On the homogeneous space E_8/E_7

By

Ichiro YOKOTA, Takao Imai and Osami YASUKURA

(Communicated by Prof. Toda May 6, 1982)

In [I-Y], Imai and Yokota showed that the group

$$E_8 = \{a \in \text{Iso}_C(\mathfrak{e}_8^C, \mathfrak{e}_8^C) | a[R_1, R_2] = [aR_1, aR_2], \langle aR_1, aR_2 \rangle = \langle R_1, R_2 \rangle \}$$

is a simply connected compact simple Lie group of type E_8 and it contains a subgroup

$$E_7 = \{\beta \in E_8 | \beta = 1\}$$

which is a simply connected compact simple Lie group of type E_7 . In the present paper, we consider the homogeneous space E_8/E_7 . The result is

$$E_8/E_7 = \mathfrak{W}_1 = \{R \in \mathfrak{e}_8^C | R \times R = 0, < R, R > = 4\}.$$

This paper is a continuation of [I-Y] and we use the same notations as [I-Y]. So the numbering of sections and Theorems of this paper starts from 7 and 29 respectively. The authors wish to thank Prof. Tetsuo Ishihara for his advices.

7. The manifold \mathfrak{W}^c .

For $R \in \mathfrak{e}_8^C$, Freudenthal defined in [F] a linear transformation $R \times R$ of \mathfrak{e}_8^C by

$$(R \times R)R_1 = (\text{ad}R)^2 R_1 + \frac{1}{20}B(R, R_1)R, \quad R_1 \in \mathfrak{e}_8^C$$

(where B is the Killing form of the Lie algebra $\mathfrak{e}_8^{\mathbb{C}}$) and considered a subspace $\mathfrak{W}^{\mathbb{C}}$ of $\mathfrak{e}_8^{\mathbb{C}}$:

$$\mathfrak{W}^{\mathbf{C}} = \{ R \in \mathfrak{e}^{\mathbf{C}} \mid R \times R = 0, R \neq 0 \}.$$

By the use of [I-Y] Theorem 28 (and Proposition 27, E_7 : (2)), we have immediately the following

Proposition 29. For $R = (\Phi, P, Q, r, s, t) \in \mathfrak{e}_8^C$, $R \neq 0$, R belongs to \mathfrak{W}^c if and only if R satisfies

- (1) $2s\boldsymbol{\Phi} P \times P = 0$
- (2) $2t\Phi + Q \times Q = 0$
- (3) $2r\Phi + P \times Q = 0$

- (4) $\Phi P = 3rP = 3sQ = 0$
- (5) $\Phi Q + 3rQ 3tP = 0$ (6) $\{P, Q\} 16(st + r^2) = 0$
- (7) $2(\Phi P \times Q_1 + 2P \times \Phi Q_1 rP \times Q_1 sQ \times Q_1) \{P, Q_1\}\Phi = 0$
- (8) $2(\Phi Q \times P_1 + 2Q \times \Phi P_1 + rQ \times P_1 tP \times P_1) \{Q, P_1\}\Phi = 0$
- (9) $8((P \times Q_1)Q stQ_1 r^2Q_1 \Phi^2Q_1 + 2r\Phi Q_1) + 5\{P, Q_1\}Q 2\{Q, Q_1\}P = 0$
- (10) $8((Q \times P_1)P + stP_1 + r^2P_1 + \Phi^2P_1 + 2r\Phi P_1) + 5\{Q, P_1\}P 2\{P, P_1\}Q = 0$

- (11) $18((ad\Phi)^2\Phi_1 + Q \times \Phi_1 P P \times \Phi_1 Q) + B_7(\Phi, \Phi_1)\Phi = 0$
- (12) $18(\Phi_1\Phi P 2\Phi\Phi_1P r\Phi_1P s\Phi_1O) + B_7(\Phi, \Phi_1)P = 0$
- (13) $18(\Phi_1\Phi_Q 2\Phi\Phi_1Q + r\Phi_1Q t\Phi_1P) + B_7(\Phi, \Phi_1)Q = 0$

(where B_7 is the Killing form of the Lie algebra $\mathfrak{e}_7^{\mathbf{C}}$) for any $\Phi_1 \in \mathfrak{e}_7^{\mathbf{C}}$, P_1 , $Q_1 \in \mathfrak{P}^{\mathbf{C}}$.

