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As is well known, the tangent space at any point of a Riemannian
manifold is a Euclidean space. On the other hand, in Finsler mani-
folds and modern Banach manifolds, the tangent space at any point
is a Minkowski space, but the tangent spaces at two distinct points
are, in general, not the same Minkowski space. Hence it seems sig-
nificant to us to study the manifolds with the property such that the
tangent spaces at arbitrary points of them are congruent (isometrically
linearly isomorphic) to a single Minkowski space. We will call a
Finsler manifold with this property as a Finsler manifold modeled on
a Minkowski space.

The main purpose of the present paper is to develop the theory
of Finsler manifolds modeled on a Minkowski space and to give some
examples of them.

First, we shall introduce a Minkowski norm and linear Lie groups
leaving the Minkowski norm invariant. In the section 2, we shall
define the notion of {V, H}-manifolds, where V is a Minkowski space
and H is a linear Lie group leaving the Minkowski norm invariant.
We shall show that the {V, H}-manifold offers an example of a Finsler
manifold modeled on a Minkowski space. In the section 3, it will
be proved that a {V, H}-manifold is a generalized Berwald space de-
fined by Hashiguchi [7], and also a generalized Berwald space is a
Finsler manifold modeled on a Minkowski space. We shall consider,
in the section 4, a condition for a Finsler manifold to be a Finsler
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manifold modeled on a Minkowski space. The last two sections will
be devoted to give some examples of the {V, H}-manifold, which are
found among completely parallelizable manifolds and so-called Randers
spaces.

§1. Minkowski spaces

Let V be an n-dimensional Minkowski space, that is to say, an
n-dimensional linear space on which a Minkowski norm is defined.
Here a Minkowski norm on the linear space V is a real valued function
on V, whose value at a point £ we denote by ||&]|, with properties:

) ISh=0.

) IEI=0 if and only if &=0.
Q) €1+ Sl =S, +1E0

4) Ik&ll=kiel  for k>0.

Moreover we assume in this paper that
(5) The Minkowski norm ||| can be represented explicitly by
€N =f(&" &2, &M

for any vector E=¢&le, +&E2¢,+ -+ &%, (=&%,) where {¢,} is a given
basis of V, and the function f(&!, £2,...,¢&") is 3-times continuously
differentiable at &x0. For brevity we write f(&!, &2,...,&") as f(&%)
or f(&) hereafter.

Lemma. In a Minkowski space V, let us define a set G by
G={TITeGL(n, R), [TE¢lI=&l  for any CeV}

where GL(n, R) is the real general linear Lie group of degree n.
Then the set G is a Lie group.

Proof. 1If T, T,eG, then |T,Ty¢|=|T¢|=|¢&|, that is, T, T,€eG.
And if TeG, then there exists T-'eGL(n, R) and |&|=|TT '¢|
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=|T-'¢| holds good, that is T-'e€G. Therefore G is a subgroup of
GL(n, R). Next, for T, T,..., T,,...€G where lim T,=TeGL(n, R),
the relation lim || T,&]=]&| holds good. On the o:l;e? hand, the con-
dition (5) telkl;wus that lim | T¢|=|T¢&||. Thus TeG. Then G is a
closed set in GL(n, R). l’fl_éﬁce G is a Lie group [11].

§2. {V, H}-manifolds

Let ¥V be a Minkowski space and G be a Lie group given in the
preceding section, and H be a Lie subgroup of G. Suppose that an
n-dimensional C®-manifold M admits the H-structure in the sense of
a G-structure ([6], [15]). Then we can introduce a Finsler metric on
M by regarding the tangent space at each point of M as the Minkowski
space V such as the following:

Let {U,} be a coordinate neighborhood system, {X{*, X{,...,
X} be an n-frame of U, adapted to the H-structure, and v be any
vector in the tangent space T, M) at a point p of M. Then we
can express v as v=¢*X4, and define the length [[v]| of v by the
equation |vl|,=f(&*). This definition does not depend on the choice
of the local coordinate system and the adapted frame. Because, for
peU,nUy and for an arbitrary n-frame {X'#’} of U, we have X4
=TiXy® where the matrix (T§)eH. If we put v=nfX§® in Up,
we have nf=T~4> Now, owing to the property of H, we have

lollg=f(n*)=F(T§EM=f(E)=1vl,.

