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§1. Introduction. We will concern ourselves mainly with some integral tests
which guarantee sample path continuity or integrability of the supremum of sample
paths for all stochastic processes having the same moment condition. In this
direction perhaps the first theorem is due to Kolmogorov [34]: All separable
stochastic proosses {X(r); 0<t<1} such that Ja>0, b>0, ¢>0, 0<Vs, t<1,

E[1X(s)— X(£)|°] < b|s —t|!*¢

have continuous sample paths with probability 1.

After Kolmogorov, many people have developed his theorem. (A part of them
are listed in References.)

In this paper, we will treat a more general class of stochastic processes than
preceding people’s with much more elementary proofs and give a new sufficient
condition of sample path continuity for L,-processes with stationary increments.

§2. Formulation. Let (T, d) be a separable pseudo-metric space, i.e. d(s, t)=0
does not necessarily mean s=t, and Np(d, &) be the minimal cardinal number of
e-nets. A subset S of T'is called an ¢-net if for any ¢ € T, there exists s€ S such that
d(s, t)<e, and an e-net is called minimal if its cardinal number equals N(d, ).
To describe our class of stochastic processes, we introduce the following three
functions:
&(x): a non-negative, non-decreasing convex function defined on [0, + ),
¢(x): the inverse function of @ defined on [®(0), + 00) with ¢(P(0))= lim0 ¢(x),
o(x): a non-decreasing continuous function defined on [0, + c0) with a(x()l)dl()) and
a(x)>0 for x>0.

Then we denote by X{®, o, (T, d)} a collection of all real valued stochastic
processes {X(t, w); te T, we Q} defined on a probability space (2, U, P), which
may be different for each process, satisfying the following three conditions:

(i) P(X(s, w)=X(t, w))=1, if d(s, t)=0, (nH
(ii) there exists a constant My >0, which may depend on the process, such that

E[D(X*(s, t, 0))]<My< +© 2)



296 Norio Kéno

holds for any s, te T, where X*(s, t, 0)=|X(s, w)— X(t, w)|/a(d(s, 1)) if d(s, )x0
and =0, otherwise,
(iii) there exists a point ¢, € T such that

E[1X(to)l] < + co. €)

Remark 1. Boulicaut [3], and Nanopoulos-Nobelis [29] have investigated
essentially the same class when @ generates an Orlicz space, i.e. ¢ is a N-function
in the sense of [25].

Remark 2. Set fy(1)=E[|X(¢)]]. Then fy(f) is a continuous function defined
on (T, d) satisfying |fy(s)—fx(D]| <a(d(s, 1))p(My) by Jensen’s inequality, and it is
a bounded function if Np(d, ¢) is finite (¢>0).

Remark 3. It is easy to verify all our theorems for stochastic processes taking
their value in a separable locally compact metric space.

Example 1. (Generalized Gaussian process).
We will call a stochastic process belonging to the class X{exp cx?, o, (T, d)} (¢>0),
a generalized Gaussian process. It is easily checked that a sub-Gaussian process
in the sense of Jain-Marcus [22] or Heinkel [20], (3A>0, Ya>0

Elexp {a(X(s)— X(1)}]1 < A exp {a?o*(d(s, 1))/2}

holds for any s, t € T), is a generalized Gaussian process in our sense, but the converse
is not true.

Example 2. (L,-process, p>1) We will call a stochastic process belonging to
the class X{x?, o, (T, d)} (p=1), a L,-process.

Example 3. (Skorohod’s example [33]) We will cite below as Skorohod’s
example any stochastic process belonging to the class X{exp cx*, o, (T, d)} (c,
a>0), where (T, d) is a compact subset of a separable Hilbert space H such that

T={teH: A7 't| <1}

associated with a positive completely continuous operator A. His original process
is the following:

Ja, o', 6, >0, Vs, te T, Vx>0
P(IX(s)— X(H=x)<yexp { —dx*||s—¢]~*'}.

Remark 4. Since any stochastic process of our classes is continuous in pro-
bability, we can choose a modification which is separable with respect to any
countable dense subset D of T, and measurable with respect to Z(d)x U by the
theorem due to D. L. Cohn [6], where #(d) is the topological Borel field of (T,
d). He has proved it when (T, d) is a separable metric space, but there is nothing
to change for a separable pseudo-metric space.

