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By
Masayoshi HATA

(Communicated by prof. M. Yamaguti, Dec. 16, 1980)

1. Introduction

Caianiello’s equation is known as mathematical neuron model. In 1961, L.D.
Harmon found an unusual and unsuspected phenomenon between the amplitude
of the input pulses and the firing in experimental studies with his transister
neuron model. J. Nagumo and S. Sato [1] started mathematical investigation
of this model. They studied the dynamics of the periodic attractor and sug-
gested that this complicated relationship between them takes the form of Cantor
function. Mainly we will give some new results concerning the dynamics which
is not the periodic attractor. In this section Caianiello’s equation is reduced to
a discontinuous piecewise-linear equation. We distinguish two cases, which we
shall treat one in section 2 and the other in section 3.

We assume that the magnitude of the input stimulus is constant and that
the neuron is forgetting past firing with exponential rate. Under these assump-
tions Caianiello’s equation takes the form:

fan=1[A—a 3 SE=—0]  (@>0,0>D),
where 1[x] is the Heaviside function. The value x, represents the state of
the neuron at the instant n: x,=0 represents the resting state and x,=1
represents the exciting state. Constant A is the magnitude of the input stimulus
and @ is the threshold value.

Letting y,=1+ Ag)ﬁ —i} s

=0 bT

, wWe obtain

yn+1=f(yn, ,B; c)
Blx—c)+1 if x<c
Blx—c) if x=c,

1 . A6
,B—?, c=1

where f(x, B, c)={

(1—%) , and X, =1y,—c].

We assume that 0<¢<1 because the neuron always excites or rests for large
instant n according to ¢<0 or ¢>1 respectively.
In the following we will investigate the dynamics of a discontinuous pie-
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cewise-linear function f(x)=f(x, f, ¢) on the parameter plane (B, 0)=(, 1)x(0, 1).
f(x) maps the right open unit interval I=[0, 1) into itself. It is sufficient to
examine f(x) only on I, because the iterated point of the initial value out of
I must fall into I after some iterations by f. The next lemma obviously fol-
lows and the proofs are omitted.

Lemma 1.1. (1) The graph of f™(x) consists of right open segments. Each
segment has the same slope B™.

@) IDfDfHI)D-++ and f™ is an one to one map for n=1.

(3) Assume that cef™(I) for some n=0 and that right open interval J
dose not contain any of the following n-+1 points:

¢, f74e), £7%c), -+, f™¢)

as interior points of J. Then f*: J— f*(J) is a homeomorphism for k=1, 2, ---
n+1. '

" Divide I=[0, 1) into two subintervals I°=[0, ¢) and I'={c¢, 1). First we
give some definitions. For x</,let A(x) be the formal symbol I if x belongs
to I, where j=0 or 1. We call A(x) the address of x. By the itinerary I(x)
we mean the sequence of addresses:

(A(x), A(f(x)), A(f3 (%), )

of the successive image of x. For each symbol I’ we define the sign e(I)=j
and e,(x)=e(A(f**(x))) for n=1. By the sign itinerary &(I(x)) we mean the
sequence of signs:

(ex(x), ex(x), €5(x), )

To investigate the dynamics of f(x) for the parameters (8, ¢)=(0, 1)x(0, 1),
we deal with Case A and Case B separately as follows.

Case A: There exists some integer N>1 such that c<lInt fi(J) for =0,
1, -+, N—1 and ce&lInt (D).

Case B: For any integer n=1, cInt ().

2. Dynamics in case A

In this section we describe the dynamics in Case A. We will call this case
a periodic case, which is justified by the following theorem.

Theorem 2.1. For any x<l the itinerary I(x) has period N-+1, where N
is given in the definition of Case A.

Proof. Since c<lnt f¥(I), there exists the inverse image of ¢ for f?, where
i=0, 1, ---, N—1. We use the abbreviation c-; instead of f~*(c) for /=0. Note
that N points {c,, ¢-1, -, c-y+1} are all distinct and non-zero. Divide I into
N+1 right open subintervals by these N points and denote Iy, I,, - [ v+ By
Lemma 1.1, f is homeomorphic on each subinterval I;, Assume that ¢_;€Int f(I;)
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for some 0<;<N-—1 and 1=/=<N+1. Since c¢_;,€Intl; we have j+1=N.
However, f¥(c-;-1)€lnt f¥(I;) since f¥ is homeomorphic on I;, so c€lInt f¥(I).
This is a contradiction. Hence each f(/;) must be contained by some subin-
terval I,. On the other hand we can show that each subinterval must contain
some f(I;). So we have f(I;)CI.« for i=1, 2, ---, N+1, where = is a permuta-
tion. Also we have #¥*'=Id and rn’#Id for j=1, 2, ---, N. Moreover we can
12+ N+1
231
number of 1=<7<N+1 such that [,CI'.

