Spherical matrix functions on locally compact groups of a certain type

By
Hitoshi Shin’ya
(Communicated by Prof. H. Yoshizawa Nov. 26, 1976)

Introduction

Let G be a locally compact unimodular group and K a compact subgroup of G. Let δ be an equivalence class of irreducible representations of K of degree d, and $k \rightarrow D(k)$ an irreducible unitary matrix representation of K belonging to δ. We put $\chi_{\delta}(k)=d$-trace $D(k)$.

A $p \times p$-matrix valued continuous function $U=U(x)$ on G is called a spherical matrix function of type δ if it satisfies the following four conditions;
(i) $U^{\circ}(x)=U(x)$, where $U^{\circ}(x)=\int_{K} U\left(k x k^{-1}\right) d k$,
(ii) $U * \chi_{\delta}(x)=U(x)$, where $U * \chi_{\delta}(x)=\int_{K} U\left(x k^{-1}\right) \chi_{\delta}(k) d k$,
(iii) $\{U(x) ; x \in G\}$ is an irreducible family of matrices,
(iv) $\int_{K} U\left(k x k^{-1} y\right) d k=U(x) U(y)$ for any $x, y \in G$, where $d k$ is the normalized Haar measure on K.

We assume that G has a continuous decomposition $G=S K(S \cap K=\{e\})$, where S is a closed subgroup of G and e is the unit element in G. Let $s \rightarrow \Lambda(s)$ be a finite-dimensional irreducible matrix representation of S. We put

$$
\begin{aligned}
& \tilde{W}(x)=\overline{D(k)} \otimes \Lambda\left(s^{-1}\right) \quad(x=k s, k \in K, s \in S) \\
& W(x)=\tilde{W}^{\circ}\left(x^{-1}\right) \equiv \int_{K} \tilde{W}\left(k x^{-1} k^{-1}\right) d k
\end{aligned}
$$

then $W(x)$ satisfies the above conditions (i), (ii), and (iv), and its each "irreducible component" is a spherical matrix function of type δ.

Conversely, are all spherical matrix functions of type δ given in this way? If G is a motion group or a connected semi-simple Lie group with finite center and if K is a maximal compact subgroup of G, then we have an affirmative answer [1]. But, in general, the author obtained a weaker result only for quasibounded spherical matrix functions. Namely, for a quasi-bounded spherical matrix function U of type δ, we can find an irreducible Banach representation $s \rightarrow \Lambda(s)$ of S such that U is equivalent to an "irreducible component" of $W(x)$. Here $W(x)=\tilde{W}^{\circ}\left(x^{-1}\right)$ with $\tilde{W}(x)=\overline{D(k)} \otimes \Lambda\left(s^{-1}\right)(x=k s, k \in K, s \in S)$, and in this case, the author does not know whether the representation $s \rightarrow \Lambda(s)$ is finite-dimensional or not.

The quasi-boundedness of spherical matrix functions make it possible for us to utilize Banach algebras in our study. In a Banach algebra a maximal regular left ideal is closed, but in a more general algebra we don't know whether it is closed or not. This is just the reason why we need the qausi-boundedness of spherical matrix functions.

Finally, the author expresses his hearty thanks to Prof. N. Tatsuuma and Prof. T. Hirai for their kind advices.

§ 1. Quasi-bounded spherical matrix functions

Let G be a locally compact unimodular group, and K a compact subgroup of G. Let δ be an equivalence class of irreducible representations of K and $\chi_{\delta}(k)(k \in K)$ be as in the introduction. A $p \times p$-matrix valued continuous function $U=U(x)$ on G is called a spherical matrix function of type δ if it satisfies the four conditions (i) \sim (iv) in the introcdution.

A function $\rho(x)$ on G is called a semi-norm on G if it satisfies the following conditions;
(i) $\rho(x)>0$ for all $x \in G$,
(ii) $\rho(x y) \leqq \rho(x) \rho(y)$ for any $x, y \in G$,
(iii) lower semi-continuous,
(iv) bounded on every compact subset.

