we can express Q(p) as follows.

Proposition 4.2. Suppose that M is a C,-manifold with a common
length 21 for some point p in M and that M is not simply connected.
Then we have

O(p)={ve T,(M); |v| =2ml,  meN}.

Lemma 4.3. Let v be a non-zero tangent vector to M at p.
Suppose that M is a C,manifold with a common length 2l. Then
we have

the rank of exp, at v=the rank of exp, at <]+||2£|z|>v

for any integer z with l+—21—z¢0.

ol

Proof: By our assumption, we have expp(]+%z|—l)w=exppw

for any we T,(M)—{0} and zeZ. Hence the assertion is clear.

Lemma 44. Let v and M be as in Lemma4.3. Then there
exists a positive number t, for which the following (1), (2) and (3)
hold.

(1) If a geodesic exptw (0<t<oo) passes the point exp,lov,
then v and w are linearly dependent.

(2) The point exp,tov is not the conjugate point of p along any
geodesic.

(3) The geodesic exp,tv (0=t=t,) does not contain conjugate
points of p along itself.

Proof: Suppose that (1) is false for any t,>0. Then there
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are tangent vectors v;€ T,(M)—Rv and positive numbers t; (i=1, 2,...)
such that exp,v;=exp,tv and lim#;=0. Since any geodesic emanating
from p is periodic with a length 2/, we may assume that [v;] <!
(i=1,2,...). Hence we may assume that the sequence {v;};=q,,.. is
convergent. Let w=limv; It is clear that O<|w||<]. On the other
hand we have

exp,w =lim exp,v; =lim exp,tv=p,

implying that the geodesic exp,tw (0=t=<|w|) is closed. Hence we
obtain a closed geodesic emanating from p whose length is at most
I. It contradicts the assumption. Hence there is a positive number
t, such that (1) holds for any t, (0<t,=t,). We take to(=t;) small
enough for which (3) holds. By Lemma 4.3, (2) also holds for the
same t,.

Proof of Proposition 4.2: It is clear that
Q(p)o{ve T(M); |lv| =2lm,  meN}.

Suppose that there is a vector ve Q(p) such that |v| ¢€2IN. By Lemma
4.3 we may assume that |v||<2l. For this v we take the number ¢,
as in Lemma 4.4 and we put g=exp,tov. Let Q denote the set of all
curves in M joining p and g. Let A=dim M —the rank of exp, at v.
Then it is clear that the index of the geodesic exp,tv (0=1=ty) is
zero and that the indexes of the other geodesics in € are at least
A(>0). Hence by the Morse theory we have

n(@)={0} (0=i<d),

where m; denotes the i-th homotopy group. (cf. [6] p. 95 Theorem 17.3.)
Therefore we have 7n,(M)=my(2)={0}. It contradicts the assumption.
Proposition 4.1 follows immediately from Proposition 4.2.

Proof of Theorem C: By our assumption (ii), any geodesic ema-
nating from p is periodic with a common length, say 2l. Hence we
have d(p, C(p))<I. Let q be a cut point of p such that d(p, q)=
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d(p, C(p)). Then by Proposition 3.2 and Proposition 2.5, we have
a geodesic ¢: [0, I]J>M such that c¢(0)=c(l)=p, ¢(1/2)=q and L(c)
=2-d(p, q), where L(c) denotes the length of c¢. We clearly have
21 L(c). Since L(c)=2-d(p, q)<2l, it follows that L(c)=2I. There-
fore we have d(p, q)=d(p, C(p))=! and d(p, q')=d(p, C(p)) for any
q'€ C(p). Applying Proposition 3.2 and Proposition 2.5 again, we
obtain N,=2. Above lines also prove that C(p)={ve T,(M); |v||=1}
and f(v)=—v for any ve C(p). Hence the covering map defined in
the proof of Theorem B is a local diffefomorphism and M is dif-
feomorphic to a real projective space.

5. 2-dimensional manifolds.

Throughout this section, we assume that M is a 2-dimensional
compact Riemannian manifold and that (M, p) satisfies condition (C).

Lemma 5.1. N,!'(2) consists of a finite number of connected
components.

