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1. All rings here are commutative with identity and noetherian. When
referring to a local ring A we will mostly specify the maximal ideal, i.e. (4, m)
means a ring with one maximal ideal m. Recall that for any m-primary ideal q
the Hilbert-Samuel function [(A/q"*!) is a polynomial with rational coefficients,
if n is sufficiently large. By e(q, A) we denote the leading coefficient of that
polynomial. 4

In [StV-1] the notion of “I-rings” (or in [StV-2], since these rings play
a role in clearing up a conjecture of Buchsbaum, “Buchsbaum-rings’’) was intro-
duced for characterizing local rings (A, m) with the property: “For any system
x=(x,, --+, x4) of parameters of A

T(x, AZI(A/xA)—e(x, A)

is an invariant of A (i.e. independent of the choice of x).” Clearly, all Cohen-
Macaulay rings (A, m) satisfy this property. By [StV-1] (4, m) is a Buchsbaum
ring iff, for all i=1, -+, d,

(*) ml(xy, oo, xi-) AL xi] S (xy, =, xi2) AP

It was suggested by the authors of [StV-1], [SchCT] that one should also
characterize local rings (A, m), for which T (x, A) is not necessarily an invariant,
but T (x, A)<constant. This condition means [SchCT] that for all systems x of
parameters of A and for all i=1, ---, d—1

(**) mp[(xl) ) xi—l)A : xi] g(xly A xi—l) Ar P ﬁxed

So it makes sense to call these rings (B, p)-rings. (B, p)-modules over local
rings can be defined correspondingly, [SchCT].

In the following the notation B-ring stands for (B, 1)-ring. We abbreviate
Cohen-Macaulay rings or Cohen-Macaulay modules to CM-rings or CM-modules ;
respectively.

1) Note, as a consequence, that if (A,m) is a Buchsbaum ring fhen A, is a Cohen-
Macaulay ring for all prime ideals p#m.
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The present note outlines an elementary approach (i.e. without using
cohomological methods) to an understanding of (B, p)-singularities (especially of
(B, 1)-singularities) on varieties,” We show that it is easy to construct
k-varieties Y of any dimension which are Cohen-Macaulay varieties at all but a
finite set of (B, p)-singularities. Now finding the invariant 7 (x, A) or, on
occasion, proving the property (*) or (**) for all systems of parameters of
A=0y,, is generally a difficult task, even in case of varieties with only one
isolated singularity. But we will see that for the case just mentioned — if R is
a finitely generated k-subalgebra of a CM-ring S such that S/R, as a vector
space over k, is finite dimensional —Y=Spec(R) is obtained from X=Spec(S)
by a finite morphism ¢, in which case there is a finite set of (B, p;)-singularities
Y1, =+, ¥» such that

resp: X—o '({y1, -, y})— Y—{y1, =+, 3,;} is an isomorphism (Prop. 2).
In particular we give sufficient conditions for the existence of (B, 1)-singularities.
The results are partially based on the following lemma which establishes an
estimation of T (x, E) for a finitely generated module E contained in a CM-
module M with [(M/E)<oo. This lemma can also be obtained from the results
in [RStV] and [SchCT]. We sketch here a short and very simple proof using
only well-known facts on commutative algebra, and we don’t use—diverging
from [RStV] and [SchCT]—the machinery of local cohomology.

Moreover a good deal of effort was devoted to compile the lists of types of
(B, p)-singularities on varieties. As for a general theory of (B, p)-singularities
(especially of (B, 1)-singularities), it seems to be far from definitive however.
So our examples are just designed to analyse some isolated (B, p)-singularities.
Examples 1-3 deal with affine surfaces Y in A4* having just one (B, 1)-point or
(B, 2)-point respectively. Especially in Example 1 we describe explicitly the
morphism ¢ ! X — Y. Example 4 describes a more general situation.

2, Lemma. Let M be a CM-module® over (A, m) and E a submodule of M
such that [(M/E)<oco.

