Spherical matrix functions on locally compact groups of a certain type

By

Hitoshi Shin'ya

(Communicated by Prof. H. Yoshizawa Nov. 26, 1976)

Introduction

Let G be a locally compact unimodular group and K a compact subgroup of G. Let δ be an equivalence class of irreducible representations of K of degree d, and $k \rightarrow D(k)$ an irreducible unitary matrix representation of K belonging to δ . We put $\chi_{\delta}(k) = d$ -trace D(k).

A $p \times p$ -matrix valued continuous function U = U(x) on G is called a spherical matrix function of type δ if it satisfies the following four conditions;

- (i) $U^{\circ}(x) = U(x)$, where $U^{\circ}(x) = \int_{K} U(kxk^{-1})dk$,
- (ii) $U*\chi_{\delta}(x) = U(x)$, where $U*\chi_{\delta}(x) = \int_{K} U(xk^{-1})\chi_{\delta}(k)dk$,
- (iii) $\{U(x); x \in G\}$ is an irreducible family of matrices,
- (iv) $\int_{K} U(kxk^{-1}y)dk = U(x)U(y)$ for any $x, y \in G$,

where dk is the normalized Haar measure on K.

We assume that G has a continuous decomposition G = SK $(S \cap K = \{e\})$, where S is a closed subgroup of G and e is the unit element in G. Let $s \rightarrow A(s)$ be a finite-dimensional irreducible matrix representation of S. We put

$$\widetilde{W}(x) = \overline{D(k)} \otimes \Lambda(s^{-1}) \qquad (x = ks, \ k \in K, \ s \in S),$$
$$W(x) = \widetilde{W}^{\circ}(x^{-1}) \equiv \int_{K} \widetilde{W}(kx^{-1}k^{-1})dk,$$

then W(x) satisfies the above conditions (i), (ii), and (iv), and its each "irreducible component" is a spherical matrix function of type δ .

Conversely, are all spherical matrix functions of type δ given in this way? If G is a motion group or a connected semi-simple Lie group with finite center and if K is a maximal compact subgroup of G, then we have an affirmative answer [1]. But, in general, the author obtained a weaker result only for quasibounded spherical matrix functions. Namely, for a quasi-bounded spherical matrix function U of type δ , we can find an irreducible Banach representation $s \rightarrow \Lambda(s)$ of S such that U is equivalent to an "irreducible component" of W(x). Here $W(x) = \tilde{W}^{\circ}(x^{-1})$ with $\tilde{W}(x) = \overline{D(k)} \otimes \Lambda(s^{-1})$ $(x=ks, k \in K, s \in S)$, and in this case, the author does not know whether the representation $s \rightarrow \Lambda(s)$ is finite-dimensional or not. The quasi-boundedness of spherical matrix functions make it possible for us to utilize Banach algebras in our study. In a Banach algebra a maximal regular left ideal is closed, but in a more general algebra we don't know whether it is closed or not. This is just the reason why we need the qausi-boundedness of spherical matrix functions.

Finally, the author expresses his hearty thanks to Prof. N. Tatsuuma and Prof. T. Hirai for their kind advices.

§1. Quasi-bounded spherical matrix functions

Let G be a locally compact unimodular group, and K a compact subgroup of G. Let δ be an equivalence class of irreducible representations of K and $\chi_{\delta}(k)$ $(k \in K)$ be as in the introduction. A $p \times p$ -matrix valued continuous function U = U(x) on G is called a spherical matrix function of type δ if it satisfies the four conditions (i)—(iv) in the introduction.

A function $\rho(x)$ on G is called a semi-norm on G if it satisfies the following conditions;

(i) $\rho(x) > 0$ for all $x \in G$,

(ii) $\rho(xy) \leq \rho(x)\rho(y)$ for any $x, y \in G$,

- (iii) lower semi-continuous,
- (iv) bounded on every compact subset.

If a spherical matrix function U satisfies the inequality

$$|u_{ij}(x)| \leq a\rho(x)$$
 $(l \leq i, j \leq p)$

for a semi-norm $\rho(x)$ and a positive constant α , where $u_{ij}(x)$ is the (i, j)-matrix element of U(x), then U is called quasi-bounded.

