Graded factorial rings of dimension 3 of a restricted type

By
Masa-Nori Ishida
(Communicated by prof. M. Nagata, Oct. 1, 1976)

§ 1. Introduction

We fix an algebraically closed field k of an arbitrary characteristic in this paper.

It is shown in [l] that if X is a normal projective variety over k such that $\mathrm{Cl} X \simeq \boldsymbol{Z}$, then $R\left(X^{\circ}, L\right)=\oplus_{i=0}^{\infty} H^{0}\left(X^{\circ}, L^{\otimes i}\right)$ is a graded factorial ring, where X° is the open subvariety of X consisting of smooth points, L is the ample generator of $\operatorname{Pic} X^{\circ} \simeq \mathrm{Cl} X \simeq \boldsymbol{Z}$ and $\mathrm{Cl} X$ is the group of linear equivalence classes of Weil divisors. Graded k-algebras isomorphic to such ones are called geometric graded factorial rings. All the graded factorial k-algebras A with non-negative degrees such that $k \xrightarrow{\longrightarrow} A_{0}$ are completely classified once geometric factorial rings are classified [l]. The classification of such graded k-algebras of dimension ≤ 2 is given in [1]. However in the case of dimension 3, it seems rather difficult to classify geometric graded factorial rings because even non-singular projective surfaces X over k such that $\operatorname{Pic} X \simeq \boldsymbol{Z}$ are not classified at all. In view of this fact, it seems worthwhile to restrict ourselves to normal projective surfaces X such that $\mathrm{Cl} X \simeq \boldsymbol{Z}$ which admits a non-trivial action of G_{m}. This is equivalent to considering geometric graded factorial rings of dimension 3 which admit a nondegenerate bigradation (for the definition, see $\S 2$).

Our main result is the following.
Theorem 1.1. Let R be a geometric graded factorial ring of dimension 3 which admits a nondegenerate bigradation. Then there exists one and only one index Φ (see below) such that R is isomorphic to R_{Φ} given in the following examples.

Example I. Let $\Phi=\left(e_{1}, e_{2}, e_{3}\right)$ be a triple of pairwise relatively prime positive integers with $e_{1} \geq e_{2} \geq e_{3}$. Then

$$
R_{\Phi}=k\left[x_{1}, x_{2}, x_{3}\right] \quad \operatorname{deg} x_{i}=e_{i} \quad(i=1,2,3),
$$

is a geometric graded factorial ring which admits a nondegenerate bigradation.

Example II. Let $r \geq 3, e_{1}>\cdots>e_{r}>1$ and m be positive integers such that e_{1}, \cdots, e_{r} are pairwise relatively prime and $(e, m)=1$ where $e=\prod_{i=1}^{r} e_{i}$. Let $a_{3}=1, \cdots, a_{r}$ be mutually distinct elements of k^{*}. Then for $\Phi=(\boldsymbol{e}, \boldsymbol{a}, m)$, $\boldsymbol{e}=\left(e_{1}, \cdots, e_{r}\right)$ and $\boldsymbol{a}=\left(a_{3}, \cdots, a_{r}\right)$,
where

$$
\begin{aligned}
& R_{\Phi}=k\left[x_{1}, \cdots, x_{r}, u\right] / I, \\
& I=\left(x_{1} e_{1}+a_{3} x_{2}{ }^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }_{1}^{e_{1}}+a_{r} x_{2} e_{2}+x_{r}{ }^{e_{r}}\right), \\
& \operatorname{deg} x_{i}=c / e_{i} \quad(i=1, \cdots, r), \text { and } \operatorname{deg} u=m,
\end{aligned}
$$

is a geometric graded factorial ring which admits a nondegenerate bigradation.
Example III. Let $r \geq 2, e_{1}>\cdots>e_{r}>1, c \leq d, l, m$ and p be positive integers such that

1) $\left(e_{i}, e_{j}\right)=1(1 \leq i<j \leq r),(c, d, e)=1$ where $e=\prod_{i=1}^{r} e_{i}$,
2) l, m, p are prime to each other, moreover $l \leq m$ if $c=d$.
3) $l c+m d=p e$.

Let $b_{3}=1, \cdots, b_{r}, b$ be mutually distinct elements of k^{*} if $r \geq 3$ and $b=1$ if $r=2$. Then for $\Phi=(\boldsymbol{e}, \boldsymbol{b}, \boldsymbol{c}), \boldsymbol{e}=\left(e_{1}, \cdots, e_{r}\right), \boldsymbol{b}=\left(b_{3}, \cdots, b_{r}, b\right)$ and $\boldsymbol{c}=(c, d, l$, m, p,

$$
R_{\Phi}=k\left[x_{1}, \cdots, x_{r}, u, v\right] / I
$$

is a geometric graded factorial ring which admits a nondegenerate bigradation, where $I=\left(x_{1}{ }^{e_{1}}+b_{3} x_{2}{ }^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+b_{r} x_{2}{ }^{e_{2}}+x_{r}{ }^{e_{r}}, x_{1}{ }^{e_{1}}+b x_{2}{ }^{e_{2}}+u^{c} v^{d}\right)$ if $r \geq 3$, $I=\left(x_{1}{ }^{e_{1}}+x_{2}{ }^{e_{2}}+u^{c} v^{d}\right)$, if $r=2, \operatorname{deg} x_{i}=p e / e_{i}(i=1, \cdots, r), \operatorname{deg} u=l$ and $\operatorname{deg} v=m$.
(The factoriality of the rings given in Example II and the geometricity of the rings given in Examples I, II and III follow easily from the results of [1]. The factoriality of the rings given in Example III is shown in §2.) We introduce a bigradation on the rings given above in $\S 2$. We study G_{m}-surfaces in $\S 3$ as a preliminary to later sections. In $\S 4$, we consider an arbitrary normal projective surface X with a nontrivial G_{m}-action (called a G_{m}-surface) such that $\mathrm{Cl} X \simeq \boldsymbol{Z}$. We take a desingularization $g: \widetilde{X} \rightarrow X$ such that $\pi: \widetilde{X} \rightarrow \boldsymbol{P}^{1}$ is a morphism (\boldsymbol{P}^{1} is the projective line whose function field is $\left.k(X)^{G_{m}}\right)$. Then it is proved that the number i of exceptional curves for g which are not contained in the fibres of π is l or 2 . The cases $i=1$ and 2 are treated as Cases 1 and 2, respectively. In $\S 5$, we shall prove that in Case $1 R\left(X^{\circ}, L\right)$ is isomorphic to a graded ring given in Example I or II. In §6, it is proved that in Case $2 R\left(X^{\circ}, L\right)$ is isomorphic to a graded ring given in Example I or III. Thus the existence of Φ in Theorem 1.1 is proved. $\S 7$ is devoted to the proof of the uniqueness of Φ.

The author expresses his hearty thanks to Professor S. Mori for his kind advice.

Notation and terminology. For an integral domain A, we denote by $Q(A)$ the quotient field of A. For a graded integral domain $A=\oplus_{i \in \boldsymbol{Z}} A_{i}$, we
denote by $Q H(A)$ the quotient ring $S^{-1} A$, where $S=\cup_{i \in \boldsymbol{Z}}\left\{A_{i}-\{0\}\right\}$. Then $Q H(A)$ has a natural gradation induced by A. All homomorphisms between graded rings are assumed to preserve gradation.

§ 2. Bigraded factorial rings

In this section, by a graded ring, we understand an almost geometric graded ring over k defined in [1].

Definition 2.1. Let $R=\oplus_{i \geq 0} R_{i}$ be a graded ring, and $R_{i, j} k$-submodules of $R(i, j \in \boldsymbol{Z}, i \geq 0)$, and $R_{i}=\oplus_{j \in \boldsymbol{Z}} R_{i, j}$. Then we call $R=\oplus_{i, j \in \boldsymbol{Z}} R_{i, j}$ a bigraded ring if $R_{i, j} R_{i^{\prime}, j^{\prime}} \subset R_{i+i^{\prime}, j+j^{\prime}}$ for all $i, i^{\prime}, j, j^{\prime} \in \boldsymbol{Z} \quad i, i^{\prime} \geq 0$ and $R_{0,0}=k$.

For a bigraded ring R, we define a dual action of $G_{m}, \mu: R \rightarrow k\left[t, t^{-1}\right] \otimes_{k} R$ by $\mu(a)=t^{j} \otimes a\left(a \in R_{i, j}\right)$. This dual action of G_{m} on the graded ring R induces a G_{m}-action on $\operatorname{Proj} R$.

Lemma 2.2. If a bigraded ring R is an integral domain and $R_{i, j} R_{i, j^{\prime}} \neq 0$ for some $i, j, j^{\prime}\left(j \neq j^{\prime}\right)$, then the action of G_{m} on $\operatorname{Proj} R$ is nontrivial.

Proof. Take non-zero elements $f \in R_{i, j}$ and $g \in R_{i, j^{\prime}}$. Then the open subscheme $D(f)=\operatorname{Spec}\left(R\left[f^{-1}\right]\right)_{0}$ is G_{m}-stable, but the induced dual action sends $g \mid f \in R\left[f^{-1}\right]_{0}$ to $t^{j^{\prime}-j} \otimes g \mid f$. Hence the G_{m}-action on $D(f)$ is nontrivial, and thus the action on $\operatorname{Proj} R$ is nontrivial.
q.e.d.

Definition 2.3. We call a bigraded ring R nondegenerate, if there exist integers $i, i^{\prime}, j, j^{\prime}$ such that $i, i^{\prime} \geq 0, i j^{\prime}-i^{\prime} j \neq 0$ and $R_{i, j}, R_{i^{\prime}, j^{\prime}} \neq 0$.

