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Introduction

In the present paper we shall study the meromorphic differential
(or its inegral) with an infinite number of polar singularities on an
open Riemann surface R.

According to H. Behnke and K. Stein [4] there exist always mero-
morphic functions with given divisor unless its carrier clusters on R,
but it is also desirable to have the close analogue to the classical Abel’s
theorem and in fact this problem has been investigated by many authors
in the case of finite divisor, that is, its carrier consists of a finite
number of points on R (Accola [1], Ahlfors-Sario [2], Kusunoki [7],
Mizumoto [10], Ota [12], Rodin [13], Yoshida [22]). While, in 1954
R. Bader [3] has studied the Schottky-Ahlfors differentials and on R
of class Oyp, under some restrictions, given a necessary condition for
the existence of meromorphic function whose divisor is exactly the
given infinite divisor. In §I we shall deal with the Abel’s theorem in
the case related to infinite divisor. There we discuss the existence of
multiplicative function wth given infinite divisor and some other pro-
perties, and treat its expression in terms of normal integrals. The
expression obtained there may be regarded as a generalization of that
in the classical theory to open Riemann surfaces and then the Abel’s
theorem follows from the condition for single-valuedness.
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On the other hand, as for the Riemann-Roch theorem, some similar
formulations to classical one have  been obtained (Kusunoki [6], [7],
Mizumoto [10], Ota [12], Rodin [14], Royden [15], Shiba [16], Yoshida
[22]). In §II we shall be concerned with the case attached to the in-
finite divisor. Under some restrictions it will be shown that a meromor-
phic differential is expressed by the series of normal differentials and
with the help of this expression, we can find that there is a duality
relation between the vector space of functions and that of differentials
which are multiples of some divisor, respectively. If genus and divisor
are both finite, then it is seen that this may be regarded as an analogue
of classical Riemann-Roch theorem.

Throughout this paper, the method used here is mainly, so-called,
that of contour integration and it will be seen that the third kind of
normal integral and Riemann’s relation play a fundamental role as in
the classical case (Osgood [11], Weyl [21]).

§1. Multiplicative functions

1. We shall consider an open Riemann surface R and denote its
genus by g (0=<g=<+ ). Let {Q},-,,. . be a canonical exhaustion
of R and {A;, B;};-y, . km.. be a canonical homology basis with respect
to {Q,} such that {4, B;};, = form a canonical homology basis
of Q,(modoQ,) and A;xB;=0d;;, A;xA;=B;xB;=0." (Ahlfors-Sario
[2D).

On R there exists a system of diffferentials which is similar to that
of the normalized differentials in the classical theory and consists
of the following three kinds of differentials:

(I) The first kind of normal differentials dw,(i=1,2,...);
dw; is square integrable analytic semiexact andS dw;=0;;.

(I) The second kind of normal dijferen;z!als dY,. (n; positive

integer); (i) dY,. is holomorphic except at p and de.,=(— n

zn+1

1) We note, throughout this paper, the intersection number of two cycles 4, B is
taken such that AXx B has the positive sign when A crosses B from right to left
as in Ahlfors-Sario [2]. Hence it has the opposite sign to that in Osgood [11],
Schiffer-Spencer [18], and Weyl [21].
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+regular term)dz at p. (ii) the norm of dY,. is finite outside of an
arbitrary neighborhood of p. (iii) dY,. is semiexact on R and A-
periods of it vanish.

(I1) The third kind of normal differential dIl,,; (i) dIl,,
has a simple pole with residue 1 (—1) at p (g), respectively and is
holomorphic elsewhere. (ii) The norm of dII,, is finite outside of an

arbitrary neighborhood of p and gq. (iii) dI1,, is semiexact on R with

pPq
a slit joinning p and ¢, and all A-periods of it vanish (Virtanen [19],
[20], Kusunoki [8], Sainouchi [16]).

In general these differentials do not always exist uniquely and so

we shall suppose that R satisfies a metrical condition as defined in 2.

2. For our purpose we introduce a coordinate on R. We take
mutually disjoint annuli Di (i=1, 2,..., m(n)) each of which includes
exactly one contour yi of 652,,=§/ yi. Let D,,=gj Di and assume
that D, (n=1, 2,...) are disjoint e:e\_clh other. We ;i_elnote by vi (resp.
9,) the harmonic modulus of D! (resp. D,), namely, for instance,
9, is defined by 2n/d, where d, is the ﬂuxg *du, (c,=0D,NnR,) of

Cn

the harmonic function u, on D, which is =0 on ¢, and =1 on dD,—

¢, It follows that 1 ! . Define a function u on GD,,
n=1

i _vil—= 0n
such that

n—1
u=_§:1 Vi +0,u, on D, (n=1, 2,...),

0
then u+iv (v; conjugate of u) maps ‘U D, conformally onto a strip
n=1
00
domain; O<u<R’'= ¥,, 0<v<2m.
1

n=

o2} : . .
Now we shall suppose that the series > min v} is divergent,

n=1 i

then the following lemmas are obtained (Kobori-Sainouchi [5],
Kusunoki-Sainouchi [9]).

Lemma 1. Let ¢;(j=1,2) be two meromorphic differentials
such that |l p,<+o0 and for all sufficiently large n S" ;=0

(i=1, 2,..., m(n)), then there exists a canonical exhaustion {"Q,,'} (c
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{Q,}) such that limg ®,0,=0, where &, is an integral of ¢,
n’ 02,

=0

defined separately on each contour yi of 0Q,.

Lemma 2. The Riemann’s bilinear relation

(w, *a)=;<SAkwgBk6—SAk683kw> (a finite sum)

holds for two w, 6€Tl,, having only a finite number of non-vanishing
A-periods.
With the help of lemma | we know that if 3 minv] is divergent,

n 13

there is one and only one system of normal differentials on R.

3. In the classical theory there are some relations between the
normal integrals (Osgood [11], Schiffer-Spencer [18]). If R satisfies

3 min vi=+co, then from the above lemmas it is seen that the fol-
n i

lowing relations are valid on R. Later on, we shall use some of them.

Proposition 1. Letg dw,=1,;=1;;+it{; (ti;, ti;; real), then the

By
matrix (t;;) is symmetric and for any positive integer p (t{;);j=1,..p
is negative definite.