Finally, for any x &I, the sequence (x, f¥*(x), f2¥+Y(x), ---) is monotonous
and the itinerary I(x) has period N+1. O

show that 7=0” where o=( ), 1=p=N, (p, N+D=1, and p is the

3. Dynamics in Case B

In this section we describe the dynamics in Case B. We will call this case
a singular case. It will be justified by the Theorem 3.5 below.

Lemma 3.1. For any n=1,

1) o< <01

) letting J,=0f"Q), f™0)), then cl JyNcl J;=¢ if p#q, c&cl [n, and |Jal
=P

® FrD=1-"ls.

Proof. We shall prove by an induction on n. It is trivial for n=1. Assume
that (1), (2) and (3) hold for n==Fk. By the property (3) f*({I) consists of k+1
components. Since f is homeomorphic on J; for /=1, 2, -+, k, (1), (2) and (3)
hold for n=k+1. O

Theorem 3.2. f has no periodic points and the itinerary I(x) is not periodic
for any x<1.

Proof. Assume that f has a periodic point P with period N. By Lemma
3.1, f0) and f™(1) are not periodic for any n=1. So P is neither f™(0) nor
f™(1). Assume that Plnt J, for some n=1, then f¥(P)lnt J,.y. This is a
contradiction. Hence Pecl J, and Plnt f*(I) for any n=1. By the property

i‘; | Jo1=1, for any ¢>0, there exists Jy such that |Jy—P|<e. Now we can

take the neighborhood U of P such that {U, f(U), ---, f¥~(U)} are disjoint one
another since Pelnt f¥(I). Let U, and U, be the left and right half of the
neighborhood U of P respectively. And take small J, and J, such that J,CU,,
J.CU,, and p<q. Since f" is a linear function on U with positive slope, we
have f"(x)&U, for any n=1 and x€U,. However, f9°?(J,)=J,, This is a
contradiction. Hence f has no periodic points.

Next assume that the itinerary I(x) has period N for some x<]. Let
LJ=[7inI§£fN'"”(x), iuz%)f""’"”(x)) for j=0,1, -, N—1. Each L; has positive
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measure since f has no periodic points. By assumption, we have L;CI° or L;
CI' for each j. Since f is homeomorphic on each L; we have f(L;)CL;,; for
7=0,1, -, N—2 and f(Ly-,)CL, Hence f¥(L;)cL; and f¥ is homeomorphic
on each L; Note that Lo, L,, -, Ly, are disjoint since f has no periodic
points. Let n0=r1151=ixll{n|f"(0)eLo}. Then we have Jp.+xnvCL, for any k=1.
By Lemma 3.1, there exists an interval J*=[ f"o*¥(0), fmo+2¥(1)) which lies bet-
ween Jo.n and Jp4.n. However JoN\J*=¢ for any n=1, and this contradicts

to i‘,l |J.1=1. This completes the proof. O

Now we define L(n)= lg; |x—f™(x)| for n=1. Obviously we have L(;)>0

for j=1, 2, -+, N and L(N+1)=0 in the periodic case. And we have the fol-
lowing lemma in the singular case.

Lemma 3.3. L(n)>0 for any n=1.

Proof. Assume that L(M)=0 for some M=1. Then there exists an interval
I=[a, b) such that f* is homeomorphic on 7 and f¥(x) —»b as x —b—. Thus
the sequence {f*¥(x)} .z is monotone increasing for any xe/. This shows the
existence of a point x,&/ such that the itinerary I(x,) has period M. This
contradicts to Theorem 3.2. O

Lemma 3.4. For any n=0 there exists a set of non-negative integer {ji, Je,
o, Jne1} Such that c¢_jelntK; for i=1,2, -, n+1l, where K, Ky, -, Knia
are n+1 components of f™(I).

Proof. Assume that there exists a positive integer M and a right open
interval K, which is one of the components of f#(I), such that ¢_;&Int K for
any ;j=0. By Lemma 3.1, we have K=[ f?(0), f%(1)) where 0=p, ¢g=M and p
#¢. Also f7 is homeomorphic on K and f/(K) lies between J,.; and J,+; for
any j=1. Then, for any x€J, and yeJ, we have

|G =D < Tpasl 1 Jaws |+ 1K)
=B Jpl+ 1T+ K]
In the case of p>g¢, by Lemma 3.3, we have L(p—gq)>0. So there exists a

positive integer 7, such that

for any j=j,.

min{| [yl 10— < B0

Then we have
L(p—g)= inf | 2= 42| < | f3)— ()]

S 1A=+ 1 ()= fP-1 ()]

However f/(x)€ Jp.+; and fP-9%(y)e J,,; so the last expression is less than
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—L(pz—q) . This is a contradiction. Similarly we get the same result in the

case of p<q. O

Let A= E\l cl f®(I). This is an f-invarient Cantor set by Lemma 3.1 and

has null Lebesque measure. Note that A is the closure of the orbit of ¢ for %
Moreover the next theorem follows.

Theorem 3.5. For any x€ A, A is the w-limit set of x. Remark that the
w-limit set of x is the closure of the orbit of x for f.

