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§ 1 .  Introduction

A  transversally orientable codimension one folia tion is defined by
a  non-singular one form w  satisfying the  integrability condition CO A do) =
O. I f  w  is closed then the foliation has very simple properties. In  this
case  the  "d istance" between two leaves is constan t and  the  holonomy
group o f  each leaf is trivial. Conversely, Sacksteder [11] has obtained
th e  following result which is fundamental fo r  th e  study o f  codimension
one foliations without holonomy, (we say that a  fo lia tio n  i s  without
holonomy if the  holonomy group of each leaf is trivial).

Theorem 1 . 1 .  L e t  M  b e  a c o m p ac t sm ooth m anifold and a
transv ersally  orien table  codim ension o n e  f o liatio n  w ithout holonom y
o f  class Cr, th e n  th e re  e x is ts  a  topological f low cp: M x R--÷M
such that

)  (pi preserves i.e. yo( , t )  s e n d s  e ac h  le af  o f  .F  in to  a  leaf
of  .F.

( 2 )  cp i s  transv ersal to .9", i.e . (p(x , R )  i s  transv ersal to leav es
of

By this theorem  we can see that a  codimension one foliation .9
without holonomy is defined by a n  1-cocycle in  th e  Alexander-Spanier
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cohomology th e o ry  w ith  re a l coefficient (se e  Roussarie [9]). Though
F  is  no t necessa rily  defined  by  a  closed one  fo rm , w e  can  ob ta in  a
foliation defined by closed o n e  fo rm  b y  a  sm all deform ation o f  F ,
m ore  precisely we h av e  the following Theorem 1 .2 . w hich perm its us
th e  reduction o f  a lm ost a ll p rob lem s o n  codimension one foliations
without holonomy to  th o se  on foliations defined by closed one  forms.

Theorem 1.2. L e t  M  a n d  F  b e  a s  i n  Theorem 1 .1 . then there
ex ists a  nonsingular closed one f o rm  c o  o f  c las s  C '' o n  M  a n d  a
hom eom orphism  h of  M  such that

(1) h  m aps each  leaf  o f  F dif f eom orphically  onto  a  leaf  of  the
f oliation defined by a)

(2) h  is isotopic to the identity.
M oreover h  can  be  chosen  arb itrarily  near to  th e  identity  in  the

C°-topology  and the cohom ology  class o f  co is unique up to m ultiplica-
tions by  non-zero real num bers.

I n  [1 1 ] Theorem 1.1 . is  deduced  from  m ore  general results con-
cerning on m inim al sets of pseudogroup actions on R  a n d  the method
o f  [11] is  a  generalization of the arguments used to prove the theorems
o f  Poincaré-Bendixon ty p e  o r  o f  D e n jo y -S ie g e l ty p e . In  this paper
Theorem 1.1. is considered a s  a  generalization of the theorem o f Denjoy-
Siegel o n  flow s o n  t h e  2-torus ([3 ], [14 ]) a n d  w e  g iv e  a  geometric
proof o f  Theorem 1.1. O u r method permits u s  to  o b ta in  th e  following
topological version of the theorem o f Sacksteder.

Theorem 1 .3 .  L e t  M  a n d  F  b e  a s  i n  Theorem 1 .1 . b u t  w e  do
n o t  assum e dif f erentiability  c o n d itio n s  o n  M  an d  F .  S uppose that
there ex ists a  f low  o n  M  tran sv erse  to  F th en  th e  result o f  Theorem
1.1. holds if  and  only  i f  F  has no exceptional leaves.

W e rem ark  th a t th e  hypothese o f  Theorem 1.3 . is satisfied if
is  o f  class C ' an d  th e  famous example of D enjoy [3 ]  shows the exist-
ence of foliations without holonomy o f class C ' with exceptional leaves.
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T h e  program  o f  th is  p a p e r  is  th e  follow ing. I n  § 2  we prepare
some results concerning o n  free  group a c t io n s  o n  S '.  M a in  results is
Theorem 2.1. which generalize th e  theorem  o f  D e n jo y  [3 ] .  I n  § 3  we
introduce the notion of holonom y m aps for codimension one foliations
a n d  s h o w  that (Theorem  3.1.) th e  e x is te n c e  o f  nontrivial holonomy
groups is an obstruction to extending th e  dom ain of holonom y maps.
B y th is resu lt w e can  reduce th e  problems of pseudogroup actions to
those o f  group actions provided that the foliation is without holonomy.
This reduction is done in  § 4  an d  th e  n o tio n  o f  characteristic maps for
codimension one foliations without holonomy are  defined. Theorem 1.3.
is obtained by applying Theorem  2.1. to th e  characteristic map of
If the  fo lia tion  is  o f  class C 2 , w e  c a n  re late  the characteristic map to
th e  fundam ental group o f  M  by  using  th e  n o tio n  o f  N o v ik o v  trans-
fo rm ation  [7 ] a n d  we can apply Theorem  2.1. to prove Theorem  1.1.
Theorem  1.2. is proved in  §  5 , he re  th e  essen tia l too l is  th e  theorem
o f T isch le r  [1 5 ], an d  som e properties of fo lia tions defined by closed
non-singular one form  are discussed in §5.

§ 2 .  Free actions on the circle.

I n  th is  section w e consider som e properties o f  subgroups of the
group of homeomorphisms of the circle S l  which act freely o n  S '.

L e t . r 'P (R )  b e  th e  group o f  periodic homeomorphisms o f  th e  real
lin e  R ,  w here  "period ic"  m eans f(x+ 1)= f(x )+ 1  f o r  a n y  x E R .  We
define a  m ap  y  from  oF P (R ) t o  R  by y(f)=  lim  fn (x )In , w here  xn  R

11 CO

a n d  it  is  w e ll k n o w n  th a t  th e  lim it ex is ts  a n d  is independent o f  x
[ 5 ] .  W e ca ll y (f) th e  rotation num ber of f. T he following properties
of rotation numbers are  well known o r  easy to prove

(2 .1 )  Let f  an d  g  be elem ents of  . P(R), then y(fgf - 1 ) =y(g).
(2 .2 )  F o r any  in teger n  there ex ists x„e R  such that  f ( x ) = x +

(2 .3 )  y  is continuous an d  th e  se t  o f  elem ents o f  o rP (R ) w ith ra-
t io n a l  ro tat io n  n u m b e rs  is  dense  in  . ' P ( R ) ,  w h e re  the
topology of  .reP(R) is  the uniform topology.
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(2 .4 ) If  f  and g com m utes then y(fog) =  y (f) y (g ),

L et <X(S') be th e  group of orientation preserving homeomorphisms
o f th e  circle S' = R IZ  then there exists a  natural projection 7r: .YeaP(R)--
.Ye(S 1 )  induced from t h e  natural projection 7r: R--+S 1 . We define a
m ap y: . °(S ') - R IZ  b y  y (f)=-1 (j )  mod Z ,  where f  i s  a n  element of
,reP(R) such that 7 r (j )= f .  Then th e  properties (2.1)-(2.4) a n d  th e  fol-
lowing (2.5) hold for elements of ,e(s1)

(2.5) f e ° (S t) h as  a  periodic p o in t if  an d  on ly  if  y (f )  is ration-
al.

Definition 2 .1 .  A n  element fe  ,Ye(S 1 )  is  a  f re e  elem ent if  f  is  of
finite order o r f  has n o  periodic p o in t . A n  element J e  rt'P(R) is f ree
i f  7roje.Ye(S 1 )  is  a  f r e e  element. A  subgroup G  o f  ,e(S 1 )  is called a
f ree  subgroup if  any element o f G  is a  free  element. T his is equivalent
to say that no  element, except the identity, o f G has fixed points.

Proposition 2 .1 .  L e t  G  b e  a  f re e  subgroup o f  f e(si) then G  is
com m utativ e  and  the  restric tion  o f  y  t o  G  i s  an  in jec tiv e  homomor-
phism into RIZ.

P ro o f. A t first we prove th e  injectivity o f  yl G .  L et f  a n d  g  be
elements o f G  satisfying y(f)=y(g)=y.

I f  y  is rational then by (2.5) an d  th e  freeness o f  G , we have fk =
gk =identity f o r  some integer k  a n d  it is easy to construct h e ,Ye(S1 )
such that hoph - 1 (x) =x +y f o r  vx e S l .  O n  th e  other hand , b y  (2.1)
a n d  (2.2), there exists xo e S i su ch  th a t hogoh- qx 0 ) =x 0 + y .  B y  an
easy calculation we see that Jr '(x 0 ) is  a  fixed p o in t o f  f -  1 og so by
freeness o f  G  we have f = g .  I f  y  is  irrational, let f  a n d  g be elements

.y"P (R ) such that 7r( f ) =f , 7r(J)=g, 0 < j(0) < 1 a n d  0 < g(0)< 1. We
show  that there exists x e R  such that j(x )=  j ( x ) .  Otherwise, we can
suppose f(x)> g(x) fo r  any x e R .  Then by (2.3) there exists h e .YfP(R)
with rational rotation number such that f(x)> i(x)> g(x) for any x e R.
It is clear that we have y(J) y(r) y(ã) but y(ii) is rational and y (f)=
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y (g ) is ir ra tio n a l. T h is  is a  co n trad ic tio n . T h u s  th e re  e x is ts  x E R
such that f(x) = g (x ) then  w e have f  c g (ir (x ))= n (x ) and  w e have f  g  .
Thus we proved the injectivity of yIG.