If a spherical matrix function U satisfies the inequality

$$
\left|u_{i j}(x)\right| \leqq \alpha \rho(x) \quad(1 \leqq i, j \leqq p)
$$

for a semi-norm $\rho(x)$ and a positive constant α, where $u_{i j}(x)$ is the (i, j)-matrix element of $U(x)$, then U is called quasi-bounded.

If a topologically irreducible representation of G on a Banach space contains δp-times, then it gives us a quasi-bounded $p \times p$-spherical matrix function $U=U(x)$ of type $\delta[1]$. Conversely every quasi-bounded spherical matrix function is given by a topologically irreducible representation of G on a Banach space.

§2. Banach algebras $A_{\rho}, A_{\rho}{ }^{\circ}, L_{\rho}(G) * \overline{\boldsymbol{\chi}}_{\delta}$, and $L_{\rho}{ }^{\circ}(\boldsymbol{\delta})$

Let G and K be as in $\S 1$. We assume that there exists a closed subgroup S of G such that

$$
G=S K, \quad S \cap K=\{e\},
$$

where e is the unit element in G, and that the decomposition $x=s k(s \in S, k \in K)$ is continuous. Fix a left Haar measure $d \mu(s)$ on S and denote by $d k$ the normalized Haar measure on K, then $d x=d \mu(s) d k$ is a Haar measure on G.

Let $\rho(x)$ be a semi-norm on G. We shall denote by $L_{\rho}(G)$ the Banach algebra of measurable functions f on G satisfying

$$
\|f\|_{\rho}=\int_{G}|f(x)| \rho(x) d x<+\infty .
$$

For an equivalence class δ of irreducible representations of K of degree d, we
choose an irreducible representation $k \rightarrow D(k)$ of K belonging to δ such that all $D(k)$ are unitary matrices. Put

$$
L_{\rho}(G) * \bar{\chi}_{\delta}=\left\{f * \bar{\chi}_{\delta} ; f \in L_{\rho}(G)\right\}
$$

where $\bar{\chi}_{\delta}$ is the complex conjugate of χ_{δ}, then this is clearly a closed subalgebra of $L_{\rho}(G)$.

For a $d \times d$-matrix valued measurable function $F(s)$ on S, we write $f_{i j}(s)$ for its (i, j)-matrix element. Then we shall denote by A_{ρ} the Banach space of all $F(s)$ which satisfy

$$
\|F\|_{\rho}=d \cdot \operatorname{Max}_{1 \leq i, j \leq d} \int_{S}\left|f_{i j}(s)\right| \rho(s) d \mu(s)<+\infty .
$$

For $F, G \in A_{\rho}$, we define a product $F * G$ as

$$
F * G(s)=\int_{S} F(t) G\left(t^{-1} s\right) d \mu(t)
$$

With this product A is a Banach algebra, namely we have the inequality $\|F * G\|_{\rho} \leqq\|F\|_{\rho}\|G\|_{\rho}$.

Now we have two Banach algebras $L_{\rho}(G) * \bar{\chi}_{\delta}$ and A_{ρ}. Define a linear mapping Φ of $L_{\rho}(G) * \bar{\chi}_{\delta}$ to A_{ρ} as

$$
\Phi(f)(s)=\int_{K} \overline{D(\bar{k})} f\left(s k^{-1}\right) d k
$$

If we choose a positive constant C such that $\rho(k) \leqq C$ for all $k \in K$, then we have

$$
\rho(x) \leqq \rho(x k) \rho\left(k^{-1}\right) \leqq C \rho(x k) \quad(x \in G, k \in K)
$$

From this, we easily obtain an inequality

$$
\|\Phi(f)\|_{\rho} \leqq d C\|f\|_{\rho}
$$

This implies that Φ is continuous. Moreover we can easily show that Φ is a bijection and that

$$
\begin{aligned}
& \Phi^{-1}(F)(x)=d \cdot \operatorname{trace}[F(s) \overline{D(k)}] \quad(x=s k, s \in S, k \in K), \\
& \left\|\Phi^{-1}(F)\right\|_{\rho} \leqq d^{2} C\|F\|_{\rho} .
\end{aligned}
$$

Therefore Φ is an isomorphism between two Banach spaces $L_{\rho}(G) * \bar{\chi}_{\delta}$ and A_{ρ}, but this is not an isomorphism of Banach algebras.