Then :

(1) All systems x=(xy, -+, x4) of parameters of E (with d:=dim E=1)
satisfy the inequality

T(x, E)=1(E/xE)—e(s, E)S(d—1)I(M/E),

where e(x, E) is the multiplicity symbol for E and the multiplicity system x on
E [Nol.»

(ii) Equality holds in (i) if xM S E.

1) As to singularities, only irreducible algebraic sets Y are really interesting. A point
y€Y is called a (B,p)-singularity if the local ring Oy., is a (B,p)-ring. (B,1)-
singularities are sometimes called B-singularities.

2) Note that M is finitely generated by definition.

3) In this case e(x,E) coincides with the leading coefficient of the polynomial
I(E/x™1E), n>0, see [HVS].
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Proof. Since M2E2xE, any system x of parameters of E satisfies
(1) I(M/xE)=I(M/E)+I(E/xE)<oco.
Furthermore, since M2xM2xE,
(2) L(M/xM)=1(M/xE)<co.

Hence x,, -+, x4 form a multiplicity system on M. Observe that every sub-
module of a module of finite length over a noetherian ring is also of finite
length. Therefore x is a multiplicity system for M/E too. Hence, by [No],

7.4, Thm. 5 and 7.8, Prop. 8, one has
(3) 0+#e(x, E)=e(x, M).

But e(x, M)=1(M/xM) because of the Cohen-Macaulay property of M, see [No],
7.4. (Note that dim M=dim E=d). Hence

(4) e(x, E)y=1(M/xM)=I(M/xE)—1(xM/xE).
By (1) and (4) we obtain
(5) T(x, E)y=1(xM/xE)—I1(M/E).

Take now the surjective map
(6) o & M/E)T,—> xM/xE,

sending 7=>X(m;+E)T;— (X x;my)+xE (T; are indeterminates). Then we
obtain [(xM/xE)=d-1(M/E), proving (i).

For the proof of (ii), we may assume that xMCSE.

Claim: ¢ is an isomorphism. To see this, take y<ker ¢ in (6).

Then X x;m;= X x;e;€xE for suitable elements ¢;€ E. Hence 3 x;(m;—e;)
=0 and therefore, since x is a regular sequence of the CM-module M, m;—e;E
xM ([D]). It follows that the kernel of ¢ is contained in @& (xM+E/E)T;=0.

g.e.d.

Remark 1. The arguments just made apply again if M DFE is any couple
of finite modules over (A, m) such that [(M/E)<co and dim E=d=1. We then
obtain :

T(x, Ey=T(x, M)+l (xM/xE)—I(M/E)ST (x, M)+(d—1)-I(M/E).

Hence, if M satisfies the condition T (x, M)Sc<oo? for all systems x of
parameters of M, E satisfies the condition:

T(x, E)Y<c+(d—1)-1(M/E), for all systems x of parameters of E.

Moreover [(M/E)<co implies that Ass(M/E)=m ([Se]), i.e. E is m-primary
in M. But then m’M must be in E for suitable p, hence xMESE for all
parameter-systems xSme.

1) c=constant.
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3. Recall that a noetherian ring B in which the unmixedness theorem?
holds, is called a Cohen-Macaulay ring.

Proposition 1. Let A be a subring of a CM-ring B such that dim A=
dim B=2 and [,(B/A)<oo. Assume that one of the following tow conditions is
Sfulfilled :

(E) B is equicodimensional®
(Ul) B is an integral domain and A is universally catenarian.

Then :

(1) Spec A has Cohen-Macaulay property at all points except finitely many
(B, py)-singularities y;.

(ii) All points y; are B-singularities if a=ann(B/A) is a radical ideal
(i.e. a=+/0a).

Remark 2. The conditions (E) and (UI) are technical ones. In the following

applications to k-varieties they are always fulfilled. Observe that no condition
of such a kind is used in Lemma.

Question: Is Proposition 1 true without these conditions (E) or (UI)?

Proof of Proposition 1.