T h e  commutativity o f  G  follow s easily . I n  fa c t  le t  f  a n d  g  be
elements o f  .re(S 1 )  th en  b y  (2.1) w e have y(fogof - ')= y (g ) so  b y  injec-
tivity o f  yIG w e  have  fogof - 1 T h e  f a c t  th a t  yi G  is a  homo-
morphism fo llow s from  (2.4). q. e. d.

Definition 2 .2 .  A  subgroup G  o f  y e (S 1 )  is sa id  to  be  topologically
c o n ju g ate  to  rotations i f  the re  ex ists  he Jr(S t) s u c h  th a t  hGh- 1  i s
contained in  th e  r o ta t io n  g ro u p  SO(2) a n d  w e  s a y  s u c h  a  homeo-
morphism h  a  lineariz ation m ap o f G.

Proposition 2 .2 .  L e t  G  b e  a f in ite  f re e  subgroup o f  .Ye(S 1 )  then
G  is cy clic and is topologically  conjugate to rotations.

P r o o f . Since yIG : G--+RIZ i s  injective and G  is  f in ite , G  i s  iso-
m orphic to a  cyclic g ro u p . L e t  k be  the  order o f  G  and f  a  generator
o f  G .  Then fk = identity a n d  there  ex ists h e .Yr(S1 )  su c h  th a t hfh- '
is  the rotation of angle 2n/k. It is  c lea r  th a t h  is  a  linearization map
o f G.

Definition 2 .3 .  L e t G  b e  a n  infinite subgroup o f .e(S 1 ), we define
A(x), x S 1 , as the set of accumulation points of the orbit G.x.

Lemma 2 . 1 .  L e t  G  b e  a n  inf inite f re e  subgroup o f  .re(S 1 )  then
A (x ) is independent o f  x  an d  w e can denote it A (G ). A (G ) is e ither a
nowhere dense perfect se t o r is  the whole circle.

P ro o f. W e  a s s e r t  th a t  f o r  a n y  x, y e S 1 a n d  f E G, f  0  identity,
there exists g e G su ch  th a t g (y ) is contained in  th e  interval [x, f(x)].
In  f a c t ,  since y(f)0  0, w e  h av e  S1 =

11 

[f j(x ), f ‘+ '(x )] f o r  sufficiently
i=o

large n and , if  y  e [f i(x), f 1+  (x )], w e have f - i(y) e [x, f ( x ) ] .  L e t x, y
be any elem ents o f  S ' and x 0  a n  element o f  A (x ). There exists f n e
G, fi # fi  f o r  i O f , su c h  th a t limfn(x) = xo . W e  c a n  suppose that f (x )

n-4co
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n=1, 2,... a r e  a rra n g e d  a s  f1(x) <f2(x)< • • • <L(x)< • • • <xo . B y  the
a b o v e  assertion th e re  e x is ts  g„ E G  such  tha t  g ( y )  E Efn(x), L 1(x)].
T h e n  w e  h a v e  lim g„(y)=x 0

 a n d  g n (y) n=1, 2,... a r e  all different.
Hence xo e A(y) a n d  w e  have A (x )= A (y ). Clearly A (G ) i s  a  minimal
in v a ria n t se t o f  th e  a c tio n  o f  G  a n d  i s  pe rfec t. Since th e  boundary
A (G ) o f  A (G ) i s  a ls o  an  in v a rian t se t, w e  h av e  0A(G)= 4 ( i n  this

case A(G)=S 1 )  o r  0A(G )=A(G ) ( in  th is  case A (G ) is now here dense).
q. e. d.

The theorem of Denjoy [3 ]  is stated a s  follows.

Theorem. L et f  b e  a n  elem ent of  . f 2 ( S 1 )  w ith  irratio n al rotation
num ber then the  group  G  generated by  f  is an  in f in ite  f re e  subgroup
o f  ie (S 1 )  an d  G  is topologically  conjugate to ro tations if  and  only  if
A(G)=S 1 . I f  f  i s  o f  c lass C2 t h e n  A(G)=S 1 a n d  G  is topologically
conjugate to rotations.

We generalize this theorem as follows.

Theorem 2 . 1 .  L et G  be a f ree  subgroup of . r (S 1 )  then

(1) I f  G  is f inite, G  is topologically  conjugate to rotations.
(2) I f  G  is  in f in ite , G  is topologically  conjugate to  rotations if

and  only  if  A(G )=S '.
( 3 )  I f  all e lem en ts  o f  G  a re  o f  c lass  C2  a n d  i f  G  is f initely

generated then G  is topologically  conjugate to rotations.

P roof. ( 1 )  i s  t h e  Proposition 2 .2 .  T o  p ro v e  ( 3 )  w e  c a n  assume
that there exists a n  element Je  G  w ith infinite order. Then the rotation
number y  of f  is irrational a n d  b y  th e  theorem of D enjoy there exists
h e .e (S 1)  such  tha t f '= h fh - ' i s  the  ro ta tion  through the  angle  2ny.
Let g  be an  arbitrary element of G  and  put g'=hgh - 1  then by Proposi-
tion 2 .1 . f '  and  g ' commute and w e have g'(x+y)----g '(x )+ y . F o r  any
y e Si = R IZ  th e re  ex is ts  in tege rs  ke, i = 1, 2,..., s u c h  t h a t  lim

t-oo
(mod. 1) and we have

g'(x + y)=1im g'(x + key)=1im(g'(x)+ k ey )=g'(x )+ y .



Codimension one foliations w ithout holonomy 613

Hence g ' is also a  ro ta tion of S '  and we proved (3).
T h e  "o n ly  i f "  p a r t  o f  (2 ) i s  trivial. T o  p ro v e  " i f "  p a r t  o f  (2)

we consider two c a se s . A t first we consider the case when there exists
f E G with irrational rotation n u m b er. L et G ' be the subgroup o f  ,r (S 1 )
generated by f  th e n  w e  a sse r t  th a t A (G )= S '.  Otherwise A (G ') i s  a
nowhere dense perfect subset o f  S '  a n d  S' — A(G') consists o f  count-
ab le  open  intervals I, —f"(1 0 ), n e Z .  O n  th e  o ther hand , since A(G)=
S ',  a ll o rb its  o f  G  a re  d e n se  in  S ' .  L e t  u s  choose x0 E A(G') then
there exists g n G  su c h  th a t g((x o —c, xo + e )) i s  a  proper subset o f  /0

fo r  some e > O. S in c e  A (G ') is nowhere dense and perfect, there exists
n  such  tha t /„ =f"(/ 0 )  is contained in  (x0 —e, x0 + 8 ).  Thus we see that
gf"(1 0 )  i s  a  proper subset o f  /0 a n d  there exists a  fixed p o in t o f  gfn
in  /0 . T his contradicts to th e  freeness o f  G .  T hus A(G') = S I  and  by
the  theorem of Denjoy, f  is topologically conjugate to a  ro ta tion . T he
f a c t  th a t  G  is topologically  conjugate  to  rotations fo llow s from  the
p ro o f o f  (3). In  c a s e  tha t a ll e lem en ts  o f  G  h av e  ra tional rotation
num bers, w e reduce th e  p ro b lem  to  th e  above ca se  by show ing the
existence of f e d r ( s i)  w ith  irra tional ro ta tion  num ber w hich has the
property that the  group G generated by G  and f  i s  free. L e t  { f } cG

b e  a  se q u e n c e  su c h  th a t lirn y ( f )  e x i s t s  a n d  is irra tional, su c h  a
tt - , C0

sequence exists because y(G) is  a n  infinite subgroup o f  R IZ .  Choosing
a  suitable subsequence o f  { f „ },  we can assume that, for xo E S i, limf„(x o )

n•-■ co
=y o e x i s t s .  T h e n  b y  commutativity o f  G  w e  h a v e  limf„(g(x o )) =
g(y 0)  fo r  any  g E G .  T hus lim f„ is w ell defined a s  a  m ap  from  G.xo

t o  G.y, a n d  it  is  e a sy  to  se e  th a t lim f„ preserves the configuration of
p o in ts  o f  G.xo . Since A(G)=S', G.x 0 a n d  G.y0 a r e  d e n s e  in  S ' and
f =lim f„ i s  a  w ell defined homeomorphism of S '.  B y  c o n t in u i ty  of
ro ta tion  num ber m a p , w e  se e  th a t  y ( f )  i s  ir ra tio n a l. L e t G  b e  the
group generated by G  and f  then  G is  commutative because w e have,
f o r  a n y  x G-x 0 a n d  g e G, fg(x)=gf(x). T o  sh o w  th e  freeness o f  G,
suppose th a t g n G has fixed p o in ts . Then y(g) =0, and , s ince  by  (2.4)
y16 i s  a  homomorphism a n d  y (f )  is  irrational, w e  se e  th a t g  belongs
t o  G .  B y freeness o f  G , g is  iden tity  a n d  w e  p ro v e d  th a t G  is a
f re e  subgroup o f  .r ( S ' ) .  T h u s  w e  p ro v e d  (2). q . e .  d .
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Corollary 2 . 1 .  A  com pac t subgroup G  o f  r ( S ' . )  is topologically

conjugate to rotation.