For every $f \in L_{\rho}(G)$, we put

$$
f^{\circ}(x)=\int_{K} f\left(k x k^{-1}\right) d k
$$

then the subspace

$$
L_{\rho}^{\circ}(\delta)=\left\{f^{\circ} ; f \in L_{\rho}(G) * \bar{\chi}_{\delta}\right\}
$$

is a closed subalgebra of $L_{\rho}(G) * \bar{\chi}_{\delta}$, and $f \rightarrow f^{\circ}$ is a continuous projection of $L_{\rho}(G) * \bar{\chi}_{\delta}$ onto $L_{\rho}^{\circ}(\delta)$. Therefore this projection induces a continuous one $F \rightarrow F^{\circ}$ of A_{ρ} onto a closed subspace denoted by A_{ρ}°. Namely,

$$
F^{\circ}=\Phi\left(f^{\circ}\right) \quad\left(f=\Phi^{-1}(F)\right) .
$$

For any $f, g \in L_{\rho}(G) * \bar{\chi}_{\delta}$, it is easy to show that

$$
\Phi\left(f * g^{\circ}\right)=\Phi(f) * \Phi\left(g^{\circ}\right)=\Phi(f) *(\Phi(g))^{\circ}
$$

hence we have the following
Lemma 1. $A_{\rho}^{\circ}=\Phi\left(L_{\rho}^{\circ}(\delta)\right)$ is a closed subalgebra of A_{ρ} and Φ maps isomorphically the Banach algebra $L_{\rho}^{\circ}(\delta)$ onto A_{ρ}°.

Since $\left(f * g^{\circ}\right)^{\circ}=f^{\circ} * g^{\circ}$, we obtain the equality

$$
\left(F * G^{\circ}\right)^{\circ}=F^{\circ} * G^{\circ} \quad\left(F, G \in A_{\rho}\right) .
$$

§3. Main theorem

Denote by C^{d} the vector space of all column vectors with d complex numbers, and by $e_{i}(1 \leqq i \leqq d)$ the vector whose i-th component is l and all the others are 0 . For a Banach space H with a norm $\|\cdot\|_{H}$, the tensor product space $C^{a} \otimes H$ is also a Banach space with the norm

$$
\left\|\sum_{i=1}^{p} e_{i} \otimes v_{i}\right\|=\sum_{i=1}^{d}\left\|v_{i}\right\|_{H}
$$

Then our aim in this section is to prove the following
Theorem. Let G be a locally compact unimodular group with a continuous decomposition $G=S K$, where S is a closed subgroup and K is a compact subgroup of G such that $S \cap K=\{e\}$. Let δ be an equivalence class of irreducible representations of K with degree d. If $U=U(x)$ be a quasi-bounded $p \times p$-spherical matrix function on G of type δ, then there exists a topologically irreducible representation $\{\Lambda(s), H\}$ of S on a Banach space H with the following property. Fix an irreducible unitary matrix representation $k \rightarrow D(k)$ of K belonging to δ and put

$$
\begin{aligned}
& \tilde{W}(x)=\overline{D(k)} \otimes \Lambda\left(s^{-1}\right) \quad(x=k s, k \in K, s \in S) \\
& W(x)=\tilde{W}^{\circ}\left(x^{-1}\right) \equiv \int_{K} \tilde{W}\left(k x^{-1} k^{-1}\right) d k
\end{aligned}
$$

Then there exists a $W(x)$-invariant p-dimensional subspace L of the Banach space $C^{d} \otimes H$ such that $\left.W(x)\right|_{L}$ is equivalent to $U(x)$, namely, with respect to a suitable base of L, the matrix corresponding to the operator $\left.W(x)\right|_{L}$ is equal to $U(x)$ for all $x \in G$.