(a) By assumption, B/A is a finitely generated A-module, hence the exten-
sion ring B of A is finitely generated as an A-module. Therefore B is integral
over A.

Let a be the annihilator of B/A. (Note that a#0). Since B/A is an A-
module of finite length, it turns out that Ass(B/A)=Supp(B/A)=:V(a) is a
finite set of maximal ideals, see [B], 1V, §1, no 4 and §2, no 5, prop. 7. We
have (B/A),=0 for all primes pe V(a). Therefore, taking T : =A\pC B, we
obtain A,=T 'B=Bg with R=@pT'B)N\ B. This means that all points of
Spec A, not contained in V(a), are CM-points.

(b) Claim: All points m of V(a) are (B, p;)-singularities. To see this,
since [(T 'B/T*A)<c0,® it suffices to prove that T7!B is a CM-module over
T-1A=A, for all meV(a):

First of all T!'B is integral over A., hence T !B is a semilocal ring (see

[Ma], (5. E) and [No], 4.9, proof of Prop. 18), with v/m7T B =rad(T-'B)= : M.
Furthermore we have

dim (7T !'B)=dim(4.)= : d, by [Ma], (13.C).

1) That means: each ideal of the principal class is unmixed with respect to the
height, see [Ma], (16.C).

2) All maximal ideals have the same height; see also Nagata’s notion of ‘“Macaulay
rings’’ in [Na], TI, 25.

3) T:=A\m for any me&V(a)
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Remark 1 shows that m°T 'BSA. for suitable p. Therefore, since

Ve T'B =+/mT 'B =%, it turns out that Mer< A, for suitable p,.

We fix a system z of parameters of the ring T°'B in WS A.. We know
that the ring T-'B has CM-property. Now, if all maximal ideals of T°'B have
the same height, then z forms a regular sequence in 77 !B (see [Na], 25.4 and

25.7). So, by construction, z is a system of parameters of the A.-module T 'B
forming a T-!'B-sequence. Hence T7'B is a d-dimensional CM-module over A,.
Therefore, to finish the proof of (i), it remains to be shown that all maximal

ideals of T-!'B have in either case the same height:

Case (E): Since B is integral over A, the set of maximal ideals of T 'B is
in one-to-one correspondence with the set of all maximal ideals of B which do
not meet T (see [B], I and [Ma], (5.E), Thm. 5). Since B is equicodimensional,
all maximal ideals of T7'B have the same height.

Case (UD): Let M; be any maximal ideal of T7'B. (Note that the prime
ideals of T7!'B lying over mA., are precisely the maximal ideals of 7T7'B.)
Then, by the dimension formula in [Ma], (14.C) and by condition (Ul), we have

ht(gﬁl):ht(m/qm)"'tr. deg A (T'IB)—tI‘. deg. kGndy) (k (SJ‘EL) ) .

Since B is integral over A, we obtain ht(9,)=ht(mA.), proving (i) of
Proposition 1.

(¢) To see (ii), we observe that now m7T !B<S A,. But then the statement
(ii) of the lemma vyields the argument. This completes the proof of Proposi-
tion 1.

Now, in dealing with varieties one can carry over without any difficulty the
results of the preceding considerations. We change the notations of the rings
(R, S instead of A, B) to accentuate the present circumstances.

Proposition 2. Let X=Spec(S) be an affine Cohen-Macaulay variety® of
dimension=2 over a field k. Let R be a subring of S such that S/R, as a
vector space over k, is finite-dimensional. Then:

(i) Y=Spec(R) has CM-property at all points except finitely many (B, p)-
singularities y;.

(ii) The canonial map ¢ : X — Y defines a proper birational morphism such
that

X—SD—I({}’U oty yr})_—) Y_{yly oty yi}
1s an isomorphism.

(iii) All points y; are B-singularities if ann(S/R) is a radical ideal.

