Homomorphisms of differentiable dynamical systems

By

Toshio NIWA*

(Received and communicated by Prof. H. Yoshizawa Nov. 21, 1973)

Introduction.

In this paper we consider the following problems.

Let (M, φ_t) and (N, ψ_t) be differentiable dynamical systems (D.D.S.). Assume that there exists a homomorphism, *i.e.* differentiable mapping $\pi: M \to N$ such that $\pi \cdot \varphi_t = \psi_t \cdot \pi$ for all t. Under this assumption, what relation can exist between the structures of (M, φ_t) and (N, ψ_t) ?

The following examples motivate our problems.

Example 1. Let (M, μ, φ_t) be a classical dynamical system, *i.e.* M a differentiable manifold, μ a measure on M defined by a continuous positive density, and $\varphi_t: M \rightarrow M$ a one-parameter group of measure-preserving diffeomorphisms.

In [1], we showed the following:

Let (M, μ, φ_t) be ergodic and M be compact. If there exist eigenvalues $\lambda_1, \lambda_2, ..., \lambda_r$ of the (M, μ, φ_t) which are rationally independent and whose eigen-functions are C^{ρ} -differentiable $(\rho \ge 1)$, then M is the total space of a locally trivial fibre space over an r-dimensional torus T^r , whose fibres are C^{ρ} -submanifolds. The flow (φ_t) is fibre-preserving and the flow which is naturally induced on the base space T^r is a quasi-periodic motion with frequencies $\lambda_1, \lambda_2, ..., \lambda_r$.

In addition, if (φ_t) has a pure point spectrum (discrete spectrum),

^{*)} The author is partially supported by Sakkokai Foundation.

Toshio Niwa

then (M, μ, φ_t) is C^{ρ}-isomorphic to a quasi-periodic motion as classical dynamical systems.

The arguments of these results depend on the existence of a homomorphism π of (M, φ_t) to a quasi-periodic motion (T^r, τ_t) with frequencies $\lambda_1, \lambda_2, ..., \lambda_r$ (see below for the definition).

Example 2. Let (N, ψ_t) be a D.D.S. and $(F, \{\chi_{y,t}\}_{y\in N})$ be a family of D.D.S.'s depending differentiably on the parameter y which varies on the manifold N. We call the D.D.S. (M, φ_t) a skew product D.D.S. of (N, ψ_t) and $(F, \{\chi_{y,t}\}_{y\in N})$, if $M = N \times F$: direct product manifold of N and F, and

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t(y, z)\Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}\psi_t(y)\Big|_{t=0} \times \frac{\mathrm{d}}{\mathrm{d}t}\chi_{y,t}(z)\Big|_{t=0},$$

in the case that T=R, and

$$\varphi_1(y, z) = (\psi_1(y), \chi_{y,1}(z)),$$

in the case that T=Z, for $(y, z) \in N \times F = M$.

The natural projection π of M onto N is clearly a surjective homomorphism of (M, φ_t) to (N, ψ_t) .

It is natural to ask whether the converse is true or not: Let π be a surjective homomorphism of the system (M, φ_t) to the system (N, ψ_t) . Under what additional conditions (M, φ_t) becomes the skew product D.D.S. of (N, ψ_t) and some $(F, \{\chi_{v,t}\}_{v \in N})$?

We consider this question in §1.

Example 3. Let the system (N, ψ_t) has an invariant submanifold $M \subset N$; $\psi_t(M) = M$ for all t, then the identity mapping π of M to N is an injective homomorphism of (M, φ_t) to (N, ψ_t) , where (φ_t) is the restriction of (ψ_t) to M.

We consider the related problems in §2.

Here we enumerate necessary definitions.

598

Definition 1. Let M be a differentiable connected manifold and $(\varphi_t)_{t\in T}$ (where T=R or T=Z) be a one-parameter group of diffeomorphisms of M. We call (M, φ_t) a differentiable dynamical system (D.D.S.).

If there is no proper nonempty closed invariant subset of M for the system (M, φ_t) , we call the system (M, φ_t) a minimal system.