Since U is quasi-bounded, there exist a positive constant α and a semi-norm $\rho(x)$ such that

$$
\left|u_{i j}(x)\right| \leqq \alpha \rho(x) \quad(1 \leqq i, j \leqq d)
$$

where $u_{i j}(x)$ is the (i, j)-matrix element of $U(x)$. Then

$$
f \longrightarrow U(f)=\int_{G} U(x) f(x) d x
$$

is a p-dimensional irreducible matrix representation of the algebra $L_{\rho}^{\circ}(\delta)$. Therefore, by Lemma 1,

$$
F \longrightarrow U(F)=U\left(\Phi^{-1}(F)\right)
$$

is also a p-dimensional irreducible matrix representation of the algebra A_{ρ}°. Let $\mathfrak{F} \in A_{\rho}^{\circ}$ be an element for which $U(\mathfrak{F})$ is the unit matrix. Then there exists a maximal left ideal \mathfrak{H} in A_{ρ}° of codimension p such that \mathfrak{F} is a right identity modulo \mathfrak{A} and that the natural representation of A_{ρ}° on $A_{\rho}^{\circ} / \mathfrak{H}$ is equivalent to $F \rightarrow U(F)$. In general, a left ideal \mathfrak{a} in an algebra is called regular if there exists a right identity modulo \mathfrak{a}.

Lemma 2. Put

$$
\mathfrak{M}=\left\{F \in A_{\rho} ;(G * F)^{\circ} \in \mathfrak{Y} \quad \text { for all } G \in A_{\rho}\right\},
$$

then \mathfrak{M} is a regular left ideal in A_{ρ}, and we have $\mathfrak{M} \cap A_{\rho}^{\circ}=\mathfrak{A}$. Moreover \mathfrak{F} is a right identity modulo \mathfrak{M}.

Proof. It is clear that \mathfrak{M} is a left ideal in A_{ρ}. For any $F, G \in A_{\rho}$, we have

$$
\begin{aligned}
\{G *(F * \mathfrak{F}-F)\}^{\circ} & =\{(G * F) * \mathfrak{F}\}^{\circ}-(G * F)^{\circ} \\
& =(G * F)^{\circ} * \mathfrak{F}-(G * F)^{\circ} \in \mathfrak{A} .
\end{aligned}
$$

Therefore \mathfrak{F} is a right identity modulo \mathfrak{M} in A_{ρ}.
The inclusion $\mathfrak{A} \subset \mathfrak{M} \cap A_{\rho}^{\circ}$ is clear. If $\mathfrak{F} \in \mathfrak{M}$, it follows that $A_{\rho}^{\circ} * \mathscr{F} \subset \mathfrak{A}$ but this is impossible because the natural representation of A_{ρ}° on $A_{\rho}^{\circ} / \mathfrak{H}$ is irreducible. This implies $\mathfrak{M} \cap A_{\rho}^{\circ} \subsetneq A_{\rho}^{\circ}$. Since $\mathfrak{M} \cap A_{\rho}^{\circ}$ is a proper left ideal which contains \mathfrak{A}, we obtain $\mathfrak{M} \cap A_{\rho}^{\circ}=\mathfrak{A}$.
q.e.d.

Let \mathfrak{M}_{0} be a maximal left ideal in A_{ρ} containing \mathfrak{M}. Then \mathfrak{M}_{0} is regular (\mathcal{F} is a right identity modulo \mathfrak{M}_{0}). It is well known that a regular maximal left ideal in a Banach algebra is closed, and hence \mathfrak{M}_{0} is closed. Since $\mathfrak{F} \notin \mathfrak{M}_{0}$, it follows that $\mathfrak{M}_{0} \cap A_{\rho}^{\circ}=\mathfrak{A}$. From this, the space $A_{\rho}^{\circ} / \mathfrak{A}$ can be considered as a p-dimensional subspace of $A_{\rho} / \mathfrak{M}_{0}$. As usual, we can introduce a norm $\|\cdot\|$ in $A_{\rho} / \mathfrak{M}_{0}$ with which $A_{\rho} / \mathfrak{M}_{0}$ is a Banach space. Denote by $\Pi(F)$ the natural representation of the Banach algebra A_{ρ} on $A_{\rho} / \mathfrak{M}_{0}$. Then it is algebraically irreducible and we have