It is easy to see that if a nondegenerate bigraded ring R is an integral domain, R satisfies the condition of lemma 2.2 for the integers $i i^{\prime}$, $i j^{\prime}$, and $i^{\prime} j$. Thus the natural G_{m}-action on $\operatorname{Proj} R$ (introduced above) is nontrivial.

In the remainder of this section, we show that the examples in §l are factorial nondegenerate bigraded rings.

Example I: If we define the bigradation of the graded ring $R_{\Phi}=k\left[x_{1}\right.$, $\left.x_{2}, x_{3}\right]$ by $\operatorname{deg} x_{1}=\left(e_{1}, 0\right), \operatorname{deg} x_{2}=\left(e_{2}, 0\right)$, and $\operatorname{deg} x_{3}=\left(e_{3}, 1\right)$, then R_{Φ} becomes a nondegenerate bigraded ring. Thus Proj R_{Φ} has a nontrivial G_{m}-action. In fact, $\operatorname{Proj} R_{\Phi}$ is a torus embedding of dimension 2.

Example II: If we define the bigradation on $R_{\Phi}(\Phi=(\boldsymbol{e}, \boldsymbol{a}, m))$ by $\operatorname{deg} x_{i}=\left(e / e_{i}, 0\right)(i=1, \cdots, r) \operatorname{deg} u=(m, l)$, then R_{Φ} becomes a nondegenerate bigraded ring.

Example III: If we define the bigradation on $R_{\Phi}(\Phi=(\boldsymbol{e}, \boldsymbol{b}, \boldsymbol{c}))$ by $\operatorname{deg} x_{i}=\left(p e / e_{i}, 0\right)(i=l, \cdots, r), \operatorname{deg} u=(l,-d), \operatorname{deg} v=(m, c)$, then R_{Φ} becomes a nondegenerate bigraded ring. The factoriality of R_{Φ} follows from the following theorem.

Theorem 2.4. Let $r(>1)$ be an integer and $e_{1}>\cdots>e_{r}>1$ be positive integers such that $\left(e_{i}, e_{j}\right)=1$ for all $i, j(1 \leq i<j \leq r)$. Let $c \geq d$ be positive
integers such that $(c, d, e)=1$ where $e=\prod_{i=1}^{r} e_{i}$, and let $a_{2}=1, \cdots, a_{r}$ be mutually distinct elements of k^{*}. Then the ring $R=k\left[x_{1}, \cdots, x_{r}, u, v\right] / I$, where $I=\left(x_{1}{ }^{e_{1}}+x_{2}{ }^{e_{2}}+a_{2} u^{c} v^{d}, \cdots, x_{1}{ }^{e_{1}}+x_{r}{ }^{e_{r}}+a_{r} u^{c} v^{d}\right)$, is a factorial ring.

Proof. By $(c, d, e)=1$ there exist positive integers \bar{l}, \bar{m} such that $(\bar{l}, \bar{m})=1$ and $(\bar{l} c+\bar{m} d, e)=1$. We consider the graded ring $S=k\left[x_{1}, u, v\right]$, where $\operatorname{deg} x_{1}=\bar{l} c+\bar{m} d, \operatorname{deg} u=\bar{l} e_{1}, \operatorname{deg} v=\bar{m} e_{1}$. Then since S is a graded factorial ring, it follows from Theorem 4.1 in [1] that R is also a graded factorial ring. In fact, it is easy to see that $\boldsymbol{e}=\left(e_{2}, \cdots, e_{r}\right)$ and $\boldsymbol{\nu}=\left(-x_{1}{ }^{e_{1}}-a_{2} u^{c} v^{d}, \cdots,-x_{1}{ }^{e_{1}}-\right.$ $a_{r} u^{c} v^{d}$) form a ramification data defined in $[1, \S 4]$. Hence $S\left[\boldsymbol{\nu}^{1 / e}\right]$ is a graded factorial ring by Theorem 4.1 in [1]. Thus $R=S\left[\boldsymbol{v}^{1 / e}\right]$ is factorial. q.e.d.

It is easy to see that $R_{\Phi}(\Phi=(\boldsymbol{e}, \boldsymbol{b}, \boldsymbol{c}))$ is isomorphic to a ring given in Theorem 2.4.

§3. \boldsymbol{G}_{m}-surfaces

In this section, we shall study some properties of surfaces with a G_{m}-action. The results we obtain are essentially the same as in [4], [5].

Definition 3.1. If X is a surface and $\mu: G_{m} \times X \rightarrow X$ is a nontrivial G_{m}-action, we call $\{X, \mu\}$ (or, simply, X) a G_{m}-surface. Let $\{X, \mu\},\{Y, \nu\}$ be G_{m}-surfaces. We call a morphism $f: X \rightarrow Y$ a G_{m}-morphism if f makes the following diagram commute.

First, we shall study normal affine G_{m}-surface.
Let $\{X, \mu\}$ be a normal affine G_{m}-surface and $X=\operatorname{Spec} A$. Then there is a gradation $A=\oplus_{i \in Z} A_{i}$ such that the dual action $\tilde{\mu}: A \rightarrow k\left[t, t^{-1}\right] \otimes_{k} A$ sends $a \in A_{i}$ to $t^{i} \otimes a$ for all $i \in \boldsymbol{Z}$ [SGAD]. Since A is an integral domain, $Q H(A)=K\left[z, z^{-1}\right]$, where K is the field $Q H(A)_{0}$ and z is a homogeneous element of degree $d>0$. As the induced dual action of G_{m} on $Q H(A)$ sends z to $t^{d} \otimes z, K$ is the field of all the G_{m}-invariant elements of the function field $Q(A)$ of X. Since $Q(A)=K(z)$, tr. $\operatorname{deg}_{k} K=1$. Hence we can take the nonsingular projective curve C whose function field is K. Let $\varphi: X \rightarrow C$ be the rational map associated to the inclusion $K \hookrightarrow Q(A)$.

Proposition 3.2. If the rational map $\varphi: X \rightarrow C$ is a morphism, then $Q\left(A_{0}\right)=K$ and the general fibres of φ are smooth curves.

Proof. Since $A^{G_{m}}=A_{0}$, the morphism $\pi: X \rightarrow \operatorname{Spec} A_{0}$ is the categorical quotient [GIT]. By the universality of the categorical quotient, there is a unique morphism $g: \operatorname{Spec} A_{0} \rightarrow C$ such that $\varphi=g \circ \pi$. But as A_{0} is the subring of K, g is a birational morphism and $K=Q\left(A_{0}\right)$. Let $S=A_{0}-\{0\}$, then
$S^{-1} A$ is a normal K-subalgebra of $Q H(A)=K\left[z, z^{-1}\right]$ whose quotient field is $Q(A)=K(z)$. Such a K-subalgebra must be $K[z], K\left[z^{-1}\right]$, or $K\left[z, z^{-1}\right]$. In the case $S^{-1} A=K[z]$, let A be $A_{0}\left[u_{1}, \cdots, u_{n}\right]$, and u_{1}, \cdots, u_{n} homogeneous elements of A. There exists a non-zero element $f \in A_{0}$ such that $A_{f} \ni z$, and $z^{r_{i}}\left(A_{0}\right)_{f} \ni u_{i}(i=1, \cdots, n)$ where $r_{i}=\operatorname{deg} u_{i} / d$. Then $A_{f}=\left(A_{0}\right)_{f}[z]$. Hence the geometric fibres of the morphism $\pi: X \rightarrow \operatorname{Spec} A_{0}$ on $D(f)$ are isomorphic to \boldsymbol{A}^{1}. Similarly one can show that, in the case $S^{-1} A=K\left[z^{-1}\right]$ or $K\left[z, z^{-1}\right]$, there exists a non-zero element $f \in A_{0}$ such that the geometric fibres of the morphism on $D(f)$ are isomorphic to \boldsymbol{A}^{1} or $\boldsymbol{A}^{1}-\{0\}$, respectively. In all the cases, general fibres of π are smooth curves. On the other hand, $g: \operatorname{Spec} A_{0}$ $\rightarrow C$ is a birational morphism and C is a nonsingular curve, hence g is an open immersion. Thus general fibres of $\varphi=g \circ \pi$ are smooth curves. q.e.d.

Proposition 3.3. If the set $X^{G_{m}}$ of G_{m}-invariant points of X is of dimension 1, $X^{G_{m}} \simeq \operatorname{Spec} A_{0}$.

Proof. If m_{x} is the maximal ideal of A associated to a point $x \in X^{G_{m}}, m_{x}$ is homogeneous and $A / m_{x}=k$. This implies that $m_{x} \supset A_{i}(i \neq 0)$. Hence by Hilbert's zero point theorem, the ideal \mathfrak{a} of the reduced closed subscheme $X^{G_{m}}$ contains $A_{i}(i \neq 0)$. Thus the ring homomorphism $A_{0} \rightarrow A / \mathfrak{a}$ is a surjection, and $X^{G_{m}}$ can be considered as a closed subscheme of $\operatorname{Spec} A_{0}$. But A_{0} is integral and at most of dimension 1. Hence if $\operatorname{dim} X^{G_{m}}=1, X^{G_{m}} \simeq \operatorname{Spec} A_{0}$.
q.e.d.

Definition 3.4. If a smooth projective G_{m}-surface S is a ruled surface over a curve C, the G_{m}-action on S induces a G_{m}-action on C. We call S a G_{m}-ruled surface if the G_{m}-action on C is trivial.