If a topologically irreducible representation of G on a Banach space contains δp -times, then it gives us a quasi-bounded $p \times p$ -spherical matrix function U = U(x) of type δ [1]. Conversely every quasi-bounded spherical matrix function is given by a topologically irreducible representation of G on a Banach space.

§2. Banach algebras A_{ρ} , A_{ρ}° , $L_{\rho}(G) * \overline{\chi}_{\delta}$, and $L_{\rho}^{\circ}(\delta)$

Let G and K be as in §1. We assume that there exists a closed subgroup S of G such that

$$G=SK, \qquad S\cap K=\{e\},$$

where *e* is the unit element in *G*, and that the decomposition x=sk ($s \in S$, $k \in K$) is continuous. Fix a left Haar measure $d\mu(s)$ on *S* and denote by dk the normalized Haar measure on *K*, then $dx=d\mu(s)dk$ is a Haar measure on *G*.

Let $\rho(x)$ be a semi-norm on G. We shall denote by $L_{\rho}(G)$ the Banach algebra of measurable functions f on G satisfying

$$||f||_{\rho} = \int_{G} |f(x)|\rho(x)dx < +\infty.$$

For an equivalence class δ of irreducible representations of K of degree d, we

choose an irreducible representation $k \rightarrow D(k)$ of K belonging to δ such that all D(k) are unitary matrices. Put

$$L_{\rho}(G) * \bar{\chi}_{\delta} = \{ f * \bar{\chi}_{\delta}; f \in L_{\rho}(G) \}$$

where $\bar{\chi}_{\delta}$ is the complex conjugate of χ_{δ} , then this is clearly a closed subalgebra of $L_{\rho}(G)$.

For a $d \times d$ -matrix valued measurable function F(s) on S, we write $f_{ij}(s)$ for its (i, j)-matrix element. Then we shall denote by A_{ρ} the Banach space of all F(s) which satisfy

$$||F||_{\rho} = d \cdot \max_{1 \leq i, j \leq d} \int_{S} |f_{ij}(s)| \rho(s) d\mu(s) < +\infty.$$

For $F, G \in A_{\rho}$, we define a product F * G as

$$F * G(s) = \int_{S} F(t) G(t^{-1}s) d\mu(t).$$

With this product A is a Banach algebra, namely we have the inequality $||F * G||_{\rho} \leq ||F||_{\rho} ||G||_{\rho}$.

Now we have two Banach algebras $L_{\rho}(G)*\bar{\chi}_{\delta}$ and A_{ρ} . Define a linear mapping Φ of $L_{\rho}(G)*\bar{\chi}_{\delta}$ to A_{ρ} as

$$\Phi(f)(s) = \int_{K} \overline{D(k)} f(sk^{-1}) dk.$$

If we choose a positive constant C such that $\rho(k) \leq C$ for all $k \in K$, then we have

From this, we easily obtain an inequality

$$\|\Phi(f)\|_{\rho} \leq dC \|f\|_{\rho}.$$

This implies that Φ is continuous. Moreover we can easily show that Φ is a bijection and that

$$\Phi^{-1}(F)(x) = d \cdot \operatorname{trace}[F(s)D(k)] \qquad (x = sk, \ s \in S, \ k \in K),$$
$$\|\Phi^{-1}(F)\|_{\rho} \leq d^2 C \|F\|_{\rho}.$$

Therefore Φ is an isomorphism between two Banach spaces $L_{\rho}(G)*\bar{\chi}_{\delta}$ and A_{ρ} , but this is not an isomorphism of Banach algebras.