Proof. W e show  th a t  G  is  a  f re e  subgroup o f .ye(s1). Otherwise
there  ex ists f E G  a n d  x ,, x 2 E  G  s u c h  th a t  f(x i ) = x ,  and f(x 2)0 x 2 .
T h en  it is  e a sy  to  see  th a t th e  sequence f", n = 1 , 2 ,..., h a s  n o  conver-
gent subsequence a n d  this contradicts to com pactness o f  G . H e n c e  if
G  is fin ite , G  is topologically conjugate to ro ta tio n s . I f  G  is infinite,
by Proposition 2.1, yiG  is a n  isomorphism a n d  there exists f e G  with
irra tio n a l y (f) . L e t G ' be  the  subgroup generated by f ,  then if  A(G')=

S '  t h e  C orollary is proved by Theorem  2.1. O therw ise S' —A(G') is
a  d is jo in t  u n io n  o f  o p e n  intervals f"(1 0 ), n E  Z . L e t  u s  choose x, e
A (G '), th e n  th e re  e x is ts  a  sequence {n i} s u c h  th a t  l im f " i( x ,) = x 1 .
Choose a  subsequence {in i }  o f  {ni}  such  that lim fm i converges t o  g
G , th e n  g(x 1 )= x 1 . B u t  f o r  any  x 2 e / 0 , s ince  lim tn i(x 2 )e 24(G'), we
have g(x 2) 0 x 2 . T h i s  contradicts to  freeness o f  G. q. e. d.

W e rem ark that even if  all elements o f  G  are  analytic, a  lineariza-
tio n  m ap  o f  G  canno t be  taken , in  general, to be diffeomorphic (see
A rn o ld  [1 ]) . I f  A (G )= S ',  linearization maps a r e  uniquely determined
u p  to  compositions of rotation maps.

A lso  w e  rem ark  tha t in  Theorem 2.1. (3) th e  assum ption that G
is finitely generated is essential. W e w ill sh o w  an  example o f  a  f re e
subgroup G  of * '(S  1 )  whose elements a re  o f class Cc° b u t not topologi-
cally conjugate to rotations.

L e t  C  b e  t h e  nowhere dense perfect subset of S ' =[0, 1]/{0, 1 }

obtained a s  fo llow s. L e t  / 0 , =(0,  4
1  )

, 1 0 2 21 3 4 3 ) 3  
7

0 1  
=I 4

1
 ,

- -I- 1, 7 =L-3 , 11 a n d  le t  II 1, /12  be  m iddle 1/3 intervals o f 7 0 ,, 7
2 0 2 4 02

respectively W e define  inductive ly  7 0  t o  b e  th e  j- th  connected com-
ponent of [0, 1] — k J  I ,  w h e r e

0515k
= / 0 1  U  / 0 2  a n d  I I = I,

m  
for

15m52i 

/  > 1 , a n d  / „ I i  th e  m id d le  1 /3  interval o f 7 , i • T hen  C=S' — I ,  is
i=o

a  nowhere dense pe rfec t subse t o f  S 11 . Let f ,  i = 1, 2 ,..., be  d iffeo-

morphisms o f  .5' sa tisfy ing  (1) ‘f ,( x )= x + - 2--
I 

( 2 )  f?  = fi _ , for
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a n d  (3 )  A m ap s I lin ea rly  o n to f o r  1  j where we identify

+ 1  w ith  7 , 1 . I t  is  e a s y  to  c o n s t r u c t  s u c h  d if f e o m o r p h is m s  b y
induction . T h e n  the  g r o u p  G  generated by f i , i = 1 , 2 ,... ,  is  f re e  by
properties (1), (2) a n d  b y  ( 3 )  C  i s  invariant under G .  T hus A(G) C
a n d  by Theorem 2.1. (2) G  is not topologically conjugate to rotations.

§3 . H olon om y maps.

T h e  a rg u m e n ts  o f  t h i s  se c tio n  a re  c lo se ly  re la te d  to  th o se  of
Sacksteder-Schwartz [12]. In th is  s e c t io n  w e  u s e  n o  differentiability
conditions. W e  d e n o te  (M , F, (p )  a  t r ip le  consisting o f  a  c o m p a c t
m an ifo ld  M  o f d im ension  n ,  a  c o d im e n s io n  o n e  fo lia tio n  F  o n  M
an d  a  f lo w  9 :  M x R - 0 4  whose orbits are transversal to  leaves o f  F ,
a ll a re  o f  class Cr, r > 0 .  I f  F  is transversally orientable and of class
Cr, r> 1 , there exists a transversal flow (p. I f  F  is  a  topological folia-
tion, Siebenmann [13] showed the  ex istence  o f a  complementary codi-
mension (n —1)-foliation an d  th e  a rg u m en ts  o f  [1 3 ] p e rm it u s  t o  use
ordinal technics (see, fo r  example, [4]) concerning on transversal curves
for codimension one foliations in the topological case.

A  distinguished neighborhood o f  (M , F , (p) is a n  o p e n  s e t  U

i n  M  w ith  a hom eom orphism  h  f ro m  U  onto x  /  s a t i s f y i n g  the
following conditions (1) and (2).

(1) x t), t E  I, i s  a  connected component o f  U n L ,  where
L  is  a  le a l  o f  F .  T h is  se t is called a  plaque a n d  w e denote P x  th e
plaque passing through x e U.

(2) 11- 1 (p x /), p E /" - 1 ,  i s  a  connected component o f  U n 9(x , R)

a n d  is called  a n  a x i s .  W e denote A x  th e  a x is  passing through x e U.

I t  is  c le a r  th a t fo r  any x, y E  U, P x  n A y  determ ines a  po in t in  U , .
T h e  heigh t o f  U  is defined by sup ft, — t 2 13 x e U  s u c h  th a t  9(x,

[t 1 , t 2 ]) = U } .  W e  re m a rk  th a t  f o r  a n y  transversal segm ent C =9(x,
[t o , t 1 ] )  the re  ex ists  a  distinguished neighborhood which contains C.

L e t  x , y  b e  p o in ts  o f  a  distinguished neighborhood U , we define
x < y  i f  there  ex ists t > 0  s u c h  th a t  (p(x, t)=A „ n P,,. Clearly i f  x < y
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and y < z  th en  x  <  z . Let {xt}  b e  a  sequence of points of U  which
converges t o  x e U .  W e denote x t / x  i f  x i < x 2 < • • • <x„< • • • <x. x t \ x
is defined similarily.

A  curve 1: [t o , t 1] - 0 4  is called  a  leaf  curv e (plaque curv e) from
1(t 0 )  t o  /(t i )  i f  1([t0, t1] )  is contained in a leaf (plaque) and w e assume
that, if t t ', / (t) / (t ').

For a subset S  o f M  we define the .F-extension Q, o f S  b y  Qs =
{ x  mILx n SO 0 } where Lx  denotes the leaf passing through x.

L e t 1: [ 0 ,  1 ] - 0 4  b e  a  leaf curve  from  1 ( 0 )  to  1 ( 1 ) ,  we define
holonomy m a p s  -0(1): (—Po , to )— R  o r  0(1): go(/(0), ( to)) —*T(lW,
R ) in the following way where V , and to a r e  som e positive numbers
(possibly infinite) determined by 1. W e  c a ll ( to )  the dom ain  of
0 ( l ) .  For the definition of OW  and 0(1), see Fig.

Let 0: [0, 1] x R -0 /  b e  the immersion defined  by  0 (r , 0=yo(l(r),
t). Then 0  is  transversal t o  ,F  and induces a foliation .0 ' on [0, 1] x
R .  The leaves of a r e  transversal to  lines r x R, T E [0, 1]. F o r  t
n e a r  to  0  w e can  d e fin e  a  continuous function f t : [0, l ] -+R b y  the
p ro p e rty  th a t the le a f  E( o ,f ) o f  , F  is the g ra p h  {(r, f 1(T))1T e  [ 0 ,  1]}
of f t . W e call the leaf curve 1, defined by /,(r)=T(/(t), fg( r ) )  the t-lift
o f  1. For such  t  w e define 0-  (1)(t) =f,(1) and set to  =sup {ti (/ )(t) is
well defined}, — i n f  {t10(/)(t) is w ell defined}. Thus w e defined the
holonomy m ap OW : t0) - 4 ? .  W e define  0(1): (P(1(0), t o ) ) - - *
9(1(1), R) b y  0(1)(9(1(0), t)) =yo(1(1), 6(1)(t)). Here we distinguish (p(1(0),

t1) an d  9(l(0), t2 )  even i f  9(1(0), t1)  and (p(1(0), t2) co in c id e  as points
o f M  and, b y  abuse of language, we call 0(l)  the holonomy m ap  of
1. Holonomy maps are of class Cr if (M, 9 ) is  of class Cr.