Proof. Fix nz=l1 and let my=|J,|. By Lemma 3.4, there exists a positive
integer M such that each component of f™(I) contains some point of {c, ¢y, -,
¢-y}. Also, for any x4, there exists a positive integer N>M satisfying the
following properties:

Mo
2

(2) there exists an open interval Uy such that xeUy, ccy€Uy, c.;&Uy
for =0, 1, ---, N—1.

Then f* is homeomorphic on Uy for k=1, 2, .-, N. Therefore we have

1) |x—c-nl<

Mo
5
This inequality shows that two points f*(x) and c-y., must be contained by
same component of f*(/). Hence each component of f*(/) contains some point
of {x, f(x), -, f¥(x)}. This completes the proof. O

We call 4 a Cantor attractor.

[fRx)—c-ner| <BF¥lx—c_nl<

4. Farey fractions

This section describes Farey fractions and some of their properties without
proofs. Farey fractions are closely related to the distribution of the periodic
cases on the parameter plane (3, ¢)(0, 1)X(0, 1).

Definition 4.1. The set of Farey fractions of order n=1, denoted F,, is
the set of reduced fractions in the interval [0, 1] with denominater<n.

0 1
Examples. F;: T 71

0 1 1
Foyogo 1

01 1 2 1
FMreesT
p.0 1112 3 1
4-1,4,3,2,3,4,1
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e
It 2 <5

bc—ad=1. Conversely, if four non-negative integers a, b, ¢, d satisfy bc—ad

are consecutive in some F;, then they satisfy the unimodular relation

a c . \
=1, then n and 7 are consecutive terms in F, only for

max (b, d)=n=<b+d—1.

By these properties, the next special induction we call Farey induction. A pro-

position which is defined for all reduced fractions in the interval [0, 1] is true

if we check the following two properties. We denote this proposition by P.
(1) Both P(0) and P(1) are true.

atc\ . . a c
2) P( b1 d is true under assuming that both P(-b—) and P<F> are true,
where bc—ad=1 and — e[O 17.

b d

5. Distribution of periodic cases and singular cases on the parameter
plane

First, fix the value of f=(0, 1). We will investigate the two orbits which
start from 0 and 1, and these orbits may be regarded as the sequences of func-
tions of variable ¢. This idea is analogous to the investigation of the orbit of
a critical point of one dimensional endomorphism.

Let

Blx—o)+1 if x<c
Blx—c) if x=c.

flx, c)z{

And define F,(c) and G,(c¢) inductively as follows.
Fi(e)=1=fc,  FaulO)=f(Falc), ),
GiO=p1—c),  Gr(0)=f(Gale), ©).
Lemma 5.1. (1) Fy(c) (resp. Ga(c)) is a piecewise-linear function and each
segment of Fn(c) (resp. Gn(c)) has the same slope %;—‘B for any n=1.

(2) P is a discontinuity point of Fp(c) (resp. Gn(c)) if and only if there
exists 1=m=n—1 such that Pis a fixed point of Fn(c) (resp. Gnlc)) for any n=2.

Proof. We shall prove by an induction on n. It is trivial for n=2. Assume

that (1) and (2) hold for n=*Fk. By definition,
BF(c)—o)+1 it Fule)<c

Fk+1(0):{ .
B(F(c)—c) if Fulo)=c.

So Fh.:(c) is obviously a piecewise-linear function and the slope equals to

( ﬁlzﬂ_‘B _1)__ ,3“2
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If Fi(c) is continuous at ¢, and ¢, is not a fixed point of F.(c), then ¢, is a
continuity point of F,.(c). Therefore, if P is a discontinuity point of F.:(c),
then P is a discontinuity point or fixed point of F,(c). Hence, there exists 1=
m=Fk such that P is a fixed point of F,(c). Conversely, let P be a primitive
fixed point of Fp(c) for some 1<m=k. Then P is a discontinuity point of
F.1(c). By the following Lemma 5.2, we conclude that P is also a discontinuity
point of F,.:(c). Similarly we get the same results for G,(c). O

Lemma 5.2. Let P be a discontinuity point of Fu(c). Then P is also a
discontinuity point of Fn.:(C).

Proof. By definition, we have Fy.,(P+)=B(F,(P+)—P)4d. where 6,=0
or 1. Assume that F,(P+)# F,(P—) and Fp4,(P+)=F,.,(P—). Then we have

B(Fa(P+)—Fn(P—)=0-—0d,.
However F,(P+)#F,(P—) implies §,#d.. Therefore we have
Bl Fa(P+)—Fu(P—)|=1. Hence |F,(P+)—F,(P—)|>1.

This is a contradiction since F,(P+)e[0,1]. O

Lemma 5.3. For any n=1,

F,(0+)=8""1, G.(0+)=p" F,(1—)=1—p" and G,(1—)=1—4"".