In case that T has two pseudo-metrics d, and d,, we can establish the following:
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Proposition 1. Assume that (T, d,) is compact and the identity map from
(T, dy) to (T, d,) is continuous. If a real function f on T is continuous with
respect to d, and if d,(s, t)=0 implies f(s5)=f(t), then f is also continuous with
respect to d,.

Proof. Set
A, ={seT, dys, t)=0},
Ai={s; dy(s, ) <e},
w(s)=d (s, A)=inf {d (s, u); ue 4,},
and v(e)=sup {us); se As}.

Since (T, d,) is compact, we have lim v (¢)=0. Combining this with continuity
el0

with respect to d,, it follows for any n>0 that there exist 6>0 and ¢>0 such that
v(e)<d and |f(s)—f(¢)| <n for any s, t with d,(s, t)<d. This implies that for any
se€ A¢, there exists ue A, such that d,(s, u)<d and |f(s)—f(D)|<|f(s)—f(w)|+
If@)—=f@OI=1f(s)—fW)l<n. Q.E.D.

Proposition 2. Under the same assumptions for (T, d,) and (T, d,) as
Proposition 1, if a stochostic process on (T, d,) having continuous sample paths
with respect to d, satisfies the condition (1), then the sample paths are continuous
with respect to d, with probability 1.

This proposition has been pointed out by Fernique [15, p 704] without proof
in case of Gaussian random fields.

Proof. Define a pseudo-metric d, on D,={(s, ) e TX T; d,(s, t)=0} as
follows:

di((s, 1), (s, ) =d(s, 8') +d,(t, 1).

Since (D,, d,) is compact, there exists a countable dense subset S of D,. By
continuity with respect to d,, it follows that

sup |X(s, w)— X(t, w)|= sup |X(s, w)—X(z, w)|.
(s,t)esS

(s,t)eD>

Setting
N, ={w; X(s, 0) = X(t, )},

and N= U N,
(s,t)es

we have P(N)=0 from the condition (1), and X(s, w)=X(t, w) for w&N, if
dy(s, )=0. Therefore X(t, w), w& N, is continuous with respect to d, by Pro-
position 1. Q.E.D.

§3. Integrability. In this section, we will consider integrability of the supremum
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of sample paths.

Theorem 1. If there exists a positive decreasing sequence {g,}s.o Wwith
N(d, &)>®(0) such that

0

: a(£n-l)¢(NT(d, Bn)) < + @, (4)

n=

then for any separable process {X(1): te T} belonging to X{®, o, (T, d)}, we have

E[stgng(t’ UJ)l] S}% E[IX(t’ w)l] +CX i 0(811-1)¢(N7(d’ En)) 3

where

Dy=a minimal gy -net,

Cx= "gggg'sl)¢(Mxx)/¢(x)(< + ),
and Mx=sst1€1:;E[d>(X*(s, t, w)J(<+ ).

)
Proof. Let D, be a minimal ¢,-net and set D= \U D,. It is sufficient to prove
n=0

the inequality for a separable process with the separant D according as Remark 4.
From the definition of a net, for each t e T there exists t,(t) € D, such that d(t, 1,(t))
<eg,(t, ()=t if teD,). Then setting N={w; 3(s, )eDxD with d(s, )=0 such
that X(s, w)>x X(t, )}, and A, (w)=max |X(t, w)—X(t,- (1), w)|, n=1, 2,..., we

teD,
have P(N)=0 by (1) and

X1, @) < 31X )|+ ¥ Ay(0)

S Z |X(ta Cl))|+ i 0'(8,,_1)m';l)x X*(t, Tn-‘l(l)a w)
t teD,

eDo n=1

< T IX@ o)+ 3 o) T S 1,m(0), @)

teD,,

for te D and w& N. Since the right had side does not depend on te D, it follows
by Jensen’s inequality that

E[ggg [ X(1, w)|]

< T E[Xt, o)1+ 3 o(e,-)@(MxNr(d, 2,))

teDo
< > Ell, w)|]+cx§1 o (en_1) (N7 (d, £,)). Q.E.D.

Corollary 1. Choosing &,=27"T, in the Theorem 1, we have

E[fgrp | X(t, w)|]
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Tal2
<E[IX(to, @)1 +2Cx | " (N1 (d, w))e(duo) ud,
+

where Ty is the diameter of T and t, is defined in (3).