Let 1 b e  a  closed leaf curve w ith  end points x  e  L ,  the germ  of
ow a t  0  is  ca lled  the holonomy o f  1. The holonomy of I  is  d e te r -
m ined by the homotopy class of I  in it, (Lx , x )  and is independent of
the choice o f  cp up to  conjugations by  orig in  preserv ing  homeomor-
phism of R (see Haefliger [4]).

W e  sa y  th a t a  leaf L  h as  holonomy i f  there exists a  closed leaf
curve 1 in L  such  tha t for any e> 0  the restriction of C)(/) t o  ( — E, 8)

is  no t iden tity . A ccord ing  to  [1 2 ], w e say  tha t a  leaf Lx  has locally
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holonomy pseudogroup if  f o r  any  e> 0 there exists a  closed leaf curve
/ w ith end points x  such  tha t the restriction of C)(1) t o  (—e, s ) is  no t
id en tity . W e  say  th a t a  leaf Lx  i s  a  holonomy lim it  le af  i f  f o r  any
e> 0 there exists t, — e < t< s , such that th e  leaf passing through 9(x, t)
has holonomy.

I f  a  leaf L  has holonomy then L  has locally holonomy pseudogroup
a n d  i f  L  has loca lly  holonomy pseudogroup th e n  L  i s  a  holonomy
lim it  le a f . A t  th e  e n d  o f  th is  section w e  sh o w  an  example o f  a  leaf
without holonomy b u t  has locally holonomy pseudogroup. T h e  author
does no t know  w he the r th e  leaves in  q u e s t io n  in  th e  statem ents of
Theorem 3.1. and Lemma 3.6. have holonomy or not.

Theorem 3 . 1 .  L et (M, 9 ) b e  as  abov e an d  1 a  leaf  cu rv e . Let
(—tb, to )  b e  th e  dom ain  o f  th e  holonomy m ap  O W . I f  to i s  f in i t e
then  th e  leaf  L  passing through 9(1(0), to )  i s  a  holonomy lim it leaf .

The following lemmas are easy to prove.

Lemma 3.1. U nder th e  assum ption o f  Theorem 3.1 ., (l) — (3) hold.
(see Fig. 1.)

(1) T here  ex ists  t o E [O, s u c h  th a t  t h e  le a f  4 0 ,(0 ) o f  R  is
asy m pto tic  to  th e  lin e  t o x R  i n  [0, 1] x  R  a n d  t h e  holonomy maps

RA
A

-6(l) ( 1)

0 1

([0, 1] X R, .4-7)
Fig. 1.
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0(11[Te , 1 ]) an d  0(1 - '1[0, -c0 ] )  are well def ined f o r  an y  9(1(t0 ), t),
w here 1- 1 1[0> Tc] i s  the leaf  curv e inverse to I[O, To].

(2) L e t le : [0, TO -0 /  b e  a  leaf  curv e def ined by  10 (c)=0(t, f(T)),
where f  is def ined by  the property  (T, f(r))e L ( 0 ,1 0 ) , then f o r  an y  c>0
and T1 < T o  w e hav e lirn C)(/ 0 1[-c1 , -r])( e) = - oo.

(3) lirn U r )  does not exists.

Lemma 3.2. L e t I  b e  a  leaf  curv e f rom  x  to  a p o in t  o f  9(x, R),
th e n  0 (1 ) i s  a  m ap  f ro m  9(x, ( - r e , te ) )  t o  9(x, R ) .  I f  there ex ists
t t e )  s u c h  t h a t  9 (x , [0 , t]) is a  p ro p e r su b se t o f  0(1)(9(x,
[0, t ] )  th e n  th e re  e x is ts  re  [O, t ]  su c h  th at the leaf  passing through
9(x, t') has holonotny.

Lemma 3 .3 .  L e t C  be a segment in M  transversal to Suppose
th at  the end  poin ts of C  belongs to  the sam e leaf  then there ex ists
a  closed transversal curve C ' such that Q = Q .

Lemma 3.4. I f  C  is  a  closed transversal curve, then Qc  i s  an open

set of M.

Lemma 3 .5 .  F o r  an y  x e M th ere  ex is ts  t1 >t 2 > 0  (o r  t1 <t 2 <0)
such that 9(x, t 1 )  and 9(x, t 2 )  belong to the sam e leaf .

Lemma 3 6. - L e t  C  b e  a  closed transv ersal curv e then either Qc =
M  o r  there ex ists a  leaf  L x  in  th e  boundary  o f Qc  w hich has locally
holonomy. pseudogroup.

Lemma 3.6. i s  t h e  Theorem 4  o f  [12 ], b u t  f o r  completeness we
w ill g ive  a  b r ie f  p ro o f . L e t  9  b e  a  transversa l flow  w h ic h  h a s  C
a s  a n  o r b i t .  I f  Qc O M , there exists x e 0Qc  s u c h  t h a t  9(x, (0, S D  is
contained in  Qc  f o r  som e sm all .5> 0  ( if  (5 is negative w e reverse the
flow  9 ) .  Since Qc  i s  a n  o p e n  neighborhood o f  C , w e  c a n  suppose
th a t the distance between C  a n d  4 , is greater than 25 . Therefore, for
any sequence of positive  numbers {t i }  w hich  converges t o  ze ro , there
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exists leaf curves /i f r o m  x  t o  y i s u c h  th a t  0 (0 (0 = 2 6 .  Choosing a
subsequence o f {y,},  w e can suppose that {y i l  converges t o  y .  Choose
a  distinguished neighborhood o f y  containing yo(y, [0 , 15 ]), th e n  a ll y i

b e lo n g s  to  the sa m e  p la q u e  b y  the condition yo(x, (0, t i ]) Qc . Let

b e  a  leaf curve w hich is the composition of 1. an d  a  plaque curve
fro m  y i t o  y. P u t  y'--yo(y, (5) th en  the re  ex is ts  0< t; < ti s u c h  th a t
0(10(9(x, t ; ) )= y ' for sufficiently large i. For any  e> 0  choose i  and j

s o  t h a t  0<tii < t V e  t h e n  6 (/ ;./ V )(t)  =t 1i , t h u s  th e  l e a f  Lx  h a s
locally holonomy pseudogroup.

Proof of Theorem 3.1. Let /0 and To b e  as in Lemma 3.1. Since
M  i s  compact there  exists a  sequence 0 <T1 <T2 < ••• <T„<•-• <T0  su c h
th a t  lim Ti =T0 and  x i =10 (r 1)  converges to  so m e  x e M .  Let us choose
a  distinguished neighborhood U  o f x  and w e assume x i b e lo n g s  to  U
for any i.

Case 1. There exists a  subsequence {xin }  o f {xi } such that x i . / x .
In  th is  case w e  c a n  assume th a t  xi / x .  W e fix  som e i  and for j>
le t /i  b e  the restriction of 1 0  t o  [Ti , Ti ]. For a n y  e > 0  there exists
j  such  tha t —0(l1 )(—s) is greater than the height o f U  by Lemma 3.1.
Then, since yo(x  — a) b e lo n g s  to  U  i f  s  is  sm all, the lea f cu rve  Pi o/i

satisfies the condition of Lemma 3 .2  where Pi  i s  a  plaque curve from
P A x i  t o  x,. H ence  there  ex ists e' <e s u c h  th a t  the leaf passing
through  yo(xi , — e ')  h a s  holonom y. Since s  can be chosen arbitrarily
small, the leaf L .

i s  a holonomy limit leaf.
,  

Case 2. (Fig. 2.) x i \ x  and there  ex ists t< 0  such  tha t y=cp(x, t)
b e lo n g s to  Lx ,. In  th is  case w e  c a n  assume t h a t  y o (x ,[t,0 ]) is an
segment in M  (otherwise the prob lem  is  reduced  to  the case 1). As
in the case 1 w e fix  i  and define leaf curves I. for j >  i .  We choose
a leaf curve /' from  y  to  x i th e n  for sufficiently small e> 0 , the holo-
nom y m a p  0 (/ ')  is  w e ll d e f in e d  a t  — e  and eux-e) is sufficiently
sm a ll. Let us choose a  distinguished neighborhood V  containing (p(x,
[t — e, 0 ] ) .  T hen  fo r  sufficiently large j, xi  b e lo n g s  to  V  and —6(1i )
(0(1)(— e)) is well defined and is greater than the height o f  V. Choose
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Fig. 2.

a  plaque curve 1" i n  V  from Py  n A x j  t o  y , then th e  leaf curve /" ol'oli

satisfies the  cond ition  o f Lemma 3 .2 . a n d , since we can choose e(l')
( — s) arbitrarily near to 0. L x ,  is a  holonomy limit leaf.

Fig. 3.

Case 3. (Fig. 3 )  xi \ x  a n d  9(x, ( —  co, 0 ) )  does not intersect Lx 1 .