Proof. We shall prove by an induction on n. Since Fi(c)=1—8c¢, itfis
trivial for n=1. Assume that F,(0+)=p*"'. By definition, Fy..(c)=pB(F(c)—
¢) for small ¢>0. Then Fy.,(0+)=BF(0+)=8* Similarly we can get other
formulas. O

The itinerary of x was defined in section 1 as follows.
I(x)=(A(x), A(f(x)), A(f*x)), -+).
This may be regarded as the sequence of functions of ¢. So we write
I(x, o)=(A(x), A(f(x, c)), A(f*(x, ¢)), -).
Definition 5.4.
I(x, c£)=(A(x), ellrcrl A(f(x, &), gllrcri A(f*(x, €), ).

Each limit certainly exists because of the piecewise-linearity. In particular,
1(0, ci)=(1°,elim A(Fy(£)), lim A(Fy(&)), -+)
—Ct E-ct

and
I(1, cx)=(", gim A(G (&), éim A(GH(E)), =),

where we define exceptionally that A(l)=1I°.
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Lemma 5.5. A discontinuity point of Gi(c) (resp. Fn(c)) is a continuity
point of Fn(c) (resp. Gn(c)) for any m=1.

Proof. Assume that & is a fixed point of both Gn(c) and Fn(c). Then we
have f*(1)=¢ and f™(0)=&. Therefore 0 is a periodic point and f™( fm-m(0))=§.
Since f™ is an one to one map on [0, 1], we obtain f™ "(0)=1. This is a con-
tradiction. O

The next lemma easily follows from the results in sections 2 and 3, and
the proofs are omitted.

Lemma 5.6, (1) In the singular case, 1(0)=1I(1).

(2) In the periodic case A(f(0)=A(fQ) for j=1,2, -+, N—1 and ce
LAY, f70)].  Also I(0) has period N+1 and I(1) has same period without the
first term.

Lemma 5.7. (1) If & is a primitive fixed point of Gnlc), then I(0, §—)=
I(1, §—). And these have period n-1.

(2) If n is a primitive fixed point of Fn(c), then 10, p+)=I(1, p+). And
these have period n-+1 without the first term.

(3) Ful—=)—Gn(E—=)=Fu(p+)—GCGulp+)=pm"'—p™ for any m=l.

Proof. Let & be a primitive fixed point of Gn(c). Then § is a continuity
point of G,(¢) for j=1, 2, -+, n and of Fy(c) for any j=1. Since =&, we
can show that £€lnt fi(I) for j=1, 2, ---, n—1 and £<Int f*(I). Therefore this
is the periodic case with period n+1. Obviously we have liren A(G(e))=I" and

P
liren A(Gpii(c))=I°. Also we have lir? Gni1+jc) = Fy&) for any j=1. Thus
- PN

liren A(G ps145(c)=A(Fy&). Similarly we obtain liren A(G(c)=A(G &) for j=

1,2, -, n—1 and lirerl A(F(c))=A(F&) for any j=1. This means that I(0, §—)

=1(0, &). Hence we obtain that I(0, &—)=I(1, §—) and these have period n+1 by
Lemma 5.6. Since Fn(—) and Gn(6—) have same address for any m=1, we
can show inductively that Fnp(6—)—Gn(—)=pm"'—p™. Similarly we get the
same results for a primitive fixed point of Fy(c). O

The following theorem gives the distribution of the periodic cases.

Theorem 5.8. For any reduced fraction %E(O, 1), there exists a closed in-
terval A(%)z[a, &] satisfying the following properties.

(1) a (resp. &) is a primitive fixed point of Gn-i(c) (resp. Frn_1(c)).

(2) For any ced(%), the periodic case is valid with period n.

(3) For any ce<lnt A(’:—%), Groi(0)<c< Fp_y(c)

and
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3 (A =n—m.

(4) Let i<% be consecutive in the set of Farey fractions of some order.

b
Then liren A(Fie)=lim A(Fic)) for j=1, 2, -+, p+r—2, where
&+ [
9\_ S\
4(3)=le €1 and 4()=Lr, 1.
Proof. We shall prove by Farey induction defined in section 4. Let

A(—(l)—):(——oo,OJ and A(%):[l, ). And define A(%):[%, %ﬁ
8 1

oy (resp. Ty
2), 3) and (4) hold. Assume that (1), (2), (3) and (4) hold for both A(%) and

] where

) is a unique fixed point of G,(c)(resp. Fi(c)). Obviously (1),

A(%) where %<—:— are consecutive in th the set of Farey fractions of some
order. Now we must define a closed interval A(L‘;) and show that (1), (2),

(3) and (4) hold for A(Jj’%). Let A(%)z[a, &) and 4(2)=[7, 81 where a

<E<yr<d. By Lemma 5.7, I(0, £+) has period p without the first term and
I(0, r—) has period ». By the property (4) and Lemma 5.7, both F;(c) and Gj(c)
have no fixed points in (§, 7) for j=1, 2, ---, p4+r—2. Hence both Fp.,-(c) and
G p+r-1(c) are continuous in (§, 7). Using the periodic property,

Ih}i A(F p+r-1(6))=liren A(Fr-y(e)=lim A(F;-(c)=1"
=&+ =&+ =y -
and

Hm A(Fypsr-s(e)=1im A(Fp-s(@)=lim A(Fp-(e)=1"
=7 - =y - c=§+

Also Gpir-1(c) has same properties by Lemma 5.7. Thus we conclude that
E<Gpsr16F)<Fpira6+) and Gpuri(r—)<Fpirai(7—)<7 .