Let $T^n = \{(x^1, x^2, ..., x^n); x^i \in R \pmod{1}, i = 1, 2, ..., n\}$ be a *n*-dimensional torus, and

$$\tau_t: (x^1, \dots, x^n) \longmapsto (x^1 + \omega^1 t, \dots, x^n + \omega^n t), \quad (\text{mod } 1).$$

The system (T^n, τ_t) is minimal if and only if $\omega^1, ..., \omega^n$ $(\omega^1, ..., \omega^n, 1)$ are rationally independent, when T=R (T=Z). In this case, we call (T^n, τ_t) a quasi-periodic motion with frequencies $\omega^1, ..., \omega^n$.

Definition 2. Let (M, φ_t) and (N, ψ_t) be D.D.S.'s. A differentiable mapping

$$\pi\colon M \longrightarrow N$$

is called a homomorphism of (M, φ_t) to (N, ψ_t) , if it satisfies the relation $\pi \cdot \varphi_t = \psi_t \cdot \pi$ for all $t \in T$.

§1. Homomorphisms to minimal systems.

Let us begin with some remarks.

If (ψ_t) is trivial, *i.e.* ψ_t =identities for all *t*, then the homomorphism π of (M, φ_t) to (N, ψ_t) is a vector-valued first integral of the system (M, φ_t) . Conversely, if there exist *n* integrals $\pi_1(x), \ldots, \pi_n(x)$ of (M, φ_t) , then

$$\pi: M \longrightarrow N = \{ y = (\pi_1(x), \dots, \pi_n(x)) \in \mathbb{R}^n; x \in M \}$$
$$x \longmapsto (\pi_1(x), \dots, \pi_n(x))$$

is a homomorphism. Moreover, if the integrals $\pi_1(x), \dots, \pi_n(x)$ are functionally independent everywhere on M, then (M, φ_t) becomes a skew product D.D.S. of $(N, \{id.\})$ and some $(F, \{\chi_{y,t}\}_{y\in N})$, where $\{y\} \times F$ $(y \in N)$ are integral manifolds. In this case, we have also an imbedding homomorphism e_y for each $y \in N$

$$\epsilon_{\mathbf{y}}: (\{\mathbf{y}\} \times F, \, \chi_{\mathbf{y},t}) \simeq (F, \, \chi_{\mathbf{y},t}) \longrightarrow (M, \, \varphi_t).$$

Now, we consider the question stated in the example 2. We obtain the following

Theorem 1. Let (M, φ_t) and (N, ψ_t) be D.D.S.'s and π be a homomorphism of (M, φ_t) to (N, ψ_t) .

If M is compact and the system (N, ψ_t) is minimal, then π is a surjective mapping of maximal rank, and as a consequent of it, M is the total space of a locally trivial fibre space over N, the system (φ_t) preserves the fibres, and the naturally induced system on the base space is isomorphic to (N, ψ_t) .

Proof: a) π is surjective: For any $x \in M$, we have

$$\pi(C_M(x)) = C_N(\pi(x)),$$

where $C_M(x)$ is the trajectory through x of (M, φ_t) , *i.e.*

$$C_M(x) = \bigcup_{t \in T} \varphi_t(x) ,$$

 $C_N(\pi(x))$ is defined analogously.

By $\pi(M) \supset \pi(C_M(x))$, the compactness of M, and the minimality of (N, ψ_t) , we have

$$\pi(M) \supset \overline{\pi(C_M(x))} = N \,.$$

Where \overline{A} denotes the closure of A.

b) Let $r(x) = \operatorname{rank} \operatorname{of} \pi$ at $x \in M$. Clearly r(x) is constant on the trajectory $C_M(x)$:

$$r(\varphi_t(x)) = r(x)$$
 for all $t \in T$.

c) r(x) = n on M (n = dimension of N): Let $K = \{x \in M; r(x) < n\}$, critical points of π . If $K \neq \phi$, then there

600

exists a point $x_0 \in K$. By b) and the closedness of K, we have

$$\overline{C_M(x_0)} \subset K.$$

As is M compact, we can easily show that

$$\pi(\overline{C_M(x_0)}) \supset \overline{C_N(\pi(x_0))}).$$

By the minimality of (N, ψ_t) , we have

$$\overline{C_N(\pi(x_0))} = N ,$$

so

$$\pi(K) \supset \pi(\overline{C_M(x_0)}) \supset N. \tag{(*)}$$

But, by the well known Sard's theorem, if π is sufficiently smooth (for instance, if π is of C^m -class (m=dimension of M)) measure of $\pi(K)=0$. This is clearly contradict to (*), so $K=\phi$.