Proof. Since an analytic differential is orthogonal to an anti-
analytic differential, we have

(dw;, *dw})=0.
While, the lemma 2 yields

(dwi, *d_ujj) = %(SAdeiSBdej_ SBdeiSAkdu'j>= Iji - Tij .

Next we put dw= i Edw; (&;; complex number), then
i=1

M=

p
"dW“2=.ZléiEj(de dw;)=—i 2
i,j=

L

éiéj(fij_tij)': _2;' :)i:l fiEjT'i'j-

1

Thus we see that (t};);j=1,., is negative definite. q.e.d.
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Let wk=dek and w,= i;l'—w}("’(p)z" at p, where p corresponds
n=0 .

to z=0 in terms of a local variable which maps a parameter disk
U onto |z|<].

Proposition 2. The By-period of dY,. and dIl,, is given by the
formula, respectively,

and

[, dn,=2nion(@-wip)=2xi{"aw,

p

where the integral on the right is taken over a path from p to q
which lies in Ro=R—\U{A;, B;}.

Proof. From lemma | we see that there is a canonical exhaustion
{Q,} such that

lim S wid Y, =0.
o2

n’ =

By the Stokes formula and orthogonality I'(Q,—U)LT(Q, —U)
we have

0=(dwy, *dY,.)a,.—y

- 3 (S dw,(g dY ..—S d.w,,S dy )-S w,dY .
A5, Bye0,\J 4y By ° B; 4 P (2,0 -U) P

- dYn <S —S > ne
Ssk rt U Jo wid¥,

(n)
Since S wdep..=—2m'W“ (p) as n’
au

(n—1)"

tends to oo, we obtain the

first formula.

Next let V be a simply connected neighborhood containing p and
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q (V=Q,) and we apply to (dw, *mp,q)ﬂn,_y the same way as
above, then we get the second formula. q.e.d.

Proposition 3. (the law of interchange of argument) Let II0:]=
Hs,,(p)—Hs’,(q)=Sdes_,, where the integral is taken over a path from
q

q to p which lies in Ry, with a slit joinning s and t, then
nef=I1

Syt
psq

Proof. We denote by U (resp. V) a simply connected neighborhood
containing s and ¢ (resp. pand q) (Un V=g, U, V=Q,). Considering
dIIg:} as a differential of a, we have

p,q

= —_ a,b a,b
(Sau+ Sav San",)ns" allzg .

k(n’)
Since IT¢:PI13:% is single valued in Q,—-U—-V— v {4;, B;}
i=1

0 =(dng;,b, dW)
R, -U-V

[ ameemgn=o,
hence
[ mepangs——( mganst——onicng—ngh) = - 2mimy,.
ou ou
While,
SaV”?.’t"d”i':i'J —2millzg.
As n'—> o0, we have the desired result. q.e.d.

By the application of the same way as before to (dY,.*dI1%:{),,,
—u-w and (dY,., *dY,)q,.,—w-w Where W (resp. W’) is a neighborhood
of p (resp. q), we obtain the following

Proposition 4. Let Yi =Ypu(5) = Yyu(§) = d¥ , then
t
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1 anng’,q st t
(n—1)! ap"t =_Y”'E_Sde”" ’

1 d"Yg)_ 1 d"Y.(p)
(m—-1)! dgm (n—1)! dp

4. Let .# be a class of multiplicative functions on R such that
each function f(p) belonging to .# has the following properties:
1) thereexists an integer n, such that for all n(=n,) and i

Sﬂdbgf=0,
where yi (i=1,..., m(n)) are components of 0Q,.

2) The zeros and poles of f(p) arecontained in R— @ D,.

From 1) it is seen that f has equally many zeros and pnc=)lles, counted
with multiplicities, in Q, (n=n,).

Now let 4 be a finite or infinite devisor on R whose carrier lies
in R— U D, and 4, its restriction to Q, We assume that degd,=0.
Here 12:1115 remark that whenever 6 is given, then exists always a

single-valued meromorphic function f(p) (e.#) with given divisor 6.
Ia;
b,
which has simple poles of residue 1(—1) at a;(b) (i=1,2,...,), res-

Because let 6= and denote by dp a meromorphic differential

pectively. Adding to d¢ an appropriate holomorphic differential, we
can get meromorphic differential dyy such that

SA dl//=2m'n,-,g dy =2nim; and Sy‘dlll=0 (nj, m;; integers). Set
J By n
l/l=Sdlﬁ and f=expy, then f is the single-valued meromorphic func-

tion with given divisor and Syidlog f=0 (¢f. Behnke and Stein [4]).
However, if the functions are réstricted in a suitable manner we will
show that it is possible to derive a close analogue of Abel’s classcial
theorem. For this purpose, as a restriction on f, if R satisfies inf

n
min vi>0 we shall require that
i

(A) "dlogf”uD,,< +wa

otherwise
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== Dic oo,
W min v
i

At first we have to prove the following

Lemma 3. Let dw be a meromorphic differential such that

lldwl|l,p, <+ and Sy,dw=0 for sufficiently large n. If w is an

other meromorphic differential such that Siw=0 for sufficiently
Ya

l(,o—”-"—'.'- <+ (or |wl,p, <+ oo whenever infmin vi>
1n v, n n i
i

large n and sup

0), then

San,, <gdw )w——-» 0 (n— )

and
S nelo =0 (n— ),

where the latter integral converges to zero uniformly with respect to

(s, t) on every compact subset of (Ro—{q})*x(Ro—{q})—{(s, b)|s=t}.

Proof. Let us prove that if sup%%< + 00, then S % fw=0
n n

(n—0). The remaining part of lemma is shown analogously.

n

We assume that s and t lie in Q, and consider the integral

n—1 n
Loys0=|{ _mol, el =UTon £01  (>n)

u=

and put L(r, s, t)=minL(r, s, t). Since 02, is homologous to the

rel,
level curve {pe R|u(p)=r,} we have

| nzio|=Lows 0 and Lows o= (1| el
0Q2n i=1J7,

r

where m=m(n) and y! denote the level curves {pe R|u(p)=r} contained
in Di. Let w=adu+bdv, then by the Schwarz’s inequality
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oIIn:g
pa|. - s, t
Sy:wns,, gyilwl S L

a3,
Vau 7,.

Summing up from [ to m it follows

dv-S b]dv
yr

p,9
ML) 2 - S 1b12dv)"

6l'lf?