Proposition 3.5. Let S be a G_{m}-ruled surface, then there are two sections C_{0} and C_{1} of the structure morphism $\pi: S \rightarrow C$ such that $S^{G_{m}}=C_{0} \cup C_{1}$ and $C_{0} \cap C_{1}=\varnothing$.

Proof. Since G_{m} acts on each fibre \boldsymbol{P}^{1} of π, there are at least two invariant points on each fibre of π. Hence we can take a nonempty G_{m}-stable affine open subvariety U of S such that general fibres of the natural morphism $U \rightarrow C$ have G_{m}-invariant points [3]. Then $\operatorname{dim} U^{G_{m}} \neq 0$, hence by Proposition $3.3 U^{G_{m}} \simeq \operatorname{Spec} A_{0}$, where $A=\oplus_{i \in \boldsymbol{Z}} A_{i}$ and $U=\operatorname{Spec} A$. On the other hand by Proposition 3.2, $\operatorname{Spec} A_{0}$ is birational to C. Hence there is a rational map $s_{1}: C \rightarrow U^{G_{m}} \rightarrow S$. Since S is complete and C is nonsingular, s_{1} is a morphism. Let $s_{1}(C)=C_{1}, C_{1} \subset S^{G_{m}}$. Taking another G_{m}-stable affine open subvariety U^{\prime} disjoint from C_{1} [3], we obtain another section $s_{0}: C \rightarrow S$ such that $C_{0}=s_{0}(C) \subset$ $S^{G_{m}}$. Since Proposition 3.3 implies that no two G_{m}-invariant curves intersect with each other [3], $C_{0} \cap C_{1}=\varnothing$ and $S^{G_{m}}$ contains no fibre of π. Hence there are exactly two invariant points on each fibre of π, thus $S^{G_{m}}=C_{0} \cup C_{1}$.
q.e.d.

Proposition 3.6. Let X be a nonsingular projective G_{m}-surface. Then there are a nonsingular projective G_{m}-surface $\widetilde{X}, a G_{m}$-ruled surface S and birational G_{m}-morphisms $f: \tilde{X} \rightarrow X, h: \widetilde{X} \rightarrow S$.

Proof. Let L be the function field of X and K the field of all the G_{m}-invariant elements of L. Let C be the nonsingular projective curve whose function field is $K\left(\operatorname{tr} . \operatorname{deg}_{k} K=1\right.$ by the result in the affine case). Let $g_{0}: X \rightarrow C$ be the rational map associated to the inclusion $K \hookrightarrow L$. If g_{0} is not a morphism, then every fundamental point x_{1} of g is G_{m}-invariant and the blowing-up X_{1} of X_{0} at x_{1} is a G_{m}-surface, and the morphism $X_{1} \rightarrow X$ is a G_{m}-morphism. If $g_{1}: X_{1} \rightarrow C$ is not a morphism, the same operation can be repeated. Thus there is a sequence of G_{m}-morphisms $\widetilde{X}=X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{0}=X$ such that $g_{n}: \tilde{X} \rightarrow C$ is a morphism (elimination of indeterminacy). Since \widetilde{X} can be covered by a finite number of G_{m}-stable affine open subvarieties, by Proposition 3.2 general fibres of g_{n} are nonsingular curves. But general fibres of g_{n} are complete curves with a nontrivial G_{m}-action, so they are isomorphic to \boldsymbol{P}^{1}. Then it is well-known that, by successive contraction of exceptional curves of the first kind on special fibres, one obtains a ruled surface S over C and g_{n} factors through $S \rightarrow C$, namely $g_{n}: \widetilde{X}^{h} S \rightarrow C$. Since exceptional curves of the first kind on G_{m}-surfaces are G_{m}-stable, S is a G_{m}-surface and h is a G_{m}-morphism.
q.e.d.

Proposition 3.7. Let X be a normal projective G_{m}-surface. Then there are a nonsingular projective G_{m}-surface $\widetilde{X}, a G_{m}$-ruled surface S and birational G_{m}-morphisms $f: \widetilde{X} \rightarrow X$ and $h: \widetilde{X} \rightarrow S$.

Proof. The desingularization of a surface is done by finite repetition of blowing up along an isolated singular point and the normalization. Thus the G_{m}-action on X can be extended to them. Hence there exist a nonsingular projective G_{m}-surface X^{\prime}, and a birational G_{m}-morphism $g: X^{\prime} \rightarrow X$. By Proposition 3.6 there are \widetilde{X} and S and $f^{\prime}: \widetilde{X} \rightarrow X^{\prime}, h: \widetilde{X} \rightarrow S$. Set $f=g \circ f^{\prime}$. q.e.d.

In the remainder of this section, we quote some well-known lemmas, for the reader's convenience, which are necessary in the following section.

Lemma 3.8. Let X and Y be nonsingular projective surfaces, and $\varphi: X \rightarrow Y$ a birational morphism which induces an isomorphism $X-\varphi^{-1}(P) \rightarrow$ $Y-\{P\}$ for a point $P \in Y$. Set $\varphi^{-1}(P)=\cup_{i=1}^{n} X_{i}$, where $X_{i}(i=1, \cdots, n)$ is an irreducible curve of X. Then if we consider the injection $\varphi^{*}: \mathrm{Cl} Y \rightarrow \mathrm{Cl} X$,

$$
\mathrm{Cl} X=\varphi^{*}(\mathrm{Cl} Y) \oplus \sum_{i=1}^{n} Z_{\operatorname{cl}}\left(X_{i}\right)
$$

Proof. By the factorization theorem for birational morphisms of nonsingular projective surfaces, we may assume that φ is a quadratic transformation. In this case, the assertion is obvious.
q.e.d.

Lemma 3.9. Let X be a nonsingular projective surface, Y a normal projective surface, and $\varphi: X \rightarrow Y$ a birational morphism which induces an isomorphism $X-\varphi^{-1}(P) \rightarrow Y-\{P\}$ for a point $P \in Y$. Set $\varphi^{-1}(P)=\cup_{i=1}^{n} X_{i}$, where $X_{i}(i=1, \cdots, n)$ is an irreducible curve on X. Then $\operatorname{cl}\left(X_{1}\right), \cdots, \operatorname{cl}\left(X_{n}\right)$ are linearly independent over \boldsymbol{Z} and

$$
\mathrm{Cl} X /\left(\sum_{i=1}^{n} \boldsymbol{Z} \operatorname{cl}\left(X_{i}\right)\right) \simeq \mathrm{Cl} Y
$$

In particular, if $\mathrm{Cl} Y$ is a finitely generated \mathbf{Z}-module, so is $\mathrm{Cl} X$, and

$$
\operatorname{rank} \mathrm{Cl} X=\operatorname{rank} \mathrm{Cl} Y+n
$$

Proof. Let $X^{\circ}=X-\cup_{i=1}^{n} X_{i}$, then $\mathrm{Cl} X^{\circ} \simeq \mathrm{Cl} Y$ and $f: \mathrm{Cl} X \rightarrow \mathrm{Cl} X^{\circ}$ is surjective and $\operatorname{Ker} f$ is generated by $\operatorname{cl}\left(X_{i}\right)(i=1, \cdots, n)$. The linear independence of $\operatorname{cl}\left(X_{i}\right)(i=1, \cdots, n)$ follows from [2]. Hence $\mathrm{Cl} X /\left(\sum_{i=1}^{n} \boldsymbol{Z} \operatorname{cl}\left(X_{i}\right)\right) \simeq$ $\mathrm{Cl} X^{\circ} \simeq \mathrm{Cl} Y$.
q.e.d.

Lemma 3.10. Let F be a free Z-module of rank n, and a_{1}, \cdots, a_{r} be elements of F. Then if $F \mid\left\langle a_{1}, \cdots, a_{r}\right\rangle$ is a free \boldsymbol{Z}-module of rank $n-r, F \mid\left\langle a_{1}\right\rangle$ is a free \mathbf{Z}-module of rank $n-1$.

Proof. The exact sequence

$$
0 \longrightarrow\left\langle a_{1}, \cdots, a_{r}\right\rangle \longrightarrow F \longrightarrow F /\left\langle a_{1}, \cdots, a_{r}\right\rangle \longrightarrow 0
$$

splits, since $F /\left\langle a_{1}, \cdots, a_{r}\right\rangle$ is a free \boldsymbol{Z}-module. Hence there is a free submodule E of rank $n-r$ of F such that $F=\left\langle a_{1}, \cdots, a_{r}\right\rangle \oplus E$. Since $\left\langle a_{1}, \cdots, a_{r}\right\rangle$ is of rank r, a_{1}, \cdots, a_{r} are linearly independent over \boldsymbol{Z} and $F \mid\left\langle a_{1}\right\rangle \simeq\left\langle a_{2}, \cdots, a_{r}\right\rangle \oplus E$ is a free \mathbf{Z}-module of rank $n-1$.
q.e.d.

Lemma 3.11. Let X be a nonsingular G_{m}-surface, and L an invertible sheaf on X such that $\operatorname{dim} H^{0}(X, L)<\infty$. If a linear subspace $V \subset \boldsymbol{P}\left(H^{0}(X\right.$, $\left.L)^{\vee}\right)$ contains all the points of $\boldsymbol{P}\left(H^{0}(X, L)^{\vee}\right)$ which correspond to G_{m}-stable divisors of X, then $V=\boldsymbol{P}\left(H^{0}(X, L)^{\vee}\right)$.

Proof. The condition implies that V contains all the G_{m}-invariant points of the induced G_{m}-action on $\boldsymbol{P}\left(H^{0}(X, L)^{\vee}\right)$. Since every G_{m}-action on a projective space is diagonalizable, G_{m}-invariant points of $\boldsymbol{P}\left(H^{0}(X, L)^{\vee}\right)$ span $\boldsymbol{P}\left(H^{0}(X, L)^{\vee}\right)$. Hence $V=\boldsymbol{P}\left(H^{0}(X, L)^{\vee}\right)$.
q.e.d.

