# On the homogeneous space $E_{8} / E_{7}$ 

By<br>Ichiro Yoкотa, Takao Imai and Osami Yasukura

(Communicated by Prof. Toda May 6, 1982)

In [I-Y], Imai and Yokota showed that the group

$$
E_{8}=\left\{\alpha \in \operatorname{Iso}_{C}\left(e_{8}^{C}, e_{8}^{C}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[a R_{1}, a R_{2}\right],<\alpha R_{1}, a R_{2}>=<R_{1}, R_{2}>\right\}
$$

is a simply connected compact simple Lie group of type $E_{8}$ and it contains a subgroup

$$
E_{7}=\left\{\beta \in E_{8} \mid \beta \underline{1}=\underline{1}\right\}
$$

which is a simply connected compact simple Lie group of type $E_{7}$. In the present paper, we consider the homogeneous space $E_{8} / E_{7}$. The result is

$$
E_{8} / E_{7}=\mathfrak{W}_{1}=\left\{R \in \mathfrak{e}_{8}^{C} \mid R \times R=0,<R, R>=4\right\} .
$$

This paper is a continuation of $[I-Y]$ and we use the same notations as $[I-Y]$. So the numbering of sections and Theorems of this paper starts from 7 and 29 respectively. The authors wish to thank Prof. Tetsuo Ishihara for his advices.

## 7. The manifold $\mathfrak{m c}$.

For $R \in e_{8}^{C}$, Freudenthal defined in [F] a linear transformation $R \times R$ of $\mathrm{e}_{8}^{C}$ by

$$
(R \times R) R_{1}=(\mathrm{ad} R)^{2} R_{1}+\frac{1}{30} B\left(R, R_{1}\right) R, \quad R_{1} \in \complement_{8}^{C}
$$

(where $B$ is the Killing form of the Lie algebra $\mathfrak{e}_{8}^{\boldsymbol{C}}$ ) and considered a subspace $\mathfrak{F} \boldsymbol{C}$ of $\mathrm{e}_{8}^{\boldsymbol{C}}$ :

$$
\mathfrak{W} c=\left\{R \in \mathfrak{e}_{8}^{C} \mid R \times R=0, R \neq 0\right\} .
$$

By the use of [I-Y] Theorem 28 (and Proposition 27, $E_{7}$ : (2)), we have immediately the following

Proposition 29. For $R=(\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8}^{C}, R \neq 0, R$ belongs to $\mathfrak{B c}$ if and only if $R$ satisfies
(1) $2 s \Phi-P \times P=0$
(2) $2 t \Phi+Q \times Q=0$
(3) $2 r \Phi+P \times Q=0$
(4) $\Phi P-3 r P-3 s Q=0$
(5) $\Phi Q+3 r Q-3 t P=0$
(6) $\{P, Q\}-16\left(s t+r^{2}\right)=0$
(7) $2\left(\Phi P \times Q_{1}+2 P \times \Phi Q_{1}-r P \times Q_{1}-s Q \times Q_{1}\right)-\left\{P, Q_{1}\right\} \Phi=0$
(8) $2\left(\Phi Q \times P_{1}+2 Q \times \Phi P_{1}+r Q \times P_{1}-t P \times P_{1}\right)-\left\{Q, P_{1}\right\} \Phi=0$
(9) $8\left(\left(P \times Q_{1}\right) Q-s t Q_{1}-r^{2} Q_{1}-\Phi^{2} Q_{1}+2 r \Phi Q_{1}\right)+5\left\{P, Q_{1}\right\} Q-2\left\{Q, Q_{1}\right\} P=0$
(10) $8\left(\left(Q \times P_{1}\right) P+s t P_{1}+r^{2} P_{1}+\Phi^{2} P_{1}+2 r \Phi P_{1}\right)+5\left\{Q, P_{1}\right\} P-2\left\{P, P_{1}\right\} Q=0$
(11) $18\left((\operatorname{ad} \Phi)^{2} \Phi_{1}+Q \times \Phi_{1} P-P \times \Phi_{1} Q\right)+B_{7}\left(\Phi, \Phi_{1}\right) \Phi=0$
(12) $\quad 18\left(\Phi_{1} \Phi P-2 \Phi \Phi_{1} P — r \Phi_{1} P — s \Phi_{1} Q\right)+B_{7}\left(\Phi, \Phi_{1}\right) P=0$
(13) $18\left(\Phi_{1} \Phi Q-2 \Phi \Phi_{1} Q+r \Phi_{1} Q-t \Phi_{1} P\right)+B_{7}\left(\Phi, \Phi_{1}\right) Q=0$
(where $B_{7}$ is the Killing form of the Lie algebra $\mathrm{e}_{7}^{\boldsymbol{C}}$ ) for any $\Phi_{1} \in \mathrm{e}_{7}^{C}, P_{1}, Q_{1} \in \mathfrak{P C}$.
Theorem 30. The group $E_{8}^{C}$ acts transitively on $\mathfrak{W} C$ (which is connected) and the isotropy subgroup $\left(E_{8}^{C}\right)_{\underline{1}}$ of $E_{8}^{C}$ at $\underline{1} \in \mathfrak{W} C$ is $\exp \left(\mathfrak{P}^{C}\right) \exp (C) E_{7}^{C}$ (where $\exp (\mathfrak{P C} C)$ $\left.\exp (\boldsymbol{C})=\{\exp (\Theta(0,0, Q, 0,0, t)) \mid P \in \mathfrak{\beta} \boldsymbol{C}, t \in \boldsymbol{C}\}, E_{7}^{\boldsymbol{C}}=\left\{\beta \in E_{8}^{\boldsymbol{C}} \mid \beta \overline{1}=\overline{1}, \beta 1=1, \beta \underline{1}=1\right\}\right)$. Therefore we have the following homeomorphism:

$$
E_{8}^{C} /\left(\exp (\mathfrak{P} C) \exp (\boldsymbol{C}) E_{7}^{\boldsymbol{C}}\right) \simeq \mathfrak{W} \boldsymbol{C}
$$

In particular, $\mathfrak{B c}$ is a 56 dimensional connected complex manifold.
Proof. Obviously the group $E_{8}^{C}$ acts on $\mathfrak{W c}$. Since $\underset{\underline{1}}{ }=(0,0,0,0,0,1) \in \mathfrak{W} C$, in order to prove the transitivity of $E_{8}^{C}$, it suffices to show that any element $R \in \mathfrak{W} C$ can be transformed to 1 by a certain element $a \in E_{8}^{C}$.

Case (1) $R=(\Phi, P, Q, r, s, t), t \neq 0$. In this case, from (2), (5), (6) of Proposition 29, we have

$$
\Phi=-\frac{1}{2 t} Q \times Q, \quad P=\frac{r}{t} Q-\frac{1}{6 t^{2}}(Q \times Q) Q, \quad s=-\frac{r^{2}}{t}+\frac{1}{96 t^{3}}\{Q,(Q \times Q) Q\} .
$$

Now, for $\Theta=\Theta\left(0, P_{1}, 0, r_{1}, s_{1}, 0\right) \in \operatorname{ade}_{8}^{\boldsymbol{C}}$, we shall calculate $(\exp \Theta) 1$.

$$
\begin{gathered}
\Theta \underline{1}=\left(\begin{array}{cccccc}
0 & 0 & P_{1} & 0 & 0 & 0 \\
-P_{1} & r_{1} & s_{1} & -P_{1} & 0 & 0 \\
0 & 0 & -r_{1} & 0 & 0 & -P_{1} \\
0 & 0 & -\frac{1}{8} P_{1} & 0 & 0 & s_{1} \\
0 & \frac{1}{4} P_{1} & 0 & -2 s_{1} & 2 r_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & -2 r_{1}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-P_{1} \\
s_{1} \\
0 \\
-2 r_{1}
\end{array}\right) \\
\Theta^{2} \underline{\underline{1}}=\left(\begin{array}{c}
-P_{1} \times P_{1} \\
-2 s_{1} P_{1} \\
3 r_{1} P_{1} \\
-2 r_{1} s_{1} \\
-2 s_{1}^{2} \\
4 r_{1}^{2}
\end{array}\right),
\end{gathered} \Theta^{3} \underline{1}=\left(\begin{array}{c}
3 r_{1} P_{1} \times P_{1} \\
3 r_{1} s_{1} P_{1}+\left(P_{1} \times P_{1}\right) P_{1} \\
-7 r_{1}^{2} P_{1} \\
4 r_{1}^{2} s_{1} \\
0 \\
-8 r_{1}^{3}
\end{array}\right), \ldots,
$$