$$
\|\Pi(F) X\| \leqq\|F\|_{\rho}\|X\|
$$

for $F \in A_{\rho}$ and $X \in A_{\rho} / \mathfrak{M}_{0}$. The subspace $A_{\rho}^{\circ} / \mathfrak{A}$ of $A_{\rho} / \mathfrak{M}_{0}$ is invariant under $\Pi\left(A_{\rho}^{\circ}\right)$ and $\left.F \rightarrow \Pi(F)\right|_{A_{\rho}^{\circ} / \mathscr{\mu}}$ is an irreducible representation of A_{ρ}° equivalent to $F \rightarrow U(F)$.

We shall denote by $L_{\rho}(S)$ the Banach algebra of all functions f on S satisfying

$$
\|f\|_{\rho}=\int_{s}|f(s)| \rho(s) d \mu(s)<+\infty
$$

Let $E_{i j}$ be the $d \times d$-matrix whose (i, j)-matrix element is 1 and all the others
are 0. Define $\left(f E_{i j}\right)(s)=f(s) E_{i j}$, then $f E_{i j} \in A_{\rho}$ for all $f \in L_{\rho}(S)$. Now we put

$$
\pi_{i j}(f)=\Pi\left(f F_{i j}\right) \quad(1 \leqq i, j \leqq d)
$$

Then clearly we have a relation

$$
\pi_{i j}(f) \pi_{k l}(g)=\delta_{j k} \pi_{i l}(f * g)
$$

where $\delta_{j k}$ is the Kronecker's delta.
For every element $F \in A_{\rho}$, we put

$$
\left(E_{i j} F\right)(s)=E_{i j} \cdot F(s) \quad(l \leqq i, j \leqq d)
$$

where the right hand side is the product of matrices $E_{i j}$ and $F(s)$. The linear mapping $F \rightarrow E_{i j} F$ is clearly continuous.

Lemma 3. $E_{i j} \mathfrak{M}_{0} \subset \mathfrak{M}_{0} \quad(l \leqq i, j \leqq d)$.
Proof. For every open neighbourhood V of the unit e, we take a non negative continuous function e_{V} which vanishes outside of V and satisfies $\int_{S_{V}} e_{V}(s) d \mu(s)=1$. Then $e_{V} E_{i j} \in A_{\rho}$, and for any $F \in A_{\rho}$, we have

$$
\left\|\left(e_{V} E_{i j}\right) * F-E_{i j} F\right\|_{\rho} \longrightarrow 0 \quad(V \rightarrow e) .
$$

Hence the lemma is proved.
Therefore we may consider that $E_{i j}$ acts continuously on the Banach space $A_{\rho} / \mathfrak{M}_{0}$. Put

$$
H_{i}=E_{i i}\left(A_{\rho} / \mathbb{M}_{0}\right) \quad(1 \leqq i \leqq d),
$$

then H_{i} is a closed subspace of $A_{\rho} / \mathfrak{M}_{0}$ and $E_{i i}$ is a continuous projection onto H_{i}. Moreover it is clear that

$$
A_{\rho} / \mathfrak{M}_{0}=H_{1}+\cdots+H_{d} \quad \text { (direct sum) }
$$

and that

$$
E_{i j} H_{j}=H_{i} \quad(1 \leqq i, j \leqq d)
$$

For any function $f \in L_{\rho}(S)$, we easily have the equality

$$
\pi_{i i}(f) \circ E_{i j}=E_{i j} \circ \pi_{j j}(f) \quad(l \leqq i, j \leqq d)
$$

Lemma 4. All $\left\{\pi_{i i}(f), H_{i}\right\}$ are algebraically irreducible representations of the algebra $L_{\rho}(S)$, and they are equivalent with one another.

