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We consider a Finsler space F" equipped with a fundamental function L(x, y).
Let g(x, y) be the determinant consisting of components gi i (x , y) of the fundamental
tensor of F .  We sometimes have experience giving us to understand some impor-
tance of the scalar *L =Lg w i2 as it will be reported in § 2 .  Thus it seems to the present
author that a  theory of Finsler spaces based on this scalar *L(x, y) may come in
useful. The main purpose of the present paper is to construct metrical Finsler con-
nections from *L(x, y).

§ 1 .  Relative fundamental functions

We shall deal with differential invariants, called relative tensor [9], in Finsler
geometry also. At a supporting element (x, y) of a Finsler space F", a collection
T = ( T )  which is given with respect to every coordinate system (x i) is called a
relative tensor of weight w, if the transformation law

(1.1) Tg:::= Ti;;;TC7. • Xi• •

is satisfied under coordinate change (xi)— (. " ) ,  where J = det (X- ?), FC.1= 8".a/axi
and Xi= 00 0 5 0 .  It is remarked that we also have ya = X?yi, so XI = ay"/Oyi
and XI --Oyi/ayb.

Let L(x, y) be the fundamental function of a Finsler space F" and g i i (x, y ) be
components of the fundamental tensor of F .  The fundamental tensor is an absolute
tensor defined by g1 ; = ( , 4 2 ) /2 ;  it obeys the transformation law gab =g u x!,xj,.
Thus g =det(g i i ) satisfies g =J - 2 g, so that g is a relative scalar of weight two.

Throughout the present paper we shall assume g  be positive. If we have to
be concerned with a domain where g is negative, we are to treat — g instead of g itself.

Definition 1 .  Consider a Finsler space F" with a fundamental function L(x, y)
and let g(x , y) be the determinant consisting of components g i i (x , y) of the funda-
mental tensor of F " .  For a real number w, a scalar *L = Lev 2 is called the relative
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fundam ental function of weight w of F".

Corresponding to the  ordinary (absolute) theory of Finsler spaces, we shall
introduce following quantities with asterisk:

* 4 =  i * L, *F =(*L) 2 12, ( =-*L*li),

*g o - 6 1 *F, * C o (j,*g o )12.

By the well-known equation C 1 (  =Crri )=g 1 2 g ,  w e ge t */1=gw/ 2 (l1+ wLC ; ).
But we shall denote the ordinary C-tensor Ciik by gu k , that is, g u k =(i„g u )/2, to avoid
the confusion. Thus g i stands for gikg u k . In these notations we have

*l i = g w/2(l i  w L g i) ,

*g i i =gw{g o +2w(g iy i +g i y i) +4w 2 Fg igi +2wF6 i g i l ,

*Co ,-----gw[g o k +4w 3 Fga i gk + w F 6 i g i +w S w "{(g o +2wF6 i g,)gk

+(2wg ig i +  i g,))1,1] ,

where S ( sik) denotes cyclic permutation of i, j, k  and summation. These show some-
what complicated character of *go  a n d  *Cu k  in comparison with go  and g u k  [6 ].

The homogeneity property of *L(x, y) in y 1 shows

*y i = *gu y i ,  (*L)2 =*g u y iy i, * C o k yk =O.

From (1.1) it follows easily that 6ka r e  components of a relative tensor of
the same weight with T h u s  *11 is  a relative covariant vector o f  weight w,
and *y i , *go  and *C u k  are relative tensors of w eight 2w . The relative tensor *gu

is called the relative fundamental tensor of weight 2w. It is remarked that *CI, =
*gir*Ch.k is an absolute tensor, because the reciprocal *gif  of *gu  is of weight —2w,
and we have an absolute vector *C, * C r,.,)=6 k *g/2*g.

§ 2. Relatively Riemannian spaces and relative isometries

A Finsler space with a  fundamental function L(x, y) is Riemannian, if and only
if L 2 is  a  quadratic form o f  y i .  We shall generalize this character o f Riemannian
space from the standpoint of relative theory as follows:

Definition 2. A  Finsler space is called relativ ely  R iem annian o f  weight w,
if (*n2  =  L 2 g w is a quadratic form of y'.