in general $(n \geqq 4)$

$$
\Theta^{n} \underline{1}=\left(\begin{array}{c}
\left((-2)^{n-1}+(-1)^{n}\right) r_{1}^{n-2} P_{1} \times P_{1} \\
\left((-2)^{n-1}-\frac{1+(-1)^{n-1}}{2}\right) r_{1}^{n-2} s_{1} P_{1}+\left(\frac{1-(-2)^{n}}{6}+\frac{(-1)^{n}}{2}\right) r_{1}^{n-3}\left(P_{1} \times P_{1}\right) P_{1} \\
\left((-2)^{n}+(-1)^{n+1}\right) r_{1}^{n-1} P_{1} \\
(-2)^{n-1} r_{1}^{n-1} s_{1}
\end{array}\right)
$$

$$
\binom{-\left((-2)^{n-2}+2^{n-2}\right) r_{1}^{n-2} s_{1}^{2}+\frac{2^{n-2}+(-2)^{n-2}-(-1)^{n}-1}{24} r_{1}^{n-4}\left\{P_{1},\left(P_{1} \times P_{1}\right) P_{1}\right\}}{(-2)^{n} r_{1}^{n}}
$$

Hence, by simple calculations, we have

$$
\left.\begin{array}{l}
\exp \left(\Theta\left(0, P_{1}, 0, r_{1}, s_{1}, 0\right)\right) \underline{1}=(\exp \Theta) \underline{1}=\sum_{n=0}^{\infty} \frac{1}{n!} \Theta^{n} \underline{1} \\
-\frac{1}{2 r_{1}^{2}}\left(e^{-2 r_{1}}-2 e^{-r_{1}}+1\right) P_{1} \times P_{1} \\
\frac{s_{1}}{2 r_{1}^{2}}\left(-e^{-2 r_{1}}-e^{r_{1}}+e^{-r_{1}}+1\right) P_{1}+\frac{1}{6 r_{1}^{3}}\left(-e^{-2 r_{1}}+e^{r_{1}}+3 e^{-r_{1}}-3\right)\left(P_{1} \times P_{1}\right) P_{1} \\
\frac{1}{r_{1}}\left(e^{-2 r_{1}}-e^{-r_{1}}\right) P_{1} \\
\frac{s_{1}}{2 r_{1}}\left(1-e^{-2 r_{1}}\right) \\
-\frac{s_{1}^{2}}{4 r_{1}^{2}}\left(e^{-2 r_{1}}+e^{2 r_{1}}-2\right)+\frac{1}{96 r_{1}^{e}}\left(2 r_{1}+e^{-2 r_{1}}-4 e^{r_{1}}-4 e^{-r_{1}}+6\right)\left\{P_{1},\left(P_{1} \times P_{1}\right) P_{1}\right\} \\
e^{-2 r_{1}}
\end{array}\right) .
$$

(if $r_{1}=0, \frac{f\left(r_{1}\right)}{r_{1}^{k}}$ means $\lim _{r_{1} \rightarrow 0} \frac{f\left(r_{1}\right)}{r_{1}^{k}}$ ). Find out $P_{1} \in \mathfrak{B c}, r_{1}, s_{1} \in C$ satisfying

$$
\frac{1}{r_{1}}\left(e^{-2 r_{1}}-e^{-r_{1}}\right) P_{1}=Q, \quad \frac{s_{1}}{2 r_{1}}\left(1-e^{-2 r_{1}}\right)=r, \quad e^{-2 r_{1}}=t .
$$

Then we have

$$
(\exp \Theta) \underline{1}=\left(\begin{array}{c}
-\frac{1}{2 t} Q \times Q \\
\frac{r}{t} Q-\frac{1}{6 t^{2}}(Q \times Q) Q \\
Q \\
r \\
-\frac{r^{2}}{t}+\frac{1}{96 t^{3}}\{Q,(Q \times Q) Q\} \\
t
\end{array}\right)=\left(\begin{array}{c}
\Phi \\
P \\
Q \\
r \\
s \\
t
\end{array}\right)=R .
$$