Proof. We have only to show that each H_{i} is invariant and algebraically irreducible under $\pi_{i t}$, but the former is clear. Let's prove the latter. Take a non-trivial invariant subspace $H_{1}{ }^{\prime}$ of H_{1} under π_{11}. We put $H_{i}{ }^{\prime}=E_{i 1} H_{1}{ }^{\prime}$ ($1 \leqq i \leqq d$), then $H_{i}{ }^{\prime}$ is invariant under $\pi_{i i}$. Let F be an arbitrary element in A_{ρ} with $f_{i j}$ for its (i, j)-matrix element. For any vector $\sum_{i=1}^{d} Y_{i} \in H_{1}{ }^{\prime}+\cdots+H_{d}{ }^{\prime}$ where $Y_{i}=E_{i 1} X_{i}\left(X_{i} \in H_{1}{ }^{\prime}\right)$,

$$
\begin{aligned}
\Pi(F)\left(\sum_{i=1}^{d} Y_{i}\right) & =\sum_{i, j=1}^{d} \pi_{i j}\left(f_{i j}\right)\left(\sum_{k=1}^{d} E_{k 1} X_{k}\right) \\
& =\sum_{i=1}^{d} \sum_{k=1}^{d} \pi_{i k}\left(f_{i k}\right)\left(E_{k 1} X_{k}\right) \\
& =\sum_{i=1}^{d} \sum_{k=1}^{d} \pi_{i i}\left(f_{i k}\right)\left(E_{i 1} X_{k}\right) \in H_{1}{ }^{\prime}+\cdots+H_{d}{ }^{\prime}
\end{aligned}
$$

since $E_{i 1} X_{k} \in H_{i}{ }^{\prime}$ for all i. Therefore the subspace $H_{1}{ }^{\prime}+\cdots+H_{d}{ }^{\prime}$ is invariant under $\Pi(F)$ for all $F \in A_{\rho}$. This implies $H_{1}{ }^{\prime}+\cdots+H_{d}{ }^{\prime}=A_{\rho} / \mathfrak{M}_{0}$, hence $H_{1}{ }^{\prime}=H_{1}$.

Let $\pi(s)(s \in S)$ be the left translation on A_{ρ}, namely,

$$
(\pi(s) F)(t)=F\left(s^{-1} t\right)
$$

Then $\pi(s)$ is a continuous linear operator on A_{ρ} since we have

$$
\|\pi(s) F\|_{\rho} \leqq \rho(s)\|F\|_{\rho} .
$$

Moreover, we can prove that the function $s \rightarrow \pi(s) F$ on S is continuous for every $F \in A_{\rho}$. Therefore $\left\{\pi(s), A_{\rho}\right\}$ is a representation of S.

Lemma 5. $\pi(s) \mathfrak{M}_{0} \subset \mathfrak{M}_{0}$ for all $s \in S$.
Proof. For every open neighbourhood V of s, we take a function e_{V} as in the proof of Lemma 3. Then for any function $f \in L_{\rho}(S)$, we obtain $e_{V} * f \in L_{\rho}(S)$ and

$$
\left\|e_{V} * f-\pi(s) f\right\|_{\rho} \longrightarrow 0 \quad(V \rightarrow s),
$$

where $(\pi(s) f)(t)=f\left(s^{-1} t\right)$. Let E be the unit matrix of degree d, then $e_{V} E \in A_{\rho}$ and

$$
e_{V} E * F \longrightarrow \pi(s) F \quad(V \rightarrow s)
$$

in A_{ρ}. Since \mathfrak{M}_{0} is closed, the lemma is now proved.
q.e.d.