§4. The ring $R(X)$

Let X be a normal projective G_{m}-surface such that $\mathrm{Cl} X \simeq \boldsymbol{Z}$. Then by Proposition 3.7, there are a nonsingular projective G_{m}-surface \widetilde{X}, a G_{m}-ruled surface S and birational G_{m}-morphisms $f: \widetilde{X} \rightarrow X$ and $g: \widetilde{X} \rightarrow S$. From now on, we fix such a 4 -ple $\{\widetilde{X}, S, f, g\}$ for X.

Definition 4.1. Let X° be a nonsingular open subvariety of X such that $X-X^{\circ}$ is a finite set. Let $L \in \operatorname{Pic} X^{\circ} \simeq \mathrm{Cl} X \simeq \boldsymbol{Z}$ be the ample generator of Pic X°. Then we call $R\left(X^{\circ}, L\right)=\oplus_{i=0}^{\infty} H^{0}\left(X^{\circ}, L^{\otimes i}\right)$ the canonical homo-
geneous coordinate ring of X, and denote it by $R(X)$.
$R(X)$ is a geometric graded factorial ring of dimension 3, and independent of the choice of X° (see [1]).

Proposition 4.2. S is a rational ruled surface.
Proof. Since $\mathrm{Cl} X \simeq \boldsymbol{Z}$ and $f: \widetilde{X} \rightarrow X$ is a birational morphism, $\mathrm{Cl} \widetilde{X}$ is a finitely generated \boldsymbol{Z}-module by Lemma 3.9. Since $g: \widetilde{X} \rightarrow S$ is also a birational morphism, $\mathrm{Cl} S$ is a finitely generated \boldsymbol{Z}-module. Thus the base curve of S is rational.

Let $\pi^{\prime}: S \rightarrow \boldsymbol{P}^{1}$ be the structure morphism of the rational G_{m}-ruled surface S, and let $\pi=\pi^{\prime} \circ g: \widetilde{X} \rightarrow \boldsymbol{P}^{1}$. Since general fibres of π are isomorphic to $\boldsymbol{P}^{\mathbf{1}}$, we can take $\alpha_{1}, \cdots, a_{n} \in \boldsymbol{P}^{1}(n \geq 3)$ such that for every closed point $a \in \boldsymbol{P}^{1}-\left\{a_{1}\right.$, $\left.\cdots, a_{n}\right\} \pi^{-1}(\alpha)$ is isomorphic to \boldsymbol{P}^{1}. Let $\pi^{-1}\left(a_{i}\right)=\sum_{j=1}^{r_{i}} e_{i, j} X_{i, j}(i=1, \cdots, n)$, where $e_{i, j}, X_{i, j}\left(i=1, \cdots, n, 1 \leq j \leq r_{i}\right)$ are positive integers and irreducible curves on \widetilde{X}, respectively. By Lemma 3.5, there are two sections $C_{0}{ }^{\prime}$ and $C_{1}{ }^{\prime}$ of π^{\prime} such that $C_{0}{ }^{\prime} \cap C_{1}{ }^{\prime}=\varnothing$ and $S^{G_{m}}=C_{0}{ }^{\prime} \cup C_{1}{ }^{\prime}$. Let C_{0} and C_{1} be the proper transforms of $C_{0}{ }^{\prime}$ and $C_{1}{ }^{\prime}$ by g, respectively. C_{0} and C_{1} are G_{m}-invariant curves on \widetilde{X}.

Proposition 4.3. Every G_{m}-stable irreducible divisor of \widetilde{X} defined over k is one of the following curves.

1) $\pi^{-1}(\alpha)$, where a is a closed point of $P^{1}-\left\{a_{1}, \cdots, a_{n}\right\}$,
2) $\quad X_{i, j} i=1, \cdots, n, l \leq j \leq r_{i}$,
3) C_{0} and C_{1}.

Proof. Let C be a G_{m}-stable irreducible divisor of \widetilde{X}. If C is contained in $\pi^{-1}\left(a_{i}\right)$ for some i, then $C \subset \cup_{j=1}^{r_{i}} X_{i, j}$ and $C=X_{i, j}$ for some $1 \leq j \leq r_{i}$. If $C \nsubseteq \pi^{-1}\left(a_{i}\right)$ for all i and $C \nsubseteq C_{0} \cup C_{1}$, there is a closed point $x \in C$ such that x is not G_{m}-invariant and $\pi(x) \notin\left\{a_{1}, \cdots, a_{n}\right\}$. Then C contains the closure of the orbit of x, which is equal to $\pi^{-1}(\pi(x))$. Hence $C=\pi^{-1}(\pi(x))$. This is the case (1).
q.e.d.

Theorem 4.4. X is obtained from \widetilde{X} by contracting $\left(\sum_{i=1}^{n} r_{i}\right)-n+1$ components of

$$
\left(\underset{\substack{1 \leq i \leq n \\ 1 \leq j \leq r_{i}}}{\cup} X_{i, j}\right) \cup C_{0} \cup C_{1} .
$$

If one denotes by R the union of the remaining $n+1$ components, then one of the following two cases occurs:

Case 1. There are an integer $i(i=0$ or 1$)$ and n integers m_{1}, \cdots, m_{n} ($1 \leq m_{i} \leq r_{i}$ for all i) such that

$$
R=C_{i} \cup\left(\bigcup_{i=1}^{n} X_{i, m_{i}}\right) .
$$

Case 2. There are n integers $m_{1}, \cdots, m_{n}\left(1 \leq m_{i} \leq r_{i}\right.$ for all $\left.i\right)$ such that

$$
\left(\bigcup_{i, j} X_{i, j}\right) \supset R \supset \bigcup_{i=1}^{n} X_{i, m_{i}}
$$

Proof. Since rank $\mathrm{Cl} S=2$, rank $\mathrm{Cl} \widetilde{X}=\sum_{i=1}^{n} r_{i}-n+2$ by Lemma 3.9. On the other hand, rank $\mathrm{Cl} X=1$. Hence by Lemma 3.9, $f: \widetilde{X} \rightarrow X$ contracts exactly $\sum_{i=1}^{n} r_{i}-n+1$ curves of \widetilde{X}. But since f is a G_{m}-morphism, those curves are G_{m}-stable. By Proposition 4.3, there are only three types of G_{m}-stable curves. But since the self-intersection number of a curve $\pi^{-1}(\alpha)$ $\alpha \notin\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ is $0, \pi^{-1}(\alpha)$ is not an exceptional curve of the morphism f [2]. Thus the first assertion is proved. Since the self-intersection number of $\pi^{-1}\left(a_{i}\right)=\sum_{j e} e_{i, j} X_{i, j}$ is 0 for each i, there are n integers $m_{1}, \cdots, m_{n}\left(1 \leq m_{i} \leq r_{i}\right.$ for all i) such that $R \supset \cup_{i=1}^{n} X_{i, m_{i}}$. Then the case 1 occurs if $R \nsubseteq \cup_{i, j} X_{i, j}$, and the case 2 occurs if $R \subset \cup_{i, j} X_{i, j}$.
q.e.d.

Definition 4.5. We call the components of R given in Theorem 4.4 remaining curves.

We will determine the canonical homogeneous coordinate ring $R(X)$ in each case in the following sections.

§5. Case 1

By renumbering the curves in Theorem 4.4, we may assume that $R=C_{0} \cup\left(\cup_{i=1}^{n} X_{i, 1}\right)$ and $e_{1,1} \geq \cdots \geq e_{n, 1}$. For simplicity, we denote, in this section, $X_{i, 1}$ and $e_{i, 1}$ by X_{i} and e_{i}, respectively $(i=1, \cdots, n)$. We can take elements s_{1}, \cdots, s_{n} of $H^{0}\left(\boldsymbol{P}^{1}, O_{P}(1)\right)$ such that $\left(s_{i}\right)_{0}=a_{i}$ and $s_{1}+a_{i} s_{2}+s_{i}=0(i=3, \cdots, n)$, where $a_{3}=1, \cdots, a_{n}$ are mutually distinct elements of k^{*} uniquely determined by a_{1}, \cdots, a_{n}. Let r be the largest number $(1 \leq r \leq n)$ such that $e_{r}>1$, if $e_{1}>1$, and let r be 0 if $e_{1}=1$.