Therefore a  Riemannian space is, of course, relatively Riemannian of arbitrary
w eigh t. On the other hand, a Finsler space is relatively Riemannian, if components
*go of the relative fundamental tensor are functions of position x only, or the *C
tensor *Cu k  vanishes identically.

Example 1. In  a  previous paper [6] the present author introduced a concept
of the BP-condition : A Finsler space is said to satisfy the BP-condition, if L2g-I/P
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is a quadratic form of yi• That is, a Finsler space is relatively Riemannian of weight
— 1/p, i f  the BP-condition is satisfied. Consequently it is known [6] that if  a  two-
dimensional Finsler space satisfies the T-condition(Th u k =0), namely, its main scalar
I  is a function of  position x  alone, then the space is relativ ely  R iem annian of
w eight — 1/2. According to Berwald's theory [1 ] , any non-Minkowski Berwald
space of dimension two is relatively Riemannian o f weight — 1/2. Therefore we
have examples of relatively Riemannian spaces which are not Riemannian.

Example 2. It was shown by the present author [6 ] that if a non-Riemannian
Finsler space of three dimensions satisfying the T-condition is relatively Riemannian,
its weight must be equal to — 14212 +1) or —12 /(212 + 1), where the constant I  is one
of the main scalars (H , I, J).

Definition 3. If  a change L—>L of the  fundamental function L  o f  a  Finsler
space (F", L ) satisfies *L=r*L (i.e., Ow/ 2 =TLgw/2 )  for some real number w and
a scalar t(x), this change is called relatively  conform al of  weight w  and t(x) is the
conformal factor. In  c a se  o f  t  =  1, the change is called relatively isometric.

It is obvious from the above definition that if a change L — >f, is relatively con-
formal of weight w and L  is a  Riemannian metric, the Finsler space with the metric
Lis relatively Riemannian of weight w.

We shall restrict our consideration to a Riemannian case of relatively conformal
change L— >L. That is, assume that both L and L are Riemannian. Differentiating
L2gw = T2L2g w y  twice, we immediately get # i i (x)gw= T 2 g i i (x)gw, so that this
change must be conformal in an ordinary se n se . Conversely any conformal change
is clearly a  relatively conformal change of arbitrary weight, and in  particular it is
relatively isometric of weight —1/n where n is the dimension. Therefore the concept
of relatively conformal change becomes trivial in Riemannian case.

For a Finsler space F" a conformal change L—>E=T(x)L is a relative isometry
of  w eight — 1/n. We, however, have relatively conformal changes which are not
conformal, as the following examples show :

Example 3 .  W e are concerned with a  ch an g e  L , L  o f  th e  metric o f an
n-dimensional Finsler space P  where L =L  (L, ,8) is  a  positively homogeneous
function of degree one of two variables L and f3=b i(x )y i [ 5 ] .  Putting L i —aLiaL,
L2 =017,/a$, Li i =aL i iaL, Li  2 =aL i iafl, L22 =a -L2 1a,q and

p= p o = ( L 2 ) 2 +  L L 2 ,  Pi =(L1 L2 +

P2 = «L1)2  ±  b2 =go b t bi ,

U= p 2  + pp113 — {PoP2 — (P0 2 }112 ,

V= PPo+ {P0P2 — (P0 2 }1 , 2 ,

the determ inant is written as

(2.1) = p" - 2 (U+ Vb2)g.
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The homogeneity property of L yields

(2.2) p0/3+p1L2=LE2, p 1 f3+p 2 L2 =0.

We shall be concerned with special cases:
(I) It follows from (2.2) that po p2 —(p 1 ) 2 = EL2p2/fi, and we are easily led to

(2.3) U=L3(E1lL—L11)/L2.

Therefore, a condition U = 0 is expressed by the differential equation L 1 /L= L„.
Integrating this equation, we easily get a Finsler metric L of Kropina type, which may
be essentially written a s  L =L 2 //3. T hen (2.1) becomes {L2(n+1)V

1 } 2 n – l b 2  =

1,2(n+l)g-1. Consequently this change L-+L =L 2 /fi, which may be called a Kropina
change, is relatively  conform al of  w eight —1I(n+ 1); in particular it is relatively
isometric in case of b2 = 21 – n .

