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O. Introduction

Let f : M — >N  b e  a  C r map between m anifolds and A  b e  a  subset
o f  M . S a r d  h as  sh o w n  th a t if  th e  ta n g e n t m a p  T f  vanishes on the
tangent spaces over A  then f ( A )  is sm all (Theorem  1). M oreover one
may well expect that:

I f  T f  v a n i s h e s  a t  l e a s t  o n  th e  ta n g e n t s  o f  A ,  f ( A )  is  sm a ll.
In  this note we remark that Glaeser's linearized paratingents immediately
enable u s  a n  accurate descrip tion  of the  above intuitive statem ent as
a  corollary o f  S a rd 's  theo rem . A s  fo r  th e  c a se  w hen A  is connected
and f  is sufficiently smooth, we obtain a  necessary and sufficidnt con-
d ition  fo r  f ( A )  t o  b e  o n e  p o in t  (Theorem  2). Then lightness o f  a
sufficiently smooth map can be expressed by a  property o f  T f  (o r  first
derivatives)*.

N ow  w e prepare  the  nota tion . T hrough th is no te , b y  a manifold
M  w e  m e a n  a  fin ite  d im ensional separable  H ausdorff C q manifold
(1 . g__w *) w ithout boundary . T he  d im ension  m  o f M  is indicated as
M m . A  subm anifold means always a  regular subm anifold. T M  denotes
the  tangen t bundle  o f  M .  it i s  i t s  projection o n t o  M  and T M =

*  Church pointed ou t th e im portance o f assuming lightness in the study of the struc-
ture o f  differentiable open  m aps. F or, non-light maps a re  often too complicated
to  adm it some positive assertions. A few  sim p le and  natural sufficient conditions
are known fo r  light m aps; see [4].

* w  means real analyticity.
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it - '(x). W hen we m ention of C r mapf: M-+N, M  a n d  N  a re  assumed
to  b e  C q  manifolds with f  canonically induces the tangent
m ap  T f: TM --+ TN.

1. Paratingent spaces

F ir s t , l e t  u s  review  th e  n o t io n  o f  th e  (lineariz ed) p a ra t in g en t
o f  o rd e r  s *  i n  a  fo rm  a d a p te d  to  a  m a n ifo ld . L e t  A  b e  a  subset
o f  a  C q  manifold M  a n d  x  a  p o in t o f  M . C o n d ise r  th e  se t
o f  a ll  C s submanifolds ( 1 :_ s _ q )  which include A  i n  a  neighbourhood
o f  x  (i.e . th e  germ  of V  a t  x  includes o n e  o f  A ) .  T h e  m a p  o f  in-
clusion C A : V 2 - 0 1  induces the tangent map T e :  T„ .1/A —Tx M .  W e put

P sA ,x
= T  x e JcV

AEA

PsA = Ps,4,x TM .
xeM

W e call P;i ,x  the  partingent space o f  o rder s  o f  A  a t  x  and  its element
a  paratingent of order s. I t  is obvious that

Ps,i = P sA ,

P ;t c  P ic  •-•

1 " 4 D  P I  i f  AD B .

Proposition 1. I f  V  i s  a n  elem ent of  m inim al dim ension among
the  Cs s u b tn a n i fo ld s  including A  in  neighbourhoods o f  x  then T„e(Tx V)

w here e: V—tIVI denotes th e  canonical injection.

Corollary 1. P sA  i s  a  closed subset of  TM .
These proofs are  standard  and  w e om it them.
I f  w e put

A y = At={x e M: dim PsA ,„=v} , ;4-p=  =  n A,

it  is  a lso  ea sy  to  see  th e  following:

*  The notion  of linearized paratingent o f  order s  is due to  G laeser [5 ]. H is  13 (x)
denotes th e set of directions w h ile  ou r .1) „  expresses the set of vectors. H e r e  w e
introduce only a  p a r t o f his theory on  linearized paratingents.



T angents of  a continuum  and  dif ferentiable m aps 637

Corollary 2. U  A , is  an  open  subset o f  U  A , for
v=i v=.;

U  A , (resp. A „ A 5)  i s  M  (resp. A , th e  deriv ed set of  A ).
v=--i v=o v=i

T he following is foundamental for paratingents.

Proposition 2 .  L et f : M m — N " be a  C r-inap an d  A  be  a  subset of
M .  T hen T f  m aps PsA  in toP13 ,  w here B =f (A )  and

P ro o f . W e follow Glaeser's proof o f  th e  nex t coro lla ry . Suppose
that there exists a  vector e e PsA ,  such  tha t Tf(e)0113 . Put

dim P , „ = t ,  dim P SB y = u , y = f ( x ) .