This lemma implies that the linear operator $\pi(s)$ naturally induces a linear operator on $A_{\rho} / \mathbb{M}_{0}$ which is also denoted by $\pi(s)$. Since $\|\pi(s) X\| \leqq \rho(s)\|X\|$, $\left\{\pi(s), A_{\rho} / \mathfrak{M}_{0}\right\}$ is a representation of S.

Lemma 6. Each subspace H_{i} is invariant under $\pi(s)$ for all $s \in S$.
Proof. Since $\pi(s) \circ E_{i i}=E_{i i} \circ \pi(s)$, the lemma is clear.
q.e.d.

Now we put

$$
\pi_{i i}(s)=\left.\pi(s)\right|_{H i} \quad(l \leqq i \leqq d)
$$

for every $s \in S$. Then for any $f \in L_{\rho}(S)$, we have

$$
\pi_{i i}(f)=\int_{S} \pi_{i i}(s) f(s) d \mu(s)
$$

Therefore all representations $\left\{\pi_{i i}(s), H_{i}\right\}$ of S are topologically irreducible and equivalent with one another. Let $\{\Lambda(s), H\}$ be a topologically irreducible
representation of S on a Banach space H such that there exists an isomorphism I_{i} of H_{i} onto H satisfying

$$
I_{i} \circ \pi_{i i}(s)=\Lambda(s) \circ I_{i} \quad(s \in S)
$$

and

$$
I_{i}=I_{j} \circ E_{j i} \quad(l \leqq i, j \leqq d)
$$

As before, we denote by $e_{i}(1 \leqq i \leqq d)$ the column vector whose i-th component is 1 and all the others are 0 . Let I be an isomorphism of $A_{\rho} / \mathfrak{M}_{0}$ onto $C^{a} \otimes H$ defined by

$$
I\left(\sum_{i=1}^{d} X_{i}\right)=\sum_{i=1}^{d} e_{i} \otimes I_{i} X_{i} \quad\left(X_{i} \in H_{i}\right)
$$

Then, for every $F \in A_{\rho}$ whose (i, j)-matrix element is $f_{i j}$,

$$
\begin{aligned}
& {\left[\left(\sum_{i, j=1}^{d} E_{i j} \otimes \Lambda\left(f_{i j}\right)\right) \circ I\right]\left(\sum_{k=1}^{d} X_{k}\right)} \\
& =\left(\sum_{i, j=1}^{d} E_{i j} \otimes \Lambda\left(f_{i j}\right)\right)\left(\sum_{k=1}^{d} e_{k} \otimes I_{k} X_{k}\right) \\
& =\sum_{i, j=1}^{d} e_{i} \otimes \Lambda\left(f_{i j}\right) I_{j} X_{j}=\sum_{i, j=1}^{d} e_{i} \otimes I_{j} \pi_{j j}\left(f_{j j}\right) X_{j} \\
& =\sum_{i, j=1}^{d} e_{i} \otimes I_{i} E_{i j} \pi_{j j}\left(f_{i j}\right) X_{j} \\
& =\sum_{i, j=1}^{d} e_{i} \otimes I_{i} \Pi\left(f_{i j} E_{i j}\right) X_{j}=[I \circ \Pi(F)]\left(\sum_{k=1}^{d} X_{k}\right) .
\end{aligned}
$$

Therefore the representation

$$
F \longrightarrow \sum_{i, j=1}^{d} E_{i j} \otimes \Lambda\left(f_{i j}\right)
$$

of A_{ρ} on the Banach space $\boldsymbol{C}^{d} \otimes H$ is equivalent to $F \rightarrow \Pi(F)$ on $A_{\rho} / \mathbb{M}_{0}$.
Put

$$
\tilde{W}(x)=\widetilde{D(k)} \otimes \Lambda\left(s^{-1}\right) \quad(x=k s, k \in K, s \in S)
$$