Theorem 30. The group E_8^C acts transitively on \mathfrak{B}^C (which is connected) and the isotropy subgroup $(E_8^C)_{\underline{1}}$ of E_8^C at $\underline{1} \in \mathfrak{B}^C$ is $\exp(\mathfrak{P}^C)\exp(C)E_7^C$ (where $\exp(\mathfrak{P}^C)\exp(C)=\{\exp(\Theta(0,\ 0,\ Q,\ 0,\ 0,\ t))|\ P \in \mathfrak{P}^C$, $t \in C\}$, $E_7^C=\{\beta \in E_8^C |\ \beta \bar{1}=\bar{1},\ \beta 1=1,\ \beta \underline{1}=\underline{1}\}$). Therefore we have the following homeomorphism:

$$E_8^{\mathbf{C}}/(\exp(\mathfrak{P}^{\mathbf{C}})\exp(\mathbf{C})E_7^{\mathbf{C}}) \simeq \mathfrak{W}^{\mathbf{C}}.$$

In particular, \mathfrak{W}^c is a 56 dimensional connected complex manifold.

Proof. Obviously the group E_8^c acts on \mathfrak{B}^c . Since $\underline{1} = (0, 0, 0, 0, 0, 1) \in \mathfrak{B}^c$, in order to prove the transitivity of E_8^c , it suffices to show that any element $R \in \mathfrak{B}^c$ can be transformed to 1 by a certain element $a \in E_8^c$.

Case (1) $R=(\Phi, P, Q, r, s, t), t \neq 0$. In this case, from (2), (5), (6) of Proposition 29, we have

$$\Phi = -\frac{1}{2t} Q \times Q, \quad P = \frac{r}{t} Q - \frac{1}{6t^2} (Q \times Q) Q, \quad s = -\frac{r^2}{t} + \frac{1}{96t^3} \{Q, (Q \times Q)Q\}.$$

Now, for $\Theta = \Theta(0, P_1, 0, r_1, s_1, 0) \in ade_8^C$, we shall calculate $(\exp \Theta)1$.

$$\Theta_{1} = \begin{pmatrix}
0 & 0 & P_{1} & 0 & 0 & 0 \\
-P_{1} & r_{1} & s_{1} & -P_{1} & 0 & 0 \\
0 & 0 & -r_{1} & 0 & 0 & -P_{1} \\
0 & 0 & -\frac{1}{8}P_{1} & 0 & 0 & s_{1} \\
0 & \frac{1}{4}P_{1} & 0 & -2s_{1} & 2r_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & -2r_{1}
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
-P_{1}, \\
s_{1} \\
0 \\
-2r_{1}
\end{pmatrix}$$

$$\Theta^{2}\underline{1} = \begin{pmatrix} -P_{1} \times P_{1} \\ -2s_{1}P_{1} \\ 3r_{1}P_{1} \\ -2r_{1}s_{1} \\ -2s_{1}^{2} \\ 4r_{1}^{2} \end{pmatrix}, \qquad \Theta^{3}\underline{1} = \begin{pmatrix} 3r_{1}P_{1} \times P_{1} \\ 3r_{1}s_{1}P_{1} + (P_{1} \times P_{1})P_{1} \\ -7r_{1}^{2}P_{1} \\ 4r_{1}^{2}s_{1} \\ 0 \\ -8r_{1}^{3} \end{pmatrix}, \dots,$$