We remark that, by Lemma 3.1. (2), it is sufficient to show  that the

leaf passing through 9 (x , — si )  has holonomy where {si }  is  a  sequence
o f  non-negative real numbers which is bounded. We fix i  then there
exists k  such that x i > x k > x and we define E> 0 by Px „ n A x i =9(x i ,  — s).
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If j  is sufficiently la rge , —(7(11 )(— e) is  g rea te r  th an  th e height o f  U
w here 1;  i s  the restriction of /0 t o  [t i , Ti ]. L e t I': [0, 1 ] —>M b e  a
plaque  curve  from  x = 1 ) , n A  x. Since go(x, (— co, 0 )) does not
intersect L , , ,  th e  holonomy m a p  0 (1 ') is n o t  d e f in e d  a t  C)(1i )(—s).
Therefore, by Lemma 3.1. (1), there exists 0<t 0 <1  su c h  th a t 0(/'1[To ,

1 ]) an d  e(n[o, t e ] )  a re  w ell defined o n  go(y, (— co, 0 ))  w here  y=

F(T0 ). W e  re m a rk  th a t  0(/' - '1[0, T0 ])(9(y, ( — co, 0 ) )  is c o n ta in e d  in
O (l) (9(x 1, [— e, 0]). B y L em m a 3.5. th e r e  e x is t s  y, t1) and
y2 =(,o(y, t,), t2 < t, < 0  su c h  th a t y ,  and  y2 b e lo n g s  to  th e  same leaf.
L e t C  b e  the transversal segment cp(y, [t 2 , t i p  then  by  L em m a 3.4.

there exists a  closed transversal curve C ' satisfying Q ,= Q ,,.  We assert
th a t  Q , does no t con ta in  y .  Otherwise Q , contains x  and , since  Q,

i s  open, Q , contains x „  fo r la rge  n. T h en  th e re  ex is ts  x' =c,o(y, t 3 ),

t, s u c h  th a t  x '  b e lo n g s  to  Lx , an d  x" = 0(11[To , 1 ])(X ') E  (p(x,
(— co, 0)) belongs to Lx1 , th is is a contradiction. Hence, by Lemma 3.6.,

there exists y' =c,9(y, t4 ), such that the leaf L y ' h a s  holonomy,

a n d  th e  le a f  p a ss in g  th ro u g h  0 (I; 1 )(0 (r - 1 1[0, t o ])(y )) =  (p(x e i) for
som e 81, has holonomy. Since led is sm aller than the heitgh

o f  U , this com pletes th e  p roo f o f Theorem 3.1. q .  e .  d .

Corollary 3 . 1 .  L e t C =cp(x, [0, a])  b e  a transv ersal segm ent in M .
S uppose t h a t  n o  le a f  i n  Q , h a s  holonomy th e n  le av e s  i n  Q ,  are
homeomorph ic.

P ro o f. L et L ,  b e  th e  leaf passing through (p(x, t), t e [0, a]. We
define a  map f  from  L o t o  L, as fo llow s. For a point y of L o ,  choose
a  lea f cu rve  ly  f ro m  x  t o  y  a n d  define f (y )  b y  f(y)= 0(4)(9(x, t)).
f  is well defined by Theorem 3.1. and is independent of the choice of
/3, by Lemma 3.2. It is clear that f  is  a  homeomorphism.

Corollary 3 .2 .  S uppose th at  all  le av e s  o f  . F  d o  n o t h av e  holo-
nomy, then f o r any  closed transversal curve C  w e have Q — M .

P roof. This is  a direct consequence of Lemma 3.6.
N o w  le t  u s  sh o w  a n  example o f a  fo lia tio n  mentioned before.
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L e t  V  b e  th e  closed orientable two dimensional m an ifo ld  o f genus 2,
M = Vx S I  a n d  le t 9  b e  a  f lo w  o n  M  defined by 9((x, t), t)— (x, t+t),
xEV, t e S'. L e t  f  a n d  g  b e  diffeomorphisms o f  S '  a n d  G  b e  the
subgroup o f  <Ye(S1 )  generated by f  a n d  g .  T h e n  b y  th e  method of
Sacksteder ([10]) o r  [8 ] )  w e can  construc t a  fo lia tio n  .9-( f ,  g )  o n  M
whose leaves are transversal t o  x x S 1 , x e V, a n d  a n y  holonomy map
e(0, where / is  a  leaf curve joining two po in ts o f x x S i s  a  diffeo-
morphism o f  x x S '  which coincides with a n  a c t io n  o f  a n  element of
G .  In  our example, f  and g  are defined a s  fo llow s. L et 9  be a smooth
function  o n  [0 , 1 ]  w hich  is  iden tica lly  z e ro  n ea r b o u n d a ry  a n d  is

monotone increasing o n  [0, monotone decreasing on  [ 2   , 1]. We1 1 

define a  diffeomorphism f  o f  SI = [0, l ] / 0 '1  b y  f (x ) .  x +e9(x) mod 1,
where e  is sufficiently sm all. W e choose a  sequence o f  intervals /0

/1o f  S i. s u c h  t h a t  n i n {

1
  }  and f i ( I o )  nf i(i 0 ) =0  fo r  i Of.

71 0 h
There exists a  diffeomorphism g  o f  SI satisfying g (x )= x  fo r  x e S'

P ( I
0 )  a n d  fo r  x ef 

n ( I n + i )
 a n d  there exists

that g (y )0 y .  T hen  th e  lea f o f the  fo lia tion  F (f ,  g )  passing through
1 x x  does no t have holonomy but has locally holonomy pseudogroup.2

§ 4 .  Characteristic map and Novikov transformation.

L et (M, 9 ) b e  a s  in  § 3 a n d  in  th is section w e suppose that
is  w ith o u t holonomy. T h en , by Theorem 3 .1 . f o r  a n y  le a f  c u rv e  1,
0 (1 ) i s  a  homeomorphism o f  R  a n d , by Lem m a 3.2. O W  is de ter-
mined by its end points.

Definition 4.1. F o r  a  p o in t  x  o f  M , a  s e t  o f  rea l num bers 6x

is  d e f in e d  b y  Gx ={T  R I9 (x, t)e L x }. F o r  a n  elem ent T  o f  Gx  w e
define a  homeomorphism it x ( r )  o f  R  b y  i x (r)(t)=T+ 0(/,)(t), where 1,
is  a  leaf curve from x  to  9(x, T).

Thus w e h a v e  a  se t  Gx  a n d  a  m a p  i x  f r o m  6„ t o  ,e(R) where
d r(R )  is  the  group o f  homeomorphisms o f  R .  T he following properties
a re  ea sy  to  p ro v e  ( fo r  convenience w e denote 6  or om itting the
subscript x).

y ef n (I„ ) —  f "(I , )  such
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(1) If  X(t)(1) - --- t  fo r some t  then T = 0  and 2(0) = identity.
(2) If 2(T)(t) = 2(T')(t) for some t  then T =T '.

(3) (T')°2(t) = (t")  w here  T, G and T" = i(T 1)(i(T)(0 )).
(4) 2(T)-  ' 2 ( T ')  where T '  0 (1 ;9 (  —  T ) .

( 5 )  I f  cp(x, t 1 )  a n d  yo(x, t2)  b e lo n g  to  th e  sam e  lea f o f  Sr then
there exists T e G such that i(T)(ti) = t2.

W e define a  m ultip lica tion  in  G  b y  T ' 'T  = T "  w here T "  is defined
by (3). Then from  properties (1), (3), (4), G  i s  a  g ro u p  a n d  2  i s  a
monomorphism from  G to  .e(R).

Proposition 4.1. 6  „ is a b e l ia n  a n d  )-(x (Gx ) a c t s  o n  R  without
f ix ed points.

P r o o f . F ro m  th e  definition of m ultip lication in  G , i t  is  e a s y  to
see that G  is  a n  ordered group where th e  order i n  G  is induced from
th e  o rde r of R . M o re o v e r  G  i s  an Archim edean ordered g roup , i.e.
f o r  a n y  T  a n d  T '  different from  th e  u n it ,  th e re  ex is ts  n  such that
t n > t ' .  In  f a c t ,  i f  the re  does no t ex ist such  n ,  there  ex ists lim  = T o

and the holonom y map O ( l )  h a s  a  fixed point 9(x, To ), this contradicts
t o  th e  assum ption that ..f" is w ithout holonom y. Thus by the theorem
o f  H o lde r (see  [2 ])  G  is  iso m o rp h ic  to  a  subgroup o f  R  a n d , in
particular, G is commutative.

Since M  is  compact, w e can suppose th a t the flow q  h a s  a  closed
trajectory C of period 1 and  we fix a point x o e C.

Lemma 4 . 1 .  F o r  a n y  T. Gxo
2(t+ 1)(t).

w e  h a v e  2(t)(t + 1) = i(r)(t) + 1 =

T hat is to  say  i(G x . )  is contained in .reP(R).

P r o o f . Since 9(x 0 , 1) =x 0 , 1  is  a n  element o f  Gx 0  a n d  a  leaf curve
1 joining x o a n d  9 (x 0 , 1 )  is  c lo se d . F o r  any closed leaf curve 1, the
holonomy m ap OW  i s  th e  identity m a p .  T h u s  2 (1 )(0  t +  1  a n d , since
2(T) commutes w ith 2(1), w e have 2(t)(t + 1) = (r)(t) + 1 = r +  1)(t) .