Corollary 2. In case of T=[0, 1]V with the usual Euclidean metric | ||,
choosing 2¢,=1/®(2")"/N, we have

E[sup [X(z, w)|]
teT
+00
< 3 E[IX, w)|]+4C§S o(1/®(x)!N)dx.
teDg 1/2
In case of a special class which includes Example 1 and 3 or ‘‘exponential
type” of [29], we have another sufficient condition obtained by the method due to

Fernique [13], [15] or Heinkel [19], who have applied it to Gaussian or sub-
Gaussian case.

Theorem 2. Assume that ®(0)<1 and there exists a constant ¢>1 such that
2log ¢(x)<log P(cx), (x>0) 5
or equivalently,

d(x)<cd(x), (x>P(0)).

We concern ourselves in case of a(x)=x.
(i) If there exists a probability measure (T, #(d), p) such that

Ik, &) =sup So S (B, u))du< + 00, (6>0), ©6)
where B(t, u)={s; d(s, t)<u}, then
Elsup [ X(t, @)|] < STE[IX(S, )| 1dp(s)

+3c p(My)+6c2I(p, Ty/2)< + 00

holds for any separabie and measurable stochastic process {X(t); te T} belonging
to X{®, x, (T, d)}.
(i) Denote by MYT) a collection of all probability measures (T, #(d), u). If

J(e)= sup §T3‘+0¢(1/u(3(t, w)))du dp(t) < + 00, (e>0) )

pem(T)

then

E[squ | X(2, )] < K+3c p(My)+6c2J(T,/2)< + ©

holds for any separable and measurable stochastic process {X(t); te T} belonging
to X{®, x, (T, d)}, where K=sup E[|X()|]< + o (Remark 2).
teT
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Proof. We remark that if {X(t, ); t€ T} is a measurable function with respect
to #(d), then d(s, 1)=0 implies X(s, w)=X(t, w).
Set

B(w) =§M B(X*(s, 1, w))dp(s)du(t) .

N;={w; B(w)=+ o}.

and

Xn(ta w)=gB ® X(S, (D)d[l(S)/[.l,,(t) 5

n

where B,(t)={s; d(s, 1)<27"T,}, and p,(t)=pu(B,(t))(>0).
Then by Fubini argument, we have P(N,)=0 and as the same technique as that of
[20], we have

£ E0XC 0) - X0 )]

 ELOGX(, 5, @)]du(s) (1))
< io 21T, (My) < + 0.
Therefore, setting

N,= K{) {w; ZolX(t, w)—X,(t, w)|=+ o},
te n=

(D is a separant)

if w& N, U N,, then it follows for te D that
1X(t, @) < | Xo(t, )|+ golxm(t, ®) = X, (t, ®)|

< |S X(s, @)dp(s) |

T
+ 3 3217, (S B(X*s, 5", ®))

n=0 Bn+1(t)XBu(t)
dp()dp(s" ) (D 114() )

< ]ST X(s, ©)d(s)| +3 T 277 Tud(B(@) e (1)

< |§T X(s, ©)du(s)| + 3¢ Tud(B())

+363Ty 3 2779 (1 (1) ®)
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<[, (s, @)du(s)| +3eTup (B(w))

+6¢2U(p, Ty)2).

Since the last term of the above estimate does not depend on ¢, it follows by Remark
2 and Jensen’s inequality that

E[fgg | X2, w)[]

<{ E0XCs, )1du(s) +3cTup(M)

+6¢2I(p, T,/2) < + 0.

The proof of (ii) is essentially the same as that of Gaussian case proved by
Fernique [15].

Let S be a finite subset of D, say S={t,,..., t,}, and define a random variable
15 by

15(w) =¢; if and only if masx | X(¢, )| =|X(¢;, w)|
te

and |X(t), w)|<|X(4;, w)|, 1<j<i—1. Choosing as a probability space (T, £(d),
) the distribution of tg, it follows by (8) that

max | X(1, )| =| X(zs(@), )|
< \Srm, ©)du(s)| +3¢T,¢ (B(w))

+362T; 3 277 (1 oy 1 (T5(@)))

n=0
and
E[ntleasx | X(2, w)[]
< K+3cT,¢p(My)
+6¢2J(Ty/2)< + 0.
This yields the proof of (ii) since the right hand side does not depend on S. Q.E.D.