For every $f \in L_{\rho}(G)$, we put

$$f^{\circ}(x) = \int_{K} f(kxk^{-1})dk,$$

then the subspace

$$L^{\circ}_{\rho}(\delta) = \{f^{\circ}; f \in L_{\rho}(G) * \bar{\chi}_{\delta}\}$$

is a closed subalgebra of $L_{\rho}(G)*\bar{\chi}_{\delta}$, and $f \rightarrow f^{\circ}$ is a continuous projection of $L_{\rho}(G)*\bar{\chi}_{\delta}$ onto $L_{\rho}^{\circ}(\delta)$. Therefore this projection induces a continuous one $F \rightarrow F^{\circ}$ of A_{ρ} onto a closed subspace denoted by A_{ρ}° . Namely,

Hitoshi Shinya

 $F^{\circ} = \Phi(f^{\circ})$ $(f = \Phi^{-1}(F)).$

For any $f, g \in L_{\rho}(G) * \overline{\chi}_{\delta}$, it is easy to show that

$$\Phi(f*g^{\circ}) = \Phi(f)*\Phi(g^{\circ}) = \Phi(f)*(\Phi(g))^{\circ},$$

hence we have the following

Lemma 1. $A_{\rho}^{\circ} = \Phi(L_{\rho}^{\circ}(\delta))$ is a closed subalgebra of A_{ρ} and Φ maps isomorphically the Banach algebra $L_{\rho}^{\circ}(\delta)$ onto A_{ρ}° .

Since $(f * g^{\circ})^{\circ} = f^{\circ} * g^{\circ}$, we obtain the equality

 $(F*G^{\circ})^{\circ} = F^{\circ}*G^{\circ} \qquad (F, G \in A_{\rho}).$

§3. Main theorem

Denote by C^d the vector space of all column vectors with d complex numbers, and by e_i $(1 \le i \le d)$ the vector whose *i*-th component is 1 and all the others are 0. For a Banach space H with a norm $\|\cdot\|_H$, the tensor product space $C^d \otimes H$ is also a Banach space with the norm

$$\|\sum_{i=1}^p e_i \otimes v_i\| = \sum_{i=1}^d \|v_i\|_H.$$

Then our aim in this section is to prove the following

Theorem. Let G be a locally compact unimodular group with a continuous decomposition G=SK, where S is a closed subgroup and K is a compact subgroup of G such that $S \cap K = \{e\}$. Let δ be an equivalence class of irreducible representations of K with degree d. If U=U(x) be a quasi-bounded $p \times p$ -spherical matrix function on G of type δ , then there exists a topologically irreducible representation $\{\Lambda(s), H\}$ of S on a Banach space H with the following property. Fix an irreducible unitary matrix representation $k \rightarrow D(k)$ of K belonging to δ and put

$$\widetilde{W}(x) = \overline{D(k)} \otimes A(s^{-1}) \qquad (x = ks, \ k \in K, \ s \in S),$$
$$W(x) = \widetilde{W}^{\circ}(x^{-1}) \equiv \int_{K} \widetilde{W}(kx^{-1}k^{-1})dk.$$

Then there exists a W(x)-invariant p-dimensional subspace L of the Banach space $\mathbb{C}^{d} \otimes H$ such that $W(x)|_{L}$ is equivalent to U(x), namely, with respect to a suitable base of L, the matrix corresponding to the operator $W(x)|_{L}$ is equal to U(x) for all $x \in G$.

Since U is quasi-bounded, there exist a positive constant a and a semi-norm $\rho(x)$ such that

$$|u_{ij}(x)| \leq a\rho(x) \qquad (l \leq i, j \leq d),$$

where $u_{ij}(x)$ is the (i, j)-matrix element of U(x). Then

$$f \longrightarrow U(f) = \int_{G} U(x)f(x)dx$$

504

is a p-dimensional irreducible matrix representation of the algebra $L^{\circ}_{\rho}(\delta)$. Therefore, by Lemma 1,

$$F \longrightarrow U(F) = U(\Phi^{-1}(F))$$

is also a *p*-dimensional irreducible matrix representation of the algebra A_{ρ}° . Let $\mathfrak{E} \in A_{\rho}^{\circ}$ be an element for which $U(\mathfrak{E})$ is the unit matrix. Then there exists a maximal left ideal \mathfrak{A} in A_{ρ}° of codimension p such that \mathfrak{E} is a right identity modulo \mathfrak{A} and that the natural representation of A_{ρ}° on $A_{\rho}^{\circ}/\mathfrak{A}$ is equivalent to $F \rightarrow U(F)$. In general, a left ideal \mathfrak{a} in an algebra is called regular if there exists a right identity modulo \mathfrak{a} .