This is to be proved.

q.e.d.

§2. Homomorphic images of minimal systems.

Let us begin with some examples.

Example 4–0. Let M be 0-dimensional space, *i.e.* M consists in one point, then the existence of a homomorphism π of $(M, \{id.\})$ to (N, ψ_t) merely means the existence of a fixed point of (N, ψ_t) ; $\pi(M)$ is the fixed point.

Example 4-1. Let M be a circle, $M = S^1$, and φ_t be a rotation of it. Then, if $\pi(M)$ is not of one-point (if $\pi(M)$ is of one-point, $\pi(M)$ is a fixed point of (N, ψ_t)), the homomorphism π is an imbedding and $\pi(M)$ is a periodic solution of (N, ψ_t) .

More generally we obtain the following

Theorem 2. Let $\pi: T^m \to N$ be a homomorphism of a quasi-periodic motion (T^m, τ_t) to D.D.S. (N, ψ_t) , and r = rank of π . Then $\pi(T^m)$,

Toshio Niwa

image of π is an r-dimensional invariant submanifold of N, which is homeomorphic to an r-dimensional torus T^r, and the restricted system of (N, ψ_t) to $\pi(T^m) \subset N$, $(\pi(T^m), \psi_t|_{\pi(T^m)})$ is C⁰-isomorphic to some quasiperiodic motion $(T^r, \tilde{\tau}_t)$, i.e. there exists a homeomorphism h of T^r to $\pi(T^m)$ such that

$$h \cdot \tilde{\tau}_t = \psi_t |_{\pi(T^m)} \cdot h$$
 for all t .

Proof: a) $r(x) = \operatorname{rank} \operatorname{of} \pi \operatorname{at} x$

$$=r$$
 for $\forall x \in T^m$:

This is clear, because, r(x) is constant along the trajectory, and the set

$$K = \{x \in T^m; r(x) < r\}$$

is closed, and every trajectory of (T^m, τ_t) is dense on T^m .

b) $\forall x \in T^m, \exists U(x); \text{ nbd. of } x, \text{ and}$ $\exists \text{ local coordinates } \overline{x}^1, \overline{x}^2, \dots, \overline{x}^m \text{ of } U(x), \text{ and}$ $\exists \text{ local coordinates } y^1, y^2, \dots, y^n \text{ at } \pi(x) \in N, \text{ such that}$

$$y^{i} \cdot \pi = \overline{x}^{i}, \quad i = 1, 2, r,$$

 $y^{j} \cdot \pi = 0, \quad j = r+1, r+2, ..., n,$

and

$$\bar{x}^i(x) = 0$$
 $(i = 1, 2, ..., n), \quad y^j(\pi(x)) = 0$ $(j = 1, 2, ..., n).$

Therefore $\pi(U(x))$ is an r-dimensional submanifold of N:

This follows from a) and the implicit function theorem by standard arguments.

c) $\pi(T^m)$ is a (ψ_t) -invariant compact set: Trivial.

d) Let $y \in \pi(T^m)$ and $x_1, x_2 \in \pi^{-1}(y) \subset T^m$. Then $\exists V(y)$, nbd. of y in N such that

602

603

 $\pi(U(x_1)) \cap V(y) = \pi(U(x_2)) \cap V(y)$: As (τ_t) is a translation and every trajectory of (τ_t) is dense on T^m , we can take $t_1, t_2, ..., t_n, ..., (t_n \to \infty, n \to \infty)$ such that

 $\{\tau_{t_n}(x_i); n=1, 2, 3,...\}$ is dense in

 $U_i(x_i) \subset U(x_i)$, nbd. of x_i (i = 1, 2).