For any function $f \in L_{\rho}(G) * \bar{\chi}_{\delta}$, we denote by $f_{i j}$ the (i, j)-matrix element of $F=\Phi(f) \in A_{\rho}$, then

$$
\begin{aligned}
\sum_{i, j=1}^{d} E_{i j} \otimes \Lambda\left(f_{i j}\right) & =\sum_{i, j=1}^{d} E_{i j} \otimes \int_{S} \Lambda(s) d \mu(s) \int_{K} \overline{d_{i j}(k)} f\left(s k^{-1}\right) d k \\
& =\int \sum_{i, j=1}^{d}\left(E_{i j} \otimes \Lambda(s)\right) \overline{d_{i j}(k) f\left(s k^{-1}\right) d \mu(s) d k} \\
& =\int \overline{D\left(k^{-1}\right)} \otimes \Lambda(s) f(s k) d \mu(s) d k \\
& =\int_{G} \tilde{W}\left(x^{-1}\right) f(x) d x
\end{aligned}
$$

Denote by $W(x)$ the operator valued function $\tilde{W}^{\circ}\left(x^{-1}\right)$, i.e.,

$$
W(x)=\int_{K} \tilde{W}\left(k x^{-1} k^{-1}\right) d k
$$

then we have

$$
\sum_{i, j=1}^{d} E_{i j} \otimes \Lambda\left(f_{i j}\right)=\int_{G} W(x) f(x) d x
$$

for all $f \in L_{\rho}^{\circ}(\delta)$. Since $f \rightarrow \Phi(f)$ is an isomorphism of the Banach algebra $L_{\rho}^{\circ}(\delta)$ onto A_{ρ}°, the mapping

$$
\left.f \longrightarrow \int_{G} W(x) f(x) d x\right|_{L},
$$

where $L=I\left(A_{\rho}^{\circ} / \mathfrak{H}\right)$, is a p-dimensional irreducible representation of the algebra $L_{\rho}^{\circ}(\delta)$ equivalent to $f \rightarrow U(f)$.

Lemma 7. The subspace L of $C^{a} \otimes H$ is invariant under $W(x)$ for all $x \in G$.

Proof. From the definition of $\tilde{W}(x)$ we can easily show that the $C^{a} \otimes$ H-valued function $x \rightarrow \tilde{W}\left(x^{-1}\right) a$ on G is continuous for every $a \in C^{a} \otimes H$. Therefore $x \rightarrow W(x) a$ is also continuous since K is compact.

Assume there exists a vector $a_{0} \in L$ such that $W\left(x_{0}\right) a_{0} \oplus L$ for some $x_{0} \in G$. For every open neighbourhood V of x_{0}, we take a non negative continuous function e_{V} which vanishes outside of V and satisfies $\int_{G} e_{V}(x) d x=1$.
For an arbitrarily given $\varepsilon>0$, we have

$$
\left\|W(x) a_{0}-W\left(x_{0}\right) a_{0}\right\|<\varepsilon \quad \text { for all } x \in V,
$$

if V is small enough, where $\|\cdot\|$ is the norm in $C^{a} \otimes H$ defined at the beginning of this section. Then

$$
\begin{aligned}
& \left\|\int_{G} W(x) a_{0} e_{V}(x) d x-W\left(x_{0}\right) a_{0}\right\| \\
= & \left\|\int_{G}\left\{W(x)-W\left(x_{0}\right)\right\} a_{0} e_{V}(x) d x\right\|<\varepsilon .
\end{aligned}
$$

This implies $\int_{G} W(x) a_{0} e_{V}(x) d x \notin L$ if V is small enough. It is clear that $W * \chi_{\delta}$ $=W$ and that $W^{\circ}=W$, hence we obtain

$$
\int_{G} W(x) a_{0} e^{\circ} V^{*} \bar{\chi}_{\delta}(x) d x \notin L .
$$

This contradicts that $e_{V^{*}}^{\circ} \bar{\chi}_{\delta} \in L_{\rho}^{\circ}(\delta)$.
q.e.d.

The proof of the theorem is now completed.

Ehime University

Reference

[1] H. Shin'ya, Spherical functions and spherical matrix functions on locally compact groups, Lectures in Mathematics, Dep. Math. Kyoto Univ., Kinokuniya, Tokyo, (1974).