Lemma 2. Put

$$\mathfrak{M} = \{ F \in A_{\rho}; (G * F)^{\circ} \in \mathfrak{A} \text{ for all } G \in A_{\rho} \},\$$

then \mathfrak{M} is a regular left ideal in A_{ρ} , and we have $\mathfrak{M} \cap A_{\rho}^{\circ} = \mathfrak{A}$. Moreover \mathfrak{E} is a right identity modulo \mathfrak{M} .

Proof. It is clear that \mathfrak{M} is a left ideal in A_{ρ} . For any $F, G \in A_{\rho}$, we have

$$\begin{aligned} \{G*(F*\mathfrak{G}-F)\}^{\circ} &= \{(G*F)*\mathfrak{G}\}^{\circ} - (G*F)^{\circ} \\ &= (G*F)^{\circ}*\mathfrak{G} - (G*F)^{\circ} \in \mathfrak{A}. \end{aligned}$$

Therefore \mathfrak{G} is a right identity modulo \mathfrak{M} in A_{ρ} .

The inclusion $\mathfrak{A} \subset \mathfrak{M} \cap A_{\rho}^{\circ}$ is clear. If $\mathfrak{G} \in \mathfrak{M}$, it follows that $A_{\rho}^{\circ} * \mathfrak{G} \subset \mathfrak{A}$ but this is impossible because the natural representation of A_{ρ}° on $A_{\rho}^{\circ}/\mathfrak{A}$ is irreducible. This implies $\mathfrak{M} \cap A_{\rho}^{\circ} \cong A_{\rho}^{\circ}$. Since $\mathfrak{M} \cap A_{\rho}^{\circ}$ is a proper left ideal which contains \mathfrak{A} , we obtain $\mathfrak{M} \cap A_{\rho}^{\circ} = \mathfrak{A}$. q.e.d.

Let \mathfrak{M}_0 be a maximal left ideal in A_ρ containing \mathfrak{M} . Then \mathfrak{M}_0 is regular (\mathfrak{E} is a right identity modulo \mathfrak{M}_0). It is well known that a regular maximal left ideal in a Banach algebra is closed, and hence \mathfrak{M}_0 is closed. Since $\mathfrak{E} \oplus \mathfrak{M}_0$, it follows that $\mathfrak{M}_0 \cap A_\rho^{\,\rho} = \mathfrak{A}$. From this, the space $A_\rho^{\,\rho}/\mathfrak{A}$ can be considered as a ρ -dimensional subspace of A_ρ/\mathfrak{M}_0 . As usual, we can introduce a norm $\|\cdot\|$ in A_ρ/\mathfrak{M}_0 with which A_ρ/\mathfrak{M}_0 is a Banach space. Denote by $\prod(F)$ the natural representation of the Banach algebra A_ρ on A_ρ/\mathfrak{M}_0 . Then it is algebraically irreducible and we have

$$\|\left[\left[(F)X\right]\|\leq \|F\|_{\rho}\|X\|$$

for $F \in A_{\rho}$ and $X \in A_{\rho}/\mathfrak{M}_{0}$. The subspace $A_{\rho}^{\circ}/\mathfrak{A}$ of $A_{\rho}/\mathfrak{M}_{0}$ is invariant under $\prod (A_{\rho}^{\circ})$ and $F \rightarrow \prod (F)|_{A_{\rho}^{\circ}/\mathfrak{A}}$ is an irreducible representation of A_{ρ}° equivalent to $F \rightarrow U(F)$.

We shall denote by $L_{\rho}(S)$ the Banach algebra of all functions f on S satisfying

$$||f||_{\rho} = \int_{S} |f(s)|\rho(s)d\mu(s) < +\infty.$$

Let E_{ij} be the $d \times d$ -matrix whose (i, j)-matrix element is 1 and all the others

are 0. Define $(fE_{ij})(s) = f(s)E_{ij}$, then $fE_{ij} \in A_{\rho}$ for all $f \in L_{\rho}(S)$. Now we put

 $\pi_{ij}(f) = \prod (fF_{ij}) \qquad (1 \leq i, j \leq d).$

Then clearly we have a relation

$$\pi_{ij}(f)\pi_{kl}(g) = \delta_{jk}\pi_{il}(f*g)$$

where δ_{jk} is the Kronecker's delta.