(II) On the other hand, (2.2) yields p0 p2 —(p 1 ) 2 = L L 2 (p 0 fl —L1: 2 )/L4 , so that
we get

(2.4) V= L3 L2 2 /L2 .

Therefore a condition V=0 is equivalent to L22 =0, which immediately leads us to
a  Finsler metric L of Randers type, which may be essentially written as L  L+
Then (2.1) becomes L n + '# – ' = L n - " g – i . Therefore any  R anders change L—>L=
L+ )6 is relatively isometric of weight — 2/(n +1).

As a consequence of Example 3, if we restrict ourselves to Riemannian L, we have

Theorem 1. L et (M", L(x, dx)) be an  n-dimensional Riemannian space with
a metric L=,/g i i (x)dxidxi and let ig=b i (x)dxi be a  dif ferential one-form  on M .
Then the Kropina metric L 2 /fl on M" and the Randers metric L+ fi on M" are  rela-
tively  R iemannian of  w eight —11(n+1) and  —21(n +1) respectively.

§ 3 .  Covariant differentiations of relative tensors

We are concerned with a Finsler space F n  and a Finsler connection FT =(Fii k ,
Cfi k )  on F n  E n  The h-covariant derivative g i p ,  of the fundamental tensor

gi (x, y) with respect to  FT  is defined by

g i i i k  =  k g  —2g — g r iF rik — gi r Fri k ,

where gu r  stands for (6,4012 as mentioned in § 1 .  Therefore, as to  g=det (g i i ), it
is seen that

(3.1) aig(= ggrSai g g +2g g r Nri +2g F

where we put gr =giig i i ,. and F 1 =Frr i . S in c e  g -2gg 1 is obvious, (3.1) is written
g 11 =ggrsg r s i i , where we put

(3.2) g  =  —  (,4 )N ri — 2g F
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which is a relative covariant vector of weight two, because g g r s g r s i i  is such a vector.
The h-covariant derivative of g is thus defined as g 1 .

We shall deal with an arbitrary relative tensor T » weight w .  Introducing
(a )

an absolute tensor T i:::=  rw / 2 Ti:::, we make its h-covariant derivative:

(a )

T = a k (g - - - 1 2 —  f a r ( g - 1 2 T ii :::)}

+  •  •  •  — • • •

=  r w l 2 • • •

— T P; k — • • .} — (w 12)g - w1 2 - 1  {a k g —

Thus, paying attention to (3.2), we observe that the quantities

(3.3) = •"

••• — w T if Fk

are written as

= g w l 2 (1 )117. 1k + (w / 2 ) ( g  ik l

which shows that II: 1k defines a relative tensor of weight w .  This relative tensor
defines the h-covariant derivative of It is noted that the additional last term
in (3.3) has the coefficient — w  and contains the contracted connection coefficients

Next we consider the v-covariant differentiation of relative tensors. It has been
remarked that the partial derivatives of a relative tensor pi ::: directly yields
a relative tensor. Therefore the ordinary procedure constructing v-covariant deriv-
ative, that is,

••• —TL:Crik— •••

yields a relative tensor also. It has, however, remarked that (1.1) may be regarded
as the transformation law under the change ( y i ) - -4 ( y a ) .  Further a procedure similar
to the above leads to the facts that

(3.4) g l i = i i g - 2 g C 1 ,

is equal to g g r s g „ i i ,  and

(3.5) T k  = i k  T ii::: + + • • • — Crik— • • • — WT ii Ck

is written as

= g w 1 2 ?")Ti ik :::Ik + (w 1 2 ) ( g lk l g ) 7 1 : : : .

In the following we shall regard (3.5) as defining the v-covariant differentiation of
relative tensor.
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§ 4. Relative metrical connections

The well-known metrical connection, called the Cartan connection, is uniquely
defined by the system of five axioms from the absolute fundamental tensor g u (x, y)
[ 3 ] .  We shall apply a similar system of axioms to determine a Finsler connection
which is metrical with respect to a relative fundamental tensor *g i i (x, y).