Thus R is transformed to $\underline{1}$ by $\exp (-\Theta) \in E_{8}^{c}$.
Case (2) $R=(\Phi, P, Q, r, s, t), s \neq 0$. Similarly as (1), we see that $R=(\exp \Theta) 1$ for some $\Theta=\Theta\left(0,0, Q_{1}, r_{1}, 0, t_{1}\right) \in \operatorname{ade}_{8}^{\boldsymbol{C}}$, where $\overline{1}=(0,0,0,0,1,0)$. On the other hand, $\overline{1}$ can be transformed to $-\underline{1}$ by

$$
\omega=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right)=\exp \left(\Theta\left(0,0,0,0, \frac{\pi}{2},-\frac{\pi}{2}\right)\right) \in E_{8}^{C}
$$

Thus $R$ is transformed to $-\underline{1}$ by $\omega \exp (-\Theta) \in E_{8}^{C}$. So this case can be reduced to the case (1).

Case (3) $R=(\Phi, P, Q, r, 0,0), r \neq 0$. In this case, from (2), (5), (6) of Proposition 29, we have

$$
Q \times Q=0, \quad \Phi Q=-3 r Q, \quad\{P, Q\}=16 r^{2}
$$

Now, for $\Theta=\Theta(0, Q, 0,0,0,0) \in \operatorname{ade}_{8}^{c}, \Theta R=\left(Q \times Q,-\Phi Q-r Q, 0,0, \frac{1}{4}\{Q, P\}, 0\right)=$ $\left(0,2 r Q, 0,0,-4 r^{2}, 0\right), \Theta^{2} R=0$. Hence we have

$$
(\exp \Theta) R=\left(\Phi, P+2 r Q, Q, r,-4 r^{2}, 0\right), \quad-4 r^{2} \neq 0
$$

So we can reduce to the case (2).
Case (4) $R=(\Phi, P, Q, 0,0,0), Q \neq 0$. For $\Theta=\Theta\left(0, P_{1}, 0,0,0,0\right) \in \operatorname{ade}_{8}^{C}$, we have

$$
(\exp \Theta) R=\left(*, *, *,-\frac{1}{8}\left\{P_{1}, Q\right\}, *, 0\right) .
$$

Choose $P_{1} \in \mathfrak{\beta} c$ such that $\left\{P_{1}, Q\right\} \neq 0$. Then we can reduce to the case (3).
Case (5) $\quad R=(\Phi, P, Q, 0,0,0), P \neq 0$. This is similar to the case (4).
Case (6) $R=(\Phi, 0,0,0,0,0), \Phi \neq 0$. In this case, from (10) of Proposition 29, we have $\Phi^{2}=0$. Now, for $\Theta=\Theta\left(\Phi, P_{1}, 0,0,0,0\right) \in \mathrm{ade}_{8}^{\boldsymbol{c}}, \Theta R=\left(0,-\Phi P_{1}, 0,0,0,0\right)$, $\Theta^{3} R=\left(0,-\Phi^{2} P_{1}, 0,0,-\frac{1}{4}\left\{P_{1}, \Phi P_{1}\right\}, 0\right)=\left(0,0,0,0, \frac{1}{4}\left\{\Phi P_{1}, P_{1}\right\}, 0\right), \Theta^{3} R=0$. Hence we have

$$
(\exp \Theta) R=\left(\Phi,-\Phi P_{1}, 0,0, \frac{1}{8}\left\{\Phi P_{1}, P_{1}\right\}, 0\right) .
$$

So, if we choose $P_{1} \in \mathfrak{P} C$ such that $\Phi P_{1} \neq 0$, then we can reduce to the case (5). Thus the transitivity of $E_{8}^{\boldsymbol{C}}$ on $\mathfrak{W} \boldsymbol{C}$ is proved, so we see also the connectedness of $\mathfrak{B} c$. Next we shall determine the isotropy subgroup

$$
\left(E_{8}^{C}\right)_{1}=\left\{a \in E_{8}^{C} \mid a \underline{1}=1\right\} .
$$