As is well known in case of Gaussian processes [13, p 77], if
[, oVr(d w)du< +eo,
+

then there exists a probability measure y such that I(u, &)< +oco(e>0). In fact,
let D, be a minimal 2-"-net and define a probability 4 such as

WE)= 5 27 ¥ 6,(E)[Ne(d, 27).
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where 6(E)=1 if te E and =0, otherwise. By the definition of a net, we have
B(t,27")nD,.,x¢, and

u(B(t, 27) 227" [Ny(d, 27771,
Since we have
o(1/u(B(t, 27"))
< P2 'N(d, 27"71)
<cp(2" )+ cp(No(d, 2777 1))
<cp(2)(n+1)1log, ¢+ cd(Ny(d, 2771,

it follows that
Iy, &)< S sup ¢ (1/u(B(t, u))du
+0 teT

< const. + const. Se O (Nr(d, u))du< + 0.
+0

§4. Sample path continuity. In this direction many people have obtained various
sufficient conditions for various classes. Here, we will give another theorem, from
which the known results are obtained as corollaries and, in addition, the proof of
the theorem leads to a new sufficient condition for sample path continiuity of L,-
processes with stationary inerements.

0
Theorem 3. For a positive decreasing sequence {¢,} such that 3 &,< + o, set

n=1
]
6n= Z ek»
k=n
D,=a minimal ¢,-net of (T, d),

B,={(s,t); s, teD, with d(s, 1)<56,} ,

and
# B, =the cardinal number of B,.
If
§nj 0(55,)¢(4B,) < + o0, (9)
and
S 0(e)$(N1(ds £401)) < + o0, (10)

then any separable process {X(t); te T} belonging to ¥{®, o, (T, d)} has, with
probability 1, continuous sample paths, and
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E[ sup |X(S, CD)—X(I, C())l]

d(s,t)<én

<2Cx § 0(e)$(N1(d, 2411))

+Cx 3 0(58)9 (5B

holds for any n>ng, where ny is the first n such that Ny(d, &,)>®(0) and Cy=
sup  P(Myx)/$(x).

x>N1(d,eny)

Proof. Let {X(t, w); te T} be a separable and measurable process with a

separant D= U D,. Using the same terminologies as the proof of Theorem 1,

n=1

we have
1X(t, w)— X(z,(1), o)l
<a(e) X*(1, 7,(1), )
<o(e)P(P(X*(t, 1,(1), ), (W& N, te D)

and by Jensen’s inequality, we have

S E[X(. ) - X(z,0), 0)]]
< £ 0,0 (y)

<const. p(My) 3. 0(e)(Np(d, £,41)) < + co.
It follows that P(N,)=0, where
N,= A {w; Z |X(t, ) — X(7,(2), w)| =+ o0} .

Set for & NU N,

F(w)= sup |X(t, w) = X(z,(1), 0},

teDy 4y

G, (w)= sup | X(s, w)— X1, w)|,

(s,)€B,,
N,={w&ENUN,; gF,,(w)=+OO},
and
Ny={w&NUN,; icn(a))=+oo}.

By the habitual calculus, we have
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Fo(@)<o(e)9(( sup X*(t, 7,(1), @)))

Dn+1

<a(e,)p(sup P(X*(, 7,(2), w)))

€Dn+1

< J(En)fi)(‘el}): P(X*(1, 1,(1), 0))),

and

$ B[P, (@)]< 3 0(e) $(MxNr(d, £01))

<Cx 3 0(e)$(Nr(d, £41)) < + 0.
Analogouly, we have
Gu(@) So($5)9(_ T S(X*(s, 1, @),
and
S E[G,(0)1<Cx 5 0(55,)¢(2B,) < + o0.

1t follows that P(N, U N3)=0.

