Homomorphisms of differentiable dynamical systems

By
Toshio Niwa*
(Received and communicated by Prof. H. Yoshizawa Nov. 21, 1973)

Introduction.

In this paper we consider the following problems.
Let (M, φ_{t}) and (N, ψ_{t}) be differentiable dynamical systems (D.D.S.). Assume that there exists a homomorphism, i.e. differentiable mapping $\pi: M \rightarrow N$ such that $\pi \cdot \varphi_{t}=\psi_{t} \cdot \pi$ for all t. Under this assumption, what relation can exist between the structures of $\left(M, \varphi_{t}\right)$ and $\left(N, \psi_{t}\right)$?

The following examples motivate our problems.

Example 1. Let $\left(M, \mu, \varphi_{t}\right)$ be a classical dynamical system, i.e. M a differentiable manifold, μ a measure on M defined by a continuous positive density, and $\varphi_{t}: M \rightarrow M$ a one-parameter group of measurepreserving diffeomorphisms.

In [1], we showed the following:
Let $\left(M, \mu, \varphi_{t}\right)$ be ergodic and M be compact. If there exist eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of the $\left(M, \mu, \varphi_{t}\right)$ which are rationally independent and whose eigen-functions are C^{ρ}-differentiable ($\rho \geqq 1$), then M is the total space of a locally trivial fibre space over an r-dimensional torus T^{r}, whose fibres are C^{ρ}-submanifolds. The flow $\left(\varphi_{t}\right)$ is fibre-preserving and the flow which is naturally induced on the base space T^{r} is a quasi-periodic motion with frequencies $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$.

In addition, if $\left(\varphi_{t}\right)$ has a pure point spectrum (discrete spectrum),

[^0]then $\left(M, \mu, \varphi_{t}\right)$ is C^{ρ}-isomorphic to a quasi-periodic motion as classical dynamical systems.

The arguments of these results depend on the existence of a homomorphism π of $\left(M, \varphi_{t}\right)$ to a quasi-periodic motion $\left(T^{r}, \tau_{t}\right)$ with frequencies $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ (see below for the definition).

Example 2. Let $\left(N, \psi_{t}\right)$ be a D.D.S. and $\left(F,\left\{\chi_{y, t}\right\}_{y \in N}\right)$ be a family of D.D.S.'s depending differentiably on the parameter y which varies on the manifold N. We call the D.D.S. $\left(M, \varphi_{t}\right)$ a skew product D.D.S. of $\left(N, \psi_{t}\right)$ and $\left(F,\left\{\chi_{y, t}\right\}_{y \in N}\right)$, if $M=N \times F$: direct product manifold of N and F, and

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}(y, z)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}(y)\right|_{t=0} \times\left.\frac{\mathrm{d}}{\mathrm{~d} t} \chi_{y, t}(z)\right|_{t=0},
$$

in the case that $T=R$, and

$$
\varphi_{1}(y, z)=\left(\psi_{1}(y), \chi_{y, 1}(z)\right),
$$

in the case that $T=Z$, for $(y, z) \in N \times F=M$.

The natural projection π of M onto N is clearly a surjective homomorphism of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$.

It is natural to ask whether the converse is true or not: Let π be a surjective homomorphism of the system $\left(M, \varphi_{t}\right)$ to the system $\left(N, \psi_{t}\right)$. Under what additional conditions $\left(M, \varphi_{t}\right)$ becomes the skew product D.D.S. of $\left(N, \psi_{t}\right)$ and some $\left(F,\left\{\chi_{y, t}\right\}_{y \in N}\right)$?

We consider this question in $\S 1$.
Example 3. Let the system $\left(N, \psi_{t}\right)$ has an invariant submanifold $M \subset N ; \psi_{t}(M)=M$ for all t, then the identity mapping π of M to N is an injective homomorphism of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$, where $\left(\varphi_{t}\right)$ is the restriction of $\left(\psi_{t}\right)$ to M.

We consider the related problems in $\S 2$.

Here we enumerate necessary definitions.

Definition 1. Let M be a differentiable connected manifold and $\left(\varphi_{t}\right)_{t \in T}$ (where $T=R$ or $T=Z$) be a one-parameter group of diffeomorphisms of \dot{M}. We call $\left(M, \varphi_{t}\right)$ a differentiable dynamical system (D.D.S.).

If there is no proper nonempty closed invariant subset of M for the system $\left(M, \varphi_{t}\right)$, we call the system $\left(M, \varphi_{t}\right)$ a minimal system.