Definition 4 .  Let *L =Lgw/ 2 be a relative fundamental function of an n-dimen-
sional Finsler space (F", L(x, y)) and suppose that F" be regular with respect to  *L,
namely, *g=det(*g i i )  of the relative fundamental tensor *g i i (x, y) of weight w do
n o t v an ish . If w e have a Finsler connection F F = (F li k , N , Cii k )  satisfying the
following five axioms, this connection is called the relativ e Cartan connection of
weight w and denoted by *CF:

( )  * giik= 0 5
(II) (h)h-torsion tensor T ij k = F ijk — = 0,
(III) deflection tensor Di;  = y rF 1 —Nj =0,
(IV) *g i i i k =0,
(V) (v)v-torsion tensor Sip , = C ijk — CL, =0 .

We shall consider how to construct * C F . For the later use we introduce relative
Christoffel symbols with respect to xi :

(4 .1 ) *Yijk = (ak * g ij+ a i* g jk — a
 j* gki)/

2

and *yjk  = * g i r* Yirk. Then we have

(4.2) *Yk ( = * Yrk) = ak * g12 * g.

Now the first axiom (I) is written

(4.3) ak * gu - 2 * Cu r N ik — Fijk — Fiik - 2w * g u Fk =0 ,

where Fijk = * g i r Fik  and F k =F r
r k. Contracting (4.3) by *g ii and paying attention to

(4.2), we get

(4.4) Fk=(*yk—  N k)I(nw +1),

where N k = * C r A17, and we assume nw+10 O.
Next we m ake 

y attention to  ak *g u  in (4.3). On account of (II) we
then get

Fijk=*y ijk— *CijrN rk— *CjkrN ri+*CkirN rj

—w(*g l i F k +*g i k F i —*g k iF i ).

Substituting from (4.4), the above is written in the form

(4.5) Fijk=Eijk— Hu,N ic— Flik ,N ri+Hkir1V 5,

where we put
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Eiik= * yiikœW ( * g i i * yk.-1- * g i k *y i —*g k i *y.i).1(nw +1) ,

Hiik= * Co,—  w*g i i *Ck l(nw  +1).

It is remarked that these quantities Eu k  and H i f i, are known, namely, these are directly
obtained from *g i p

Further we contract (4.5) by y i and pay attention to (III). Then we get

(4.6) N ik (= *gi,..Nrc)=E011, —Hik,.N6+w( * yiNk — * ykA j i )1(nw +1).

The equations (4.6) constitute a  system of linear equations with unkonwn
Assume that we have got definite Ni;  by solving (4.6). Then FL, are determined by
(4.5), from which we observe

F u k +F jik= ak *g . u -2 *C u r Nrk —2w*g i i (*yk — Nk)l(nw  +1).

Contracting this by *gii, we get (4.4), so that the above reduces to (4.3), i.e., (I).
The other axioms (II) and (III) directly follow from (4.5) and (4.6).

Consequently only (4.6) remains to be solved in  order to find (P i k , Ni. ). To
do  so , we shall follow Schouten-Haantjes' method [8]. First, contracting (4.6)
by yk, we get

(4.7) N10( =*g i r N 6)=E 0 1 0 +2w(*y i yr — *Fbri )N r I(nw  +1).

Secondly we contract (4.6) by *C i (=*girC ,), we get

(4.8) Nii(=*C,M,)=*Ci{ Eoik— HikrN'6— w*ykNil(nw+1)}  .

Substituting from (4.7) for AP6 appearing in the right-hand side of (4.8), the resulting
equation is written

(4.9) d ,f/s/ i = (E o ik — H i„E o s o *grs)*Ci,

where we put

(4.10) Ak=Sk + w * C1( * yk — 2* F Hr k s *gsi)1(nw +1).

Therefore, if d =det (di) does not vanish, (4.9) gives N i uniquely. Then (4.7) deter-
mines N 1 0  and (4.6) does

We now turn to finding Cii k  b y  the axioms (IV) and (V). (IV) is written

(4.11) ik*gi1— C ijk— C gk-2W *gijC k= 0,

w here C u k = *g f i .Crik . T he C hristoffe l sym bols (6k * g 11+ i1 * gik — * g k i )/ 2  with
respect to y i are nothing but *C u k . Thus (4.11) gives

(4.12) Cuk = *Cu k  — w(*guCk + *gjkCi —  *gkiCi) •

Contracting (4.11) by *gij, we get Ok *gl*g=2(nw +1)C k , namely,

(4.13) Ck = *Ck l(nw +1) .