W e  c a n  c h o o s e  a  l o c a l  coordinate system (x 1 , x 2 ,..., xi, xt+ 1 ,..., xm)
a t  x  o f  M  a s  a  C s  m anifold su c h  th a t  (0/0x 1 )x , (0/0x 2 )„, ( 0 / 0 x 9 x

form  a  basis o f  Ps  a n d  th e  Cs submanifold V  defined by

x t+1 = x t+2 = . . . = x ttt = 0

includes A  i n  a  neighbourhood o f  x .  L e t  ( y l ,  y 2 , . . . ,  y u,  y U+1 5 . . . ,  y n)

t+a n d  W  b e  t h e  correspondents of ( x 1 , x 2 ..... X, x 1,..., x .),..., a n d  V,
fo r  { N , B , y }  instead o f  {M , A , x } .  W e m ay assume that

e=(010x ') x , Tf(e)=(Olayu+ 1 )),

w ithout loss o f  generality . T h is  m eans (310x 1 )x (y 1 4 ) = 1  a n d  hence
th e  equation yu+1 o f =0  defines a n  ( t-1 )-d e m in s io n al C s  submanifold
o f  V  which includes A  in  a  neighbourhood o f  x .  Then dim PsA ,x . t—  1,
a  contradiction. T hus w e have proved

T f ( P , x ) c P sB ,y .

Corollary [5, p. 55]. L e t  f :  M - 0 1  b e  a  C r  m a p  a n d  le t  A
b e  a  subset o f  M .  I f  f ( A )  i s  o n e  p o in t then  Tf(PsA ) =0  f o r  1. s <r.

2. Hausdorff measure o f  f (A )

Since our manifold admits a  Riemannian metric we can canonically
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define th e  (outer) 1-dimensional  H ausdorf f  m easure 
P t

 o n  M  fo r  t
A  subset A  o f  M  is ca lled  t-null, t-f inite o r  t-sigm af inite respectively
w h e n  p 4 = 0 , w h e n  iut A <  c o  o r  w hen A  i s  a  countable u n io n  o f  t-
f in ite  sets. t-nu llity  and  t-sigm afin iteness a re  invarian ts  o f changes
o f  t h e  Riem annian m etric a n d  regular imbeddings o f  M  into other
m anifolds. Sard has proved th e  following:

Theorem  1 [8, T heorem  2]. L e t f : M m ->N  b e  a  C r  m a p .  I f
A M  is t-sigm af inite (t>0) and if  T f (n - ' A )=0, then f (A ) is (t/r)-null.

R e m ark . I f  dim /3 1, x  t  f o r  a n y  x e  A , especially if then
A  is t-sigmafinite.

Putting PsA  = PsA  n n - , (A ) , w e can  sharpen  th e  th eo rm  as  follows.

Corollary 1. L et f : M -01 . b e  a  C r  m ap  a n d  le t  A  b e  a t-sig-
m af inite (t>0) subse t o f  M .  I f  Tf(PsA ) =0 , f (A )  is (t1u)-null (u =min
(r, s)).

P ro o f .  E v e ry  x  A  n A  has an open neighbourhood Bx  i n  A  which
is included in a v-dimensional  C s  subm anifo ld  V , w here  A , i s  the set
defined in  §  I. L e t  e: Vx ->M . be  the  canonical injection and  i i ': T i /x ->
1/x  b e  t h e  canonical p ro je c tio n . If  y  /3 „  n A y  t h e n  T t(Ty Vx )= P sA, y
b y  P roposition  L  Hence we have

T(f. e)( Ty Vx ) =Tf{ Te(Ty Vx )}  = T f (P y) =

and

T(foc){7C- 1 (B x n AO} =0.

Since f o e  i s  a  C "  m a p  on V .  f ( B x  n A 5)=Pe(B x  n A y ) is (t/u)-null
b y  th e  theo rem . A  is  a  countable u n io n  o f  se ts  o f  th e  fo rm  Bx n A,.
Then f (A )  is also (t/u)-null.

A  continuous m ap betw een topological spaces is defined  to  be
lig h t  w hen th e  inverse im ag e  o f  a n y  o n e  p o in t d o e s  n o t c o n ta in  a

*  See [8 ] o r  [6, p. 102] for the definition.
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continuum  (a  connected compact set c o n ta in in g  a t le a s t tw o  points).

If the space o f definition of the m a p  is  a  separble m etric and localy
compact space, the m a p  is  lig h t  if and o n ly  if the inverse image of
one point is either em pty or 0-dimensional.

Corollary 2. L e t f : M - * N  b e  a  C r m ap  a n d  l e t  A  b e  a  con-
nected subset o f  M  satisf y ing Tf(PsA ) = 0 .  I f  A  i s  u-sigmafinite (u=
min (r, s)>0), then f (A )  i s  one  po in t and  f  is no t ligh t.