in general $(n \ge 4)$

$$\Theta^{n}\underline{1} = \begin{pmatrix} ((-2)^{n-1} + (-1)^{n})r_{1}^{n-2}P_{1} \times P_{1} \\ ((-2)^{n-1} - \frac{1 + (-1)^{n-1}}{2})r_{1}^{n-2}s_{1}P_{1} + \left(\frac{1 - (-2)^{n}}{6} + \frac{(-1)^{n}}{2}\right)r_{1}^{n-3}(P_{1} \times P_{1})P_{1} \\ ((-2)^{n} + (-1)^{n+1})r_{1}^{n-1}P_{1} \\ (-2)^{n-1}r_{1}^{n-1}s_{1} \end{pmatrix}$$

$$\left(\begin{array}{c} -((-2)^{n-2} + 2^{n-2}) \, r_1^{n-2} s_1^2 + \frac{2^{n-2} + (-2)^{n-2} - (-1)^n - 1}{24} \, r_1^{n-4} \{P_1, \, (P_1 \times P_1) P_1\} \\ (-2)^n r_1^n \end{array} \right)$$

Hence, by simple calculations, we have

$$\exp(\Theta(0, P_1, 0, r_1, s_1, 0))\underline{1} = (\exp\Theta)\underline{1} = \sum_{n=0}^{\infty} \frac{1}{n!} \Theta^n\underline{1}$$

$$= \begin{pmatrix} -\frac{1}{2r_1^2}(e^{-2r_1}-2e^{-r_1}+1)P_1 \times P_1 \\ \frac{s_1}{2r_1^2}(-e^{-2r_1}-e^{r_1}+e^{-r_1}+1)P_1 + \frac{1}{6r_1^2}(-e^{-2r_1}+e^{r_1}+3e^{-r_1}-3)(P_1 \times P_1)P_1 \\ \frac{1}{r_1}(e^{-2r_1}-e^{-r_1})P_1 \\ \frac{s_1}{2r_1}(1-e^{-2r_1}) \\ -\frac{s_1^2}{4r_1^2}(e^{-2r_1}+e^{2r_1}-2) + \frac{1}{96r_1^4}(e^{2r_1}+e^{-2r_1}-4e^{r_1}-4e^{-r_1}+6)\{P_1, (P_1 \times P_1)P_1\} \\ e^{-2r_1} \end{pmatrix}$$

(if $r_1=0$, $\frac{f(r_1)}{r_1^k}$ means $\lim_{r_1 \neq 0} \frac{f(r_1)}{r_1^k}$). Find out $P_1 \in \mathfrak{P}^c$, r_1 , $s_1 \in C$ satisfying

$$\frac{1}{r_1}(e^{-2r_1}-e^{-r_1})P_1=Q, \quad \frac{s_1}{2r_1}(1-e^{-2r_1})=r, \quad e^{-2r_1}=t.$$

Then we have

$$(\exp\Theta)\underline{1} = \begin{pmatrix} -\frac{1}{2t}Q \times Q \\ \frac{r}{t}Q - \frac{1}{6t^2}(Q \times Q)Q \\ Q \\ r \\ -\frac{r^2}{t} + \frac{1}{96t^3}\{Q, (Q \times Q)Q\} \end{pmatrix} = \begin{pmatrix} \Phi \\ P \\ Q \\ r \\ s \\ t \end{pmatrix} = R.$$

Thus R is transformed to 1 by $\exp(-\Theta) \in E_s^c$.

Case (2) $R = (\Phi, P, Q, r, s, t)$, $s \neq 0$. Similarly as (1), we see that $R = (\exp \Theta) \underline{1}$ for some $\Theta = \Theta(0, 0, Q_1, r_1, 0, t_1) \in \operatorname{ade}_8^C$, where $\overline{1} = (0, 0, 0, 0, 1, 0)$. On the other hand, $\overline{1}$ can be transformed to -1 by

$$\omega = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix} = \exp\left(\Theta\left(0, 0, 0, 0, \frac{\pi}{2}, -\frac{\pi}{2}\right)\right) \in E_8^C.$$

Thus R is transformed to $-\frac{1}{2}$ by $\omega \exp(-\theta) \in E_8^C$. So this case can be reduced to the case (1).