) 1 2n
Lt 80528 Yy (S

n 1/2
| dS |b|2dv>

By integrating with respect to tel, we obtain

() L(r,, s, )= 418 b, Il 0lp, .

mm v‘

If (s, t) lies on compact subset of (R,—{q})x(Ro—{q})—{(s, t)s=t},
then it is possible to choose a ny such that for any positive &

larsilp, <e  (nZnp),

where by continuity of ||dI12:f|z_q,, With respect to (s, {) np is inde-
pendent on (s, ) (cf. proposition 3 and lemma 1). Hence

lolp
H"'qw‘S2 ———=" g n=ng).
‘San,, st = mmv' (nznj)

Thus the proof is complete.
Remark. From (1) we have

. .
5 Loy s, 02 () <dr2ldmzal L, < + oo,
n=1 D, n

. . 2
hence if Z Té)n”v ) = + 00, then
D,

lim L(r,, s, )=0,

n-=*oo

and so there is a canonical exhaustion {Q,} (<={®Q,}) such that
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lim S 29w =0.
oQn’

n’ =

But in this case {n'} may be depend on (s, ).

21:%m) 1et ys denote by y; a singular

bl oo l(n) ’( )
lI-chain in @, such that dy;=b;—a; and set c(n)= 3 7;.
j=1

5. For the divisor §,=

Theorem 1. Suppose that 3 minvi=+oco. In order to exist
13

a single-valued meromorphic fucntion f(p)(e.#) such that f(p)
satisfies (B) and its divisor is exactly & it is necessary and sufficient
that the following conditions are filled:

k(n)
]) lim S dw,-l- Z” n_,»‘rij)=m,~ (i=1, 2,)
c(n) j=1

n—o0

where n; and m; are integers.
2) the sequence of functions

1(n) k(n) s
Fn(S)= z] ns" ,,m+27ti J;l njgtd"’j

am,
m=

converges uniformly on every compact subset of Ro—\Jy; and its

limit function F(s) satisfies (B) where t(#a,, b,) is ﬁxedl in R.
Proof. Take a simply connected neighborhood U, containing a,,

and b, (U;n U;=8 (i+)), Upc@, (m=1,.., (n))) and set SAjdlogf=

2min;, S dlog f=2mim;, then
By

0=(dw;, *d log fa, - élvm

- ¥ (S dwiS dlogf—g dlong dwi)—g wd log f
Aj, By, Ay By Aj B d(Rn—-vUnm)

]

(n)
=2ni(m; — kz njt,-j)+( > g —S )wid log f.
j=1 0Um U,

m=1

By the residue theorem we have

m=1

3 Sw widlog f=2ni g’l (wiay) — wibn)) = —2niS o
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Therefore, as n tends to infinity, by lemma 3 we have 1).

Next let V be a simply connected neighborhood of s and ¢t (V<
Q,, VnU;=¢), then

0=(dII2:4, *d log f log f)a,-wun-v
= Y (S dﬂf","g dlogf—g d log fS dﬂf,’?)
Aj,B;<Qp, Aj By Aj By

+(S +i§ —S )ng;;fdlogf,
vV m=1JoUm o0,

Since S [Pedlog f= — Savlog famee = —2ni§sd log f= — 27 log £(s)|f(2),
v t

g n%idlog f=2mi Membm=2mi 115! , ~  (by proposition 3)
oUm

and

(by proposition 2),

j

g AT =2mi g'dw
B! S

we have
Fy(s)= z mst, +2ni z nS w,=log f(s)/f(t)+_§m 28dlogf.

On letting n tend to oo, by lemma 3 we obtain 2).
Conversely, the A;-period of F,(s) is equal to 2min;, while by

k
proposition 2 the B;-period is equal to 2ni(g dw;+ Y n;7;;) and Sy‘dF,,
c(n) Jj=1 n
=0, and so by 1) A; and B;-period of F(s) is equal to 2min; and
2nim;, respectively and SyidF =0. Finaly set f(s)=expF(s), then it

is seen that f(s) is a desired function. g.e.d.

Remark. If R satisfies mf mmv i>0, then for a function satisfying

(A) in place of (B) the correspondmg statement is valid, moreover in
this case the desued function is uniquely expressed by exp F(s)= hmexp

2 Ik, +2mi Z n; de j) up to a multiplicative constant.
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Indeed, let g be an other meromorphic function with same pro-
perties as f, then log|f/g| is harmonic on R and |dlog|f/glll,p,< + oo,
hence by lemma 1 we get |dlog]| f/g|||=0 and so g=C f (C;"constant).

The classical Abel’s theorem follows from the following

Corollary. Let infminvi>0 and 6=Z—‘“%
n i 1+

on R with finite genus g. Then there exists a meromorphic function
f(e ) such that |dlogfl,p,<+oo and its divisor is exactly & if

be a finite divisor

and only if
g .
S dwl+ Z njtij=mi (l=17~-~; g)a
c Jj=1

]
where n; and m; are integers and c is a finite chain Yy, (0y;= .
i=1
b,-—ai).
As for the existence of a multiplicative meromorphic function on
R, from the proof of theorem it is seen that the following result
holds.

Theorem 1'. Suppose that infminv,>0. In order to exist a

13

multiplicative function m(p)(e./(; such that 1) m(p) satisfies (A)
2) its divisor is exactly 6 3) its multiplicators with respect to A;
are exp2miy; where y; are complex numbers, it is necessary and
sufficient that the sequence of functions

1(n) . L k{(n) s
M, (s)= Zl 15t +2mi j;l sttd‘Vj

= Amybm
converges uniformly on every compact subset of Ry—\Uy; and its limit
i
function M(s) satisfies |[dM| p, <+ o0, where t(=Fay, b)) is fixed.
If the condition is filled a desired function is expressed by limexp
M., (s).