Since $\mathfrak{P} c \oplus \underline{C}=\{\underline{Q}+t=(0,0, Q, 0,0, t) \mid Q \in \mathfrak{P c}, t \in C\}$ is a subalgebra of $\mathfrak{e}_{8}^{\boldsymbol{C}}$ and $[\underline{Q}, \underline{t}]=$ $0, \exp (\underline{Q})=\exp (\Theta(0,0, Q, 0,0,0)), \exp (t)=\exp (\Theta(0,0,0,0,0,0, t))$ commute with each other and $\exp (\underline{p} C) \exp (\underline{C})=\exp (\operatorname{ad}(\underline{P} \boldsymbol{C} \oplus \underline{C}))$ is a connected subgroup of $E_{8}^{C}$. Now, let $a \in\left(E_{8}^{c}\right)_{1}$ and put

$$
a 1=(\Phi, P, Q, r, s, t) . \quad a \overline{1}=\left(\Phi_{1}, P_{1}, Q_{1}, r_{1}, s_{1}, t_{1}\right)
$$

where $1=(0,0,0,1,0,0)$. Then, from the relations $[1, \underline{1}]=-2 \underline{1},[\overline{1}, \underline{1}]=1,[1, \overline{1}]=2 \overline{1}$, that is, $[a 1, \underline{1}]=-21,[a \overline{1}, \underline{1}]=\alpha 1,[a 1, a \overline{1}]=2 a \overline{1}$, we have

$$
P=0, \quad s=0, \quad r=1,
$$

$$
\begin{array}{rlr}
\Phi=0, & P_{1}=-Q, \quad s_{1}=1, & r_{1}=-\frac{t}{2}, \\
\Phi_{1}=\frac{1}{2} Q \times Q, & Q_{1}=-\frac{t}{2} Q-\frac{1}{3} \Phi_{1} Q, & t_{1}=-\frac{t^{2}}{4}-\frac{1}{16}\left\{Q, Q_{1}\right\}
\end{array}
$$

respectively. So $a$ has the form

$$
a=\left(\begin{array}{cccccc}
* & * & * & 0 & \frac{1}{2} Q \times Q & 0 \\
* & * & * & 0 & -Q & 0 \\
* & * & * & Q & -\frac{t}{2} Q-\frac{1}{6}(Q \times Q) Q & 0 \\
* & * & * & 1 & -\frac{t}{2} & 0 \\
* & * & * & 0 & 1 & 0 \\
* & * & * & t & -\frac{t^{2}}{4}+\frac{1}{96}\{Q,(Q \times Q) Q\} & 1
\end{array}\right) .
$$

On the other hand, we have

$$
\exp \left(\frac{t}{2}\right) \exp (\underline{Q}) \overline{1}=\left(\begin{array}{c}
\frac{1}{2} Q \times Q \\
-Q \\
-\frac{t}{2} Q-\frac{1}{6}(Q \times Q) Q \\
-\frac{t}{2} \\
1 \\
-\frac{t^{2}}{4}+\frac{1}{96}\{Q,(Q \times Q) Q\}
\end{array}\right)=a \overline{1}
$$

and also we have

$$
\exp \left(\frac{t}{\underline{2}}\right) \exp (Q) 1=\alpha 1, \quad \exp \left(\frac{t}{\underline{2}}\right) \exp (Q) \underline{1}=\alpha \underline{1}
$$

Therefore $\exp (-\underline{Q}) \exp \left(-\frac{t}{2}\right) \alpha \in E_{7}^{\boldsymbol{C}}=\left\{\beta \in E_{8}^{\boldsymbol{C}} \mid \beta 1=1, \beta \overline{1}=\overline{1}, \beta \underline{1}=\underline{1}\right\} \cong\{\beta \in \operatorname{Iso} \boldsymbol{C}(\mathfrak{P} \boldsymbol{C}, \mathfrak{P} \boldsymbol{C})$ $\left.\mid \beta(P \times Q)^{-1}=\beta P \times \beta Q\right\}$ (which is a simply connected complex Lie group of type $E_{7}$ ). Hence

$$
\left.\left(E_{8}^{\boldsymbol{C}}\right)_{\underline{1}}=\exp (\underline{P} \boldsymbol{C}) \exp (\underline{\boldsymbol{C}})\right) \boldsymbol{E}_{7}^{\boldsymbol{C}}
$$