1) Note that an affine variety is a topological space X plus a sheaf of k-valued
functions on X which is isomorphic to an irreducible algebraic subset of k" with
the sheaf O ,.
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Proof. By assumption, we have [x(S/R)=[,(S/R)<co. [Note that Spec(S),
as an algebraic k-scheme, is equicodimensional. ] '
We know by the proof of Proposition 1 that, for a=ann(S/R), V(a) is a
finite set of closed points y,, -+, y,€Y. In case fea we have aySann(S,/Ry;)
and therefore R,=S;.
So the restriction

reSgD: X—SD_I({J'D ey yr}) — Y- {,‘"l: STty _VT}

of ¢ is an isomorphism. Hence ¢ is a proper birational morphism ([Mu], Chap.
o). In particular, ¥ has CM-property at all points except ¥, -+, ¥, by Pro-
position 1. g.e.d.

Remark 3. If we start in Proposition 2 with a regular variety X=Spec(S),
then Y=Spec(R) is normal at all points except y,, -+, y.. These points y, are
definitely not Cohen-Macaulay points (because of Serre’s lemma of normality).

Remark 4. A specific application of our methods vyields the following
statement :

“Let R be an excellent integral domain, dim R=2, such that Spec(R) is
non-singular in codimension 1. Then all (isolated) singularities are (B, p)-points.”

Proof. Suppose that R is not a CM-ring (otherwise the statement is trivial).
Let S be the integral closure of R in its quotient field Q@ (R). Since R is excel-
lent, S is of finite type over K. Furthermore S is a CM-ring [note that S, as
the normalization of R, is 2-dimensional, so it satisfies Serre’s condition S,],
and condition (UI) of Proposition 1 is fulfilled. Hence it suffices to show that
dimg(S/R)=0.

Suppose that dim(S/R)>0. Then there exists a prime ideal p=Supp(S/R)
such that dim(R/p)=1. Since Spec(R) is non-singular in codimension 1, R, must
be regular (hence integrally closed). But on the other hand we have:

R, &S, S QR)=0Q(Ry),

contradiction!

4. In Example 1 we construct explicitly the morphism ¢. Examples 2 and
3 are of the same type but with (B, p)-points of a different kind.

Example 1. We denote by % the field of complex numbers; x, y are in-
determinates. Take: R={fek[x, y1/f({1, 0)=f(—1,0)} and S=k[x, y].

Then R is the finitely generated subring k[1—x? xy, y, x—x%] of S.
Clearly S is integrally dependent on R and with the same quotient field.
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Therefore Y=Spec(R) is not normal.

Let X be the normal variety® Spec(k[x, y])=k* and ¢ the canonical map
X—Y. We see immediately that a=ann(S/R)=(1—x% xy, y, x—x°)= . m (maximal
ideal in R). Therefore the corresponding point y,€Y is a B-point by Proposition
2.

Furthermore ¢ '{y,} is the set of the points (1,0) and (—1, 0)=k? i.e.
¢ '{y,} is not connected. This shows anew that Y is not normal in y,.

Setting v,=1—x?% v,=xy, v,=y, v,=x—x° we obtain
R=k[vy, vs, vs, 0.1/ vs—02v;, Vi—Vi+v 03, Vi+vi—vi, vivs—v0,—vivy).

So Y can be regarded as an affine surface in k*, which is non-singular in
codimension 1, but with a B-point in the origin.
The blowing-up B,,(Y) of Y with center y, is a surface in B, (=blowing-
up of k!, which is covered by the pieces B{¥’=Spec (k[vi, *ZL, e %])) By, (Y)
i [

yields in B as exceptional divisor® two different lines with the generic points:
v v v y

(v1= , =, =, —L=l) and (v1=0, Le o B0 =—1).

U v v 1

’ )
Uy Uy 1 1 v

[Compare this with the corresponding statement of the following example. ]
Example 2. Take: R=F[x% xy, y, x*] and S=k[x, y].