Proof: Assume that N,;'(2) has an infinite number of connected
components U, (A€ A) and take vectors v, € U;. Since C(p) is compact,
{vi; Ae A} contains a convergent subsequence {v;};=,,. . Let u;=
f(v;), where f is the map defined in Theorem A. Here we may assume
that {u;};-, ... is also a convergent sequence. Let limu;=u and
limv;=v. Then, from condition (C), it follows that uswv. Since the
map pu is continuous and since the sequences {v;};;,,.. and {u;};—;, .
are convergent, there exist simple curves ¢; and ¢} in &(p) (i=1, 2,...)
such that

@) c(0)=v; c{l)=v;y, and c(t) ¢ C(p) for O<t<1,

d) c0)=u;, ci(1)=u;4+, and ci(t)¢ C(p) for O<t<l,

(¢) lim L(c;)=lim L(c¢;)=0.

We define closed curves y;: [0, 1]->M as follows:

7i(t) =exp,c(20) (0=1=1/2),

() =exp,c/2-21)  (1/25t=1).
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Then we have lim L(y;)=0, implying that y, is simple for large i and
that limd(y; U {exp,v})=0. Let V and V' be neighborhoods of v and
u respectively in T, (M) such that exp,|V and exp,/V’ are diffeomorphi-
sms onto an open set U of M. Then there is an integer K such that
y; (i>K) are simple curves in U. By Jordan curve theorem, we
see that M —v; is composed of two connected components for large
i. We denote the components by O; and O, and suppose that O, > p.
Then by the definition of y; it follows that O; contains a point g;
which is in the image of the boundary points of U; in C(p). Hence
there is a vector w; in C(p)—V UV’ such that exp,w;=q;. Then the
geodesic exp,tw; (0<t<1) must intersect y,. By Proposition 2.4, we
see that exp,tw; (0<r<l1) and 9;n C(p) have no common points.
Therefore exp,tw; (0<t<1) and 7,n(M—=C(p)) must have a common
point. Then Proposition 2.4 implies that w,e V U V', which is contra-
dictory to the choice of w;.

Lemma 5.2, Let N;‘(2)=("/ U,, where U, is the connected com-
i=1
ponent of N,;'(2). If m=2, ie, N;'(2Q#C(p), then f(U) is also
a connected component of N;'(2) and f(U)#U; for all i.

Proof: Since the map f defined in Theorem A is a homeomor-
phism, it is clear that f(U;) is a connected component of N;!(2) for
each i. Suppose that f(U)=U; for some i. First we note that there
is a homeomorphism h: U;—(0, 1). Then the map a=hofoh~!: (0, 1)
—(0, 1) is a homeomorphism such that «?=id. Hence « is the identity
map or a monotone decreasing map. In either case, « must have a fixed
point, i.e., f has a fixed point, which is contradictory to its definition.

Proof of Theorem D: If N,'(2)=C(p), ie., N,=2, by Theorem
B we see that the fundamental group of M is of order two. Therefore
we have only to prove Theorem D in case that N,;!(2)#C(p). Let

N;1(2)=\"} U; as in Lemma 5.2. Then we have a component U;
i=1

and vectors v and u such that:
(@ u and v belong to the different connected components of

Cp)-(fUHL Uy,



On the cut locus and the topology of Riemannian manifolds 403

(b) exp,u=exp,.
(If not, we obtain an infinite sequence {U, },—, ... of connected com-
ponents of N,!(2) such that U
the same connected component V, of C(p)—(f(U,)u U,;), where V,c

and f(U,;, ) are contained in

ik+1 ik+1

Vi—:. It is impossible by Lemma 5.1.) We consider the diagram

L(p)——ZL(p)

Jexe Bz

M_i , M

defined as follows:

(c) &(p) is the space obtained from &(p) by identifying U; with
f(U;) through f,

(d) M'=M/(C(p)—exp,(Uy) "V,

(¢) h and h are natural projections,

(f) ‘expy(x)=hoexp,och™'(z) for zeL(p).
Then it is clear that the diagram is commutative and the maps are
continuous. Let ¢(tf) (0<t=<1) be the closed curve in M defined by

c(t) =exp,2tu 0=1=1/2),
c()=exp,(2—2t) (12=211).

We fix an orientation of C(p) and we endow U; (i=l, 2,..., m) with
the orientation as its subsets. If f|U; is orientation-preserving, M’
is homeomorphic to the 2-dimensional real projective space P2(R)
and h(c) represents a generator of its fundamental group which is
Z,. If f|U; is orientation-reversing, M’ is homeomorphic to the
space S!x S!'/S'x {one point} and h(c) represents a generator of its
fundamental group which is Z. Hence ¢ is not homotopic to a
constant map.