Let $T^{n}=\left\{\left(x^{1}, x^{2}, \ldots, x^{n}\right) ; x^{i} \in R(\bmod 1), i=1,2, \ldots, n\right\}$ be a n-dimensional torus, and

$$
\tau_{t}:\left(x^{1}, \ldots, x^{n}\right) \longmapsto\left(x^{1}+\omega^{1} t, \ldots, x^{n}+\omega^{n} t\right), \quad(\bmod 1) .
$$

The system $\left(T^{n}, \tau_{t}\right)$ is minimal if and only if $\omega^{1}, \ldots, \omega^{n}\left(\omega^{1}, \ldots, \omega^{n}, 1\right)$ are rationally independent, when $T=R(T=Z)$. In this case, we call $\left(T^{n}, \tau_{t}\right)$ a quasi-periodic motion with frequencies $\omega^{1}, \ldots, \omega^{n}$.

Definition 2. Let $\left(M, \varphi_{t}\right)$ and $\left(N, \psi_{t}\right)$ be D.D.S.'s. A differentiable mapping

$$
\pi: M \longrightarrow N
$$

is called a homomorphism of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$, if it satisfies the relation $\pi \cdot \varphi_{t}=\psi_{t} \cdot \pi$ for all $t \in T$.

§ 1. Homomorphisms to minimal systems.

Let us begin with some remarks.
If $\left(\psi_{t}\right)$ is trivial, i.e. $\psi_{t}=$ identities for all t, then the homomorphism π of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$ is a vector-valued first integral of the system $\left(M, \varphi_{t}\right)$. Conversely, if there exist n integrals $\pi_{1}(x), \ldots, \pi_{n}(x)$ of (M, φ_{t}), then

$$
\begin{aligned}
\pi: & M \longrightarrow N=\left\{y=\left(\pi_{1}(x), \ldots, \pi_{n}(x)\right) \in R^{n} ; x \in M\right\} \\
x & \longmapsto\left(\pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

is a homomorphism. Moreover, if the integrals $\pi_{1}(x), \ldots, \pi_{n}(x)$ are functionally independent everywhere on M, then $\left(M, \varphi_{t}\right)$ becomes a skew product D.D.S. of ($N,\{i d$.$\}) and some \left(F,\left\{\chi_{y, t}\right\}_{y \in N}\right)$, where $\{y\} \times F$
$(y \in N)$ are integral manifolds. In this case, we have also an imbedding homomorphism ε_{y} for each $y \in N$

$$
\iota_{y}:\left(\{y\} \times F, \chi_{y, t}\right) \simeq\left(F, \chi_{y_{t}, t}\right) \longrightarrow\left(M, \varphi_{t}\right) .
$$

Now, we consider the question stated in the example 2. We obtain the following

Theorem 1. Let $\left(M, \varphi_{t}\right)$ and $\left(N, \psi_{t}\right)$ be D.D.S.'s and π be a homomorphism of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$.

If M is compact and the system $\left(N, \psi_{t}\right)$ is minimal, then π is a surjective mapping of maximal rank, and as a consequent of it, M is the total space of a locally trivial fibre space over N, the system $\left(\varphi_{t}\right)$ preserves the fibres, and the naturally induced system on the base space is isomorphic to $\left(N, \psi_{t}\right)$.

Proof: a) π is surjective: For any $x \in M$, we have

$$
\pi\left(C_{M}(x)\right)=C_{N}(\pi(x))
$$

where $C_{M}(x)$ is the trajectory through x of $\left(M, \varphi_{t}\right)$, i.e.

$$
C_{M}(x)=\bigcup_{t \in T} \varphi_{t}(x),
$$

$C_{N}(\pi(x))$ is defined analogously.
By $\pi(M) \supset \pi\left(C_{M}(x)\right)$, the compactness of M, and the minimality of $\left(N, \psi_{t}\right)$, we have

$$
\pi(M) \supset \overline{\pi\left(C_{M}(x)\right)}=N .
$$

Where \bar{A} denotes the closure of A.
b) Let $r(x)=$ rank of π at $x \in M$. Clearly $r(x)$ is constant on the trajectory $C_{M}(x)$:

$$
r\left(\varphi_{t}(x)\right)=r(x) \quad \text { for all } \quad t \in T .
$$

c) $r(x)=n$ on $M(n=$ dimension of $N)$:

Let $K=\{x \in M ; r(x)<n\}$, critical points of π. If $K \neq \phi$, then there
exists a point $x_{0} \in K$. By b) and the closedness of K, we have

$$
\overline{C_{M}\left(x_{0}\right)} \subset K .
$$

As is M compact, we can easily show that

$$
\left.\pi\left(\overline{C_{M}\left(x_{0}\right)}\right) \supset \overline{C_{N}\left(\pi\left(x_{0}\right)\right.}\right) .
$$

By the minimality of $\left(N, \psi_{t}\right)$, we have

$$
\overline{C_{N}\left(\pi\left(x_{0}\right)\right)}=N,
$$

so

$$
\begin{equation*}
\left.\pi(K) \supset \pi \overline{\left(C_{M}\left(x_{0}\right)\right.}\right) \supset N . \tag{*}
\end{equation*}
$$

But, by the well known Sard's theorem, if π is sufficiently smooth (for instance, if π is of C^{m}-class ($m=$ dimension of M) measure of $\pi(K)=0$. This is clearly contradict to $(*)$, so $K=\phi$.