P ro o f . B y C orollary  1 , f ( A )  is 1 - n u l l  and hence 0-dimensional
[6, p. 104]. I n  o ther w ords f (A )  is to tally  d isconnected. S ince f (A)
is connected, it is one point. Then f(74) is also one poin t. A  locally
compact connected set, if n o t  a single point, contains a continuum
[7, p. 83], hence f  is not light.

3. Crushing conditions

Theorem 2. L e t f : M nI--N  b e  a  C r m ap  w ith  r m  and let A
be a  connected subset o f  M .  Then the follow ing conditions are mutual-
ly  equivalent.

(i) f (A )(or f (A )) i s  one point.
(ii) Tf (PA) = 0 .
(iii) Tf (13 1A) =0 .
(iv) Tf(P 1 ) =0.
( y )  Tf(P7 - 1 ) =0.

R e m ark . I f  r=m  — 1, ( i i)  d o e s  n o t  m e a n  ( i)  b y  the exam ple of
Whitney [ 1 0 ] .  (see also [ 5 ]).

P ro o f . H e re  w e  tre a t  the case m  2 .  The case m  = 1  is easily
justified by the definition o f n in  § 4. By Corollary of Proposition 2,
(ii)  fo llow s from  (i). It is  obv ious tha t (ii)  m eans (iii) , (iv) and each
o f them  m eans (v). Therefore w e have only to prove (i) assuming (v).

m-1
I f  x e j  A ' ' §1) then  x  has an (m — 1)-sigmafinite neighbourhoodv=o
B x  in  A .  Then f ( B )  is  1 -nu ll by  C oro lla ry  1  o f Theorem I. I f  x e
Ar 1 , P",17x

1 T x /I4. H ence  Tf{it_ 1 (ii,"4- 1 )} = 0  and f ( A  1 )  is 1-null by
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Theorem  1. Thus f (2 1 )=f (u  Ar 1) is  1 -nu ll a n d  o n e  p o in t a s  in  th e
v= o

proof o f  Corollary 2 o f  Theorem 1.
N ow  w e have obtained the  following.
L et f : M m --+N  b e  a C r-m ap  w ith  r m .  T h e n  f  i s  n o t  l ig h t  if

and  only  if  there ex ists a  connected set (or continuum) A M  satisfying
an y  one (or each ) o f  (i) — (v ) in  Theorem 2.

W e  re m a rk  th a t th e  c o n d itio n  o f  o p e n  ligh t m aps can  be  a lso
expressed by properties o f  th e  first derivatives. Because o f  th e  above
re su lt  w e  h a v e  o n ly  t o  e x p re ss  th e  c o n d itio n  o f  o p e n e ss  fo r  light
m a p s . This is  ju st done  by  the  following theorem due  to Titus-Young
and Church*

Let f: Mm—>Nm b e  a  light Cr m ap (r_m ) betw een m -dim ensional
m anif o lds. T h e n  f  is  o p e n  if  an d  o n ly  i f  there  a re  covering charts
{(Ui , (p i)} o f  M  a n d  { ( V i  t li i ) }  o f  N  s u c h  th a t  th e  jac o b ian  o f
tfri of)9T 1 d o e s  n o t  change sign  on  cp i (U  nf - 1 (V1)).

It is  a lso  know n tha t if f  i s  a  light open  C r  m ap  o n  M m  (r_m )
f -

1 (y ) is discrete fo r  any y e N ", see [3, (1.9)].

4 . Classical paratigents

Let A  be a  closed subset o f  M . T h e  paratingents o f A  was defined
by  B ouligand  [1 ]. W e w rite  the set of Bouligand's paratigents =

xP . G laeser characterized  P A  a s  a  m in im a l subse t L =  L x  o f
xeA xeA
T M  satisfying th e  following:

(i) L D P .
(ii) Lx  i s  a  linear subspace of T I M .
(iii) L  has upper semi-continiuty of inclusion on A .

On the condition (ii), (iii) is equivalent to :
(iii)' L  is  a  closed subset o f  TM

[2, p. 6 7 ] .  Let f  b e  a  C r m ap (t 1) defined o n  M .  Since th e  kernel
o f  T f  satisfies (ii) and  (iii) ', the  cond ition  T f (PA )=0 is equivalent to
Tf(13 1)= 0.

*  "if"  p a rt has been proved by Titus-Young [9, Theorem 2 ] for C1-maps. "only if"
part has been established by Church [3, (1.7)].
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I f  A  is n o t  c lo s e d  w e  d e f in e  n - P I .  (T h is  is  equ iva len t to
Bouligand's d e f in it io n .)  T h e n  it  is  t r iv ia l  that Theorem  2  is justified
also in  t h e  c a s e  in =1.
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