So |v| is well-defined over M. This definition tells us that the tangent
space at each point of M is the Minkowski space V.
On the other hand, we set

(2.1 ngA’=ii(A)“axai—,
(4)

then Ai{,, are n linearly independent contravariant vectors in U,.
Hereafter we abbreviate them as X,=A1.0/0x!. Of course, in U,, we
can express v as

D= 0iQ)oxi =E2X = JiE0[dx!
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then we have ¢*=p%v/, where we put

(2.2) ()1 =3).

Thus we have

(2.3) ol =f(u3v?).

Consequently, it is observed that the function
(2.4) Fx, »)=f(u3(x)y9)

just gives a Finsler metric on M ([9], [10], [13]). We sum up these
facts in the following theorem:

Theorem 1. Let V be an n-dimensional Minkowski space and
H be a linear Lie group leaving the Minkowski norm invariant. If
an n-dimensional C®-manifold M admits the H-structure, then the
Minkowski norm can be induced in the tangent space at each point
of M, and it gives M a Finsler metric with the form (2.4).

A Finsler metric defined in Theorem 1 is called a {V, H}-Finsler
metric and a manifold admitting a {V, H}-Finsler metric is called a
{V, H}-manifold hereafter. If a Minkowski space V is given, the Lie
group G is uniquely determined. But, since the Lie subgroup H of G
can be arbitrarily chosen, various kinds of H-structure may be con-
sidered. These {V, H}-manifolds, however, possess commonly the
property that the tangent space at each point is congruent to the
Minkowski space V.

Now, let M be a Finsler manifold with a metric function F(x, y).
The tangent space T,(M) at each point p=(x,) of M can be regarded
as a Minkowski space, where the norm |v|| of any vector v=uv'd/dx’
e T(M) is given by |v|=F(xo, v). Therefore, T,(M) can be called the
tangent Minkowski space at p. For arbitrary distinct two points p
and q of M, T(M) is not congruent to T, (M) in general, nevertheless,
if T(M) and T(M) are always congruent mutually, then M is called
a Finsler manifold modeled on a Minkowski space. A Finsler space
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is not necessarily a Finsler manifold modeled on a Minkowski space,
but a {V, H}-manifold is a Finsler manifold moedeled on a Minkowski
space, the model Minkowski space of which is V itself.

Remark. Let E be an n-dimensional Euclidean space, and O(n)
be the orthogonal group of degree n, then an {E, O(n)}-manifold is
nothing but a Riemannian manifold. Conversely, if a {¥, H}-manifold
is a Riemannian manifold, then V is necessarily a Euclidean space and
H is a Lie subgroup of O(n).

§3. Generalized Berwald spaces

Recently, M. Hashiguchi [7] defined the notion of a generalized
Berwald space and investigated it in detail. Following his work, a
Finsler space is said to be a generalized Berwald space if it is possible
to introduce a metrical Finsler connection in such a way that the con-
nection coefficients I'}, depend on position only. Now, we turn to
the relation between the Finsler manifold modeled on a Minkowski
space and the generalized Berwald space. In the following, we use the
notation §; and ¢, instead of 9/0x' and 9/dy' respectively.

Theorem 2. In a {V, H}-manifold, let I'i(x) be a G-connection
relative to the H-structure, then the metric tensor of the {V, H}-
Finsler metric is covariant constant with respect to the Finsler con-
nection {I'(x), T'i(x)y, Ci}, that is, a {V, H}-manifold is a gener-

alized Berwald space, where we put C§k=—£— 90,9 ji

Proof. Let Iy be the Lie algebra of H. For any A=(A45)ebh, we

have f((exptA)E)=f(£) because of (exptd)e H. Hence [%f((exp tA)é)]
=0 holds, which leads us to

t=0

3.1 a{;g) AJEP=0.