For every element $F \in A_{\rho}$, we put

$$(E_{ij}F)(s) = E_{ij} \cdot F(s) \qquad (1 \leq i, j \leq d),$$

where the right hand side is the product of matrices E_{ij} and F(s). The linear mapping $F \rightarrow E_{ij}F$ is clearly continuous.

Lemma 3.
$$E_{ij}\mathfrak{M}_0 \subset \mathfrak{M}_0$$
 $(1 \leq i, j \leq d)$.

Proof. For every open neighbourhood V of the unit e, we take a non negative continuous function e_V which vanishes outside of V and satisfies $\int_{S} e_V(s) d\mu(s) = 1$. Then $e_V E_{ij} \in A_p$, and for any $F \in A_p$, we have

$$\|(e_{\nu}E_{ij})*F-E_{ij}F\|_{\rho}\longrightarrow 0 \qquad (V\rightarrow e).$$

Hence the lemma is proved.

Therefore we may consider that E_{ij} acts continuously on the Banach space A_{ρ}/\mathfrak{M}_0 . Put

$$H_{i} = E_{ii}(A_{\rho}/\mathfrak{M}_{0}) \qquad (1 \leq i \leq d),$$

then H_i is a closed subspace of A_p/\mathfrak{M}_0 and E_{ii} is a continuous projection onto H_i . Moreover it is clear that

$$A_{\rho}/\mathfrak{M}_{0} = H_{1} + \dots + H_{d}$$
 (direct sum)

and that

$$E_{ij}H_j = H_i \qquad (1 \leq i, j \leq d).$$

For any function $f \in L_{\rho}(S)$, we easily have the equality

$$\pi_{ii}(f) \circ E_{ij} = E_{ij} \circ \pi_{jj}(f) \qquad (l \leq i, j \leq d).$$

Lemma 4. All $\{\pi_{ii}(f), H_i\}$ are algebraically irreducible representations of the algebra $L_{\rho}(S)$, and they are equivalent with one another.

Proof. We have only to show that each H_i is invariant and algebraically irreducible under π_{ii} , but the former is clear. Let's prove the latter. Take a non-trivial invariant subspace H_1' of H_1 under π_{11} . We put $H_i' = E_{i1}H_1'$ $(1 \le i \le d)$, then H_i' is invariant under π_{ii} . Let F be an arbitrary element in A_ρ with f_{ij} for its (i, j)-matrix element. For any vector $\sum_{i=1}^{d} Y_i \in H_1' + \cdots + H_d'$ where $Y_i = E_{i1}X_i$ $(X_i \in H_1')$,

506

q.e.d.

Spherical matrix functions on locally compact groups

$$\prod (F) (\sum_{i=1}^{d} Y_{i}) = \sum_{i,j=1}^{d} \pi_{ij}(f_{ij}) (\sum_{k=1}^{d} E_{k1}X_{k})$$

$$= \sum_{i=1}^{d} \sum_{k=1}^{d} \pi_{ik}(f_{ik})(E_{k1}X_{k})$$

$$= \sum_{i=1}^{d} \sum_{k=1}^{d} \pi_{ii}(f_{ik})(E_{i1}X_{k}) \in H_{1}' + \dots + H_{d}',$$

since $E_{i_1}X_k \in H_i'$ for all *i*. Therefore the subspace $H_1' + \dots + H_d'$ is invariant under $\prod(F)$ for all $F \in A_{\rho}$. This implies $H_1' + \dots + H_d' = A_{\rho}/\mathfrak{M}_0$, hence $H_1' = H_1$. q.e.d.

Let $\pi(s)$ ($s \in S$) be the left translation on A_{ρ} , namely,

$$(\pi(s)F)(t) = F(s^{-1}t).$$

Then $\pi(s)$ is a continuous linear operator on A_{ρ} since we have

$$\|\pi(s)F\|_{\rho} \leq \rho(s) \|F\|_{\rho}.$$

Moreover, we can prove that the function $s \rightarrow \pi(s)F$ on S is continuous for every $F \in A_{\rho}$. Therefore $\{\pi(s), A_{\rho}\}$ is a representation of S.