6. Throughout this section, M will denote a 3-dimensional compact
Riemannian manifold. We fix a point p in M and let H denote the

1) For the pair (X, Y) of topological spaces such that ¥ CX, X|Y denotes the quotient
space of X by the equivalence relation ~ that a~b if and only if a=b or a,
beY.



404 Kunio Sugahara

identity component of H, First we study the case that dimH=1.
Let p: H>O(T,(M)) be the linear isotropy representation. Then p(H)
=50(2)=0(3)=0(T,(M)), ie., with respect to a suitable orthonormal
basis (v, v, v3) of T (M), p(H) can be expressed as:

p(H)={o(y); yeR},
where

cosy siny 0
o(y)= | —siny cosy O
0 0 1

We introduce a system of polar coordinates
¢: R2x[0, 1]—> T, (M)
as follows:
o(r, y, a)=rsinocosy v, +rsinasiny v, +rcosa vs.
Then it is clear that
h-expeq(r, v, a) =exp,op(h)ep(r, v, o) =exp,o(r, v_+v’, ),
where heH and p(h)=0(y).
Lemma 6.1. On the assumptions and notations above, we have

{ve C(p); exp,v=exp,u(va)vs} ={u(v3)vs, —p(—0v3)vs},

if (M, p) satisfies condition (C).

Proof: Suppose that there is a vector ve C(p)—Rv; such that
exp,v =exp, u(vs)v;. Then we have

exp,p(H)v=H-exp,v=H-exp,u(v;)v; =exp,u(vs)vs.

This implies that v is contained in the conjugate locus Q(p) of p,
which is contradictory to condition (C). Therefore we have
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{ve C(p); €Xp,v =eXPp#(03)Us} < {u(v3)v3, —pu(—v3)v;3}.

On the other hand, we have

2 éNp(u(US)US) = #{U € C(p); exppv =exPp#(”3)”3}

by Proposition 3.2. Hence we have the lemma.

By Lemma 6.1, we see that N, (u(v3)v3)=N,(—pu(—v3)vs)=2 if
(M, p) satisfies condition (C).

Let N;1(2)=¥/’U,-, where U; (iel) are the connected compo-
nents of N;'(2). l

Lemma 6.2. On the assumptions and notations above, we have
#(I)<oo if (M, p) satisfies condition (C).

Proof: Suppose that #(I)=o0. For each iel we take a vector
v; in U;. Since C(p) is compact, there is a convergent subsequence
{vj}j=1,2.. in {v;;iel}. We may assume that {f(v;)};-y ... Iis also
a convergent sequence, where f is the map defined in Theorem A.
Let limvy;=v and limf(v;)=v". By condition (C) we have v#v'. Since
N, is upper semi-continuous and larger than 1, we have N (v)=N(v')
=3, implying that v, v’ ¢ Rv;. - Thereforc there are open sets U and
U in R2x[0,n] and neighborhoods U(v) an! U() of v and v
respectively in T,(M) such that:

(a) Yy=0¢|U is a diffeomorphism of U onto U(v),

(b) Y'=0lU’ is a diffecomorphism of U’ onto U(v'),

(c) exp,|U(v) and exp,|U(v') are diffeomorphisms onto an open
set V of M.
Let

F=y""lo(exp,|U(v)” (exp,|U(v))oyy: U— U,

F(r? ‘y’ a)=(r,’ y,’ al) ’

and let
Y1 (w) =(r(w), y(w), «(w)) for weU(v),

Yol (w)=(r'(w), y'(w), a'(w)) for weU().
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Since p(H)-U;=U,; for any iel, we can assume that v;e U(v), y(v;)=
p(v) and a(v))<a(v;,). Since r(v)=r'((exp,lU(v"))”'o(exp,|U(v))(v)) and
since Or'/or#1 at Y~ '(v) by the variation theory, we see that the
equation

r—r'=0

can be solved for r as a function of y and « around Y~ !(v). Let
r(y, @) denote the solution and let

K={(r,y,0)eU; r=r(y, 0)} .

Here we can assume that U—K is composed of two connected com-
ponents which we denote by V, and V,. Let V/=F(V) (i=1,2) and
K’'=F(K). By the definition of &(p), we have:

rsp((r, y, ))Sr(y, o) if (r,y,0)eU and Y(r,y, @) e #(p) .