Furthermore, for $\beta \in E_{7}^{\boldsymbol{C}}$, it is easy to see that

$$
\beta(\exp (Q)) \beta^{-1}=\exp (\underline{\beta Q}), \quad \beta(\exp (\underline{t})) \beta^{-1}=\exp (\underline{t})
$$

This shows that $\exp (\mathfrak{P C}) \exp (\underline{C})$ is a normal subgroup of $\left(E_{8}^{\boldsymbol{C}}\right)_{\underline{1}}$. Hence we have a split exact sequence

$$
1 \longrightarrow \exp \left(\mathfrak{Y}^{C} C\right) \exp (\underline{C}) \longrightarrow\left(E_{8}^{\boldsymbol{C}}\right)_{\underline{1}} \longrightarrow E_{7}^{C} \longrightarrow 1
$$

Therefore $\left(E_{8}^{\boldsymbol{C}}\right)_{\underline{1}}$ is the semi-direct product of $\exp (\underline{P} \boldsymbol{C}) \exp (\boldsymbol{C})$ and $E_{7}^{\boldsymbol{C}}$. Thus we have the hemeomorphism

$$
E_{8}^{C} /(\exp (\mathfrak{P} C) \exp (\underline{C})) E_{7}^{C} \simeq \mathfrak{W} C
$$

In particular, $\mathfrak{W} \boldsymbol{C}$ is a $248-(56+1+133)=56$ dimensional complex manifold.

Remark. Theorem 30 gives another proof of the connectedness of the group $E_{8}^{C}$ (see [I-Y] Theorem 18). In fact, the proof of Theorem 30 shows that the connected component $\left(E_{8}^{C}\right)_{0}$ of $E_{8}^{C}$ containing the identity acts transitively on $\mathfrak{W} C$, so $\mathfrak{B} C$ is connected, and from the homeomorphism $E_{8}^{C} /\left(\exp \left(\mathfrak{ß B}^{C}\right) \exp (\underline{C})\right) E_{7}^{C} \simeq \mathfrak{W} C$ we see that the group $E_{8}^{C}$ is also connected.

Proposition 31. $\mathfrak{W c}$ is a complex submanifold of $\mathrm{e}_{8}^{\boldsymbol{C}}$.
Proof. Consider a subset $U$ of $\mathfrak{B} c$ :

$$
\begin{aligned}
U & =\{(\Phi, P, Q, r, s, t) \in \mathfrak{B} C \mid t \neq 0\} \\
& =\left\{\begin{array}{c|c}
\Phi=-\frac{1}{2 t} Q \times Q \\
(\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8}^{c} & \left.\begin{array}{c} 
\\
P=\frac{r}{t} Q-\frac{1}{6 t^{2}}(Q \times Q) Q \\
s=-\frac{t}{r^{2}}+\frac{1}{96 t^{3}}\{Q,(Q \times Q) Q\}
\end{array}\right\} \\
& =\exp (\operatorname{ad}(\overline{\mathfrak{P}} c \oplus C \oplus \bar{C})) \underline{1} \quad \text { (see Theorem 30, Proof of Case (1)). }
\end{array} .\right.
\end{aligned}
$$

Then $U$ is an open set of $\mathfrak{B} \boldsymbol{C}$ and salo a submanifold of $\mathfrak{e}_{8}^{\boldsymbol{C}}$. Now, for an open set $V$ $=\left\{(\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8}^{\boldsymbol{C}} \mid t \neq 0\right\}$ of $\mathrm{e}_{8}^{\boldsymbol{C}}$, we have

$$
U=V \cap \mathfrak{B} c
$$

(in general, $a U=\alpha V \cap \mathfrak{W}_{C}$ and $\mathfrak{W}_{C}=\cup a C$ ). This implies that $\mathfrak{W} C^{\text {is a }}$ (regular) submanifold of $\mathrm{e}_{8}^{C}$.