Lemma 5.
$$\pi(s)\mathfrak{M}_0 \subset \mathfrak{M}_0$$
 for all $s \in S$.

Proof. For every open neighbourhood V of s, we take a function e_V as in the proof of Lemma 3. Then for any function $f \in L_{\rho}(S)$, we obtain $e_V * f \in L_{\rho}(S)$ and

$$\|e_{\nu}*f-\pi(s)f\|_{\rho}\longrightarrow 0 \qquad (V\longrightarrow s),$$

where $(\pi(s)f)(t) = f(s^{-1}t)$. Let E be the unit matrix of degree d, then $e_{\nu}E \in A_{\rho}$ and

$$e_{\nu}E * F \longrightarrow \pi(s)F \qquad (V \longrightarrow s)$$

in A_{ρ} . Since \mathfrak{M}_0 is closed, the lemma is now proved. q.e.d.

This lemma implies that the linear operator $\pi(s)$ naturally induces a linear operator on A_{ρ}/\mathfrak{M}_0 which is also denoted by $\pi(s)$. Since $\|\pi(s)X\| \leq \rho(s) \|X\|$, $\{\pi(s), A_{\rho}/\mathfrak{M}_0\}$ is a representation of S.

Lemma 6. Each subspace H_i is invariant under $\pi(s)$ for all $s \in S$.

Proof. Since $\pi(s) \circ E_{ii} = E_{ii} \circ \pi(s)$, the lemma is clear. q.e.d.

Now we put

 $\pi_{ii}(s) = \pi(s)|_{H_i} \qquad (1 \leq i \leq d)$

for every $s \in S$. Then for any $f \in L_{\rho}(S)$, we have

$$\pi_{ii}(f) = \int_{S} \pi_{ii}(s) f(s) d\mu(s).$$

Therefore all representations $\{\pi_{ii}(s), H_i\}$ of S are topologically irreducible and equivalent with one another. Let $\{\Lambda(s), H\}$ be a topologically irreducible

507

representation of S on a Banach space H such that there exists an isomorphism I_i of H_i onto H satisfying

$$I_i \circ \pi_{ii}(s) = \Lambda(s) \circ I_i \qquad (s \in S)$$

and

$$I_i = I_j \circ E_{ji} \qquad (1 \leq i, j \leq d).$$

As before, we denote by e_i $(1 \leq i \leq d)$ the column vector whose *i*-th component is 1 and all the others are 0. Let *I* be an isomorphism of A_{ρ}/\mathfrak{M}_0 onto $\mathbb{C}^d \otimes H$ defined by

$$I(\sum_{i=1}^{d} X_i) = \sum_{i=1}^{d} e_i \otimes I_i X_i \qquad (X_i \in H_i).$$

Then, for every $F \in A_{\rho}$ whose (i, j)-matrix element is f_{ij} ,

$$\begin{split} [(\sum_{i,j=1}^{d} E_{ij} \otimes \Lambda(f_{ij})) \circ I](\sum_{k=1}^{d} X_k) \\ &= (\sum_{i,j=1}^{d} E_{ij} \otimes \Lambda(f_{ij}))(\sum_{k=1}^{d} e_k \otimes I_k X_k) \\ &= \sum_{i,j=1}^{d} e_i \otimes \Lambda(f_{ij}) I_j X_j = \sum_{i,j=1}^{d} e_i \otimes I_j \pi_{jj}(f_{jj}) X_j \\ &= \sum_{i,j=1}^{d} e_i \otimes I_i E_{ij} \pi_{jj}(f_{ij}) X_j \\ &= \sum_{i,j=1}^{d} e_i \otimes I_i \prod (f_{ij} E_{ij}) X_j = [I \circ \prod (F)](\sum_{k=1}^{d} X_k). \end{split}$$