624 Hideki Imanishi

Definition 4.2. L e t Gx 0  b e  the intersection of C  a n d  Lx ., for an
element x  o f  Gx 0  w e  define  a  homeomorphism z(x) o f  C  b y  z(x)(9(x o ,
t)) =0(/ x )(9(x 0 , t)), where /x  i s  a  leaf curve from xo  t o  x.

z(x) is well defined, because, if  x=9(x 0 , T) w e have z(x)(9(x o , t))=
cp(x0 , 2(0(0) a n d  by Lemma 4.1. th is  d o e s  n o t d e p e n d  o n  choices of
r and t.

W e identify C  w ith  S ' a n d  w e consider z  a s  a  m ap  fro m  Gx .
to P ( S ') .  Then properties analogous to (1)—(5) hold for z  and we can
define a  group structure  on  Gx 0  a n d  z  i s  an injective homomorphism
w hose im age z(Gx . )  i s  a  f r e e  subgroup o f  .Ye(S '). D efine a  homo-
morphism n' f ro m  Gx . t o  Gx o  b y  7C(T)=9(x0 , r) th e n  th e  following
diagram is commutative.

G . Y e P ( R )

.re(si)

W e call the homomorphisms z o r j?, the  characteristic m ap of

Proof of Theorem 1.3. L e t  C  b e  a  periodic trajectory o f  9  of
period 1 a n d  xo a  p o in t  o f  C .  Since 9 -  h a s  n o  exceptional leaf, G ,
is  f in ite  o r  d e n s e  in  C .  Gx o  c a n  b e  id e n tif ie d  w ith  a n  o rb it  o f the
action of x(Gx 0 )  o n  S , and  by Theorem 2.1. there exists a  linearization
m ap h e A °(S'') o f  x(Gx .). L et h be  a  lif t o f  h  to  A°P(R) then  liz(r)ri - ',

e Gx . ,  i s  a  transla tion  o f R .  W e define a transversal flow  9 ' which
preserves .9-  i n  t h e  following w a y . A t  first, f o r  a n y  p o in t x 1 =y9(x 0 ,

t1 )  o f  C  w e de fine  9 '(x ,, t) b y  9(x0 , r ( t , ) ) .  I t  is  c le a r  th a t
9'(x 1 , t ) does not depend o n  th e  choice o f  t1 . L e t / b e  a  leaf curve
w ith  end  po in ts belonging to  C , w e asse rt tha t 9'(0(1)x i , t ) coincides
w ith  0(09'(x 1 , 0 .  I n  fact there exists r e Gx 0  s u c h  th a t  0(1)9(x 0 , t)=
9(x 0 , 2(00 a n d , u sing  th e  re la tio n  iii(T)/i - '( / ) = t + a  f o r  some a e R,
w e  h a v e  9'(0(1)x 1 , t) =9'(9(x o , 2(0t,), 9 (x 0 ,  f r  ' (t + kr(T)t = 9(x  0 ,
h -  (t + Rto+a))=9(x o , 2(00 - ' (t + ii(to))=0(1)9(x 0 , 13- ' 0+1300D= e(i)
9'(x 1 , 0. F o r  a n y  p o in t  x e M w e  c h o o se  a  le a f  c u rv e  I  f ro m  x
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to  a  po in t x ' o f  C, this is possibly by Corollary 3.2. W e define 09'(x, t)
b y  0(1 - 1 )(p'(x', t). L e t  /' b e  an o th e r  le a f  cu rv e  fro m  x  t o  a  po in t
x "  o f  C  t h e n  0(1' -

1 )(p'(x", 0=0(1 ' - 1 )(p'(9(1 - 1 01')x ', t)=0(1 - 1 )(p(x', t)
and  (p'(x , t) does not depend on  the  choice o f  1. It is easy  to  see that
go' i s  a  f lo w  o n  M  which preserves leaves of F .  q .  e .  d .

L e t  (M, 9', go) b e  a s  above a n d  f ro m  n o w  o n  w e  assum e that
M ,  F  and q  a r e  o f  c lass Cr, r . 2 .  L e t (R , go", Cp") b e  t h e  universal
covering o f  (M, F ,  p ) ,  tha t is  to  say  p: 1171—>M is  the  universal covering
o f  M  and  ; "  and ( 79 are the foliation and the flow  on SI induced from

and p  b y  p .  Novikov has proved the following theorem ([7]).

Theorem 4.1. / a  is dif f eom orphic to L x  R , w here L  i s  th e  uni-
v ersal cov ering o f  a  le af  L  o f  F, { x }  x R  i s  a n  o rb i t  o f  ero and

x {(} is  a  leaf  o f  g".

P roof. A t firs t w e  rem ark  tha t, f o r  any  lea f cu rve  7 of t h e
holonomy m a p  0(7) is defined o n  R .  I n  fac t i f  1 i s  a  leaf curve  of
.F  w h ic h  is  th e  p ro je c tio n  o f  7, c le a r ly  w e  h a v e  C)(7)=0(1): R-4?.
L et C b e  a n  orbit o f  (76, w e asse rt tha t Qc = M. Otherwise, consider-
in g  a n  o rb it  C ' of passing through a  p o in t  o f  012e , there exists

e C ' su ch  th a t 2  belongs to  Qc  b u t  .2  d o e s  n o t  b e lo n g  to  Q .
Consider a  leaf curve 7  from  5c- t o  a  p o in t  o f  C, th e n  th e  holonomy
m ap  0(7) is  n o t d e f in e d  a t  S i. T h is contradicts to above rem ark and
w e  p r o v e d  Q = M . I f  th e  o rb it  C  passes through a  le a f  1:: at tw o
points 5-c  and 5 ,

 th en  by  L em m a 3.3. there exists a  closed transversal
cu rve  7. T h e n  1=po i i s  a  closed transversal cu rve  i n  M  which is
homotopic t o  z e r o .  B y  standard arguments (see [4 ]) th is im plies the
ex istence  o f a  le a f  w ith  holonomy. T h u s  a n y  o rb it  C  of p a s s e s
th rough  any  leaf o n e  a n d  on ly  o n e  tim e  a n d  -/O' i s  diffeomorphic to
th e  product o f  a  lea f  L  of a n d  t h e  re a l lin e  R .  Since ni (L )  is
trivial, L  is the universal covering o f L.

Corollary 4 . 1 .  F o r an y  c u rv e  1  i n  M  f ro m  x  to  y ,  there ex ists
a  real num ber t, such that 1  is hom otopic  relativ e  { x , y }  to  a  curve
w h ich  is  a  jo in  o f  9(x , [0, t ,])  w ith  a  leaf  curv e f rom  cp(x , t,) to  y.
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M oreov er t i is  u n iq u e ly  d e te rm in e d  b y  th e  h o m o to p y  c lass  relative
{x, y }  of  1.

P ro o f. L et 7 b e  a  lif t  o f  1  t o  AI with end points A  and 17. Then
by Theorem 4.1. there exists t ,  such that go(A, t,) b e lo n g s  to  L .  T h e n ,
i f  7' i s  a  leaf curve from  (p(A , t,) t o  5, I  is  h o m o to p ic  to  the  jo in  of
(p(x, [0, t,]) with po7'. The uniqueness o f  t, is  clear.

F o r  a n  element a  o f  7r1 (M, x 0 ) ,  Novikov has defined a  transforma-
tion q(a) o f R  as follow s. W e fix a point )Z 0 o f  p - 1 (x0)  a n d  we denote
L t t h e  leaf passing through e,6(g o , t). Then by Theorem 4.1. all leaves
o f  g "  a r e  indexed by R .  L e t a  b e  a n  element o f  tr,(M , xo )  then  a
induces a  covering transformation 5 4 ,1 - 0 1  a n d  ôt preserves th e  leaves
of ..0". We define a diffeomorphism q(a) o f R  b y  the re la tion L g t to to  =

(L t ). T h e n  q: n i (M , x0) -> D if f (R ) , w h e re  D if f (R )  is  th e  g ro u p  of
diffeomorphisms of R ,  i s  a  hom om orphism . W e  c a ll q  t h e  Novikov
transform ation of

The N ovikov transform ation is  r e la te d  to  t h e  characteristic map
i xo  b y  the following lemma.

Lemma 4 .2 .  L e t  a be  an  elem ent o f  7r1 (M, x 0 )  an d  1 a  representa-

tiv e o f  a. T h e n  t , b e lo n g s  to  G x o  a n d  w e have q (c )= 0 (t i)  where t,
is  the real num ber def ined by  Corollary  4.1.

P ro o f. L e t 7 b e  th e  l i f t  o f  /  w ith  initial point 5i, and end point
W e choose a  lea f cu rve  7' fro m  5c" to ;" = t,) th en  l'

is  a  leaf curve from x o t o  po,i3 =9(x0, tl)  a n d  t ,  belongs to Gx o . From
t h e  defin ition  o f  covering  transform ations, w e  h a v e  ai(er9(54, t))=
(",6(A 1 ,  t )  a n d  by considering th e  t - l if t  o f  7' we see that Cp4)7 1, t )  and
(19"(5Y , 0(7')(t)) b e lo n g  to  th e  sam e  lea f. S ince  Cp(j) , -0( -1)(0)= 43(x 0 , t i +
0- (7)(0), w e have q(a)(0=t,+6(7)(t)=t 1 + 0(0(0  = ix o (t1)(t).