Substituting from (4.13) into (4.12), we have
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(4.14) Ciik = *C — w(*gu *Ck +
* g ik * Ci — * gki * C i)1 (n w + 1 ) .

Then (4.13) is only a consequence of (4.14).
Summarizing all the above, we have

Theorem 2. W e consider an n-dimensional Finsler space F" which is regular
w ith respect to *L of  weight w . I f  nw+100 and the det (z11) (cf. (4.10)) does not
vanish, we uniquely  get the relative Cartan connection *CI' of  weight w.

Remark 1. As it was above seen, the equality nw+1 =0 is an obstacle to deter-
mining the relative Cartan connection. It is noteworthy that the weight of *g=
det (*g 11) is 2(nw + 1), so that in this inconvenient case *g is an absolute scalar.

Remark 2. If a  regular Finsler space is relatively Riemannian, A reduce to
61 and the connection *CF is uniquely determined as F i j i , =E i j i ,  and Ci i k  = O . I t
is observed in (4.10) that even a  weaker condition *Ci = 0 leads to di =61, but it
is conjectured that *C i = 0 may give rise to * C O=0 [2].

Further, if the space is relatively isometric of weight w to  a Riemannian space,
we have a Riemannian L such that (*L) 2 = L2 gw . Since the Riemannian connection
defined by L is metrical, F iik  of *CF are nothing but the connection coefficients of
this Riemannian connection.

§ 5 .  Torsions and curvatures of the relative Cartan connection

Let F "  = (M " , L) and F"=(m", L) be tw o Finsler spaces defined o n  a  same
differentiable n-manifold Mn and assume the change L—>L, be relatively isometric of
weight w . That is to say, *L = Lgw/2 o f F" is equal to Lg-I 2  o f F " .  Therefore,
if we can construct the relative Cartan connection *CF of weight w on P  it coincides
with the relative Cartan connection *CF of weight w on F " .  Thus *CF may be
called a n  inv ariant connection of th is  relative isometry. Although there may
be other invariant connections, this *CF will be the most important in our experience
of the absolute theory.

Unfortunately this concept of invariant connection can not be applicable to con-
formal changes, because w = —1/n in case of conformal change.

Further we obtain a concept of invariant tensor f ield under a relative isometry.
The torsion and curvature tensors of an invariant connection are typical invariant
tensors. Thus we are interested in the torsion and curvature tensors of *CF.

From the axioms of *CF it follows immediately that the (h)h- and (v)v-torsion
tensors T and S1 vanish and the deflection tensor D vanishes also. Therefore the
so-called D-condition [3] holds good, but the C1 - and C2 -conditions do not hold:
From (4.14) we get

(5.1) COjk=Ckj0=141(*Yk*C j — * )1i * Ck)1(nW  +1).

It is easily seen that this is equal to zero, i f  *C;  = 0, provided w  0 .  Originally D =
0 is equivalent to A i  =0, while the failure of the C1 -condition gives rise to
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(5.2) Yi H -6 5 + Q ] .

Next, *CF is positively homogeneous, because Fii k , N C i k are (0), (1) and
(— 1)p-homogeneous respectively (cf. §23 of [ 3 ] ) .  From the homogeneity and the
D-condition, the equation (21.10) of [3] gives P5 0 = 0 , and so (21.11') of [3] shows

(5.3) Pifo = 0 , Pfoi = ijYk =  ( C ih0) 1 •

The failure of the C 1 -condition gives rise to one more noteworthy fact: k i k =

k etc. do not hold, although these are familiar in the Cartan connection C F .  That
is, (19.9) and (19.10) of [3] together with the D-condition lead us to

(5.4) RA]k =Rij k +

(5.5) P3Jk = C I P 5 k  -  C h i»

and (19.11) of [3] together with S 1 =0 gives

(5.6) SAik -- -A o"{ CflkY r  C Pk 0 6;},

w here k i l o  denotes interchange of ] and k and subtraction.
It is remarked that a well-known simple form of ST ik  of CF in terms of the C-

tensor (cf. (29.6) of [3]) does not hold for * C r ';  we have the general form (21.6) of
[3] only.