Hence Fpir-i(c) (resp. Gp+r-1(c)) has a unique fixed point { (resp. 2) in (&, 7)

%):[z, {1 to satisfy (1). For any

where £<21<f<y. Now we define A(
ced(—;—__}l__sr), we can show that celnt (1) for j=1,2, ---, p+r—2 and c&

Int fP*7-%(I). So this is the periodic case with period p+r». Since & is a con-
tinuity point of Fj(¢) for j=1, 2, ---, p—1, we have

gs(A(Fj(&H)):lJ—q—l .

Similarly we have TE-‘_,le(A(F-( —)))=r—s. Hence, for c=lnt A( gts )
y j=l J T . ) p+r )

p+r-1

%, CAFEE)=ln" % C(AF©)
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=5 (A& Him (A ) Him (AT D)+ 3 «CATFST—)

=p+r—qg—s.

Finally we consider 4 (_q-l—s

p-l—r) and A( ) where p-i—

tive in the set of Farey fractions of some order. By Lemma 5.7, I(0, {+) has
period p-+r without the first term. Therefore we obtain

<— are consecu-

lirgl A(Fi(c))=lim A(Fj(c))zliren A(Fc)) for 7=1,2, -, p+r—2
-G+ -7 - c-b+

lim A(Fp+r—1(c>):10

=0+

lim A(F ps4r- 1(c))—hm A(Fp- l(c))—llm A(Fp-i(e)=TI°

-7 -

lim A(Fpsr(c))=1"
-0+

lim A(Fp+,(c))—11m A(Fp(c))—hm A(Fp(en=1I".

c—y -

Moreover we have
lim A(F pyre(c))=lim A(Fc))
-+ L+

lim A(Fyr. ) =lim APy ()=lim AFyps(c)=lim AF(c)

-7~

for j=1,2, .-, r—2. Similarly we get the same results for A(%) and

A(%). u!

; 9 Seg g L5 -
This proof shows that A(p)f\d(r)—gzi if ) +* s Moreover we can com

pute the sum of A(-%) over all reduced fractions in (0, 1).

Theorem 5.9.

4G

Proof. By Lemma 5.7, we have Fp_i(c)—Gp_,(c)=p?"*(1—B) for ceA( )-

D
Hence ’A( )' ( lﬂ By ﬁﬁ,, For fixed p=2, there are ¢(p) reduced frac-
tions with denominator p in (0, 1), where ¢(p) is the Euler’s function. There-
fore we have

<< (q/ 1
(p,0)=

0 z()qé >‘ ( §¢(P)1ﬁﬁp

This Lambert series is equal to 1. O
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Let 2 be the remainder set; (0, 1)— \U A(%) 2 is the set removed

Wi
countable set from Cantor set and has null Lebesque measure. The following
theorem gives the distribution of the singular cases.

Theorem 5.10. The singular case is valid for any c€X.

Proof. We use the same notations as in the proof of Theorem 5.8. Then
we have

Gie)<Ffc)<c or c<Gic)<Fjc)
for ce(, 1) and j=1, 2, -+, p+r—2. Hence, for any j=1, we have
Go)<Fic)<c or c<Gic)<Fyc)

for any c€2X. This is the singular case. O

The coordinates of each 4 (%) will be computed in section 7.

6. Average firing rate

In this section we will define a number called the average firing rate,
which is analogous to the rotation number of a homeomorphism of the circle.

First of all, we define this number in the periodic case. Throughout this
section, fix the value of B=(0, 1).

Definition 6.1. The following value p(x, ¢) we call the average firing rate.
N .
o(x, ¢)=lim L D eix) where e(x)=e(A(fYx, ).
N N j=1

In the periodic case, by the periodicity, this limit certainly exists. And the
next lemma easily follows from Theorem 2.1.

Lemma 6.2. If ceA(%), then we have p(x, ¢)=p(0, ¢) for any x<[0, 1).
Now we investigate the sign itinerary of 0. So we write

p()=p(0, O=lim + BAF() and e} = {e/0).

m m
Theorem 6.3. p(c)=1—; for any ceA(;).
Proof. By the property (3) of Theorem 5.8, we have
n-1
1'21 e(A(Fie)=n—m.

Hence, by the periodicity,

n—m

p— 1 & p—
ple)y=—- jZ=31 e(A(Ffe))=
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Now we will show the existence of the limit p(c) in the singular case.
We need following lemmas.