This is to be proved.

§ 2. Homomorphic images of minimal systems.

Let us begin with some examples.

Example 4-0. Let M be 0-dimensional space, i.e. M consists in one point, then the existence of a homomorphism π of ($M,\{i d$.$\}) to$ $\left(N, \psi_{t}\right)$ merely means the existence of a fixed point of $\left(N, \psi_{t}\right) ; \pi(M)$ is the fixed point.

Example 4-1. Let M be a circle, $M=S^{1}$, and φ_{t} be a rotation of it. Then, if $\pi(M)$ is not of one-point (if $\pi(M)$ is of one-point, $\pi(M)$ is a fixed point of $\left(N, \psi_{t}\right)$), the homomorphism π is an imbedding and $\pi(M)$ is a periodic solution of $\left(N, \psi_{t}\right)$.

More generally we obtain the following

Theorem 2. Let $\pi: T^{m} \rightarrow N$ be a homomorphism of a quasi-periodic motion $\left(T^{m}, \tau_{t}\right)$ to D.D.S. $\left(N, \psi_{t}\right)$, and $r=$ rank of π. Then $\pi\left(T^{m}\right)$,
image of π is an r-dimensional invariant submanifold of N, which is homeomorphic to an r-dimensional torus T^{r}, and the restricted system of $\left(N, \psi_{t}\right)$ to $\pi\left(T^{m}\right) \subset N,\left(\pi\left(T^{m}\right),\left.\psi_{t}\right|_{\pi\left(T^{m}\right)}\right)$ is C^{0}-isomorphic to some quasiperiodic motion ($T^{r}, \tilde{\tau}_{t}$), i.e. there exists a homeomorphism h of T^{r} to $\pi\left(T^{m}\right)$ such that

$$
h \cdot \tilde{\tau}_{t}=\left.\psi_{t}\right|_{\pi\left(T^{m}\right)} \cdot h \quad \text { for all } t
$$

Proof: a) $r(x)=$ rank of π at x

$$
=r \quad \text { for } \forall x \in T^{m}:
$$

This is clear, because, $r(x)$ is constant along the trajectory, and the set

$$
K=\left\{x \in T^{m} ; r(x)<r\right\}
$$

is closed, and every trajectory of $\left(T^{m}, \tau_{t}\right)$ is dense on T^{m}.
b) $\forall x \in T^{m}, \exists U(x)$; nbd. of x, and
\exists local coordinates $\bar{x}^{1}, \bar{x}^{2}, \ldots, \bar{x}^{m}$ of $U(x)$, and
\exists local coordinates $y^{1}, y^{2}, \ldots, y^{n}$ at $\pi(x) \in N$, such that

$$
\begin{array}{ll}
y^{i} \cdot \pi=\bar{x}^{i}, & i=1,2, \quad r, \\
y^{j} \cdot \pi=0, & j=r+1, r+2, \ldots, n,
\end{array}
$$

and

$$
\bar{x}^{i}(x)=0 \quad(i=1,2,, m), \quad y^{j}(\pi(x))=0 \quad(j=1,2, \ldots, n) .
$$

Therefore $\pi(U(x))$ is an r-dimensional submanifold of N :
This follows from a) and the implicit function theorem by standard arguments.
c) $\pi\left(T^{m}\right)$ is a $\left(\psi_{t}\right)$-invariant compact set: Trivial.
d) Let $y \in \pi\left(T^{m}\right)$ and $x_{1}, x_{2} \in \pi^{-1}(y) \subset T^{m}$.

Then $\exists V(y)$, nbd. of y in N such that
$\pi\left(U\left(x_{1}\right)\right) \cap V(y)=\pi\left(U\left(x_{2}\right)\right) \cap V(y):$ As $\left(\tau_{t}\right)$ is a translation and every trajectory of $\left(\tau_{t}\right)$ is dense on T^{m}, we can take $t_{1}, t_{2}, \ldots, t_{n}, \ldots\left(t_{n} \rightarrow \infty\right.$, $n \rightarrow \infty$) such that

$$
\begin{aligned}
& \left\{\tau_{t_{n}}\left(x_{i}\right) ; n=1,2,3, \ldots\right\} \text { is dense in } \\
& \qquad U_{i}\left(x_{i}\right) \subset U\left(x_{i}\right), \text { nbd. of } x_{i}(i=1,2) .
\end{aligned}
$$