Now we shall be concerned with the most important property, metrical property
of * C F. In general, let S be a relative scalar field of weight cr. Then, similarly to
(3.2), we have

S 1i=0;S — (i r S)Nri — o-SF i .

Thus the direct computation leads to the commutation formula

(5.7) Siiii — —crSKii

-= S Rr. aSR»Iri j

where Rri ]  is the (v)h-torsion tensor, R i ] =R ; ; ] , The Rund
h-curvature tensor M u  is defined by

(5.8) K l i i =A u j jain i -( rn i)Nri  F rk iF  i}  •

In particular, with respect to  *CF, we have *g i i =*gl i = O. Thus, applying (5.7)
to *g, we get

(5.9)R = 0.

Similarly we have

(5.10) SI — = — S i r Cri ]  — Si r Pru  —

(5.11)S 1 — SI=  CI S

Thus we get
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(5.12) Prru = 0, Srr u  = O.

As a consequence of (5.9) and (5.12), the Ricci identities, commutation formulae,
for a relative tensor field reduce to usual one:

X!' — X f t  • = Xr•Rh • — XhRi: • — R r. etc.,giiik giki, rjk r tjk r j k ,

namely, the additional term — W .X 1 R ;ik  does not appear. Therefore we have

*a-hililk—*ghilklf= —*g r i Rrh i k —*g h i.Riii k , etc.,

which yield

(5.13) R hijk  -I-R ih ik = 0, P h ijk + Pihjk= O ,

S h ijk + S ih jk
= OE

§ 6. Relative Berwald spaces and relative Minkowski spaces

A Finsler space is called a Berwald (affinely connected) space, if F ii k  of the Cartan
connection CF are functions of position x alone. We shall generalize this concept
from the standpoint of the relative theory :

Difinition 5. I f  F i k  of the relative Cartan connection *C F = (F ii k , N ,  C5 k )
of a Finsler space F" are functions of position x alone, F n  is called a relative Berwald
space of weight w.

In general, according to (21.11') of [3], the condition Fii k = Fl k (x) is equivalent to

(6.1) = — O ki j +  O r P",:k,

Now, considering *CF, we contract (6.1) by y i and compare the result with
(5.5). Then we see Pk = °, and so (6.1) reduces to P ih jk = — C

 
Therefore (5.13)

gives (C ik k  + Ck ik ) u  = O. Then, from (4.14) it follows that this equation is written

ih k lj —

 w*gik *C k u /(nw+ 1)= 0.

Contraction by *g i" leads to *Ck u *= 0, so that C Thus (4.14) gives C h i jk = 0 .

Theorem 3. A  Finsler space is a  relative Berwald space of  weight w, if  the
relative Cartan connection *C F  of weight w satisfies Ch i j i k = 0  and I t  =0.

To prove the sufficiency, we first recall one of Bianchi identities : In this case
(20.9) of [3] reduces to P k

—
P l i k =  0, from which we get

(Pih jk
—

P jh ik ) +( P jih k
—

Phijk )
—

( P h j i k  P i jh k )
= 0

3

namely, P i h i k  = 0 from (5 .13 ). Thus (6.1) holds good.

Remark. It is well-known that a Finsler space is a Berwald space, if Ch u i k  = 0
with respect to C F .  In general we have 13 !'; = i  1 (cf. (21.10) of [3]) and in
case of CF we have I t  =  Q ;10 .



Relative theory of Finsler spaces 35

Definition 6. If there exists a local coordinate system (x i) such that *L=
Lgw/ 2 is a function of y  alone, the Finsler space is called relatively  Minkowski of
weight w and (x i ) is adapted.

In this case we see *g i ;  = *g o (y), so that ak * g ii=  0 in (4.3). Thus the uniqueness
property of *CF yields P ik  =0, JV  = 0 from (4.3). Consequently the space must
be relatively Berwald (C h im k  = 0, P = 0 )  an d  we have Mik = 0 and R = 0 from
general equations defining these tensors (cf. (21.8) and (21.9) of [3]).