6. In this section we shall derive a condition for uniform con-
vergence of {M,(s)}.
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Theorem 2. {M,(s)} converges uniformly on every compact subset
of Ro—\Jy,; if and only if for each N lim |dM,—dM,|p,=0.
i m,n—>

Proof. It is easy to show ‘‘only if” part, thus we shall prove the
“if” part. Take a r(reIN=[A§‘;0i, élv,-]) and let Qu(r) be the
relatively compact domain bounded by level curve {plu(p)=r} and
Q;,,=QN():Z: v;). For sufficiently large m and »n,dM,—dM, has no

singularities and non-vanishing A-periods in Qu(r) and so
M =AM, 3yip =1 (My=M)TOE,=T,).
p)=r

By the same way as we did in the proof of lemma 3 we obtain

”de_ dMn”.(Z);q é "de_ dMn”.(zln(r)

m(N)

% (1, —am,p2

i=1

IIA

1

§2ﬂm—”de—dMn”zz)N .
i

Thus we can conclude in usual way that M,(s) converges uniformly on
every compact subset in Qj. q.e.d.

Corollary. If Z |dITs:¢

am,

by and Z lxjlldw;lp, are convergent
for each N, then {M (s)} converges umformly on every compact subset
in Ro—\ijy,-. Moreover if Z ldms:t , |lop, <+oo and 12’1 lxjllldw;llop,
< + 00, then ||dM|]U,,"<+oo

Because, for m>n we have

1(m) k(m)
AR S L N S S P L P

=l(n)+1

and the result follows from theorem 2.

. . . . p -
Also it is seen that if lim X x %;7}; converges, then w'=
p-wi,j=1

0 S
1§1 X Stdwj converges uniformly on every compact subset in R, and
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P
ldw'|<+oo0. In fact, put dw,= > xdw, then
i=1

p
[dw, %= _Zii jzﬂ%: Xjti;

and the result is again obtained from theorem 2 and the completeness
of I',..

7. Here let R be an arbitrary open Riemann surface. In the re-
maining sections in this § we shall give a formulation of the Abel’s
theorem by use of an another system of differentials, so-called, a system
with real normalization. In the case of real normalization, according
to the behavior of differential near ideal boundary, various systems have
been considered (Kusunoki [7], Mizumoto [10], Shiba [16], Yoshida
[22]) However, for our purpose, it is enough to use the canonical dif-
ferentials as follows (Kusunoki [7]):

(I) The first kind of canonical differentials ¢4, @p, (i=1, 2,...);

(i) ¢4, and @p, are semiexact canonical (ii) Re S P4, =6 ReS 0y, =
B; Aj
—0;j, Reg (pA‘=ReS ¢@p,=0.
A5 By

(I) The second kind of canonical differentials pu, Y, (n21);
(i) Ypn (resp. |/7p,.) has a pole at p such that its singular part is

Tt
dz (resp. — zln’ildz) (ii) they are semiexact canonical and A, B-periods

of their real parts all vanish.

(II) The third kind of canonical differentials @,, &,
() ¢,, (resp. $,,) has two simple poles such that its singular part
is —i—dz (resp. %dz) at p and —%dz (resp. —%dz) at g (ii) they
are semiexact canonical and A, B-periods of their real part all vanish.

It should be noted that these three kinds of differentials exist
uniquely. Also it follows from definition that they are semiexact and
square integrable outside of a compact subset of R.

There are some relations between their integrals as in the classical
case (Weyl [21]):
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P | d"®. S b= oL d'Pc
Sclpp,._ 2mi =D Re W= 2mi GoDTim 7
2

S 0, .=2ni Regp(pc, g q")p,q=—27tiJmSp(pc,
Cc q C q
where C is a cycle A; or B; and &, is the integral of oc.

(3 Re®i=Re®sy, Im2f=Im $54, Jm &24= —Re $5°,
where dif;,“=<Ds',(p)—¢s,,(q)=gp<ps,,, o2 =Sp¢s,, and in the last equality
q q
the path of integration from g to p dose not intersect the path from

t to s. '

s 1 "Pg s 1 0" Pr]
Re V5= =01 Re " ,JmY’pn—(n_l)!Re "
C)) .
ReFpim— L im OO e Ly OO
e == " e P Y] ap"

s
t

where 'I’f,'..'='f’pn(s)—7’pn(t)=g Y, and ~;""=Xj‘ﬁp"'

I Red@™¥pr@_ 1o d™V,.(p)

DI dgm =1 dp
1 d"¥ ,.(q) 1 an¥ .(p)
5 p — q
%) =D ™ g =D g
l dnq'jpm(q) _ l qu}q"(p)
D™ g ™ a

These formulas caﬁ be obtained easily from the following lemma, with
a slight modification, by the same way as in 3 and so we shall omit
their proofs.

Lemma 4. (Kusunoki [7]) Let df;=du;+idv; (j=1,2) be any two
semiexact canonical differentials such that u; are single-valued and

regular outside of a compact subset B, then for every dividing curve
CcR—B we have



514 Yoshikazu Sainouchi
JmS fdf,=0.
¢

8. Theorem 3. The necessary and sufficient condition for the
existence of a single-valued meromorphic function f(p) (€.#) scuh that
f(p) satisfies (B) and its divisor is exactly & is that the following
conditions are filled:

1) limReS goA‘:—n,-,limReS op=—m;  (i=1,2,..)
C(n) C(n)

n-—oo n—+o0

where n; and m; are integers.
2) The sequence of functions

Amybm

1(n)
G,(s)=Re 21 @3t

converges uniformly on every compact subset of Ro,— Uy, and exp
lim (G,+i*G,) satisfies (B), where t(%ay, b)) is fixed in R. If the
;;;:ditions are filled the desired function is always expressed by
Clim exp:gn)1 @5ty (C; constant).

am,
n—*w

Proof. Let SA dlogf=21tini,g dlog f =2nim; and take a simply
i B
connected neighborhood U,, containing a,, b, (U,<Q,, U;nU;=0, i+j)
1(n)
and set U=\U U,, then
m=1

0=(¢4,, *dlog f)a,-v

~im 5 ({ ouf dloasr-{ dtoes( o.,)
Aj,BjcQy Aj By Ay By
+Jm(Sau- Sm,.)‘pA‘d log/,

By the residue theorem we have

JmS ¢A‘dlogf=——27rReS Pu, -
au cm)

While, by the same way as in lemma 3 we are able to prove
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Im Sa &, dlogf—0  (n—s ),
2n
hence

limReS Qq,=—n;.
c(m)

n—aw

Analogously we get

lim ReS Qp,=—m;.
C(n)

n—+oo

Next let ¥V be a simply connected neighborhood of s and ¢ (Ve
Q,, VnU,=0), then

0=(d P3¢, *dlogf)g,-v-v

—Im ¥ (S dd>;","g dlogf—S dlogfg d@:-;z)
4 ') Ay B;

A;Bj<0,

+Jm<S +S —S )@f',"dlogf.
U v oQn '

Since
Im{ o2 dlogf=—2nlog | f)S ()
ov
and
1(n) 1(n)
im g Opidlogf=2nRe 3\ Pgmtn=2nRe 3 B,
ou m= m=
we obtain
1(n)
©  loglfS®I=Re S 52y, —o-im | orsdtogs.