Lemma 4 .3 .  L e t u s  define a  m ap 5 f rom  rc i (M , x 0 ) to G „ o  by  b(a)
=q(a)(0), a e TEAM, xo ) th e n  w e  hav e  i x 0 .(5 = q  an d  ( 5  is  a  surjective
hom om orphism . M oreov er ker q = k e r  =  i* tri (L x ,„ x0 ) w h e re  i  i s  the
inclusion of  the leaf  Lx .  into M  and î , ,  i s  injective.
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P r o o f . B y L em m a 4.1. q(a)(0)=i x 0 (t i )(0)=t i E Gx ., th u s  (5 is w e ll
d e f in e d . T o  p ro v e  th a t (5 i s  a  homomorphism, le t a i , 1= 1 , 2 , b e  an

element o f n,(M , x 0 ), I .  a  representative o f a i and 7, the lift of I, with
initial point 5c'0 and end point By considering the covering trans-
formation i t  i s  e a s y  t o  s e e  t h a t  the end point of 71 . i 1 (72 )  and egg ,,
t, 2 )  belongs to  the sam e lea f and f ro m  the definition o f  k x ., rp(56
t12 )  and ero(go, kx0(ti)(0 )  b e lo n g  to  the sam e leaf. T hus w e proved
th a t g(cc1 a2 )(0)=i x 0 (t, i )(t, 2 )  but from  the definition of the multiplication

in Gx . ,  th is  shows th a t (5 is  a  homomorphism. The fact i x ..( 5 =g fol-
low s by  the sam e consideration. To prove that .5 i s  surjective, let t,
b e  an element o f Gx . ,  we define a  curve I ,  in M  by 1 1 (0=go(x 0 ,

and w e choose a  leaf curve 1 2 f r o m  (p(xo , t 1 )  to  x o . Let a

b e  the homotopy class of the jo in  of l  w i t h  1 2 th e n  it  is  c le a r  th a t
(5(a)=t i . C learly  i* rci (L x ., x 0 )  is  con ta ined  in  the kerne l o f  S .  Let

us suppose that 6(a)=0 then by L em m a 4.1. a  is represented by a leaf
curve in  Lx o . T h u s  k e r  =  x 0 ) .  The injectivity o f  i,,, follows
from the fact that L ,. is  the universal covering of Lx ..

Lem m a 4.4. L e t u s suppose that the trajectory (p(x 0 , R ) is periodic
o f  p e rio d  1  an d  def ine a  hom om orphism  7C" f ro m  n i (M , x0 )  to  G x o

by it" — 7C..5 then iv" is surjective an d  its  k erne l is  generated  by  i,o t i

(L x o , x 0 )  an d  th e  periodic trajectory  (p(x 0 , R ) .  T he follow ing diagram
is w ell def ined and  is  commutative.

it 1(M ,  0 ) _ DiffP(R)

Gx o
Xxo Diff(S')

The proof is straightforward from the preceeding lemmas.

Proof o f  Theorem  1.1. W e can  suppose th a t  a  trajectory (p(x o , R)
is  pe riod ic  o f  period 1 . S ince n i (M, x o )  is  f in ite ly  gene ra ted , Gx o  i s
finitely  generated. B y Theorem  2.1. there exists a  linearlization map
h e .Y f (S ')  fo r  xx 0 (Gx 0 ) and the theorem  fo llow s from  the p ro o f  of
Theorem 1.3.
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W e  re m a rk  th a t  th e  fo lia tio n  g "  is  d e f in e d  b y  a  non-singular
closed 1-form if and  only if the  linearization map h  is differentiable.

§ 5 .  Foliations defined by closed 1-forms.

A s  is  rem arked  above , a  fo lia tio n  g -  w ith o u t  holonom y is  n o t
necessarily defined by a  closed 1-form , b u t  w e  c a n  c o n s id e r  g  as
a  fo lia tio n  defined  by  a  closed 1-form  i f  w e  ch an g e  th e  differential
structure of M .  M ore precisely we have the following proposition.

Proposition 5.1. L et (M, F ,  go) be as  in  § 4 ,  w e assum e (M , F , go)
i s  o f  c lass  Cr, T hen  there  ex ists  a  dif f erentiable m anifold M
an d  a f o lia t io n  A  d e f in e d  b y  a  closed non-singular 1-f orm  (7) on
M  of  c lass  C r. M  an d  .0  satisfy  the following conditions.

(1) M  is  id e n tic al to  M  a s  a  topological m anifold. W e denote
h  th e  identity  m ap f rom  M  to  M.

(2) h  sends each leaf  o f  .0 diffeomorphically onto a  leaf  of  F .

P ro o f. W e choose  a  coordinate system {(U,: x )1
.1. c r  

on
M  such that

(1) UA is a  distinguished neighborhood of (g r , go).
(2) A  plaque is defined by xl = c  an d  an  ax is  is  de fined  by  xi,=

ci , i = 1, 2 ,..., n - 1.

T h e n  in UA n um w e  have = i =1, 2 , ..., n - 1,
a n d  x, in  =  (4 (4 )  where cp;,, a re  differentiable functions. W e choose a
point yA o f  UA  fo r  each /1. e  T  a n d  define a  continuous function VI
o n  UA  b y  g (y )=  t  i f  9'(y 2 , t) belongs to P y w h e re  gp.' is  a  flow  on M
w hich  p rese rves F . T hen  i n  U, n U „ w e  h av e  ; L." =  x :t+  c"  fo r  some
constant c " .  Hence {(U,; x r  '  ,  g ) }  defines a  differentiable struc-
tu re  o n  M an d  w e  d en o te  M  the  m anifo ld  M  with this differentiable
struc tu re . Define Co =dx", o n  U ,  th e n  6 5  is  d e f in e d  o n  M  and  the
foliation .0- defined by Co satisfies th e  desired properties. q. e. d.

The following theorem of Joubert-Moussu [6 ] ,  which is a n  improve-
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m ent of the theorem of Tisch ler [15], is useful.

Theorem 5 . 1 .  Let o.) be a  non-singular closed 1-form  o n  a compact
m anif old M  an d  X  b e  a  vector f ie ld  o n  M  su c h  th at  w (X )1 . T h e n
there  ex ists a su b m e rs io n  f  o f  M  o n to  S ' s u c h  th a t  the f ib res  o f  f
are  tran sv e rsal to  X . M o re o v e r t h e  in tegral m an if o ld s  o f  a) are
covering spaces of  the f ibres of  f .

Proof of Theorem 1.2. L e t M, <0- a n d  (75 b e  as in Proposition 5.1.
0  a n d  X  a  vector fie ld  on  M  defined by X = o n  UA. B y  T h e o re m

5.1. there exists a submersion f  o f  M  o n to  S 1 s u c h  th a t  the fibres of
f  a re  tran sve rsa l t o  X .  D efine a  func tion  a ( x )  o n  M  satisfying

f * (a(x)X )=  w here t  i s  th e  natural coordinate o f  S 1 ,  th e n  t h e  1-et
parameter transformation o f  a(x )X  preserves f ib re s  o f  f  and  the
homeomorphism h  o f  M  o n to  M  sends each trajectory of o n to  a
trajectory o f  (p. W e fix a  fib re  F  of f  a n d  a  tubular neighborhood U
o f  F .  F o r  a n y  p o in t x  o f  F  there  exists a  neighborhood Ux  o f  x
in  F  such that w e can define a  diffeomorphism rr, o f  Ux  in to  a  plaque
P ,  of b y  x (y) = P x  n A y  where P„ a n d  A y  a r e  a  p laq u e  an d  an
ax is respectively o f  a n  distinguished neighborhood o f  (. , X ) which is
contained i n  U , w e call 7Cx  a  lo c a l p ro je c tio n . W e choose a  tirangula-
tio n  o f  F  a n d  w e  suppose th a t  f o r  e a c h  (n — 1)-simplex (r a  loca l
projection 7r,( =7rx  f o r  som e ) C e 0 " )  is w ell defined o n  a  neighborhood
Uo.  o f  a  in  F .  T hen  by  Proposition 5.1. (2), lion, i s  a  diffeomorphism
o f  CI, in to  a  leaf o f  g - a n d  f o r  any  x e 110., 114.10.(x ) a n d  h (x ) belongs
to  the same axis for

Assertion. T here ex ists a  differentiable imbedding h ' o f  F  into h(U)
w hich  is transversal to cp. an d  satisf ies (4) f o r  any  xEl_f o., h '( x )  and
hoir,(x ) belongs to the sanie axis.

W e p ro v e  the  a sse rtion  b y  skeletonwise induction. Suppose that
there exists a  differentiable imbedding h ' o f  a  neighborhood U , i n  F
o f  th e  k-skeleton o f  F  in to  h(U ) which satisfies the condition (* ) for
any x e U k  n U  a  is  a n  (n-1)-sim plex  o f  F .  L et Z  b e  a  (k+1)-
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simplex, w e choose a n  (n — 1)-simplex a  con ta in ing  t a s  its  face, then
in  a  neighborhood o f  O t a  differentiable function f  „ is defined by go(ho
njx ), f  „r (x ))= h '(x ). Let f,,  b e  a  differentiable function defined o n  a
neighborhood of t  w h ic h  a g re e s  w ith  f  „  o n  a  neighborhood o f  aT
a n d  define a n  imbedding o f  a  neighborhood of t  to h ( U )  b y  h'(x )=
cp(hoir„(x), f  „(x )). T h u s  w e  o b ta in e d  a  differentiable im bedding h'
o f  a  neighborhood of the  (k + 1)-skeleton o f  F  in to  h(F) satisfying (*)
and we proved the assertion.