Theorem 5.1. $\left(e_{i}, e_{j}\right)=1$ for all i and j such that $1 \leq i<j \leq n$, and there is a positive integer m with the following property: If $r=0,1$, or 2 .

$$
R(X) \simeq k\left[x_{1}, x_{2}, u\right], \text { where } \operatorname{deg} x_{i}=e_{i}(i=1,2) \text { and } \operatorname{deg} u=m .
$$

If $r \geq 3$,

$$
R(X) \simeq k\left[x_{1}, \cdots, x_{r}, u\right] / I \text {, where } \operatorname{deg} x_{i}=e / e_{i}(i=1, \cdots, r),
$$

$\operatorname{deg} u=m, e=\prod_{i=1}^{r} e_{i}$ and

$$
I=\left(x_{1}{ }^{e_{1}}+a_{3} x_{2}{ }^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+a_{r} x_{2}{ }^{e_{2}}+x_{r}{ }^{e_{r}}\right) .
$$

Proof. Since S is a rational ruled surface, $\mathrm{Cl} S$ is generated by $n+2$ divisors $Y_{i}=\pi^{\prime-1}\left(\alpha_{i}\right)(i=1, \cdots, n)$ and $C_{0}{ }^{\prime}$ and $C_{1}{ }^{\prime}$. The relations among them are generated by n divisors $Y_{1}-Y_{i}(i=2, \cdots, n)$ and $C_{0}{ }^{\prime}-C_{1}{ }^{\prime}+k Y_{1}$, where k is the self-intersection number of $C_{1}{ }^{\prime}$. By Lemma 3.8, $\mathrm{Cl} \widetilde{X}$ is generated by $X_{i, j}\left(i=1, \cdots, n, 1 \leq j \leq r_{i}\right)$ and C_{0} and C_{1}. Again by Lemma 3.8, the relations among them are generated by the total transforms of the n divisors $Y_{1}-Y_{i}(i=2, \cdots, n)$ and $C_{0}{ }^{\prime}-C_{1}{ }^{\prime}+k Y_{1}$. If we set

$$
g^{*}\left(C_{0}{ }^{\prime}-C_{1}{ }^{\prime}\right)=\sum_{i, j} d_{i, j} X_{i, j}+C_{0}-C_{1}
$$

then we have

$$
\begin{aligned}
& g^{*}\left(Y_{1}-Y_{i}\right)=\sum_{j=1}^{r_{1}} e_{1, j} X_{1, j}-\sum_{j=1}^{r_{i}} e_{i, j} X_{i, j}, \\
& g^{*}\left(C_{0}{ }^{\prime}-C_{1}{ }^{\prime}+k Y_{1}\right)=C_{0}-C_{1}+\sum_{i, j} d_{i, j} X_{i, j}+k \sum_{j=1}^{r_{1}} e_{1, j} X_{1, j} .
\end{aligned}
$$

Since

$$
\mathrm{Cl} X \simeq \mathrm{Cl} \tilde{X} / \mathbf{Z} \operatorname{cl}\left(C_{1}\right)+\sum_{X i, j \oplus R} \boldsymbol{Z} \operatorname{cl}\left(X_{i, j}\right)
$$

$\mathrm{Cl} X$ is generated by $n+1$ remaining curves $X_{i}(i=1, \cdots, n)$ and C_{0}. The relations among them are generated by n divisors, $e_{1} X_{1}-e_{i} X_{i}(i=2, \cdots, n)$, and $C_{0}-\sum_{i=1}^{n} d_{i, 1} X_{i}+k e_{1} X_{1}$. Thus one has

$$
\mathrm{Cl} X \simeq \sum_{i=1}^{n} \boldsymbol{Z} u_{i} / \sum_{i=1}^{n} \boldsymbol{Z}\left(e_{1} u_{1}-e_{i} u_{i}\right)
$$

where u_{1}, \cdots, u_{n} are linearly independent over \boldsymbol{Z}. Then noting that $\mathrm{Cl} X \simeq \boldsymbol{Z}$, one sees easily that $\left(e_{i}, e_{j}\right)=1$ if $i \neq j$ by Lemma 3.10. Since $e_{i} \mathrm{cl}\left(X_{i}\right) \in e_{j} \mathrm{Cl} X$ for every j, one can take a divisor E such that $\left(e / e_{i}\right) \operatorname{cl} E=\mathrm{cl} X_{i}$ for every $i\left(e=\prod_{i=1}^{n} e_{i}\right)$. Then $\mathrm{cl} E$ generates $\mathrm{Cl} X$. Let $X^{\circ}=\widetilde{X}-\cup_{i=1}^{n} \cup_{j=2}^{r_{i}} X_{i, j}-C_{1}$, then X° is a smooth open subvariety of X and $X-X^{\circ}$ is a finite set. For simplicity, we denote the restriction to X° of a divisor on \widetilde{X} by the same symbol (if there is no danger of confusion). We set $L=O_{X^{\circ}}(E)$. Since $L^{\otimes e} \simeq O_{X^{\circ}}\left(e_{1} X_{1}\right)$, we fix an isomorphism $\left.\pi^{*} O_{P}(1)\right|_{X^{\circ}} \simeq L^{\otimes e}$ and identify them from now on in this section. Since $\left(\pi^{*}\left(s_{i}\right)\right)_{0}=e_{i} X_{i}$ and $H^{0}\left(X^{0}, O_{X^{\circ}}\right)=k$, there is an element \bar{x}_{i} of $H^{0}\left(X^{\circ}, L^{\otimes e / e_{i}}\right)$ such that $\left(\bar{x}_{i}\right)_{0}=X_{i}$ and $\bar{x}_{i}{ }_{i}=\pi^{*}\left(s_{i}\right)$ for every i. Since $\mathrm{Cl} X$ is generated by $\mathrm{cl} E, C_{0} \sim m E$ for some integer m. One has $m>0$ because $C_{0}>0$ and $\mathrm{Cl} X \simeq \boldsymbol{Z}$. Hence there is an element \bar{u} of $H^{0}\left(X^{\circ}\right.$, $\left.L^{\otimes m}\right)$ such that $(\bar{u})_{0}=C_{0}$. It follows from Lemma 4.3 that G_{m}-stable irreducible divisors of X° are $X_{1}, \cdots, X_{n}, C_{0}$, and $\pi^{-1}(\alpha)$, where α is an arbitrary closed point of $\boldsymbol{P}^{1}-\left\{\alpha_{1}, \cdots, a_{n}\right\}$. For $a \neq \alpha_{1}, a_{2}$ there is an element $a \in k^{*}$ such that $\alpha=\left(s_{1}+a s_{2}\right)_{0}$, hence $\pi^{-1}(a)=\left(\pi^{*}\left(s_{1}+a s_{2}\right)\right)_{0}=\left(\bar{x}_{1}{ }^{e_{1}}+a \bar{x}_{2}{ }^{e_{2}}\right)_{0}$. Thus all the G_{m}-stable effective divisors on X° equivalent to $i \operatorname{cl} E$ are zeros of sections of $H^{0}\left(X^{\circ}, L^{\otimes i}\right)$ which are homogeneous polynomials of degree i in $\bar{x}_{1}, \cdots, \bar{x}_{n}, \bar{u}$ ($i \in \boldsymbol{Z}, i \geq 0$). Hence $R(X)$ is generated by $\bar{x}_{1}, \cdots, \bar{x}_{n}, \bar{u}$ as a k-algebra, by Lemma 3.11. On the other hand, since $s_{1}+a_{i} s_{2}+s_{i}=0(i=3, \cdots, n)$, one has $\bar{x}_{1} e_{1}+a_{i} \bar{x}_{2}{ }^{e_{2}}+\bar{x}_{i} e_{i}=0(i=3, \cdots, n)$. If i satisfies the conditions $r<i \leq n$ and $2<i, \bar{x}_{i}$ can be written as a polynomial in \bar{x}_{1} and \bar{x}_{2}. We define a morphism of graded k-algebras $h: k\left[x_{1}, \cdots, x_{n}, u\right] \rightarrow R(X)$ by $h\left(x_{i}\right)=\bar{x}_{i}(i=1, \cdots, n)$ and $h(u)=\bar{u}$, where $\operatorname{deg} x_{i}=e / e_{i}(i=1, \cdots, n)$ and $\operatorname{deg} u=m$. When $r=0,1$, or 2 , $R(X)$ is the image of $k\left[x_{1}, x_{2}, u\right]$. Since $\operatorname{dim} R(X)=3, R(X) \simeq k\left[x_{1}, x_{2}, u\right]$, where $\operatorname{deg} x_{i}=e_{i}(i=1,2)$ and $\operatorname{deg} u=m$. When $r \geq 3, h$ induces a surjection $k\left[x_{1}, \cdots, x_{r}, u\right] / I \rightarrow R(X)$, where $I=\left(x_{1}{ }^{e_{1}}+a_{3} x_{2}{ }^{e_{2}}+x_{3}{ }_{3}^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+a_{r} x_{2}{ }^{e_{2}}+x_{r}{ }_{r}{ }^{e_{r}}\right)$. Since $k\left[x_{1}, \cdots, x_{r}, u\right] / I$ is a factorial ring of dimension 3 by [l], and $\operatorname{dim} R(X)$
$=3$, we obtain $R(X) \simeq k\left[x_{1}, \cdots, x_{r}, u\right] / I$, where $\operatorname{deg} x_{i}=e / e_{i}(i=1, \cdots, n)$ and $\operatorname{deg} u=m$.
q.e.d.

Remark 5.2. Since $R(X)$ is a geometric graded factorial ring, $(e, m)=1$ by [1, Corollary 2.9]. Hence $R(X)$ is isomorphic to a graded ring given in Example I or II.

§6. Case 2

Again by renumbering the curves, we may assume that $R=\left(\cup_{i=1}^{n} X_{i, 1}\right)$ $\cup X_{n, 2}$ and $e_{1,1} \geq \cdots \geq e_{n-1,1}, e_{n, 1} \leq e_{n, 2}$. In the case $e_{n, 1}=e_{n, 2}$, we may furthermore assume that the divisor $f\left(X_{n, 2}-X_{n, 1}\right)$ is linearly equivalent to 0 or some positive multiple of it is ample (note that $\mathrm{Cl} X \simeq \boldsymbol{Z}$ and X is projective). For simplicity, we denote, in this section, $X_{i, 1}, e_{i, 1}, X_{n, 1}, X_{n, 2}, e_{n, 1}$, and $e_{n, 2}$ by X_{i}, e_{i}, U, V, c, and d, respectively ($i=1, \cdots, n-1$). We can take elements s_{0}, \cdots, s_{n-1} of $H^{0}\left(\boldsymbol{P}^{1}, O_{\boldsymbol{P}}(1)\right)$ such that $\left(s_{i}\right)_{0}=a_{i}(i=1, \cdots, n-1),\left(s_{0}\right)_{0}=a_{n}$, $s_{1}+b_{i} s_{2}+s_{i}=0(i=3, \cdots, n-1)$ and $s_{1}+b s_{2}+s_{0}=0$, where $b_{3}=1, \cdots, b_{n-1}, b$ are mutually distinct elements of k^{*} uniquely determined by $\alpha_{1}, \cdots, a_{n}$. Let r be the largest number ($1 \leq r \leq n-1$) such that $e_{r}>1$, if $e_{1}>1$, and let r be 0 if $e_{1}=1$.