By the same way as we did in the proof of lemma 3 we know that if
n tends to infinity ng ®itdlog f converges to zero uniformly on
22n

every compact subset of Ro,— Uy, Thus the uniform convergence of
G,(s) follows from (6) and we have
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™ log /(5)| =log /(1)|+1im G,(s).

Conversely, set A, (s)= Z &5y, and A(s)=lim 4,(s), then by (2)

m=1 n—o0

and 1) we have

n—oo n—00 m=1

1(n) am
g dA=limS dA =2nilim Z‘, ReS Ppq,=—21 zllmReS Q4.
A A bum cmy

=2nmin;
and

S dA=2mnim;.
By

While ngA=0 for any dividing cycle CcR— U7y, Now set f(s)=
exp A(s), then f(s) is a desired function. Let g(s) be a meromorphic
function with same properties as f(s), then by (7) we get log|f(s)/g(s)| =
log|f(t)/g(?)| for arbitrary point s and so g(s)=Cf(s). q.e.d.

Remark. 1) From the proof of theorem we know that the
necessary and sufficient condition for the existence of a multiplicative
function n(p) (e #) such that 1) n(p) satisfies (B) ii) its divisor is
exactly ¢ iii) the absolute values of multiplicators with respect to
Aj (resp. B;) are exp2my,, (resp.exp2nyp,) (X, xp,; real) is that the
sequence of functions

k(n) s s
Ni(s)=Re'S @300, 4218 (za,Re ("0, ~ 24, Re [ 0)
2

converges uniformly on every compact subset of RO—— Uy; and expllm
(N, (s)+i*N,(s)) satisfies (B). T
2) As for the uniform convergence of {N,(s)} the result corres-
ponding to theorem 2 can be obtained, also.
3) If R satisfies 15'1fmmv,,>0 then for a function satisfying

(A) in place of (B) the corresponding statement is valid, also.
From the above remark 3) it is possible to prove
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Propositonm 5. Suppose that infminvi>0, then

13

L kG
oa=lim ([ g )aw;,
1

n—oo j=1

k(n)
©pq=dll, ;+2ni lim 3 <Re Spr,>dwj,
q

n—o j=

k(n)
dwi=lim % (Re| dwi)ou,~o,.
By

n—=w j=1

L ktm) p
all, ,=¢, +2nlim 3 <Jm Sqdwj><ij.

n—oo j=1
Proof. exp®,, and exp®5 (t; fixed) satisfy the condition of
, . ] 1 s,t . i
theorem 1’ and have WSAJ(/)A‘ and i S,qjdd)""' as x;, respectively.
Hence by theorem 1’ we have

. k() s
b4 (s)=d 4, (t)+1im Z(S <pA,>S dw;
Aj t

n—ow j=1

k(m) s
Bt =115t 4 lim 'S (SA ‘dtbj,',',,)gldw ;.

n=w j=1

While, by (2)
p
S dcb;;’q=27tiReS Pa;>
AJ q

and so the expressions for ¢4, and ¢,, are obtained.

Next expw; and expll5, (t; fixed) satisfy the condition in the

: _ 1 _ 1
above remark 1). It is easy to see that x,,,-—z—n—éi,-, XB,—ﬁRe SBdei
1

for expw; and yx,, =0, X8, =%~

Reg diy’, for explly! . Hence
By
we have
L kUn s s
Rew(s)=Rew(t)+lim <Reg dw,~>ReS (PA,—RCS ry
n—oo j=1 Bj t t

k(n) s
Re I3/, =Re &% +lim'S' (Reg dH;")ReS O,
B; t

Fy ' q
n-=o j=1

While, by proposition 2
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Re | dﬂ;.,;=Re(2niS"dw,.)=2n1m§”dwj.
By p q

Thus the latter two expressions can be obtained by letting the operator

_ l a . a Syt 1
6——2—<E—1—a—y—)dz operate to Rew; and Rell respectively.

p.q

q.e.d.

w ( min v} )2
From the remark of lemma 3 it follows that if PR ——
2 \[aTog Ty,

is divergent, then there exists a canonical exhausion {Q,} (={Q,})
such that

. 1(n’)
FOI=IS) lim exp(Re'S, @3:,.)

where ¢(#a,, b,) is fixed in R. Particulary, let us set d=1, then
we find

Proposition 6. Let R be an arbitrary open Riemann surface and

f(p) be a non-constant holomorphic function on R such that S ,dlogf=0
n
and f(p) has no zeros in R, then for any canonical exhaustion {Q,}

the series

8

n

( ménv:’, )2
1\[ldlogfp,

is always convergent.
From the above propostition we know at once that if f(p) is a

non-constant holomorphic function on an arbitrary open Riemann
© 1 i 2
surface R, then for any canonical exhaustion the series (&)

=1\ ldflp,
is always convergent.

Corollary. Let D be a simply connected domain and f(p) be a
non-constant holomorhic function which is defined in D and has no

. .2 9, \2
zeros there, then for any exhaustion {Q,} of D the series ngl (m)

is always convergnt, where we assume that each Q, is simply con-
nected.
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§II. Additive functions

1. Let &' =IIlal~ and §"=IIb4= be two finite or infinite integral
divisors whose supports are disjoint each other and are contained in
R—\UD,. Let us denote by d,=aj'...ayiy (resp. ) =>bi...b,w)

the ;estriction to Q, of & (resp.d”) and we show the following

Theorem 4. Suppose that infminvi>0. The necessary and suf-

n i
ficient condition for the existence of a meromorphic differential dw

such that 1) dw is a multiple of 1/6” 2) its singular part is
5 %wdz at b, 3) for all m and iStdw=0 andS dw=w(d;) 4)
k=1 Yn A
ldwl,p,< + o is that the sequence of functions

m(n)b ot m(n) ni b'k
H S)= . ll 3 —_ i
() i=22 b e S k-1

st k(n) s
Yo+ w(d .)S dw,
k ~ 7y Vi

converges uniformly on every compact subset in RO—\ij{b,.} and its
limit function H(s) satisfies |dH| p,<+ o0, where w(A;) are given
complex numbers and t(+b;) is fixed. If the conditions are filled,
the desired differential is uniquely expressed by dH.