We obtain a=ann(S/R)=(x% xy, y, x*)=: m. Hence the corresponding point
¥,€Y is again a B-point. But ¢7'(y,) contains only the point (0, 0)k?.
Setting v,=x?%, v,=xy, v;=y, v,=x° Wwe obtain:

R=klv,, -, 0,1/ vs—vov,, vi—0}, vi—v,08, vav,—vivy).

Therefore Y can be regarded as a surface in k* with a B-point in the origin.
The blowing-up B,,(Y) yields in B{’ as exceptional divisor the line with the
Uy

L v v . . e
generic point (v,=0, —v~2—=0, —v—“, v—=0), taken with a certain multiplicity.
1 1 1

Example 3. Take:
R=Fk[x% xy, y, x*] and S=k[x, y].

It is easily seen that a=ann(S/R)&E(x? xy, y, x*)= : m (more exactly : m*S&a
%m). Hence the corresponding point y, is a (B, 2)-point.
Setting v,=x% wv,=xy, vs=y, v,=x°, we have:

1) We identify Spec(S) with k2
2) That means EC B{, where E is the exceptional divisor (=P?% of B,.
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R=klvy, -, v,]/(avs—vive, vi—vi, v3—v113, v,v,—0v}vs).
In B{¥ the blowing-up B, (Y) yields a surface of the type of Example 2.

Example 4. Let A be an excellent CM-domain, d=dim A=1, and T an
indeterminate over A. Let m be any maximal ideal in A. Consider the rings

R:=A[mT, T?, T*]JC S : =A[T]

R contains all powers T" with n=2, hence S=R+AT=R-+RT. Take the
maximal ideal M : =m-R+mT -R+T* R+T*-RCR. Since MSSR, M is the
annihilator of S/R (regarded as R-module). Furthermore, since S=R+ AT and
mTER, we obtain S/R=A/m (as A-modules). Hence [r(S/R)<I,(S/R)=1<oo.

Therefore Spec(R) contains only one B-singularity, and T (x, Ry)=d for all
systems x of parameters of Ry,.

SONDERFORSCHUNGSBEREICH
THEORETISCHE MATHEMATIK
UNIVERSITAT BONN

DDR-409 HALLE-NEUSTADT
BLock 276/B

References
[B] N. Bourbaki, Algébre commutative, Ch. I-V. Hermann, Paris 1961.
[D] E.D. Davis, Ideals of the principal class, R-sequences and a certain monoidal

transformation, Pac. ]J. Math. 20 (1967), 197-205.
[HSV] M. Herrmann, R. Schmidt and W. Vogel, Theorie der normalen Flachheit,
Teubner-Texte zur Math., Leipzig 1977.

[Ma] H. Matsumura, Commutative algebra. Benjamin, New York 1970.

[Mu] D. Mumford, Introduction to algebraic geometry. Preliminary version of
first 3 chapters, 1970.

[Nal M. Nagata, Local rings. Interscience Publ. New York-London 1962.

[No] D.G. Northcott, Lessons on rings, modules and multiplicities, Cambridge

Univ. Press 1968.

[RStV] B. Renschuch, J. Stiickrad and W. Vogel, Weitere Bemerkungen zu einem
Problem der Schnitt-Theorie und iiber ein MaB von A. Seidenberg fiir die
Imperfektheit. J. of Algebra 37 (1975), 447-471.

[SchCT] Nguyen Tu Cuong, P. Schenzel and Ngo Viet Trung, Verallgemeinerte
Cohen-Macaulay-Moduln, Math. Nachrichten (to appear).

[s] J.P. Serre, Algébre locale-multiplicités. Lecture Notes in Math., No. 11,
Springer-Verlag Berlin-New York 1965.

[StV-1] J. Stiickrad and W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay-Ringe
und Anwendungen auf ein Problem der Multiplizitdtstheorie. J. Math. Kyoto
Univ., 13 (1973), 513-528.

[Stv-2] J. Stiickrad and W. Vogel, Uber das Amsterdamer Programm von W. Grib-
ner und Buchsbaum Varietiten. Monatshefte f. Math., 78 (1974), 433-445.