From $\pi(x_1) = \pi(x_2) = y$, and $\psi_{t_n}(y) = \psi_{t_n} \cdot \pi(x_i) = \pi \cdot \tau_{t_n}(x_i)$, i = 1, 2, n = 1, 2, 3, ..., we obtain $\pi(\tau_{t_n}(x_1)) = \pi(\tau_{t_n}(x_2))$, n = 1, 2, 3, ... As π is continuous, so $\pi(U_1(x_1)) = \pi(U_2(x_2))$.

e) $\pi(T^m)$ is an *r*-dimensional compact submanifold of N: This follows from a)~d).

f) $(\pi(T^m), \psi_t|_{\pi(T^m)})$ is minimal: Trivial.

g) With respect to the natural metric d' on T^m , the translation (τ_t) is isometric. We define a metric d on $\pi(T^m)$ compatible to the original topology, then π is Lipschitz continuous because π is differentiable and T^m is compact. From these, $(\pi(T^m), \psi_t|_{\pi(T^m)})$ is equicontinuous with respect to the time t, i.e.

$$\forall \varepsilon \! > \! 0, \, \exists \delta \! > \! 0 \colon d(y_1, \, y_2) \! < \! \delta, \quad y_1, \, y_2 \in \pi(T^m)$$

implies $d(\psi_t y_1, \psi_t y_2) < \varepsilon$ for all t.

h) By the theorem 3 of [1], we obtain the assertion of the theorem. q.e.d.

§3. Remarks and some discussions.

a) Note that quasi-periodic motions are minimal. It is sure that in theorem 2, we can replace the quasi-periodic motion (T^m, τ_t) by a minimal D.D.S. (M, φ_t) :

Let π be a homomorphism of (M, φ_t) to (N, ψ_t) . If rank of $\pi = r$, and (M, φ_t) is minimal, then $\pi(M)$ is an *r*-dimensional invariant submanifold of (N, ψ_t) and the restricted system $(\pi(M), \psi_t|_{\pi(M)})$ is minimal, therefore by theorem 1, the mapping $\pi: M \to \pi(M)$ is maximal

rank, and M is a locally trivial fibre space over $\pi(M)$:

$$(M, \varphi_t) \xrightarrow{\pi} (\pi(M), \psi_{t|\pi(M)}) \xrightarrow{\iota} (N, \psi_t).$$

 (φ_t) preserves the fibres of M, and t is the natural imbedding.

b) In theorem 1, can we we weaken the condition of the minimality of (N, ψ_t) by the one of the ergodicity?

Unfortunately we can easily construct the counter-examples. But, if (N, ψ_t) is uniquely ergodic and the unique ergodic measure has positive density, then the mapping π is surjective. In this case it is open whether the similar results can be obtained or not.

c) In the case of flow, *i.e.* when T=R, we can weaken the assumptions, that is:

Let X, Y be generators of the systems $(M, \varphi_i), (N, \psi_i)$ respectively, *i.e.*

$$X(x) = \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t(x) |_{t=0} \in \mathscr{X}(M),$$
$$Y(y) = \frac{\mathrm{d}}{\mathrm{d}t} \psi_t(y) |_{t=0} \in \mathscr{X}(N).$$

 π being a homomorphism of (M, φ_t) to (N, ψ_t) is equivalent to the condition

$$\pi_* X = Y.$$

The arguments of the proceeding results can be weakened: It is sufficient to assume that

$$\pi_*(X(x)) = f(x)Y(\pi(x))$$

where $f(x) \neq 0$, is a smooth function on M.

DEPARTMENT OF MATHEMATICS, Kyoto University

References

- T. Niwa: Classical flows with discrete spactre, J. Math. Kyoto Univ. 9-1 (1969) pp. 55-68.
- [2] V. I. Arnold and A. Avez: Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris (1966).
- [3] S. Smale: Differentiable Dynamical Systems, Bull. Am. Math. Soc. 73 (1967) pp. 747-817.