Lemma 6.4. Let {e;}, {n;} and {{;} be the sign itineraries for ced(—)

A( )and A(fA— respectively, where %<— are consecutive in the set of

Farey fractions of some order. Then 5;=C; for j=1,2, v and e;=Cs; for
]':-1’ 2’ e, p

Proof. Let A( ) [a, &] and A( ) [7, ). Then {e;} has period p and

I1(0, £4) has same period without the first term. And they satisfy the follow-
ing relations.

£j= lir€n e(A(Fj-i(c)))  for j=1,2, -, p—1,
=€+
ep=1, and lixen e(A(Fp-1(c))=0.
c—E+
Similarly {»;} and I(0, y—) have period », and
7= lim e(A(F;_(c))) for any j=1.
[ad il
Also we have
C;-=lign e(A(Fy-y(c)))  for j=1,2, -, p+r.
=6+
Hence
Cj=££rer}r E(A(Fj-l(C)))=clirrr§ (AF-(e))=n; for j=1,2,-
Cr+j:clj?;1 E(A(Frﬂ—x(c))):ﬂru: nNi—¢€j for jzl, 2, -, p—1,
and {,,,=¢,=1. This completes the proof. O

Lemma 6.5. For any ceA(—Z—), we have

e=1[p—g—1-0—9i+s[(1-2)i]] sor jz1.
b
Proof. We shall prove by Farey induction. For any j=1, ¢;=1 for ce
0 1
A(T) and ;=0 for CEA<T)' Assume that it holds for A( )and A( )
Using the same notations as in Lemma 6.4, we have

Cj:7]j=1[W(7’, S, J)] for J=11 2v e, ¥

where we define
W, s, ]’):r—s—l—(r—s)j+r[(1—%)]’].

Let (r—s)j=ur+v where 0=v<r. Then W(, s, )=r—s—1—v. Also, using
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the unimodular relation, we have
. 1 .
(p—q)J=pu+7(pv+J) .
Then we have

Wiptr, gts, D= (1+ L)W, s, pt-—i+).

If W(r, s, /)=1, then W(p+r, g+s, j)g%(1+2p)>0, since 1=75r. If W(r, s, 7)
<—1, then W(p+r, g+s, )<—1. Finally, if W(r, s, /)=0, then W(p+r, ¢+s, 1)
=%(1—j+p). If r>p+1, then j=p+1, since (r—s)(p+1)=r—s—1 modr. So
anyway, we have W(p+r, ¢g+s, /)=0. Hence we have

L=1W(p+r, g+s, N1 for j=1,2,--,r.

Similarly we obtain the same formula for j=r+1, -, r+p. O

Lemma 6.6. For any cEA(-;])—), we have

é}lej= [(1—%)11] for any n=l.

Proof. We use the notation W(p, ¢, 7) defined in the proof of Lemma 6.5.
For any n=1, we have 0= [(1—%)n]—[(1—%)(n—1)]§1. If [(1——;-)11]:
[(1— —Z—)(n—l)]-kl, then

W(p, ¢, 1)>p—q—1—(p—n+(p—gmn—1=—1.

Therefore W(p, ¢, n) is not negative because it must be an integer. If

[(1—%)4:[(1—%)@—1)], then
W, g, m<p—q—1—(p—gn+(p—g)n—1)=—1.

Hence we obtain
=D\ |=l(1= DY n—1) |=1IW (P, ¢, n)]=en. O
P )/

For any irrational number a<(0, 1), we can choose two numbers
in the set of Farey fractions with order n so that 9»  and i"
n n n
best lower and upper approximate values of a respectively. Thus we obtain the
dn
P’

9" and

n
s
z are the

. s . .
approximation sequences of «; { —rL}, which we call Farey approximation
n

sequences of a.
Corresponding these Farey approximation sequences, there exists a unique
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parameter value c€2 which lies between A( Z” ) and A( Sn ) for any n=l1.

n rn
Conversely, for a given ¢€2, a number which is approximated by corres-
ponding reduced fractions must be irrational. So there exists an one to one
correspondence between X and irrational numbers in (0, 1).
The following theorem shows that this irrational number determined by a
given ce2 is equal to the average firing rate in the singular case. So this
guarantees the existence of the limit p(c) in the singular case.

m
Theorem 6.7. For any c€2, we have _Z)lejz[am] for any m=1, where «
f=
is an irrational number corresponding to c.

Proof. Let {Z—", %—} be Farey approximation sequences. And let {y}}
n

n

and {{7} be the sign itineraries for ceA( qn ) and A( Sn ) respectively. As-
bn Yn
sume that 1 <a< GntSn Then la_,gﬂ_ <———1— Therefore
Pn Patra’ Pa Palpntra)
3 €= 1‘2_‘7]1=[ dn m]z[am] for m=1,2, -+, pp—1.
=/ =1 Dn
Similarly we obtain the same formulas for m=1, 2, ---, r,—1 in the case
where %<a< %: Hence ,2 ¢;=Lam] for m=1, 2, ---, min (pn, ra)—1.