Theorem 6.1. $\left(e_{i}, e_{j}\right)=1$ for all $1 \leq i<j \leq n-1$, and $(c, d, e)=1$, where $e=\prod_{i=1}^{n-1} e_{i}$. There are positive integers l, m, p with the following property: If $r=0$ or 1 ,

$$
R(X) \simeq k\left[x_{1}, u, v\right], \text { where } \operatorname{deg} x_{1}=p, \operatorname{deg} u=l \text { and } \operatorname{deg} v=m .
$$

If $r \geq 2$,

$$
\begin{aligned}
& R(X) \simeq k\left[x_{1}, \cdots, x_{r}, u, v\right] / I, \\
& I=\left(x_{1}^{e_{1}}+b_{3} x_{2}^{e_{2}}+x_{3}^{e_{2}}, \cdots, x_{1}{ }^{e_{1}}+b_{r} x_{2}{ }^{e_{2}}+x_{r}{ }_{r}, x_{1}{ }_{1}^{e_{1}}+b x_{2}{ }^{e_{2}}+u^{c} v^{d}\right),
\end{aligned}
$$

where $\operatorname{deg} x_{i}=p e / e_{i}(i=1, \cdots, n-1), \operatorname{deg} u=l$ and $\operatorname{deg} v=m$.
Proof. As in Case 1, Cl \widetilde{X} is generated by $X_{i, j}\left(i=1, \cdots, n, l \leq j \leq r_{i}\right)$, C_{0} and C_{1}, and the relations among them are generated by

$$
\begin{aligned}
& \sum_{j=1}^{r_{1}} e_{1, j} X_{1, j}-\sum_{j=1}^{r_{i}} e_{i, j} X_{i, j} \quad(i=2, \cdots, n), \\
& C_{0}-C_{1}+\sum_{i, j} d_{i, j} X_{i, j}+k \sum_{j=1}^{r_{1}} e_{1, j} X_{1, j} .
\end{aligned}
$$

Since by Lemma 3.9,

$$
\mathrm{Cl} X \simeq \mathrm{Cl} \tilde{X} / \sum_{j=0}^{1} \boldsymbol{Z} \operatorname{cl}\left(C_{i}\right)+\sum_{X_{i}, j \oplus R} \boldsymbol{Z}_{\mathrm{jl}}\left(X_{i, j}\right),
$$

$\mathrm{Cl} X$ is generated by the classes of the remaining curves $X_{1}, \cdots, X_{n-1}, U, V$, and the relations among them are generated by n divisors $e_{1} X_{1}-e_{i} X_{i}(i=2, \cdots$, $n-1), e_{1} X_{1}-c U-d V$ and $\sum_{i=1}^{n} d_{i, 1} X_{i}+d_{n, 1} U+d_{n, 2} V+k e_{1} X_{1}$. It follows from Lemma 3.10 that $\left(e_{i}, e_{j}\right)=1$ for all $1 \leq i<j \leq n-1$ and $(c, d, e)=1$. Let

$$
X^{\circ}=\widetilde{X}-\bigcup_{i=1}^{n-1} \bigcup_{j=2}^{r_{i}} X_{i, j}-\bigcup_{j=3}^{r_{n}} X_{n, j}-C_{0}-C_{1},
$$

then X° is a nonsingular open subvariety of X and $X-X^{\circ}$ is a finite set. Let L be the ample generator of $\operatorname{Pic}\left(X^{\circ}\right) \simeq \mathrm{Cl} X \simeq \boldsymbol{Z}$. Then there is a positive integer p^{\prime} such that $\left.L^{\otimes p^{\prime}} \simeq \pi^{*} O_{P}(1)\right|_{X^{0}}$. We fix such an isomorphism and identify them. Since $L^{\otimes p^{\prime}} \simeq O_{X^{\circ}}\left(e_{i} X_{i}\right), e_{i}$ divides $p^{\prime}(i=1, \cdots, n-1)$. Hence there is a positive integer p, such that $p^{\prime}=p e$. Since $\left(\pi^{*}\left(s_{i}\right)\right)_{0}=e_{i} X_{i}(i=1, \cdots$, $n-1)$ and $H^{0}\left(X^{\circ}, O_{X^{\circ}}\right)=k$, there is an element \bar{x}_{i} of $H^{0}\left(X^{\circ}, L^{\otimes p e / e_{i}}\right)$ such that $\left(\bar{x}_{i}\right)_{0}=X_{i}$ and $\bar{x}_{i}{ }^{e_{i}}=\pi^{*}\left(s_{i}\right)(i=1, \cdots, n-1) . \quad$ Since $\left(\pi^{*}\left(s_{n}\right)\right)_{0}=c U+d V$, there are elements $\bar{u} \in H^{0}\left(X^{\circ}, L^{\otimes l}\right)$ and $\bar{v} \in H^{0}\left(X^{\circ}, L^{\otimes m}\right)$ for some positive integers l and m such that $(\bar{u})_{0}=U$ and $(\bar{v})_{0}=V$ and $\bar{u}^{c} \bar{v}^{d}=\pi_{*}\left(s_{n}\right)$. If $c=d$, then $l \leq m$ by our definition of $e_{n, 1}$ and $e_{n, 2}$. As in Case $1, R(X)$ is generated by $\bar{x}_{1}, \cdots, \bar{x}_{n-1}, \bar{u}, \bar{v}$ as a k-algebra. On the other hand, since $s_{1}+b_{i} s_{2}+s_{i}=0$ ($i=3, \cdots, n-1$) and $s_{1}+b s_{2}+s_{0}=0$, one has $\bar{x}_{1}{ }^{e_{1}}+b_{i} \bar{x}_{2}{ }^{e_{2}}+\bar{x}_{i}{ }_{i}=0(i=3, \cdots$, $n-1$) and $\bar{x}_{1}{ }^{e_{1}}+b \bar{x}_{2}{ }^{e_{2}}+\bar{u}^{c} \bar{v}^{d}=0$. If i satisfies the conditions $r<i \leq n-1$ and $1<i, \bar{x}_{i}$ can be written as a polynomial in \bar{x}_{1}, \bar{u} and \bar{v}. We define a morphism of graded k-algebras $h: k\left[x_{1}, \cdots, x_{n}, u, v\right] \rightarrow R(X)$ by $h\left(x_{i}\right)=\bar{x}_{i}(i=1, \cdots, n-1)$ and $h(u)=\bar{u}$ and $h(v)=\bar{v}$, where $\operatorname{deg} x_{i}=p e / e_{i}(i=1, \cdots, n-1)$, $\operatorname{deg} u=l$, and $\operatorname{deg} v=m$. When $r=0$, or $l, R(X)$ is the image of $k\left[x_{1}, u, v\right]$. Since dim $R(X)=3, R(X) \simeq k\left[x_{1}, u, v\right]$, where $\operatorname{deg} x_{1}=p, \operatorname{deg} u=l$, and $\operatorname{deg} v=m$. When $r \geq 2, h$ induces a surjection $k\left[x_{1}, \cdots, x_{r}, u, v\right] / I \rightarrow R(X)$, where $I=\left(x_{1}{ }^{e_{1}}+b_{3} x_{2}{ }^{e_{2}}\right.$ $\left.+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+b_{r} x_{2}{ }^{e_{2}}+x_{r}{ }^{e_{r},} x_{1}{ }_{1}^{e_{1}}+b x_{2}{ }^{e_{2}}+u^{c} v^{d}\right)$. Since $k\left[x_{1}, \cdots, x_{r}, u, v\right] / I$ is a factorial ring of dimension 3 by the results of $\S 2$ and $\operatorname{dim} R(X)=3$, we obtain $R(X) \simeq k\left[x_{1}, \cdots, x_{r}, u, v\right] / I$, where $\operatorname{deg} x_{i}=p e / e_{i}(i=1, \cdots, n-1), \operatorname{deg} u=l$, and $\operatorname{deg} v=m$.
q.e.d.

Remark 6.2. Since $R(X)$ is a geometric graded factorial ring, l, m, p are pairwise relatively prime by [l, Corollary 2.9]. Hence $R(X)$ is isomorphic to a graded ring given in Example I or III.

§7. The proof of Theorem 1.1.

Let R be a graded ring in Theorem 1.1, and fix a nondegenerate bigradation. Then $X=\operatorname{Proj} R$ is a normal projective surface such that $\mathrm{Cl} X \simeq \boldsymbol{Z}[1, \S 1]$, and X has a structure of G_{m}-surface $\{X, \mu\}$ induced by the bigradation. It was proved in previous sections that $R(X) \simeq R_{\Phi}$ for an index Φ. Since $R \simeq R(X)[1, \S 2], R \simeq R_{\Phi}$. Thus the existence of Φ is proved.

Now it is sufficient to prove that if $R_{\Phi} \simeq R_{\Phi^{\prime}}$ then $\Phi=\Phi^{\prime}$. The indices Φ given in Examples I, II, and III are called of types I, II, and III, respectively.