L e t u s  choose real numbers 0 = t o < t 1 < • • • <t„< 1 a n d  we consider
ti a s  a  p o in t  o f  S ' .  L e t  F i b e  the fibre f - -1 (t i)  a n d  U; b e  a  tubular
neighborhood o f  F , a n d  w e assume u,n If i =4) fo r  i O f .  T hen  by  the
assertion there exists differentiable im beddings h ;  o f  F i i n t o  h(U ;)
which satisfy (*) and  it is easy to see that we can extend 12; :
M  t o  a diffeomorphism h ' o f  M  o n to  M  a n d  h ' can be choosen ar-
b itra r ily  n e a r  to  h  i f  we choose =max { t H A — ti } sufficiently small.
Then the foliation ( h ' I )* is  de fined  by  th e  closed 1-form  (h' `)* 07)
and the hom eom orphism  h'./1- 1  sa tisfies the  cond ition  o f Theorem 1.2.

q. e. d.

T h e  r e s t  o f  th is  section  is d e v o t e d  t o  t h e  s tu d y  of foliations
defined by closed non-singular 1-forms. Let (M, F , cp) be as before and
we assume tha t F  is  de fined  by  a  closed 1-form  0). L et C  be  a  closed
orb it o f cp  and  x ,  a  p o in t  o f  C  then  th e  linearization map h  of the

characteristic map x x o  is differentiable a n d  if co = 1  the restriction of
a )  to  C  i s  h*dt where t  is  th e  natural coordinate o f  S ' =R IZ . More-
over if p  is  d e f in e d  b y  a  vector field  X  satisfying w(X) 1 t h e n  cp•
preserves F  and we can choose h  to be the identity m ap of S '.

Proposition 5 .2 .  F o r  a e 7r,(M , x 0 ), t h e  N ov ik ov  transformation
q (a)  belongs to .1"P(R ) a n d  i t s  ro tation  num ber y oq(a) is related to
ca by  the follow ing form ula.

Yoq(a) =
w here k .

P roof. W e  c a n  assum e k = 1 .  L e t  h  b e  a diffeom orphism  of R
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w h ich  is  a  l i f t  o f  t h e  linearization m ap h  o f  n o . B y C orollary  4 .1 .
we can choose a  representative o f  a  w hich is the jo in  o f a  pa rt o f the
trajectory 1, =yo(x, [0, t1 ] )  a n d  a  leaf curve  / 2 f r o m  (p(x o , t 1 )  t o  x o

w here  t = q (a )(0 ) b y  t h e  definition o f  q (x ).  T h e n  w e  have 1 (/) =

h*dt=17i(t 1 )— ri(0). O n  th e  o th e r  h a n d , b y  L e m m a  4 .4 . and the

definition o f  g ,  w e  h a v e  fig(1)171- '(t)= t+yoq(a ) fo r  a n y  t e R .  Thus

g(t i )= 100(0)= ii(0)+ T A W  and we h a v e  co =yoq(a).

Proposition 5 .3 .  (1) Define a homomorphism j  o f  n,(M, x 0 )  t o  R

by  j(a )=1  co, then the f ollow ing sequence is ex ac t and  the  im age  o f
Œ

j  is f ree  abelian of  rankk,

1 x 0 ) —L1- 71(M, x 0 ) R .

(2) I f  k=1 , then  the  leaves o f  9  are f ibres o f  a fibration o f  M  onto
and  if all leav es o f  9  are  everywhere dense in M .

(3) rci (L x 0 ). 7ri (M) f o r  i > 2.

Proof. (1 ) is  c lear from  Proposition 5.2. and L em m a 4.3. If k =1
then  by  Proposition 5.2. yoq(a) is rational fo r  any a e x0) a n d  it
follows that th e  group Gx o  is  f in ite . T h e n  it  is  e a sy  to  se e  th a t th e re
exists a  closed transversal curve C ' which passes through each leaf at
on ly  o n e  tim e  a n d  M  i s  a  fib ra tion  over C ' whose f ib re s  a re  leaves
of F .  I f  k then there exists a e 7r 1(M, x o )  su c h  th a t yoq(a) is  ir-
ra tio n a l. S o  a ll o rb its  o f  x(Gx o )  a re  d en se  in  C  a n d  all leaves o f  ,F
are  dense  in  M . (3 ) follows easily from Theorem 5.1.

Proposition 5 .4 .  L e t  c o , a n d  co, be non-singular closed 1-form s
o n  a  com pact m anifold M  an d  9 . ,  a f oliation def ined by  coi , i =0,1.
I f  c o , a n d  co , de f ine  th e  sam e  cohomology c lass  i n  I i i (M , R ) then
F  9 i are concordant.

Proof. col  =a), + d f a n d  w e  c a n  assume tha t f  i s  positive on M .
L e t co  be  a n  1-form o n  M  x  /  defined by w=p*co 0 +d (t.p *f) where P
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i s  the projection of M x / o n  M  a n d  t  is  th e  coordinate o f  / = [0, 1].
T h en  it is  c lea r  th a t co  is  a  non-singular closed 1-form o n  M x / and
the foliation F . d e f in e d  b y  co is a concordance between and

Corollary 5 .1 .  L e t  coo a n d  c o , b e  a s  abov e  then  th e  le af  L , o f
.9 "., and Lo o f  h av e  th e  sain e  h o m o to p y  ty p e .

P ro o f. L et c o  b e  a s  above a n d  L  b e  a  leaf o f  . F .  By Proposi-
tion 5.3 . th e  in jec tion  o f L i t o  L  induces isomorphisms o f  homotopy
groups and Lo a n d  L , are  homotopy equivalent to L.

Corollary 5 .2 .  M oreov er i f  dim M  6 ic i (M )  is a b e l i a n  and the
W hitehead group W h(n,(M )) v anishes then L o  an d  L , are  d if f e o m o r-
phic.

P ro o f. L et co  be  a s  above and f  b e  a  subm ersion of M x I  onto
S '  which satisfies the condition of Theorem 5.1 , a n d  f i (i =0, 1) b e  the
restriction of f  t o  M  x {i}. Then by C orollary 5 .1 . th e  f ib re s  o f  f o

a n d  f ,  a r e  homotopy equivalent a n d  b y  the  cond itions o f Corollary
5.2. the fibres of J.,  and f ,  a re  diffeomorphic. Since L i i s  a  covering
space o f the  fib re  F i o f  f  which correspond t o  th e  same subgroup of
7r,(F0 1c1(F 1), Lo a n d  L , are diffeomorphic.

Theorem 5 .2 .  L e t  coo a n d  co, be non-singular closed 1-form s on
a c o m p ac t  m an if o ld  M  w hich  de f ine  t h e  sam e cohom ology  class.
S uppose th at th e re  e x is ts  a  v e c to r f ie ld  X  o n  M  such that co o (X )
and w 1(X )  nev er v anish , then the foliations F  a r e  differ-
entiably  isotopic.

P ro o f. W e  c a n  assume w 0 (X) = 1 a n d  th e  o n e  parameter group
cp  defined by X  h a s  a  periodic orbit C  o f period 1. L et (/11, ' o w  Cp)
b e  th e  universal covering o f  (M, cp) (i =0, 1) a n d  choose a point

of M  w hich  pro jects to  a  po in t xo o f  C .  L e t  q(a) b e  the Novikov
transform ation of .9- . 0 f o r  cc en ,(M , x0 )  th e n  it  is  e a sy  to  s e e  th a t

q(a)(t) — t +5 co o . L e t  h  b e  a  linearization m ap o f  t h e  characteristic
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map x « .  o f  .F .1  a n d  ïi a  diffeomorphism o f  R  w h ic h  is  a  l if t  o f  h.
T h en  th e  Novikov transform ation g'(ct) is calculated, by using Proposi-

tion 5.2., a s  Tiq'(a)rt - 1 (t)=t+5 co,. Let b e  a  p o in t  o f  i t w h e r e  i t

i s  a  le a f  o f  ,F in d e x e d  b y  t h e  th eo rem  o f  Novikov. There exists

unique t(ic)e R  su ch  th a t ço(X, r(ic )) belongs to  th e  leaf of passing

th ro u g h  Cfi(x0 , rt - '(t)). D efine  a  diffeomorphism g  o f  la  b y  4(5 ) =
T h e n , using the re la tion  1 co0 = -  c o , i t  is  e a s y  to  s e e  th a t

com m utes w ith  covering  transformations and induces a  diffeomor-
phism g  o f  M .  I t  is  c le a r  th a t  g  sends each  leaf o f  ,F . 0  t o  a  lea f of

an d  g  is isotopic to identity.
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