So we obtain the desired results by passing n to infinity., 0O

The next theorems easily follow from Theorem 6.3 and Theorem 6.7.

Theorem 6.8. If p(c)=Q, then the periodic case is valid. If p(c)&EQ, then
the singular case is valid.

Theorem 6.9. p(c) is a continuous monotone decreasing function of c.

In the periodic case, p(x, ¢) is independent of x by Lemma 6.2. And this
is true for the singular case by the following theorem.

Theorem 6.10. In the singular case, for any (x, c)€[0, 1)X(0, 1), there exists
the limit p(x, ¢) in the definition 6.1. Moreover we have p(x, c)=p(c).

Proof. First of all, assume that xecl [,=[f"(1), f*(0)] for some nz=l.
Then, by Lemma 3.1, we have A(f*(x)=A(f**"(0)) for any k=0. Hence p(x, ¢)
=p(c). Next assume that x=c_, for some n=0. Since A(fH(x)=A(Cr-n)=
A(fF"-3(0)) for k=0, we have also p(x, c)=p(c). Finally assume that xed
—{cn}%--w For any k=1, there exists a positive integer n, such that A(f(x))
=A(fr#*+i-3(0)) for j=0, 1, ---, k—1. Hence, by Theorem 6.7,

1 & - 1 ¢ 1
ng}ﬂe(A(f (X)))=?glsnw:—k—([a(nk-%k)]—[ank]).

Therefore we have



Dynamics of Caianiello’s equation 169

L1 ff"(x)))§a+%.

a_? k =

This completes the proof. 0O

7. Conjugacy problem

We say that f is topologically conjugate to g if g=h-f-h~! for some homeo-
morphism h. If f(x, B, ¢) is topologically conjugate to f(x, &, 1), then obviously,
o(B, c)=p(&, ) where p(B, ¢) is the average firing rate of f(0, 8, ¢). Conversely
assume that o(B, ¢)=p(§, ). Then can we conclude that f(x, 8, ¢) is topologi-
cally conjugate to f(x, & A)? The following theorem answers this question in
the singular case.

Theorem 7.1. If p(B, c)=p(&, A)&EQ, then f(x, B, ¢) is topologically conjugate
to f(x, & A).

Proof. We shall constract a homeomorphism A(x). Assume that S<&.
First of all, we define h(x) at x=f™(1, B, ¢) for any n=1 as follows.
1_ .
Mrw=-5- 3 e

mza1
TS0
Next define h(x) on J,=[f™(1), f™(0)) as follows.

&ri(1=4)
‘Bn—l(l_‘B)
Finally extend h(x) continuously for all x<[0, 1]. Then h(x) is a continuous
strictly monotone increasing function. Also we have h(0)=0 and Ai(l)=

l—gizz);f"‘zl. Let g(x)=hefeh ' (x). Obviously g(x) has a unique discon-
tinuity point h(c). Assume that c¢<fP(1)<f%1l). Then h(c)<hefP(l)<hefiy(l).

Hence

h(x)= (x—frA)Fh(fAL)  for xE],.

ol

2 ¢
g°h°fq(1)_g°h°fp(1) — h°fQ+l(1)_h°fp+l(1) — fp+l(0)<fliz=(t)<fq+l(o) :.S
hefA1)—hef7(1) hefA(1)—hefP(1) DI

k21
SPOLS RS0

since f is homeomorphism on [ f?(1), f%(1)]. Similarly we obtain the same
result in the case where fP(1)<f%1)<c.
Next, for x<lInt J,,

goh()—gehef?l) _ hef()—h-f"(1) _ &fx)=f*"A) _,
h(x)—hef7(1) h(x)—hef?(1) Blx—fr)

By these properties, we can conclude that g(x)=f(x, & h(c)). Therefore we
have p(&, )=p(, h(c))&EQ. Now the parameter value ¢ at which the average
firing rate is irrational is determined uniquely for a given & Hence A=h(c).
This completes the proof. O
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In this theorem, we have

r=ho=-F- 2 e
Hence we have Sm@<e
_ 178 s I
A= & mz=:1(1 em+1)€ 1 2 m2=25m§ .

By Theorem 6.7 the next theorem easily follows.

Theorem 7.2. The sz'ngular case with the average firing rate a&Q is

valid if and only if ¢=1— ( ) E[am],@"‘

Now we can compute the coordinates of each closed interval A(g—):[a, &l

defined in section 6. Fix the value of f=(0, 1). By Theorem 6.9, we have

a=1—1im(—1——l;—[8>2§‘,2 Crak1B",

n—+oo

e=1-tim(=5%) Z Csak18"

where {r.} and {s,} are irrational upper and lower approximation sequences of

1—% respectively. Cumputing these limits, we obtain the following theorem

Theorem 7.3. Let A(%)z[a, &]. Then
a=1-(p—g SR - (FEY B[l

1— 2 ?
E=a+(———‘8‘8> lﬂ—‘BP .
We say that f is topologically semi-conjugate to g if hef= geh for some
continuous monotone onto map h. We shall prove that f(x, B, ¢) in the singular
case is topologically semi-conjugate to R, where R, is a rigid rotation on the
circle and « is not only the rotation number of R, but also the average firing
rate of f(x, B, ¢). Moreover, for a given f(x, B, ¢) in the singular case, the
rigid rotation R, which is topologically semi-conjugate to f(x, B, ¢) is uniquely
determined. The next lemma was proved in Theorem 2.1.