Conversely, if z1hC =P 1 =IV  =0 and R2 = 0 of *CF as above, .417 C =Pi =0 show
the space is relatively Berwald, so that F jk= F iik(X). Next R '= 0 and R 2 =0 give
K i j ik= 0 from a general equation Ri i k  = K J k + CLRri k .  Thus (5.8) yields A( i k ) {8k Fi f  +
Pi;i F,,ik } =O. Therefore, similarly to the case of flat Riemannian space [4], it is easily
shown that there exists such a local coordinate system (5-ii)  that Fii k  =  0 in  ( i i ).
Finally (III) of Definition 4 gives Nij  =0, so that (4.3) concludes ak *# i i  = O.

Theorem 4 . A  Finsler space is relatively  Minkowski of w eight w , if  w e have
.4"C=13 1  = R 1 =0 and R 2 =0 of  the relativ e Cartan connection of weight w.

§ 7 .  Relative Berwald connections

In the absolute theory of Finsler spaces we sometimes refer to the Berwald con-
nection B F, although B F is not metrical and in consequence inconvenient to some
theories. Recently T. Okada [7] gives a  system of axioms by means of which BI"
is uniquely determined. In this section we shall consider such a system of axioms
to get a connection similar to BF.

Definition 7 .  If we have a homogeneous Finsler connection *BF=(G),„ G , 0)
satisfying the following four axioms, *BF is called a relative Berwald connection of
weight w.

( I ) * L 1i =0, (*L = L r / 2 ) ,
(II) (h)h-torsion Tik = — Gii =0,
(III) deflection 1)'; = yrG:1; —Gi; =0,
(IV ) (v)hv-torsion P = 4 k Gi

i  — Gii  =0.

The most characteristic perperty of a Finsler connection of Berwald type will
be (IV) (cf. (21.10) of [3]).

We consider * B F . First, from (II) and (IV) we see k G  = 6 i Gik ,  so that we
locally have functions Gi(x, y) such that

(7.1) =0;Gi.

The functions Gisi are (1)p-homogeneous from the assumption of homogeneity of *BF,
so that Gi in (7.1) should be supposed to be (2)p-homogeneous.

Next, putting *F-=(*L) 2 12, (I) is equivalent to *F 1i =0, i.e.,

(7.2) ai.F=*y,.G',:+2w*FGi,

where G1 =G;.1. From (IV) and (7.1) we have Gi = i i 0,.Gr. Thus, if we put
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(7.3)

G is (1)p-homogeneous and Gi =&G.
Further, we put

(7.4) 2Ai = yr6 i ar *F—O i *F,

Then (7.2) leads to

(7.5) *girGr=A i— w(*yiG— *FGi).

We consider A u. F r o m  (7.4) we easily get

(7.6) Aoi=ai*F.

On the other hand, (7.5) gives

2*C i r i Gr +

where we put Gi . i =&6 ; G .  Substituting from (7.5) into Gr  appearing in the first term,
we get

(7.7) *girGrj= 4-2*CiiiA ,.— w (*gifG+2*F*CroG,.

Finally, contracting (7.7) by *gli, we get

(7.8) *grsA rs-2*CrA ,.=(nw+1)G+2w*F(*C"Gr)— w*F(*grsGrs).

Consequently, G i and GI;  a re  respectively written in the forms given by (7.5)
and (7.7) in terms of G, its derivatives and known quantities. This G must satisfy
(7.8), a differential equation of second order, provided w  O.

Conversely, assume that w e have a (1)p-homogeneous function G  satisfying
the differential equation (7.8) of second order. T hen  (7.5) and (7.7) give Gi and
respectively. At it is known from the procedure by which (7.7) was obtained from
(7.5) and (7.8) was obtained from (7.7), we have =4 ; G i and G = G ;.  Further
(7.7) shows *y r Gri =A 0 J -2w *FG „, namely, we get (7.2) in virtue of (7.6). Finally
G ip, is defined as i i G i and then the four axioms are all satisfied.

Theorem 5. A  relative B erw ald connection *B r of  weight w  is defined by
in  (7.7) and  Gii k = i i Gik ,  if  an d  on ly  i f  w e hav e a (1)p-homogeneous function G
satisfying (7.8).

It will be difficult to examine the existence and uniqueness of solution of (7.8).
It is noted that in the absolute case (7.8) reduces to G =*grsA „-2*C rA r .
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