Definition 7.1. For integers $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{m}$, we denote $\left[a_{1}, \cdots, a_{n}\right]$ $=\left[b_{1}, \cdots, b_{m}\right]$ if and only if $n=m$ and there is a permutation $s \in S_{n}$ such that $b_{i}=a_{s(i)}(i=1, \cdots, n)$.

Let $R=\oplus_{i=0}^{\infty} R_{i}$ be a graded ring with non-negative degrees and of finite type over k such that $R_{0}=k$. Let $\left\{u_{1}, \cdots, u_{n}\right\}$ be a minimal basis of $R_{+}=\oplus_{i>0} R_{i}$ as an R-module consisting of homogeneous elements. Then [$\operatorname{deg} u_{1}, \cdots, \operatorname{deg} u_{n}$] is uniquely determined by R (independent of the choice of
$\left.u_{1}, \cdots, u_{n}[1, \S 2]\right)$.
Definition 7.2. Under the above notation, we denote $\left[\operatorname{deg} u_{1}, \cdots, \operatorname{deg} u_{n}\right]$ and n by $D(R)$ and $n(R)$, respectively.

Of course, if $R \simeq R^{\prime}, D(R)=D\left(R^{\prime}\right)$ and $n(R)=n\left(R^{\prime}\right)$.
Proposition 7.3. Let Φ and Φ^{\prime} be two indices such that $R_{\Phi} \simeq R_{\Phi}{ }^{\prime}$. If Φ is of type I, then $\Phi=\Phi^{\prime}$.

Proof. Since $n\left(R_{\Phi^{\prime}}\right)=n\left(R_{\Phi}\right)=3$, it is obvious that Φ^{\prime} is of type I. Let $\Phi=\left(e_{1}, e_{2}, e_{3}\right)$ and $\Phi^{\prime}=\left(e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}\right)$. Then $D\left(R_{\Phi}\right)=\left[e_{1}, e_{2}, e_{3}\right]$ and $D\left(R_{\Phi^{\prime}}\right)=$ [$\left.e_{1}^{\prime}, e_{2}{ }^{\prime}, e_{3}^{\prime}\right]$. Since $e_{1} \geq e_{2} \geq e_{3}, e_{1}{ }^{\prime} \geq e_{2}{ }^{\prime} \geq e_{3}^{\prime}$ and $D\left(R_{\Phi}\right)=D\left(R_{\Phi^{\prime}}\right),\left(e_{1}, e_{2}, e_{3}\right)=$ ($e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}$). Hence $\Phi=\Phi^{\prime}$. q.e.d.

It is easy to see that the automorphism group Aut (R) of R (given in Definition 7.2) as a graded k-algebra is a linear algebraic group over k. We denote by rank $\operatorname{Aut}^{\circ}(R)$ the rank of the 0 -component $\operatorname{Aut}^{\circ}(R)$ of $\operatorname{Aut}(R)$, the dimension of a maximal torus of $\mathrm{Aut}^{\circ}(R)$.

Proposion 7.4. Let Φ be an index of type $I I$ or III. Then $\operatorname{rank} \mathrm{Aut}^{\circ}\left(R_{\Phi}\right)=2$.

Proof. Let $T \subset \operatorname{Aut}^{\circ}\left(R_{\Phi}\right)$ be the 2 -dimensional torus associated to the bigradation $R_{\Phi}=\oplus_{i, j} R_{i, j}$ of R_{Φ} given in $\S 2^{*)}$. It is sufficient to prove that the centralizer $Z(T)$ is of dimension 2. By the definition of the centralizer, every element of $Z(T)$ preserves the bigradation of R.

First, let us assume that Φ is of type II, and set $\Phi=(\boldsymbol{e}, \boldsymbol{a}, m)$. Then, every element of $Z(T)$ induces automorphisms of
and

$$
\begin{aligned}
& \oplus_{i \geq 0}^{\oplus} R_{i, 0}=k\left[x_{1}, \cdots, x_{r}\right] /\left(x_{1}{ }_{1}^{e_{1}}+a_{3} x_{2}{ }_{2}^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }_{1}^{e_{1}}+a_{r} x_{2}{ }^{e_{2}}+x_{r}{ }_{r}^{e_{r}}\right) \\
& \oplus_{i \geq 0} R_{i m, i}=k[u] .
\end{aligned}
$$

Since x_{1}, \cdots, x_{r}, u generate R_{Φ} over k, the kernel of the homomorphism

$$
Z(T) \longrightarrow \operatorname{Aut}\left(\underset{i \geq 0}{\oplus} R_{i, 0}\right) \times \operatorname{Aut}\left(\underset{i \geq 0}{\left(\oplus_{i m, i}\right.}\right)
$$

of algebraic groups is of dimension 0. By the exact sequence of [1 , Theorem 4.5], Aut $\left(\oplus_{i \geq 0} R_{i, 0}\right) \simeq G_{m}$. Since Aut $\left(\oplus_{i \geq 0} R_{i m, i}\right) \simeq G_{m}, Z(T)$ is of dimension 2.

Next, let Φ be of type III, and set $\Phi=(\boldsymbol{e}, \boldsymbol{b}, \boldsymbol{c})$. We admit the following lemma and continue the proof.

Lemma 7.5. $\quad R_{p_{e / e i} i}=k x_{i}(i=1, \cdots, r)$.
Thus every element of $Z(T)$ induces automorphisms of

$$
\begin{aligned}
R^{\prime} & =k\left[R_{p_{e / e}, 0}, \cdots, R_{p_{e / e r}, 0}\right] \\
& =k\left[x_{1}, \cdots, x_{r}\right] /\left(x_{1}{ }^{e_{1}}+b_{3} x_{2}{ }^{e_{2}}+x_{3}{ }_{3}^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+b_{r} x_{2}{ }^{e_{2}}+x_{r} e_{r}\right)
\end{aligned}
$$

and

$$
R^{\prime \prime}=k\left[R_{i,-d}, R_{m, d}\right]=k[u, v] .
$$

Since R_{Φ} is generated by $x_{1}, \cdots, x_{r}, u, v$ over k, the kernel of the homomorphism

$$
Z(T) \longrightarrow \operatorname{Aut}\left(R^{\prime}\right) \times \operatorname{Aut}_{b i-g r} \cdot\left(R^{\prime \prime}\right)
$$

of algebraic groups is of dimension 0 , where $\operatorname{Aut}_{b i-g r}$. $\left(R^{\prime \prime}\right)$ denotes the algebraic subgroup of $\operatorname{Aut}\left(R^{\prime \prime}\right)$ consisting of elements preserving bigradation. On the other hand, if $r \geq 3 \operatorname{Aut}\left(R^{\prime}\right) \simeq G_{m}$ and $\operatorname{Aut}_{b i-g r .}\left(R^{\prime \prime}\right) \simeq G_{m}{ }^{2}$. Thus one sees that $Z(T)$ is of dimension 2 , in view of the equation $x_{1}{ }^{e_{1}}+b x_{2}{ }^{e_{2}}+u^{c} v^{d}=0$. If $r=2, \operatorname{dim} Z(T)=2$ easily follows from the equation $x_{1}{ }^{e_{1}}+x_{2}{ }^{e_{2}}+u^{c} v^{d}=0$.
q.e.d.

Proof of Lemma 7.5. Since $R_{p_{e / e} ;, 0}$ is generated by monomials in $x_{1}, \cdots, x_{r}, u, v$, it is sufficient to prove the following assertion: If non-negative integers $l_{1}, \cdots, l_{r}, q, q^{\prime}$ satisfies the condition $x_{1}{ }^{l_{1} \cdots} x_{r}^{l_{r}} u^{q} v^{q^{\prime}} \in R_{p_{e / e} ;, 0}$, then $l_{j}=0(j \neq i)$ and $q=q^{\prime}=0$. The condition $x_{1} l_{1} \cdots x_{r} l_{r} u^{q} v^{q^{\prime}} \in R_{p_{e / e} i}$ implies

$$
\begin{align*}
& \sum_{j=1}^{r} l_{j} p e\left|e_{j}+q l+q^{\prime} m=p e\right| e_{i}, \tag{1}\\
& -q d+q^{\prime} c=0 \tag{2}
\end{align*}
$$

Thus there is a non-negative integer l_{0} such that $q=l_{0} c / e_{0}$ and $q^{\prime}=l_{0} d / e_{0}$, where $e_{0}=(c, d)$. Hence we have

$$
\begin{align*}
q l+q^{\prime} m & =l_{0}(l c+m d) / e_{0}=l_{0} p e / e_{0} \\
\sum_{j=0}^{r} l_{j} e^{\prime} \mid e_{j} & =e^{\prime} \mid e_{i} \tag{3}
\end{align*}
$$

by (1), where $e^{\prime}=e_{0} e$. By the equation (3), we have $l_{j} e^{\prime} \mid e_{j} \equiv 0\left(\bmod e_{j}\right)$ $(0 \leq j \leq r, j \neq i)$. Since $\left(e_{0}, e\right)=(c, d, e)=1$, we have $\left(e^{\prime} \mid e_{j}, e_{j}\right)=1$ and $l_{j} \equiv 0$ $\left(\bmod e_{j}\right)$ for every $j \neq i$. Hence we have $l_{j}=0(0 \leq j \leq r, j \neq i)$ by (3), and $q=q^{\prime}=0$ by $l_{0}=0$.

Definition 7.6. For a bigraded ring $R=\oplus_{i, j \in Z} R_{i, j}$, we set $M(R)=\{(i$, $\left.j) ; R_{i, j} \neq\{0\}\right\}$.