Now we take two points ¢, t' € D with d(t, t')<J,, then for any n(>m) there
exist two sequenses {s,(t)}i-,, and {s(t)}i=, such that s5,(t)=1,(0), Tu(sk+1())=s0),
k=m,...,n—1 and s,(t)=1,), TulSi+ (I N=5), k=m,..., n—1. Since we have

A0, 52N |T dlsicrs®), 34(0)+ d(s,0), )
Fd, )+, 5, O+ B dlspa(©), 54(0))

n—1
32‘; ex+26,+0,,<50,,

it follows for &N U N, U N, U N; that
lX(l’ CO)—'X(t,, CL))ISIX(t, w)_X(Sn(t)v w)l

FIXW, @)= 3(5,(0), ) +2 . F(©)+Gp(@)

~2 3 Fw)+Gn(®) as n—+ .
k=m

Therefore X(t, ®), ®& N U N; U N, U N,, is uniformly continuous on D and more-
over, we have

E[ sup IX(S9 CO)—X([, W)]]

0<d(s,t)<dn

szcxén (e $(Nr(d, £441))
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+ ngl 0(56,)(#B,) < + 0.

305

Q.E.D.

Remark 5. We notice that the above proof is also valid even if the sum of a
sub-sequence of {a(53,)¢(#B,)} is convergent and this idea is useful for the proof of

Theorem 5.

Corollary 1. In case that T=[0, 1]V with the usual Euclidean metric d=| |,

if

g+wa(l/¢(x)‘/N)dx< + o0,

(11)

then any separable stochastic process belonging to X{®, o, ([0, 11¥, | )} has

continuous sample paths with probability 1.

This integral test is the best possible in a sense when &(x)=x?, p>2, and

N=1. ([18], [23])

Proof. To avoid a technical complication, we assume that @(0)=0.

g, =Cy®(2")~ YN, and Cy=(1-2"1¥)/5
in Theorem 3, then we have
Nz(ll I, e) SNVZ227NCRNO(2™),

and by convexity of &(x), we have
S,= 3 8u$C~¢(2")‘”Nk§ (22M) /(24N
k=n =n

S5—1¢(2n)—l/N.
and

#B,<ayN1(ll I, &),

where ay is a constant dependent only on N. Therefore, it follows that

3 0(58,)9(#B,)

sb@k o(1/B(27) M) $(B(2"))

o]

gszg 0(1/(x) M) dx < + oo,

2k~

and

PIRICATIC AR )

<by 3 0(1/0@) M$(@(2)

Set
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+ 00
s4bNg 7 6(1/@(x)1M)dx < + oo,
-

where

by=sup ¢p(ayNV227NCND(x))[¢(P(x)) (< +0).
x21
Remark 5. In case that &(x)=x, Corollary 1 is nonsence because if
S+wa(x‘1/"’)dx<+oo, (1

then X{x, o, ([0, 11%, || )} contains only constant random variables as their sepa-
rable modifications. In fact, set

Qn(w)= ZIX(klz_""-'a sz—n), Cl))
— X(kj27m,..., ky2™), o))
where S sums up all 0<kj<k<2" i=1,.., N such that 3’ (ki—kj)=1. Since
i=1
0,(w) is non-decreasing, it follows by (11) that
E[lim Q,(w)]=lim E[Q,(w)]

<lim N2""Mye(2™")=0.

n—oo

This yields that Q,(w)=0 for all n with probability 1. Q.E.D.

Corollary 2. Assume the condition (5) of Theorem 2. If
[, 6Ve(@ wydu< + oo, (12)
+0

then any separable stochastic process belonging to ¥{®, x, (T, d)} has continuous
sample paths with probability 1.

Proof. Set ¢,=2"" in Theorem 3. Since we have §,=2""*! and #B,<N(d,
2-7)2, it follows that

ik 5.2-"H1(¥B,) <5c ik 271§ (Np(d, 277))

-k

SZOCSZ S(Np(d, w))du< + o,
+0

and

-k

8

g (Np(d, 27 <40 9V (d, w)du< + 0.

2
+0

n

Q.E.D.

This Corollary 2 is applicable with a slight modification to Skorohod’s example
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(Example 3). In fact, if we set a(x)=x%"/%(a’ >0), and assume that Trace A? < + o0
for some >0, then we have

NT(d’ 2—n/ﬁ) < 0'1'2"2"/0,

where B=max (1, B), 0=max (1, 1/—1/2) and a, is a constant. In place of (12),
convergence of the following integral guarantees sample path continuity:

[, 6V2(d, w0 (200) Ju d
+ .
< const. S (log Np(d, w)V=yu2/="~14y
+0

<const. " (nlog a, +n2"/0 log 2)/ag(2-"/%)

<+4o0, if «0>p.
The last condition is satisfied when one of the following three conditions is fulfilled :
(i) 0<pf<2/3 and I1<a'(1/B—1/2),
(ii) 2/3<p<1 and I<a, or
(iii) 1<p<2 and PB<o'.
This is nothing but Skorohod’s result.