Proof. At first it follows from 3) that for each n

m(n)
(1) 1§i by =0.

Now let V and U; be neighborhoods of s,t and b,, b; respectively
VnU;=0,V, U;cQ,), then

0= (@21, *aW)a,-v- 5 v,

-3 (S ng’v,"S dw—S de ng",")
A;,Bjea\J 4y " JBy Ay By ’

+(§, +S —S Yz
0(i:2U() v 002,

Set W=de, then
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S 7:8dw= —S WAII?8 = — 2mi(W(s)— W(1)).
ov oV
While
[ amzi——2ni{ aw,
Bj t

and

m
S m  AD7dw=2ni (Residue sum of II'} dw in U U)
aGL,U0 ‘ =2

L Ui b ak—lnglq
2mi i; ; _kl) [ (bx)

I

m I
2mi 3 i1t = by, 1121 W

(by (1) and Proposition 4)

m

m M
. t
=27uizzb“”‘z""bl 2 Z Z Z;:-]

(by proposition 3)

Thus we have
W(s)=W(t)+H,,(s)——1.~ S nejdw
27 002, ’

and, on going to the limit, by lemma 3 we obtain the desired result.
The converse follows easily from (1) and the expression of dH. g.e.d.
Remark. If R satisfies 3 minvi= 400, the statement of theorem

4 is valid whenever the property 4) of dw is replaced by sup%<
n V,’,
+ c0.

Let f(s) be an additive function which is a multip]e of 1/6'. If

Zk+l

dz and so we have
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Corollary 1. Suppose that infminvi>0. The necessary and suf-

n i

ficient condition for the existence of an additive function such that

1) f is a multiple of 1/6' 2) its singular part is i%’: at a;
k=1

3) S Ldf=0 andg df=F(A;) 4) ldflup,<+o0 is that the sequence
Tn Aj
of functions

1) v

k() s
)= 3 Fan¥iit 3P|,

converges uniformly on every compact subset in Ro—\J{a;} and its
limit function A(s) satisfies |dA|,p,<+co. If the clonditions are
filled A(s) is the unique desired function up to an additive constant.

Here it is to be pointed out that there exist always additive func-
tions f with properties 1)~3) in corollary 1, but in order that f has
more one property 4) some restrictions must be imposed on a; and
F(A;) and in fact such a condition is shown in corollary 1. For exam-
ple, now let v,=1(i=1,2,..), ln)=n and F(4;)=0(j=1,2,.). It

0
is possible to choose a; (i=1,2,...) such that Y |a,|lldY,,|,p,< + .
i=1

We set A,,(s)=’iz"ia,lY;", then f(s)=C+lim A,(s) (C; constant) is the
unique desired ladditlve function. And "s:)o it is possible to restate
corollary 1 as follows: An additive function f with properties 1)~3)
has the finite norm over \UD, if and only if a;, and F(A4;) can be
chosen such that A,(s) con’;'erges uniformly to A(s) with finite norm
over \nJD,, and A(s)=f up to an additive constant.

Remark. The existence condition of a single-valued meromorphic
function with properties 1),2) and 4) is as follows: i) the uniform

1(n) vi
convergence of B,(s)= Zl a,ka;k‘ and |dB|,p, <+ oo (B(s)=lim B,(s))
i=1 k= n—»o0
1n) vi

lim Z_L,wg.ﬂ(a,.):o (=1,2,.)

n-w i=1 k=1 1!

Ii Mg

_ . KV )k
where wj—gdwj wik'(a;)z* at a;.

A
o k!
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Indeed, the single-valuedness of B(s) is equivalent to S dB= lim

By n—+o
S dB,=0(j=1,2,...). While, from proposition 2 it is seen that
By
(n) wvi

— i ik wk) (a.
SBde,, 2mi=1k=1——1)' Fay) .

-~

Corollary 2. Suppose that inflimv,>0, then an arbitrary square

integrable analytic semiexact differential dw is uniquely expressed
by

dw=lim Y <S .dw>dwj,
n=+wo Ajc, \JAj
where the right hand side converges uniformly on every compact sub-
set in R.
If infminv;>0, then from corollary 2 it is seen that a canonical
diﬂ'ernti;l isl uniquely expressed in terms of normal differentials, for
example

27[i . d”‘ij>
(m=1)! ﬁi’iA,ggn(Re am )i

Indeed, since Y ,m—dY,mel,, we obtain

.//pm =den| -

Ym—dY=lim 3 [Sh(npp,,.—dypm)}dw,..

n—+0 A;<Qn

From (2) in §I and SA dY ..=0 the result follows at once.
J

2. Here we suppose that 1nfmm vi>0 and let us consider the
following four vector spaces in thc complex number field:
M(1/8"); The vector space consisting of additive functions f such that
1) f is a multiple of 1/8' 2) S df=0 (j=1, 2,...), S‘df=0 (n=12,...,
i=1, 20, m(m) 3) [df |up, <+ 0. "

According to the corollary of theorem 4 such a f is expressed
uniquely by
@ f=lim'S $ au Y +C  (C: constant),

n—ew i=1k
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where the right hand side is uniformly convergent and its differential
has the finite norm over U D,,.

M(1/8); The vector space of single-valued meromorphic functions g(p)
(e M(1/6")) which are multiples of &”.

W(1/6"); The vector space consisting of meromorphic differentials dw
such that 1) dw is a multiple of 1/6" 2) Sy‘dw=0 3) lldwlop, <+ co.

From theorem 4 it is seen that such a dw is expressed by

. m(n) m(n) pi biy k(n)
@ dw=lim[ " budll,. =% 5 BraY S, ],

n-eo Li=2 1= k—

where the right hand side is uniformly convergent and has the finite
norm over UD,.

W(5); The vector space of meromorphic differentials dw (e W(1/6"))
which are multiples of §'.