Definition 7.7. For a bigraded ring R, let q (resp. q^{\prime}) be the minimum (resp. the maximum) of $\{j / i ;(i, j) \in M(R)-(0,0)\}$ (which exists since R is assumed to be of finite type over k). Then we define $R^{l}=\underset{\substack{i, j \\ i q=j}}{\oplus} R_{i, j}$ (resp.

Let Φ be an index of type II. Then, with respect to the bigradation of R_{Φ} given in $\S 2$,

$$
\begin{aligned}
& R_{\Phi}=k^{l}\left[x_{1}, \cdots, x_{r}\right] /\left(x_{1}{ }^{e_{1}}+a_{3} x_{2}{ }^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+a_{r} x_{2}^{e_{2}}+x_{r}{ }^{e}\right), \\
& R_{\Phi}{ }^{r}=k[u] .
\end{aligned}
$$

Let Φ be an index of type III. Then $R_{\Phi}{ }^{l}=k[u]$ and $R_{\Phi}{ }^{r}=k[v]$, with respect to the bigradation given in §2.

Let Φ and Φ^{\prime} be indices of type II or III such that $R_{\Phi} \simeq R_{\Phi^{\prime}}$. Let $R_{\Phi}=\oplus_{i, j \in \boldsymbol{Z}} R_{i, j}$ and $R_{\Phi^{\prime}}=\oplus_{i, j \in \boldsymbol{Z}} R_{i, j}^{\prime}$ be the bigradation given in $\S 2$. There are the 2 -dimensional tori T and T^{\prime} of $\mathrm{Aut}^{\circ}\left(R_{\Phi}\right)$ and $\mathrm{Aut}^{\circ}\left(R_{\Phi^{\prime}}\right)$ associated to
the above bigradation of R_{Φ} and $R_{\Phi^{\prime}}$, respectively. Since $R_{\Phi} \simeq R_{\Phi^{\prime}}$ and rank $\operatorname{Aut}^{\circ}\left(R_{\Phi}\right)=2$, there is an isomorphism $\varphi: R_{\Phi} \simeq R_{\Phi^{\prime}}$ such that T is mapped onto T^{\prime} by the induced isomorphism $\tilde{\varphi}: \operatorname{Aut}^{\circ}\left(R_{\Phi}\right) \xrightarrow{\sim} \operatorname{Aut}^{\circ}\left(R_{\Phi^{\prime}}\right)$. Hence there are rational numbers $\delta \neq 0$ and ν such that $\delta j+\nu i \in \boldsymbol{Z}$ for all $(i, j) \in M\left(R_{\Phi}\right)$ and $\varphi\left(R_{i, j}\right)=R_{i, \delta j+\nu i}^{\prime}$. It is clear that $R_{\Phi}{ }^{l}$ is mapped isomorphically onto $R_{\Phi^{\prime}}^{l}$ if $\delta>0$ and $R_{\Phi^{\prime}}^{r}$ if $\delta<0$ by φ.

First, let us assume that Φ is of type II. Then Φ^{\prime} is also of type II and $\delta>0$, because $R^{l}=k\left[x_{1}, \cdots, x_{r}\right] /\left(x_{1}{ }^{e_{1}}+a_{3} x_{2}{ }^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+a_{r} x_{2}{ }^{e_{2}}+x_{r}{ }^{e_{r}}\right)$ is not generated by one homogeneous element over k. Thus we have $R_{\Phi}^{l} \simeq R_{\Phi^{\prime}}^{l}$. Let $\Phi=(\boldsymbol{e}, \boldsymbol{a}, m)$ and $\Phi^{\prime}=\left(\boldsymbol{e}^{\prime}, \boldsymbol{a}^{\prime}, m^{\prime}\right)$. Then one obtains $\boldsymbol{e}=\boldsymbol{e}^{\prime}$ and $\boldsymbol{a}=\boldsymbol{a}^{\prime}$ by [1, Theorem 5.1], and $m=m^{\prime}$ by $D\left(R_{\Phi}\right)=\left(e / e_{1}, \cdots, e / e_{r}, m\right)$ and $D\left(R_{\Phi^{\prime}}\right)=\left(e / e_{1}\right.$, $\left.\cdots, e / e_{r}, m^{\prime}\right)$. Thus we obtain:

Proposition 7.8. Let Φ and Φ^{\prime} be two indices such that $R_{\Phi} \simeq R_{\Phi^{\prime}}$. If Φ is of type $I I$, then $\Phi=\Phi^{\prime}$.

Thus it remains to treat the case where Φ and Φ^{\prime} are of type III. Let $\Phi=(\boldsymbol{e}, \boldsymbol{b}, \boldsymbol{c})$ and $\Phi^{\prime}=\left(\boldsymbol{e}^{\prime}, \boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}\right)$. We have shown that

$$
\begin{aligned}
& \varphi(u)=\alpha u \text { and } \varphi(v)=\beta v \text { for some } \alpha, \beta \in k^{*} \text { if } \delta>0, \\
& \varphi(u)=\alpha v \text { and } \varphi(v)=\beta u \text { for some } \alpha, \beta \in k^{*} \text { if } \delta<0 .
\end{aligned}
$$

In each case, it holds that

$$
\varphi\left(u R_{\Phi}+v R_{\Phi}\right)=u R_{\Phi^{\prime}}+v R_{\Phi^{\prime}} .
$$

Hence φ induces an isomorphism

$$
R_{\Phi} /(u, v) \xrightarrow{\sim} R_{\Phi^{\prime}} /(u, v) .
$$

Thus it is obvious that $\nu=0$, because $M\left(R_{\Phi} /(u, v)\right), M\left(R_{\Phi^{\prime}} /(u, v)\right) \subset\{(i, 0) ; i \in \boldsymbol{Z}\}$. From $D\left(R_{\Phi} \mid(u, v)\right)=\left[p e\left|e_{1}, \cdots, p e\right| e_{r}\right]$ and $D\left(R_{\Phi^{\prime}} \mid(u, v)\right)=\left[p^{\prime} e^{\prime}\left|e^{\prime}{ }_{1}, \cdots, p^{\prime} e^{\prime}\right| e^{\prime} r^{\prime}\right]$, it follows that $r=r^{\prime}, p=p^{\prime}$ and $\boldsymbol{e}=\boldsymbol{e}^{\prime}$. Since the two graded k-algebras

$$
\begin{aligned}
& k\left[R_{p_{e / e_{1}, 0},}, \cdots, R_{p_{e / e r}, 0}\right] \\
& \quad=k\left[x_{1}, \cdots, x_{r}\right] /\left(x_{1}{ }_{1}^{e_{1}}+b_{3} x_{2} e_{2}^{e_{2}}+x_{3}^{e_{3}}, \cdots, x_{1}^{e_{1}}+b_{r} x_{2}^{e_{2}}+x_{r}^{\left.e_{r}\right)}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& k\left[R_{p_{e / e_{1}, 0}, \cdots,}^{\prime}, \cdots, R_{p_{e / e r}, 0}^{\prime}\right] \\
& =k\left[x_{1}, \cdots, x_{r}\right] /\left(x_{1}{ }^{e_{1}}+b_{3}{ }^{\prime} x_{2}{ }^{e_{2}}+x_{3}{ }^{e_{3}}, \cdots, x_{1}{ }^{e_{1}}+b_{r}{ }^{\prime} x_{2}{ }^{e_{2}}+x_{r}{ }^{e_{r}}\right)
\end{aligned}
$$

are isomorphic with each other, one obtains $\left(b_{3}, \cdots, b_{r}\right)=\left(b_{3}{ }^{\prime}, \cdots, b_{r}{ }^{\prime}\right)$ by [1, Theorem 5.1]. In view of Lemma 7.5, $R_{\Phi} /\left(x_{1}, \cdots, x_{r}\right) \simeq R_{\Phi^{\prime}} /\left(x_{1}, \cdots, x_{r}\right)$, one has $k[u, v] /\left(u^{c} v^{d}\right) \simeq k[u, v] /\left(u^{c^{\prime}} v^{d^{\prime}}\right)$. Hence $c=c^{\prime}, d=d^{\prime}, l=l^{\prime}$, and $m=m^{\prime}$. From these facts, it follows easily that $b=b^{\prime}$. Hence we have $\Phi=\Phi^{\prime}$. Thus we obtain:

Proposition 7.9. Let Φ and Φ^{\prime} be two indices such that $R_{\Phi} \simeq R_{\Phi^{\prime}}$. If Φ is of type III, then $\Phi=\Phi^{\prime}$.

Thus Theorem 1.1 is completely proved, by Propositions 7.3, 7.8, and 7.9.
${ }^{*}$) There is a $G_{m}{ }^{2}$-action on R defined by $(\alpha, \beta)(r)=\alpha^{i} \beta^{j} r$ for every $a, \beta \in k^{*}$ and $r \in R_{i, j} . \quad T$ is the image of this action in $\operatorname{Aut}^{\circ}(R)$.

Mathematical Institute
Tohoku University
Sendai, 980 Japan

References

[1] S. Mori, Graded factorial domains, to appear in J. Math. Kyoto Univ.
[2] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, I. H. E. S., Pub. Math. 9 (1960).
[GIT] D. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin-Heidelberg-New York (1965),
[SGAD] Schémas en Groupes I, Lecture Note in Mathematics 151, Springer-Verlag (1970).
[3] H. Sumihiro, Equivariant Completion, J. Math. Kyoto Univ., 14-1 (1974), 1-28.
[4] P. Wagreich, Algebraic varieties with group action, Proceedings of Symposia in Pure Mathematics, Volume 29, (1975), 633-642.
[5] P. Orlik, and P. Wagreich, Algebraic surfaces with k^{*}-action (preprint).