Corresponding to Theorem 2, we have other sufficient conditions for sample
path continuity.

Theorem 4. Assume the condition (5) of Theorem 2.
(1) If there exists a probability measure (T, Z(d), p) such that

lim I(y, €) =0, (13)
el0

then any separable and measurable process {X(t); te T} belonging to X{®, x,
(T, d)} has continuous sample paths with probability 1, and

E[  sup 1 X(s, w)— X(t, w)|]1<9-27%cT,p(My) + 12¢21(p, 27%T) .

d(s,1)<27kTy
(ii) If
lzit%l J(e)=0, | (14)
then the same conclusion as (i) is valid and

E[  sup | X(s, w)— X(t, 0)|]1<9-27*cT;p(My) + 12¢2J(27*T)) .

d(s,1)<27kTy

Proof. (i) Using the same notations as in the proof of Theorem 2, it follows
for w& N, that :
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|Xn+1(t9 (D)—‘X,,(t, (D)]

<3217, | X5, ', ) du()dU() Gt (O1(0)) )

Bn+1(t)*xBn(t)
S 3‘2_"-ICT‘,(¢(B((D)) + C¢(l/ﬂ,,+1(t))) s

and
ngk IXn+1(t9 w)_Xn(t9 (D)l

<3.27*cT,;p(B(w))+6c2I{u, 27+1T,) .
Analogously, if d(t, t')<27%T, and p(f) < w(t'), we have
| X (t, 0)— X (', w)|
<3 27*eT{P(B(w)) + cp(1/m(1))) -
Therefore, it follows for @& N, U N, and ¢, t' € D with d(t, t')<27*T, that
| X(t, )= X(t', )| <9-27* T ,p(B(w))
+12¢2I(u, 27%Ty),

which means that X(f, w), wé& N, U N, is uniformly continuous on D and moreover
we have

E[ sup IX(ts (O)—X(t', CD)I]
d(t,t')<2-kTq4

39’2_kCTd¢(Mx)+ 12021(/1, 2_de) .

(ii) Let S be any finite subset of D, say {t,,..., t,}, and define a couple of random
variables (z,, 7,) as follows:

71,(w)=1; and 1t,(w)=t¢; ifand only if

max (X(t, 0)— X(¥', w))=X(1;, 0)— X(1;, ®)
(t,t')eSxS
d(t,t’')<2" kT4

> X(t,, ®)— X(2,, ®)

holds for p<i, or p=i and ¢ <j.
Denote by (T, #(d), u,) and (T, %£(d), p,) the distributions of 7, and 7, re-
spectively and set

Di@)={ _@@*s, 1, ) du()du(@), i=1.2,
and
Dia@={ o0rs, 1, 0)du()du 0.

Analogously as in (i), it follows for w& N, U N, that
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max Xz, 0)—X(¢, 0)|=X(1,(0), ©) - X(1;(w), ®)
PRRBUZ

< 3 1X,01(51(0), @) = X, (1,(0), )]
+1X,(14(0), ©) — Xh(15(0), 0)]
+ 5 X (@), 0) = Xi(52(@), )]
<3e2HT($(D1 (@) + $(Do(@)) + $(Dy 2()))

+6e2 (7 61 (Bx, (@), w)

2
+0
2-kTy
+6e2” " (1 up(Blax(0)), wd,

where X, and X} are defined by the distributions p, and pu, respectively such as in
the proof of Theorem 2. Therefore, we have

E[ max |X(t, 0)—-X(7, )[]
(1,1")eSxS
d(t,1")<27 KTy

=E[X(1,(w), ) — X(1,(w), ®))]
5902"‘Td¢(Mx)+ IZCZJ(Z_de) .
Since S is arbitrary, we conclude (ii).