Lemma 5. Suppose that infm%n vi>0, then for fe M(1/8') and
dwe W(1/6") '

lim > Resfdw=0

n—w0a;<N, ay

is equivalent to

lim[z Res fdw——-- ¥ w(Aj)SBdf:l=0.

n2olb;cQ, b; 2mi Aj,Bj=2n
Proof. Let U; be a neighborhood of a; (U;cQ, U;nU;=9
(i#j)) and V, a simply connected neighborhood of b, b, (V;=Q,,
VinU;=0), then

0=(df, *dY)n,.—i;';l u,—‘gl Vi

= o e (L3182 o] )

+(Sb(\‘in)+S@(uV‘)— gaa,. )fdw
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-—— 3 w(Aj)SBjdf+2m' S Resfdw

Aj,BjcQ, a;<Q, ay

+2ni Y Resfdw—g fdw.
29,

bi‘:Qn b
As n tends to infinity, the equivalence follows from lemma 3. gq.e.d.

If fe M(1/8') and dwe W(1/8") are expressed by (2) and (3) res-
pectively, then

> Resfdw= Y ﬁa—w Na;)

a/<Q, a; aice, k=1 (k—1)!
O -
S, Resfdw= T ¥ gl rwoey  ($h,=0).

bicQ, b; bicQ, k=1

Thus from lemma 5 we see that

lim Y 3_: )w“"(a) =0

n—=wa; <N, k

is equivalent to

5" ____, (k—=1) _ _
llm[:biggn kzl (k )' f (b ) Zcﬂ,, w(AJ)SBjdij_O

n-o 27” A5,Bj
m(n)
( ;l bi1=0).

Now let us put <f,dw>=lim Y Res fdw for fe M(1/6') and

dwe W(1/6"), then <f, dw> may "g: l::l;grg‘éht for some f, dw and so
we shall consider the subspaces of M(1/8’) and W(1/8") as follows:
Mo(l/é’)={fe>1\71(l/5)|<f, dw> is convergent for all dwe W(1/6")},
Wo(1/8")={dwe W(1/8")|<f. dw> is convergent for all fe M(1/8")},
My(1/8)=M(1/8) n My(1/5"),
Wo(6) =W(d) n Wy(1/5").

It follows from the proof of lemma 5 that the convergence of <f, dw>
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is equivalent to that of lim[ > Resfdw— ! > w(Aj)SB df],
J

n—o Lb;cQ, b; ZTU A],Bjcﬂn

hence from (2), (3) and (4) it is seen that My(1/8’) and Wy(1/8")
contains an infinite number of linearly independent elements, respectively.
Now, according to the method due to Kusunoki [6], we can find

Theorem 5. Suppose that infminvi>0, then

dim (W, (1\6")\Wo(8)) =dim(M,(1\8')\ M, (1\3))

where we suppose it is granted that each of both sides is infinite.

Proof. At first we shall prove that
Wo(8) ={dw € Wy(1/6")| <f, dw> =0, Vfe My(1/8)}
My(1/8)={fe My(1/8")|<f, dw> =0,  Ydwe Wy(1/5")}.
Take a dwe Wy(6), then it is a multiple of 6’ and so
wi(a)=----+ =wv(a,)=0 at ag; (i=1, 2,...).

It follows from (4) that <f, dw> =0 for all fe My(1/8'). Conversely,
if dwe Wy(1/6") satisfies <f, dw>=0 for all fe My(1/5'), then we
choose a,Y,< (ay+0) as f. From (4) it is seen that w®)(a;)=0 (k=
1,..., vy, i=1,2,...), hence dwe Wy(9).

Next take a fe My(1/6), then f is a multiple of 8” and single-valued
function, and so f(b;)=--=fW=1(b)=0 at b, (i=1,2,...) and S df=0
(j=1,2,...), hence from lemma 5 it follows that <f, dw> =0 ?'é)r all
dwe Wy(1/8"). Conversely, let fe My(1/8') satisfy <f, dw> =0 for all
dwe Wo(1/6"). We take bydlT,, ,,— 5 Puavy-t (i%1) as dw, then

by lemma 5 we have

<f, dw> g‘ ")—f“ D(b;) —b;1 f(b,) =0

and so f'(b) = =f=(b)=0 f(b)=f(by) (i#1).
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At b, set dw "2 Ifl k-1, then
k=2 -
By
Z f(k ”(b) 0,
Hence f'(by)=---=f®1~1(b)=0. We take the function f—f(b,) and

denote it by f again, then f becomes to a multiple of 1/5. Finally,
take dw; as dw, thenS df=0, and so it is seen that f is a single-
valued function belongmg to My(1/6). Thus it follows that the latter
equality is valid. The remaining part of theorem follows from the

well known algebraic fact associated to the bilinear form <f, dw>
(cf. for example Yoshida [22]).

Remark. If R has finite genus and 6 is finite, then the dimension
of Wy(1/6")=W(1/8") and My(1/6')=M(1/8') are easily calculated and
we are able to find an analogue of the classical Riemann-Roch theorem.

3. Here let R be an arbitrary open Riemann surface. We shall
express the meromorphic diffferentials treated in preceeding sections in
terms of canonical differentials. Since we make use of the similar way
to that in theorem 4 we shall don’t enter into detail.

Theorem 6. There exists a meromorphic differential dv such that
1) dv is a multiple of 1/6" 2) its singular part is

m(n)
3 Dutilig; ar b, (by, bl real, "3 (b +ibly)=0)
i=1

k=1
o, IR llavlp,
3) ReSAldv—v(Aj), ReSBJdv—v(B,-) and S dv=0 4) SUp - Vi mmv, <+ 00

if and only if
i) the sequence of functions

m(n)
P,,(s)=Re[ S (B @i, + 50 B40s)

m(n) ny 1
=S e, o) |
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k(n) s s s
+ ,Z:, [v(B,-)’ Re &%,Re S‘(PA;—V(Aj),Re S‘%,]

convergens uniformly on every compact subset in RO—U{b,}

.. . . , || ”D,.
ii) the limit function P(s) satisfies su mmv‘<+oo If the

conditions are filled, then dv is expressed by lim(dP,+i*dP,).