Therefore we may assume that Y(V,UK)>&(p)nU(v) and y'(V,' U
K)>#(p)nU(®v'). Since exp,v;=exp,f(v;) where v;€e&(p)nU(v) and
fw)eL(p)nUW), it is clear that v;ey(K) and f(v;)ey'(K’). Hence
there are positive numbers r, and y, for which we can define a
family of (continuous) embeddings

Ej:(—VO’ rO)x(_YO’ YO)X(O’ 1)—'M (j=]’27--')

as follows:

(d) Rix, y, 2)=(1 =x)r(y(v)+y, zzo(vy) + (1 — z) v +1))
for (x, y, 2)€[0, ro) X (—yo, 70) X (0, 1),

(&) @ix,y, 2)=(Ryx, y, 2), Y(v)+y, z2a(v;) + (1 — 2) v+ 1))
for (x, y, 2) € [0, ro) X (=70, ¥0) X (0, 1),

() (Ri(y, 2), Ty, 2), Ay, 2))=F(®;0, y, 2))
for (y, 2)€(=70, 0) % (0, 1),

(8) Ejx, y, z)=exp,yo®(x, y, 2)
for (x, y, 2)€[0, ro) X (=70, ¥0) X (0, 1),

(h) Ejx, y, z)=exp,o¥/'(1+x)R(y, 2), T{y, 2), Ay, 2))
for (x, y, z)€(—ro, 01X (=70, 7o) x (0, 1).
Let 0<y, <y, and let {r}i,-;.,.. be a sequence of positive numbers
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such that ro>r,>r,>... and limr,=0. Since the map u is continuous,
there is a subsequence {v; }y=,2... of {v;};=1,,,. such that

E;(—rx[=y1 711%(0, D)=exp,(£(p)— C(p)) n U())

E; (rex[—7:, y11x(0, D) =exp,((£(p)—C(p)) n U(v)).

Let D} =E;((—r, r)xyx(0, 1)) and let Ry=E; ((—ry, r) x(—7y, y1) X
(0, 1)). Then the boundary of R, is contained in exp,((¥(p)—C(p))U
N;'(2))UDg?+uD}'. Since we assumed that v; and v; ., belong
to the different connected components U; and Uj,,, of N;'(2) res-
pectively, we have a vector w,e U(v)n C(p) which is a boundary point
of U;, and which is such that a(v;)<a(w,)<a(v; .,) and y(w,)=y(v).
This means that g,=exp,w, €Dy is an inner point of R,. Since N (w,)
=3, we have a vector w,’ in C(p)—U(v)U U(v') such that exp,w, =g,.
Let g,/ be the first point on the geodesic exp,tw,’ (0<t<1) which
is in the boundary of R,. Then Proposition 2.4 implies that ¢, €
DyrruD}.  Let P(y)=exp,a(y)). Since limd(D})=0 and since
limd(D}, P(y))=0, we obtain

vl =d(p, P(0))=limd(p, D{)=limd(p, q,)
=limd(p, q,)+1limd(q,’, q)
>limd(p, Dyt U D}")+limd(Dg?* U D}', DY)
=d(p, {P(=v,), P(y\)}) +d({P(—7,), P(y1)}, P(0))
= vl +d({P(=v), P(y1)}, P(0))>|v].
It is a contradiction.

Proof of Theorem E: Let H be the identity component of H,
and p: H-SO(T,(M)) be the linear isotropy representation as above.
Since SO(3, R) does not have 2-dimensional subgroups, dimp(H)=1
or 3. In case that dimp(H)=3, we have p(H)=SO(T,(M)), implying
that N, is constant. By Theorem A, we see that N,=2. Hence the

theorem follows from theorem B. Therefore we suppose that dim p(H)=
I. As in the beginning of this section, p(H) can be expressed as:
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p(H)={o(y); ye R} with respect to.a suitable orthonormal basis (v,,
vy, v3) of T(M). For each vector ve C(p) we define a(v) by

g(v, v3)=|lv|-cosa(v) and O=Za(v)=m,

where g is the Riemannian metric on M. By Lemma 6.2, we see
that N;!(2) is composed of a finite number of connected components
which we denote by U; (i=1, 2,..., m). There is a sequence 0=a,<
oy <o, < <o, =mn such that:

U, ={veC(p); apSa(v)<a,}
U, ={veC(p); o;_;<a(v)<a;} (O<i<m)
Um={UEC(p); am—1<a(v)§am}°

This is clear from the fact that p(H) U;=U; and a(v)=a(p(H)v) and
from Lemma 6.1. If m=1, we see that C(p)=N,'(2), which implies
that M is not simply connected as in the first part of this proof.
Hence we suppose that m>1. Let &: p(H)\C(p)—[0, ] be the map
defined by &p(H)v)=a(v). Then it is clear that & is a homeomorphism.
We have foh=hof for any hep(H), where f is the map defined in
Theorem A. Hence the map

Gofod= 't [otg, oy)V(aty, @2)Y " (O — 1y E] = [%oy 1)V (U 15 Xl

is well defined and a homeomorphism. To simplify the notation, we
write (a9, «;) and (a,_;, a,) for [oo, o) and (&,-;, «,] respectively.
We distinguish three cases.