Now we establish a new sufficient condition for sample path continuity of a
class of stochastic processes including L,-processes with stationary increments.
This condition is just the analogy of that for Gaussian case due to Jain-Marcus
[22]. Let T=[0, 1]¥ with the usual Euclidean norm || ||, and assume that there
exists a pseudo-metric d on T which depends only on the Euclidean norm; that is,
d(s, t)=y(||s—t|) with a continuous function ¥. Denote by ¥ the non-decreasing
rearrangement of Y ; i.e.

P(x)=sup {y; u({te T; Y(th <y} <x},

where u is the Lebesgue measure on T.

Theorem 5. Assume that ¢(x)$K1xP+K2,_ p>1. If
400 v v
S F(/P(x)dx<+00, (15)
or equivalently,

(,, ove(d, w)du< +eo, (16)

then any separable and measurable process {X(t); te T=[0, 1]¥} belonging to
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X{D(x), x, (T, d)} has continuous sample paths with probability 1.

By Proposition 2, the continuity with respect to the pseudometric d is equivalent
to the continuity with respect to the Euclidean norm || |.

Proof. We will prove that sample paths are continuous with respect to the
pseudo-metric d with probability 1. Let D, be a minimal 27"-net on (7, d), and
7, be a mapping from T to D, such that d(r,(¢), 1)<27", and t,(t)=t if teD,. Set
B,()={s; d(s, )=y(|s—t])<27"} and p,(1)=pu(B,(t)), the Lebesgue measure of
B,(?). By the analogous way as that of the proof of Theorem 2, we have

$ E[X(, 0)= X,(5,(0), @)1 < 5 27 (My) < +eo. Set

teDn+y

and

G, (w)= ' Eu% | X, (2, w)— X,(I', w)|,
1 €D,
d(t,1)<6.27n

then, we have
g E[F,(»)]

<53 2‘"“E[¢ ¥ B(X*(s, 5', @)

tGDn+|SBn-H(t)XBn(tn(t))

A5V (s s D174 ) |

<53 27 p(MxNr(d, 2771))

sSCxS . ¢(N1(d, u))du< + o,
+
and

E[G,(w)] gz-n+3E[( sup B(X*(s, 5, @)

t,t’eD, Sd(s,s')SZ‘"‘”i‘
d(t,t')<6.2°n

du(s)dp(s") i ORA) |

<Cx27"3¢(Nr(d, 2772 Ne(d, 279)) ,

here we use Lemma 2, 1 of [22, p 120].
Now let us estimate the last term. If there exists ny such that

¢(Nr(d, 27")?|N1(d, 27"+%)) > 2°Pp(N1(d, 27"))
holds for any n>n,, then we have

N1(d, 27")[N(d, 27"*%)
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> P(2°7¢(N(d, 27"))/P(P(N(d, 27")))
>26r — (267 — 1)®(0)/N(d, 27™).
Therefore, there exists n, such that
No(d, 27")[N4(d, 271%5) > 20p~1
holds for any n>n,. By induction, we have
Np(d, 27m=5my>26p=1imN (d, 27"1),

and

Ms

27moSm(Ny(d, 27m5m)

m=0

>

3
L0s

2—n,—5m{(2(6p—l)mNT(d’ 2—n|) _ KZ)/Kl}I/p

=+ o0,

which contradicts to (16). This shows that there exists a subsequence {n,} such
that

S E[G,, ()] <C} 3 27439 (Nr(d, 277) < + o,
Combining the above estimates, the w-sets

Ny={0; 3 Fy(@)=+o},
and

Ny,={w; i:: G, (0)=+ w0}
have probability 0. Therefore, it follows for ¢, t' € D with d(t, ') <27« that

| X(t, w)— X(¢', w)|
<IX(, @)= X,(5,(1), )42 3 Ffw)
+G,. () + X, 0) = X,(1,(1), 0)|

-2

m

F.(0)+G,(w) as n—+o,

k

Ins

and so {X(t, ); te D} is uniformly continuous on D with probability 1. Q.E.D.

Taking account of the Gaussian case, I have a conjecture that Theorem 5 is
the best possible in the following sense: in order that any separable L,-process
with stationary increments, E[|X(s)— X(8)|?]1/?=y(||s—t|), has continuous sample
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paths with probability 1, it is necessary and sufficient that an integral test
4o __
S Y(x"P)dx converges.
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