Lemma 7.4. In the periodic case with period N+1, f(x, B, ¢) is regarded as
a permutation mw=c"*"® on the subintervals: I, I, -, In+: where o=
2.+ N+1

93, 1 ) and Q is the number of 1=<7=<N+1 such that I;CI".

Lemma 7.5. For ced(%), the following correspondence
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¢: fj(O) P—’{(l—%)]} for J':O, 1, -, p_l

is an order isomorphism.

Proof. By Theorem 5.8, for ceA(%), the periodic case with period p is

valid and
lz_‘,:e(A(F,(c)))zp—q :

Therefore the number of 0=;7=<p—1 such that f/(0)el’is q. So, by Lemma
74, f is regarded as a permutation =079 This completes the proof. O

Lemma 7.6. For ceX, the following correspondence
C: fIO) e {as}  for ;=0
is an order isomorphism, where a is the average firing rate of f(x, B, c).

s .
Proof. Let {ﬂ —r’i—} be Farey approximation sequences of a. Assume
n

pa’
g gntSn_
that b <a< bt Then
. gn . 7 1
‘“] Pn ]\< PaBatr) " 2pn

L ag} <—>{ .‘ZZ j} for j=0,1, -, [ Pzn ]

. . . s .
is an order isomorphism. Now note that -qL<r—" are consecutive in the
n n

set of Farey fractions of order n. Let A( dn ):[an, &.] and A( Sn )=[7‘n, 0n].
Dn ¥n
Then, for any ¢, c.€(aq, 6,),

Cot Filc) == Fico)  for j=0, 1, -, min(pa, 7a)—1

is an order isomorphism. So, for c€2, we obtain that

. £7 - __ . Dn rn]
G fO) e daj) for =0, 1, -, min ([B-], [5-])
is also an order isomorphism. Similarly we obtain the same result in the case
gntSn Sn
-—pn+7'n <a< P
finity. O

where

We obtain the desired result by passing n to in-
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Theorem 7.7. For ;_eZ’, f(x, B, ¢) is topologz'cal_ly semi-conjugate to R,
where « is the average firing rate of f(x, B8, ¢). -Moreover the rigid rotation
R, is uniquely determined.

Proof. We shall constract a continuous monotone increasing onto map h(x)
such that hef=R,°h. Let J,=[f"), f*(0)). First of all, define h(x)={an}
for any x€/J,. So h(x) is constant on each J,. Next, for x4, define

hG)=lim h(J,)

where { jnj} is a monotone decreasing sequence of intervals which converges
to x. Then {h(J, J.)} is also monotone decreasing by Lemma 7.6 and the limit
certainly exists. Similarly we define h(x—) by a monotone increasing sequence
of intervals which converges to x. Since a is an irrational number, {an} is
dense in [0, 1]. Hence we have h(x+)=h(x—) for any x€4. So, for x4,
define

h(x)=h(x+)=h(x—).

Then h(0)=h(0+)=0, h(1)=h(1—)=1 and h(x) is a continuous monotone in-
creasing onto map on [0, 17.

Now hef(Ju)=h(Jur)={a(n+1)} and Raeh(J.)=R.({an})={a(n+1)} since
RY0)={an}. So we have hef=R,-h on each J,. Also there uniquely exists
x,€ A such that h(x,)=1—a since 1—a is never equal to {am} for m=1. Then
we have xl_igr;Jprh(x)zO and Igg_Raoh(x)zl. Let {Jnk}<{frn,~} be monotone

increasing and decreasing sequences of intervals which converge to x, respec-
tively. Then we have

limhef(Jn)=0 and lkim hef(Ja,)=1.
J— . 00

Therefore hof(x) has a unique discontinuity point x,. Hence x,=c. Finally
by the continuity property, for any x<[0, 1], we have hef(x)=Rh(x).

Assume that Hef(x)=Rg-H(x) for some continuous monotone increasing
onto map H(x). Then H-f(1)=Rp(1)=p and H-f(0)=Rz(0)=p. Hence we have
H(x)=p for x€J;. Also we can show that H(J,)={Bn} for n=1. So B must
be an irrational number since H(x) is continuous. Therefore we obtain H(c)=
1—B. And c<]J, is equivalent to {8(p+1)}<pB. Hence f=a. This completes
the proof. O

Remark that the function h(x) gives an one to one correspondence between
Cantor attractor 4 and I*=I—{an}5_..
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