Subrings of a polynomial ring of one variable

By
Masayoshi Nagata

(Received, Oct. 8, 1976)

The following problem was communicated to the writer by Dr. A. Zaks of the University of Oregon:

We consider the polynomial ring $A[X]$ of one variable X over a normal domain A. Give a criterion for a ring R to coincide with $A[X] \cap K$ with a suitable field K containing A.

In this article, we give an answer as follows:
Theorem 1. Such an R is characterized by the property that there is a polynomial f which belongs to $X A[X]$ (i.e., the constant term of f is zero) such that R is generated by $S_{i}=\left\{g \in A[X] \mid \exists a, b \in A, a \neq 0, a g=b f^{i}\right\}(i=1,2, \cdots)$.

As for the proof, if $R=A$, then f is zero, and we assume that $R \neq A$. On the other hand, let k and L be the fields of quotients of A and R, respectively. Then we may assume that $K=L$. First we prove a lemma:

Lemma. 2 Assume that A is a valuation ring of k and that $f=c_{1} X^{n}+$ $c_{2} X^{n-1}+\cdots+c_{n} X$ is a polynomial over A such that some of the coefficients c_{i} are units in A. Then a polynomial $h=e_{0}+e_{1} f+\cdots+e_{s} f^{s}$, in f with coefficients e_{i} in k, is in $A[X]$ if and only if all e_{i} are in A.

Proof. The if part is obvious, and we want to prove the only if part. Assume that $h \in A[X] . e_{0}=h(0)$, and therefore $e_{0} \in A$. Then $f\left(e_{1}+\cdots+e_{s} f^{s-1}\right)$ $\in A[X]$. Since f is a primitive polynomial, we see that $e_{1}+\cdots+e_{s} f^{s-1} \in A[X]$. Thus we prove the assertion by induction on s.

QED
The if part of Theorem 1 follows from the following result:
Proposition 3. Under the assumption at the beginning, if $f \in X A[X]$, then $A[X] \cap k(f)$ is the ring generated by $S_{i}(i=1,2, \cdots)$ over A.

Proof. It is obvious that all the S_{i} are contained in $A[X] \cap k(f)$. Conversely, let h be an arbitrary element of $A[X] \cap k(f)$. We may assume that $f=c_{1} X^{n}+c_{2} X^{n-1}+\cdots+c_{n} X, \quad c_{i} \in A, c_{1} \neq 0$. Then X is integral over $A[f$, $\left.c_{1}^{-1}\right]$ and therefore $A[X] \cap k(f) \subseteq A\left[f, c_{1}^{-1}\right]$. This shows that $h=e_{0}+e_{1} f+\cdots$ $+e_{s} f^{s}$ with e_{i} in $A\left[c_{1}^{-1}\right] \subseteq k$. Since A is normal, A is the intersection of valu-
ation rings A_{λ} of k containing A. For each A_{λ}, the expression of h is modified: $h=e_{\lambda 0}+e_{\lambda 1} f_{\lambda}+\cdots+e_{\lambda s} f_{\lambda}^{s}$ with $f_{\lambda} \in S_{1}$ such that f_{λ} is a primitive polynomial over A_{λ}. Obviously $e_{\lambda i} f^{i}=e_{i} f^{i}$ for each i. Now Lemma 2 shows that $e_{\lambda i} f^{i}$ is in $A_{\lambda}[X]$. Namely, $e_{i} f^{i}$ is in $A_{\lambda}[X]$ for any i, λ. Thus each $e_{i} f^{i}$ is in $A[X]$ and $e_{i} f^{i} \in S_{i}$.

QED
Next we prove another lemma:
Lemma 4. Let f and g be polynomials in X over k such that (i) f and g are coprime and (ii) $\operatorname{deg} f>\operatorname{deg} g \geq 1$. Then we have $k(f \mid g) \cap k[X]=k$. and $k(f \mid g) \cap A[X]=A$.

Proof. Assume that $h=e_{0}+e_{1} X+\cdots+e_{s} X^{s}\left(e_{i} \in k, e_{s} \neq 0, s \geq 1\right)$ is in $k(f \mid g)$. Then we can write

$$
h=\frac{b_{0}(f \mid g)^{n}+b_{1}(f \mid g)^{n-1}+\cdots+b_{n}}{(f \mid g)^{m}+c_{1}(f \mid g)^{m-1}+\cdots+c_{m}} \quad\left(b_{i}, c_{j} \in k ; \quad b_{0} \neq 0\right) .
$$

Since $s \geq l$ and $\operatorname{deg} f>\operatorname{deg} g$, we see that $n>m$. Then we have

$$
b_{0} f^{n}+b_{1} f^{n-1} g+\cdots+b_{n} g^{n}=h\left(f^{m}+c_{1} f^{m-1} g+\cdots+c_{m} g^{m}\right) g^{n-m}
$$

and we see that f^{n} is devisible by g, contradicting our assupmtion. Therefore $s=0$ and $k(f \mid g) \cap k[X]=k$. Consequently, $k(f \mid g) \cap A[X]=A$.

Now we come to the proof of the converse part of Theorem l. By the theorem of Lüroth, L is a simple transcendental extension of k, and $L=k(f \mid g)$ with $f, g \in k[X]$ (f and g coprime). We may assume that $\operatorname{deg} f \geq \operatorname{deg} g$. If $\operatorname{deg} f=\operatorname{deg} g$, then subtracting a suitable element of k from f / g and taking inverse, we may assume that $\operatorname{deg} f>\operatorname{deg} g$. Then Lemma 4 shows that $g \in k$ because of our assumption that $R \neq A$. Thus we may assume that $g=1$ and $f \in X A[X]$. This f is the required polynomial by virtue of Proposition 3. Thus we complete the proof of Theorem 1.

In closing this article, we add two remarks:
(l) In case A is a field, somewhat related results were given by A. Zaks [Israel J. Math. 9 (1971), pp. 285-289] and by P. M. Cohn [Proc. London Math. Soc. (3) 14 (1964), pp. 618-632].
(2) In general, under the notation of Theorem 1 , assuming that $f \neq 0$, we see that the ring generated by all the S_{i} over A is generated by S_{1} if and only if $\left(I^{-1}\right)^{n}=I^{-n}$; where I is the ideal generated by the coefficients of f and $I^{-n}=\left\{x \in k \mid x I^{n} \subseteq A\right\} \quad(n=1,2, \cdots)$.
(The proof is easy.)