Proof. Let V and U;(i=1,2,..., m(n)) be simply connected neigh-

borhoods of s,t and b;, b, respectively, then

O=(d¢g tq9*dv)ﬂ,. V— u Ui
=2n Y ReS Qay ReS dv—Reg dv-Re Ssq),,J)
By Ay t

Aj,BjcQ,
+3m( | +S =, Jerav.
o(uUy) v 02,

By using of (3), (4) in §I and ixb“=;i (b1 +ib};) =0 we have
i= =1

m(n) m By ’i+ib" ok—1¢pP. 4
ngg optdv=2nRe § § (I Tom )

m(n)
=2nRe iz.; (b} 9%, +b1, 63‘,’,1:')

—2nRe i

u[V]’=

1 " &
=i (bikY’:',;_l+b{,‘Y’:;:'_|) .
While, ng &1:8 dv=—2nRe Ssdv, hence
oV t

Re Ssdv =P (s)—-L Jm S @78 dp
' 2n 09, '
Thus, on going to the limit, we get the above mentioned result

Corollary 1. The necessary and sufficient condition for the existence

of an additive function such that 1) f is a multiple of 1/6' 2) its
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! alik + ia',-'k
zk

v
singular part is ¥ at a; (a}, al,; real) 3) Re f is single-
k=1

valued and JmS df=0 4) sup I“m{l””," < 4+ 00 is the uniform convergence
Yn n
of

M,,(s)=Re ZQ Z(alkqlaik"_a,l’kqlagk)

a;cQp k=1

I ”‘3“ < + 00, where
min v

M(s)=lim M,(s). If the conditions are filled, then Ref is expressed
by M(s)+C (C; real constant).

on every compact subset in Ro—\J{a;} and Sup — T
i

Remark. 1) From (2) in §1 it is seen that
f is single-valued if and only if

. oo d+o Lk
lim 2 Z m[aékl{e—d—p—ka_j(‘zi)_aik‘lm dpkBl(ai):|=0

n—»oa;cR, k=1

(Gj=1,2,..).

2) If R satisfies infminvi>0, the statement of theorem 6 (resp. Corol-

lary) is valid whenever 4) is replaced by |dv|,p,<+co (resp. [ldf]up,
< + o).

Corollary 2. Suppose that infminvi>0, then dw(el,,.) s

n i

uniquely expressed by

ooty 3 [0 0o (5] o |

Proposition 7. If f is a single-valued meromorphic function such

2
f satisfies 1), 2) in corollary 1 and supg%n)—<+oo, then
Ref(s)=Ref(t)+ lim M,(s),

where C,,(f)=mz‘1)xf(p).
PEDn
In fact, from the proof of theorem 6 it follows that
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5) Reg df=M,(s)— o Jm Sm ®P9df .

By the same way as in the proof of (1) in lemma 3, with a slight
modification, it is possible to show that

2 2
©) (. onsar| san Sl jaarg, .

Thus, as n tends to oo, we obtain the above mentioned result.
g.e.d.

Proposition 8. Let R be an arbitrary open Riemann surface and
f(p) be a non-constant holomorphic function on R, then for any

canonical exhaustion {Q,} the series Z C?ﬂz is always convergent,
where C,(f)= maXIf(P)I

peD,

Proof. 1If ”‘_\__‘,1 ol (f)

there is a canonical exhaustion {Q, }(={Q,}) such that

——2— is divergent, then from (6) it is seen that

lim S ®2:8df=0,
n’ = JoR,

and so from (5) we have Ref(s)=Ref(t), where ¢ is fixed in R. Hence
f(s) becomes a constant. q.ed.

4. Finally we shall briefly mention about a formulation of Rie-
mann-Roch theorem in terms of canonical differentials and integrals.
Let R be an arbitrary open Riemann surface. If the series

f=C+11m Z Z (alkqlagk'*'alkwazk)

n—+w a; <N, k=

converges uniformly on every compact subset in Ro—\U{a;} and |df]p,

< +00, then we denote by N(1/8') the real vector s'pace consisting of

such functions, where aj,, a, are real and C is complex. Clearly

N(1/6") is non trivial. Let V(1/5”) be the vector space of meromorphic

differentials dv such that 1) dv is a multiple of 1/§" 2) S Adv=0
Tn
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(i=1,...,mn), n=1,2,.) 3) SUPK;”D‘"<+OO From theorem 6 it

follows that dv (e V(1/6")) is expressed by

m(n) ny
dv—hm[Z (Bi1Pp, b, 071 Pbp,) — E Z (btk‘//b; '+b.k‘/’b’{ D)

+ A,,§=9n<(R°SB,dU)¢" B (RCSA,‘h))q)B’):I ’

where the right hand side is uniformly convergent on every compact
subset in Ro—\J{b,} and b}, b7, are real. Here we suppose that

V(1/6")# {0}. If R satisfies infminv;>0 it is obvious that V(1/6")# {0}.

Then by the same way as in the proof of lemma 5 it is seen that
for fe N(1/8") and dve V(1/8") ’

lim {Re( > Resfdv+ 3 Resfdv)

n—o ai€Q, ay bicQ, by

e o (] om0 )] o)

and so limRe Y Res fdv=0 is equivalent to

n—»o0 ai<cNy, aj

i, 7 [(0] )] ) (] om0

+2nRe( X Resfdv)}=

bicQ, by
While, it is seen that

(n) vy
Re T Resfdo=3 3 =T

a;cR, a;
[aix(Re U(k)(ai) —a},(Jm v(k)(ai))]

m(n)
Re Y Resfdw=i§ ,‘; (kll)'

bi<Q, by

[bi(Re £ %D (by) — by (Jm £ 4= 1(5:))] .
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Now we put

«f, dv»=1imRe Y Res fdv

n>o  aiC@n ay

and define four vector spaces in the real number field.
No(1/8")={fe N(1/8")|« f, dv»> is convergent for all dve V(1/86")}
Vo(1/8")={dve V(1/8")|« f, dv» is convergent for all fe N(1/6)}
No(1/8)={fe No(1/8")|f is single-valued and is a multiple of 6"}
Vo(8)={dve Vy(1/0")|dv is a multiple of J'}.

We make use of « f, dv» as a bilinear functional on Ny(1/8") x Vy(1/8")
and follow up the same process as in the proof of theorem 5, then we
obtain

dimg(Vo(1/8")/Vo(0)) =dimg(No(1/8")/No(1/6))

where dimy indicates real dimension.
Similarly, if we replace the norm condition |df|,p, <+ o in

the definition of N(1/8’) by sup—lll—l%<+oo and that of V(1/3") by

i
ldv| up, <+ and start from them, then we have the corresponding
result,
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