Therefore the representation

$$F \longrightarrow \sum_{i,j=1}^{d} E_{ij} \otimes A(f_{ij})$$

of A_{ρ} on the Banach space $C^{d} \otimes H$ is equivalent to $F \rightarrow \prod(F)$ on $A_{\rho}/\mathfrak{M}_{0}$. Put

$$\widetilde{W}(x) = \overline{D(k)} \otimes \Lambda(s^{-1}) \qquad (x = ks, \ k \in K, \ s \in S).$$

For any function $f \in L_{\rho}(G) * \bar{\chi}_{\delta}$, we denote by f_{ij} the (i, j)-matrix element of $F = \Phi(f) \in A_{\rho}$, then

$$\sum_{i,j=1}^{d} E_{ij} \otimes \Lambda(f_{ij}) = \sum_{i,j=1}^{d} E_{ij} \otimes \int_{S} \Lambda(s) d\mu(s) \int_{K} \overline{d_{ij}(k)} f(sk^{-1}) dk$$
$$= \int \sum_{i,j=1}^{d} (E_{ij} \otimes \Lambda(s)) \overline{d_{ij}(k)} f(sk^{-1}) d\mu(s) dk$$
$$= \int \overline{D(k^{-1})} \otimes \Lambda(s) f(sk) d\mu(s) dk$$
$$= \int_{G} \widetilde{W}(x^{-1}) f(x) dx.$$

Denote by W(x) the operator valued function $\tilde{W}^{\circ}(x^{-1})$, i.e.,

$$W(x) = \int_K \tilde{W}(kx^{-1}k^{-1})dk,$$

then we have

$$\sum_{i,j=1}^{d} E_{ij} \otimes \Lambda(f_{ij}) = \int_{G} W(x) f(x) dx$$

for all $f \in L^{\circ}_{\rho}(\delta)$. Since $f \rightarrow \Phi(f)$ is an isomorphism of the Banach algebra $L^{\circ}_{\rho}(\delta)$ onto A°_{ρ} , the mapping

$$f \longrightarrow \int_G W(x) f(x) dx|_L,$$

where $L = I(A_{\rho}^{\circ}/\mathfrak{A})$, is a p-dimensional irreducible representation of the algebra $L_{\rho}^{\circ}(\delta)$ equivalent to $f \rightarrow U(f)$.

Lemma 7. The subspace L of $C^{d} \otimes H$ is invariant under W(x) for all $x \in G$.

Proof. From the definition of $\tilde{W}(x)$ we can easily show that the $C^{d} \otimes H$ -valued function $x \to \tilde{W}(x^{-1})a$ on G is continuous for every $a \in C^{d} \otimes H$. Therefore $x \to W(x)a$ is also continuous since K is compact.

Assume there exists a vector $a_0 \in L$ such that $W(x_0)a_0 \notin L$ for some $x_0 \in G$. For every open neighbourhood V of x_0 , we take a non negative continuous function e_V which vanishes outside of V and satisfies $\int_G e_V(x) dx = 1$. For an arbitrarily given $\varepsilon > 0$, we have

$$||W(x)a_0 - W(x_0)a_0|| < \varepsilon$$
 for all $x \in V$,

if V is small enough, where $\|\cdot\|$ is the norm in $C^d \otimes H$ defined at the beginning of this section. Then

$$\|\int_{G} W(x)a_{0}e_{\nu}(x)dx - W(x_{0})a_{0}\|$$

= $\|\int_{G} \{W(x) - W(x_{0})\}a_{0}e_{\nu}(x)dx\| < \varepsilon.$

This implies $\int_G W(x)a_0e_V(x)dx \in L$ if V is small enough. It is clear that $W*\chi_{\delta} = W$ and that $W^\circ = W$, hence we obtain

$$\int_{G} W(x) a_0 e_{\nu}^{\circ} * \bar{\chi}_{\delta}(x) dx \oplus L$$

This contradicts that $e_{V}^{\circ} * \bar{\chi}_{\delta} \in L_{\rho}^{\circ}(\delta)$.

The proof of the theorem is now completed.

EHIME UNIVERSITY

Reference

 H. Shin'ya, Spherical functions and spherical matrix functions on locally compact groups, Lectures in Mathematics, Dep. Math. Kyoto Univ., Kinokuniya, Tokyo, (1974).

509

q.e.d.