(1) The case where f(U)=U,; for some i. By Lemma 6.1, we
see that i#1, m. Hence it implies that the map exp,: U;—exp,(U)
is a covering of order two. Let ¢(f) (0<t<n) be a curve in C(p) such
that a(c(t))=t. By Lemma 6.1, we see that &(f)=exp,c(t) (0=t=mn)
is a closed curve in C(p). First suppose that the map dofod~1: (a;_y,
a)—(o;_;, @;) is monotone increasing. Since (Fofed~')2=id, Gofod™!
must be the identity map. It implies that the space C(p)/(C(p)—
exp,(U;)) is homeomorphic to the space S'xS'/S'x{one point}. It
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is clear that the image of the curve & in C(p)/(C(p)—exp, (U)) rep-
resents a generator of its fundamental group which is Z. Hence
n,(M)=n,(C(p))#{0}. Now suppose that the map dofod=': (o;_,,
a)—(a;_, @) is monotone decreasing. Then it is clear that C(p)/
(C‘(p)—expp(U,)) is homeomorphic to P2(R) and the image of the

curve & in C(p)/(C(p)—exp,(U;) represents a generator of its fun-
damental group which is Z,. Hence =,(M)=n,(C(p))+#{0}.

(2) The case where f(U)=U;;, and exp,'(exp,(U;nU; )N
C(p)=U,nU,,, for some i. It is clear that the map dofod ': (a;_,,
a;)—(a;, @;,,) is monotone decreasing. Let v be a vector in U,nU,,,.
Let yo=inf{y; exp,0(y)v=exp,v}. By condition (C), we see that
70>0. S?t?ge p(H) acts on U;nU,,, as a rotation, for any weU;n
U;+; we see that exp,o(y)w=exp,w if and only if yey,Z. Hence
2n/y, is an integer which we denote by n. And the map exp,: U;n
U.1—exp(U;nU;,,) is a covering of order n. By the choice of
i, we have n=3. Let &t) (0=t<1) be the curve defined by &(t)=
exp,o(tyo)v. Here it is clear that the space C‘(p)/exp,,(jﬂ\{+1 U)
is homeomorphic to the space V2\U,S!, where V2={xeR?; |x| <1},
£: 0V2=S'->S"' is a covering map of order n and V2\U,S! is given
by identifying dV2? with S! through &. Moreover the image of the
curve ¢ in V2\U.S' represents a generator of its fundamental group
which is Z,. Hence n,(M)=nr,(C(p))+#{0}.

(3) The other case. We consider the orbit spaces p(H)\Z(p)
and H\M and the commutative diagram

F(p)—=—p(H)\&(p)

expp expp
M 2 s H\M

defined as follows:

(@) m and 7 are the natural projections,

(b) exp,(p(H)v)=H-exp,p.
Since p(H)\N,!(2) is composed of a finite number of connected com-
ponents p(H\U; (i=1, 2,..., m), we have a component U; and vectors



410 Kunio Sugahara

u and v in C(p) such that

(c) p(H)u and p(H)v belong to the different connected components
of p(H)\C(p)—p(H\U; U p(H)\f(U)),

(d) exp,u=exp,.
Let ¢(t) (0<t<1) be the curve defined by

c(t) =exp,2tu 0=1£1)2),
c(ty=exp,(2—2t)v (1/22t=10).

Then we can prove that 7(c) is not homotopic to a constant map,
applying the method in the proof of Theorem D to the diagram

p(H\&(p)—E— (p(H)\Z(p))

H\M—*_ (H\M)[(H\C(p)— H\exp,(U,))

defined as follows:

(&) (p(H\S(p)) is the space obtained from p(H)\&(p) by identify-
ing p(H)w with p(H):f(w) for weU;,

(f) k and k are the natural projections,

(8) exp,x=Kkoexp,ck~!(x) for xe(p(HN\F(p))'-
Hence the curve ¢ in M is not homotopic to a constant map, implying
that M is not simply connected.
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