## 8. The manifold $\mathfrak{W}_{1}$.

We define a space $\mathfrak{B}_{1}$ in $\mathcal{e}_{8}^{C}$ by

$$
\mathfrak{W}_{1}=\{R \in \mathfrak{W} C \mid<R, R>=4\} .
$$

In order to prove that $\mathfrak{B}_{1}$ is a 115 dimensional manifold, we use the following well-known
Lemma 32. Let $M$ be a differentiable manifold, $f: M \rightarrow \boldsymbol{R} a$ differentiable mapping and $N=\{p \in M \mid f(p)=0\}$. Suppose $\operatorname{rank}(d f)_{p} \neq 0$ for all $p \in N$, then $N$ is a submanifold of $M$ with codimension 1.

Proposition 33. $\mathfrak{W}_{1}$ is a 115 dimensional connected compact manifold.
Proof. Define a mapping $f: \mathfrak{W} \boldsymbol{c} \rightarrow \boldsymbol{R}$ by $f(R)=<R, R>-4$. Then $f$ is obviously differentiable because $\mathfrak{W} \boldsymbol{C}$ is a submanifold of $\mathfrak{e}_{8}^{\boldsymbol{C}}=\boldsymbol{C}^{248}=\boldsymbol{R}^{496} \quad$ (Proposition 31). We shall show that $(d f)_{R} \neq 0$ for $R \in f^{-1}(0)=\mathfrak{W}_{1}$. Consider a curve $\lambda R, 0<\lambda<\infty$, in $\mathfrak{W} C$ through $R \in \mathfrak{B} C$. Then it is a differentiable curve with respect to $\lambda$ from Proposition 31. Now, for $R \in \mathfrak{F}_{1}$,

$$
(d f)_{R}\left(\frac{\partial}{\partial \lambda}\right)_{R}=\left.\frac{\partial f}{\partial \lambda}(\lambda R)\right|_{2=1}=\left.\frac{\partial}{\partial \lambda}(<\lambda R, \lambda R>-4)\right|_{\lambda=1}=\left.\frac{\partial}{\partial \lambda} 4 \lambda^{2}\right|_{\lambda=1}=8 \neq 0 .
$$

Hence $\operatorname{rank}(d f)_{R}=1$ for $R \in \mathfrak{B}_{1}$. Therefore $\mathfrak{B}_{1}$ is a dim $\mathfrak{B}^{C}-1=116-1=115$ dimen-
sional submanifold of $\mathfrak{F} \boldsymbol{C}$ from Lemma 32. Clearly $\mathfrak{W}_{1}$ is compact. $\mathfrak{W}_{1}$ is connected, since $\mathfrak{W}_{1}$ is the image of $\mathfrak{W} \boldsymbol{C}$ (which is connected) by a continuous mapping $h: \mathfrak{W} c \rightarrow$ $\mathfrak{W}_{1}, h(R)=\frac{2 R}{<R, R>}$.

Theorem 34. The homogeneous space $E_{8} / E_{7}$ is homeomorphic to the manifold $\mathfrak{W}_{1}:$

$$
E_{8} / E_{7} \simeq \mathfrak{M}_{1}=\left\{R \in_{e_{8}^{C}}^{C} \mid R \times R=0,<R, R>=4\right\} .
$$

Proof. Obviously the group $E_{8}$ acts on $\mathfrak{W}_{1}$ and the isotropy subgroup at 1 is $E_{7}$ ([I-Y] Theorem 26). Therefore the orbit $E_{8} 1$ (which is homeomorphic to $E_{8} / E_{7}$ ) through 1 is a $248-133=115$ dimensional submanifold of $\mathfrak{F}_{1}$, because $E_{8}$ is a compact Lie group. Since $E_{8} 1$ and $\mathfrak{W}_{1}$ are both connected manifolds, have the same dimension 115 and $E_{8} 1$ is a compact submanifold of $\mathfrak{B}_{1}$, they must coincide: $E_{8} 1=\mathfrak{W}_{1}$. Thus we have $E_{8} / E_{7} \simeq E_{8} 1=\mathfrak{B}_{1}$.

## Department of Mathematics, Shinshu University

## References

[F] H. Freudenthal, Beziehung der $E_{7}$ und $E_{8}$ zur Oktavenebene, X, Nederl, Akad. Weten. Proc., Ser. A, $66=$ Indag. Math., 25 (1963), 457-471.
[I-Y] T. Imai and I. Yokota, Simply connected compact simple Lie group $E_{8(-248)}$ of type $E_{8}$, Jour. Math., Kyoto Univ., 21 (1981), 741-762.