On the other hand, from the theory of G-structure [15], it is well-
known that there exists a G-connection relative to the [H-structure, which



644 Yoshihiro Ichijyo

satisfies, for any vector v=v'd/dx'=v*X,,

P¥X,=vflry,X, and v}, e

with respect to the adapted frame {X,}, where F* means the covariant
differentiation with respect to the G-connection. Then (3.1) leads us
to af(&)[ocrvmul I'},E* =0 for any vector v. Hence we have

(3.2) of (§)[oE uiTj,E*=0.
g g 0 k. 0 .
Setting Vﬁa 77 =TIk, ayE Ve have
* j 2 i jm d —pip ¥ i a
Vu/\/a';v‘l((‘}j/ua'*'r",jia)—a?‘—U"leaw‘.

From the fact v/’[‘}aXy=v'"uff,F},).iy~5%—,

for any v. Then we have V,’}j/lg',:yﬁ,F;aM, that is,

we have viP¥Ai=v"ub I}, AL

(3.3) T fo= 137 524
Substituting (3.3) into (3.2), we have
(3.4) U ()OS FA,E*=0.

Now, we denote by F, the covariant differentiation with respect to
the connection {I'% (x), I'j,(x)y'}, e.g., for a tensor Ti,

(3.5) v Ti=0,T =0, Tily '+ i Tn =TT

Then we have F;y/=0. If the components of the tensor T are func-
tions of position alone, ¥, T becomes to equal to F¥Ti Using the
fact that A} and u? are functions of position only, we have also
Vini=—piP¥A,u%.  Hence, differentiating (2.4) covariantly and using
(3.4), we obtain

ViF(x, y)=—0f ()08 ui P28 =0.

Since I'i, depend on position alone, the commutation formula Vi6j=
3jl7i holds. Thus we obtain
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(3.6) Vig5=0,0{FVF)=0.

This shows us that the Finsler space admits a metrical Finsler connec-
tion {I'i(x), I'(x)y!, Ci\}, where C§k=%g“é,gjk. Hence the Finsler
space is a generalized Berwald space in the sense of Hashiguchi ([7],

[8]). Thus the proof is complete.

If a G-connection relative to the H-structure is symmetric, that is,
ri,=ri;, then owing to Theorem of Matsumoto ([9], [10]), we obtain
that the G-connection I'i;(x) is the Cartan’s connection F;k itself, and
the manifold is a Berwald space. If in addition to this assumption,
we assume that the connection I (x) is flat in the sense of affinely
connected manifold, then as is well known, the manifold is a locally
Minkowski space. Hence we obtain

Theorem 3. Let M be a {V, H}-manifold. If a G-connection
relative to the H-structure is symmetric, then M is a Berwald space
with respect to the {V, H}-Finsler metric. If the G-connection is flat,
then M is a locally Minkowski space.

Moreover we obtain

Theorem 4. Let M be a connected Finsler manifold and admit
a linear connection I'iy(x) with respect to which M is a generalized
Berwald space. Then M is a Finsler manifold modeled on a Min-

kowski space.

Proof. From our assumption and the proof of Theorem 2, we
have

V.g:;=00,FV,F)=0.
Contracting this equation with y’ and yJ, we have
(3.7 7 F=0,F(x, y)—0,F(x, y)[(x)y'=0.

On the other hand, for arbitrary distinct two points p and ¢ in M,
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we can take a piecewise differentiable curve C joining p and ¢q. We
represent the curve C by C={x(1); 0=t=<1} where x(0)=p and x(1)=gq,
and take a vector v in T,(M). Then we denote by Y(r) the vector
field on C which is given by parallel diéplacement of v with respect
to the linear connection I'i,(x) along the curve C. Of course Y(0)=v.
If we put Y(1)=7 and define a mapping T: T(M)->T(M) by T(v)="0,
then T is a linear isomorphism. Moreover we see

d _ dxt dym
i Fx@), Y(t))=0,F(x, Y)7E-+a,,,F(x, Y) S

= (@iF(x, ¥) =0, F(x, Y)I‘;'&(x)Y')—(fz);i
=0.

Hence the length || Y(¢)| of Y(tr) with respect to the given Finsler
metric is constant on the curve C. Thus the mapping T maps a
vector v in T,(M) isometrically to & in T(M). That is to say, T is
an isometrically linearly isomorphic mapping of T,(M) onto T (M).
Hence T,(M) and T(M) are congruent. Since the manifold is con-
nected, M is a Finsler manifold modeled on a Minkowski space.