From $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)=y$, and $\psi_{t_{n}}(y)=\psi_{t_{n}} \cdot \pi\left(x_{i}\right)=\pi \cdot \tau_{t_{n}}\left(x_{i}\right), \quad i=1,2, \quad n=$ $1,2,3, \ldots$, we obtain $\pi\left(\tau_{t_{n}}\left(x_{1}\right)\right)=\pi\left(\tau_{t_{n}}\left(x_{2}\right)\right), n=1,2,3, \ldots$. As π is continuous, so $\pi\left(U_{1}\left(x_{1}\right)\right)=\pi\left(U_{2}\left(x_{2}\right)\right)$.
e) $\pi\left(T^{m}\right)$ is an r-dimensional compact submanifold of N : This follows from a) $\sim \mathrm{d}$).
f) $\left(\pi\left(T^{m}\right),\left.\psi_{t}\right|_{\pi\left(T^{m}\right)}\right)$ is minimal: Trivial.
g) With respect to the natural metric d^{\prime} on T^{m}, the translation $\left(\tau_{t}\right)$ is isometric. We define a metric d on $\pi\left(T^{m}\right)$ compatible to the original topology, then π is Lipschitz continuous because π is differentiable and T^{m} is compact. From these, $\left(\pi\left(T^{m}\right),\left.\psi_{t}\right|_{\pi\left(T^{m}\right)}\right)$ is equicontinuous with respect to the time t, i.e.

$$
\forall \varepsilon>0, \exists \delta>0: d\left(y_{1}, y_{2}\right)<\delta, \quad y_{1}, y_{2} \in \pi\left(T^{m}\right)
$$

implies $d\left(\psi_{t} y_{1}, \psi_{t} y_{2}\right)<\varepsilon$ for all t.
h) By the theorem 3 of [1], we obtain the assertion of the theorem.
q.e.d.

§3. Remarks and some discussions.

a) Note that quasi-periodic motions are minimal. It is sure that in theorem 2, we can replace the quasi-periodic motion $\left(T^{m}, \tau_{t}\right)$ by a minimal D.D.S. $\left(M, \varphi_{t}\right)$:

Let π be a homomorphism of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$. If rank of $\pi=$ r, and $\left(M, \varphi_{t}\right)$ is minimal, then $\pi(M)$ is an r-dimensional invariant submanifold of $\left(N, \psi_{t}\right)$ and the restricted system $\left(\pi(M),\left.\psi_{t}\right|_{\pi(M)}\right)$ is minimal, therefore by theorem 1, the mapping $\pi: M \rightarrow \pi(M)$ is maximal
rank, and M is a locally trivial fibre space over $\pi(M)$:

$$
\left(M, \varphi_{t}\right) \xrightarrow{\pi}\left(\pi(M), \psi_{t \mid \pi(M)}\right) \xrightarrow{t}\left(N, \psi_{t}\right) .
$$

$\left(\varphi_{t}\right)$ preserves the fibres of M, and ι is the natural imbedding.
b) In theorem 1, can we we weaken the condition of the minimality of $\left(N, \psi_{t}\right)$ by the one of the ergodicity?

Unfortunately we can easily construct the counter-examples. But, if $\left(N, \psi_{t}\right)$ is uniquely ergodic and the unique ergodic measure has positive density, then the mapping π is surjective. In this case it is open whether the similar results can be obtained or not.
c) In the case of flow, i.e. when $T=R$, we can weaken the assumptions, that is:

Let X, Y be generators of the systems $\left(M, \varphi_{t}\right),\left(N, \psi_{t}\right)$ respectively, i.e.

$$
\begin{aligned}
& X(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}(x)\right|_{t=0} \in \mathscr{X}(M), \\
& Y(y)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}(y)\right|_{t=0} \in \mathscr{X}(N) .
\end{aligned}
$$

π being a homomorphism of $\left(M, \varphi_{t}\right)$ to $\left(N, \psi_{t}\right)$ is equivalent to the condition

$$
\pi_{*} X=Y .
$$

The arguments of the proceeding results can be weakened: It is sufficient to assume that

$$
\pi_{*}(X(x))=f(x) Y(\pi(x))
$$

where $f(x) \neq 0$, is a smooth function on M.

Department of Mathematics, Кyoto University

References

[1] T. Niwa: Classical flows with discrete spactre, J. Math. Kyoto Univ. 9-1 (1969) pp. 55-68.
[2] V. I. Arnold and A. Avez: Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris (1966).
[3] S. Smale: Differentiable Dynamical Systems, Bull. Am. Math. Soc. 73 (1967) pp. 747-817.

[^0]: *) The author is partially supported by Sakkokai Foundation.