§4. Finsler manifolds
For the Finsler metric F(x, y)=f(u%x)y/) on a {V, H}-manifold, we

have

__L Q)

9k Twﬂ‘}(x)#g(x) )

3r2
Cije= .l)_ akgij :% % lt?(x)#’j'(x)#Z(X) )

where we put £*=pu%(x)y’. Now we denote the metric tensor and C-tensor
in the Minkowski spacc V by gf, and Cf%;, respectively. Then we have

(4.1) G k=g %5 () y™us(x)h(x) ,

(4.2) Cijn=Ca (ua(x)y™ypd () pf(x)ul(x) .
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Differentiating (4.1) with respect to x*, we have
4.3) 019 j = A0 (2C ji,y™ + g 07 + 9,07 .
On the other hand (3.6) shows us
g jx = Trn2C Y™ + 907 + 9 0% -
Hence, by (4.3), we have
QCjky™ + g7 +9 ;00) (A5 Oty — 1) =0.

Now, let us use the notation /% defined in the preceding section and
the notation 1 defined by E. Cartan. Since the vectors ug depend on
position only, we have

(44) lzyttuz(zcjkrym+gkr67'+gjrazl)=0'
Contracting (4.4) with y/ and y*, we have
(4.5) gudiPfuny'yn=0.
This equation can be rewritten easily in the form
(4.6) gttty ym=0.
Thus we obtain

Theorem 5. In a {V, H}-manifold, the n linearly independent
covariant vectors u?(x) defined by (2.1) and (2.2) satisfy the equation
gLV Fugy'ym=0, where FV* means the ordinary covariant differ-
entiation with respect to a G-connection relative to the H-structure.
Moreover this equation can be rewritten as g,ALug,,y'y"=0, where

| means the Cartan’s covariant differentiation with respect to the {V,
H}-Finsler metric.

Now let us consider the converse of this theorem. Let M be
an n-dimensional connected Finsler manifold. We assume here that
M is covered by a coordinate neighborhood system {U,} each of which
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admits n linearly independent covariant vectors p¥(x) satisfying (4.6)
where (u%)=(A")"! and 1 means the Cartan’s covariant differentiation
with respect to the given Finsler metric. In each U,, we shall calculate
A;=0;F(x, y)+0,F(x, y)o;Atucym. Since F(x, »)=(g;;y'y)'2, A; are re-
written as

Ai = ‘?'I—F (alg lm.vl.vm + 2glr,1’lai'1;l‘g:,1"")

=—21F- (0:91m—291,450,15)y' y™ .
Owing the fact g,,;=0 and (4.6), we have
2F A= (T 50— 91l = 20, DYy
= =29, AHth V' Y™
=0.
Thus we obtain
(4.7) OiF(x, y)+0,F(x, )0 Arugym=0.
Now on putting £*=puZ(x)y™, we can set
F(x, y)=F 4(x", 24(x)E) =f4(x, £).

Then (4.7) means df,(x, &)/0x'=0. Thus we have F(x, y)=f,(u¥(x)y")
in each given coordinate neighborhood U. This implies that the
coordinate neighborhood U, of M is a Finsler space modeled on a
Minkowski space V,, whose norm function is given by f,(£%). Next,
take another given coordinate neighborhood Ujp such that U, n Ugx¢.
Then Uy is, similarly, a Finsler space modeled on a Minkowski space
Vs, such that the norm function of Vg, is given by fy(E)=F(%, y)
where we put & =/2(%)j"". Since the Finsler metric is given
globally on M, the tangent Minkowski space T,(M) at any point p
of UynUy is congruent to V,, and, at the same time, to V5. Then
Viay and Vg, are mutually congruent. Hence, from our assumption, we
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have proved the following theorem:

Theorem 6. If a Finsler manifold M is connected and is
covered by a coordinate neighborhood system {U,}, each of which
admits n linearly independent covariant vectors p%(x) satisfying the
equation g, 25us,,y'y" =0, where (A)=(u})"' and | means the co-
variant differentiation defined by E. Cartan, then M is a Finsler

manifold modeled on a Minkowski space.

§5. Completely parallelizable manifolds

Let M be a completely parallelizable manifold, in other words,
let M admit an {e}-structure. Then there exist n linearly independent
covariant vector fields u%(x) on M. We take them as u%(x) defined
in §2. Since the Lie algebra of the Lie group {e} is {0}, the G-con-
nection relative to the {e}-structure is given uniquely by

(5.1) ri =210, .

Since the Lie subgroup H is {e} only, we can take any Minkowski
space as V. Therefore, if we assign a Minkowski space V and denote
its norm function by f, we can write the {V, {e}}-Finsler metric con-
cretely as F(x, y)=f(u#(x)y?). Of course, from Theorem 2, we have
7.9:;=0 where 7 means the covariant differentiation with respect to
I'ii(x) defined by (5.1) and I'jj(x)y'. At the same time, we have that
M is a generalized Berwald space. Hence we get

Theorem 7. Let M be an n-dimensional completely parallel-
izable manifold and V be any Minkowski space. Then M admits a
{V, {e}}-Finsler metric with respect to which M is a generalized
Berwald space.

If we take up, for an example, £27(n) as the Minkowski space
V, where p is a natural number. As is well known, the space £2P(n)
is an n-dimensional Banach space whose norm is given by |[&]=

(i(é“)z”)'/zl’. Then, the {£27(n), {e}}-Finsler metric can be written as
a=1
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(5.2) Flx, ) =( 2 (wi(x)y)2ntizr.
This is a concrete example of a {V, H}-Finsler metric.

§6. Special Randers space

Let S be a Minkowski space whose Minkowski norm is given by

6.1 e =+ £ ke,

where k is constant and 0<k<1.

Now, it is easy to verify ‘““The linear Lie group G which leaves
the Minkowski norm (6.1) invariant has the form 1x0(n—1).". We
shall prove

Theorem 8. Let M be an n-dimensional manifold. If M admits
a {1 xO(n—"1)}-structure, then M admits a Finsler metric such that

(6.2) F(x, )= a;(x)y'y/ + kb(x)y’,

where a;(x) is a Riemannian metric on M and b(x) is a covariant
vector field on M and satisfies a'ibb;=1. Conversely, if M admits
a Finsler metric of (6.2), then M is a {S, 1 xO(n—1)}—manifold.

Proof. Denote by X,=A1.0/0x! an adapted frame of the
{I' x O(n— 1)}-structure, then Ai(x) is a contravariant vector field on M.
Put (A) " '=(u¥) and iu?(x),u‘;(x)=a,.j, then a;; gives a Riemannian
metric on M, because a;t! the fact that 1xO(n—1)=O(n). Then a;;ALA}
=0d,; holds good. If we put uf=b; then b(x) is a covariant vector
field on M and a'/bb;=1 is true. By applying Theorem | to our
case, we obtain that M admits the {S, | x O(n— 1)}-Finsler metric such
that

Fex, )=y 3 (13(y)2 + Kt ()

~ A + KBy
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Conversely, we assume that M admits a Finsler metric given by (6.2).
Now we take ul(x)=by(x) and u%(x) to form an orthogonal ennuple
with respect to the Riemannian metric a;(x). Then we have a;;(x)
=§1,u?(x)u°j(x) and a;;(x)y‘y’ =a'2='l(p?(x)y')2. Hence we have proved
Theorem 8.

Lastly we add a remark. A Finsler metric given by

F(x, y)= \/aij(x)yiyj+ b(x)yt,

where a;; is a Riemannian metric and b(x) is a covariant vector field,
is called a Randers metric. The Finsler metric given in Theorem 8
is a Randers metric. A manifold with this special Randers metric is a
generalized Berwald space (Theorem 2) and, at the same time, an {S,
1 x O(n—1)}-manifold (Theorem 8). Besides, Hashiguchi and the present
author have obtained in their paper [8] some results about the relation
between a generalized Berwald space and (e, f)-metric which is a gener-
alization of the Randers metric.

COLLEGE OF GENERAL EDUCATION,
UNIVERSITY OF TOKUSHIMA
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