Case (3) $R=(\Phi, P, Q, r, 0, 0), r\neq 0$. In this case, from (2), (5), (6) of Proposition 29, we have

$$Q \times Q = 0$$
, $\Phi Q = -3rQ$, $\{P, Q\} = 16r^2$.

Now, for $\Theta = \Theta(0, Q, 0, 0, 0, 0) \in ade_8^C$, $\Theta R = (Q \times Q, -\Phi Q - rQ, 0, 0, \frac{1}{4} \{Q, P\}, 0) = (0, 2rQ, 0, 0, -4r^2, 0), \Theta^2 R = 0$. Hence we have

$$(\exp\Theta)R = (\Phi, P + 2rQ, Q, r, -4r^2, 0), -4r^2 \neq 0.$$

So we can reduce to the case (2).

Case (4) $R = (\Phi, P, Q, 0, 0, 0), Q \neq 0$. For $\Theta = \Theta(0, P_1, 0, 0, 0, 0) \in ade_8^C$, we have

$$(\exp \Theta)R = (*, *, *, -\frac{1}{8} \{P_1, Q\}, *, 0).$$

Choose $P_1 \in \mathfrak{P}^c$ such that $\{P_1, Q\} \neq 0$. Then we can reduce to the case (3).

Case (5) $R=(\Phi, P, Q, 0, 0, 0), P \neq 0$. This is similar to the case (4).

Case (6) $R=(\Phi, 0, 0, 0, 0, 0, 0), \Phi \neq 0$. In this case, from (10) of Proposition 29, we have $\Phi^2=0$. Now, for $\Theta=\Theta(\Phi, P_1, 0, 0, 0, 0)\in ade_8^C$, $\Theta R=(0, -\Phi P_1, 0, 0, 0, 0), \Theta^3 R=(0, -\Phi^2 P_1, 0, 0, -\frac{1}{4}\{P_1, \Phi P_1\}, 0)=(0, 0, 0, 0, \frac{1}{4}\{\Phi P_1, P_1\}, 0), \Theta^3 R=0$. Hence we have

$$(\exp\Theta)R = (\Phi, -\Phi P_1, 0, 0, \frac{1}{8} \{\Phi P_1, P_1\}, 0).$$

So, if we choose $P_1 \in \mathfrak{P}^c$ such that $\Phi P_1 \neq 0$, then we can reduce to the case (5). Thus the transitivity of E_8^c on \mathfrak{B}^c is proved, so we see also the connectedness of \mathfrak{B}^c . Next we shall determine the isotropy subgroup

$$(E_8^C)_1 = \{a \in E_8^C | a1 = 1\}.$$

Since $\underline{\mathfrak{P}}^{c}\oplus\underline{C}=\{\underline{Q}+\underline{t}=(0,\ 0,\ Q,\ 0,\ 0,\ t)|\ Q\in\mathfrak{P}^{c},\ t\in C\}$ is a subalgebra of \mathfrak{e}_{8}^{c} and $[\underline{Q},\underline{t}]=0$, $\exp(\underline{Q})=\exp(\Theta(0,\ 0,\ Q,\ 0,\ 0,\ 0))$, $\exp(\underline{t})=\exp(\Theta(0,\ 0,\ 0,\ 0,\ 0,\ 0,\ t))$ commute with each other and $\exp(\underline{\mathfrak{p}}^{c})\exp(\underline{C})=\exp(\operatorname{ad}(\underline{\mathfrak{P}}^{c}\oplus\underline{C}))$ is a connected subgroup of E_{8}^{c} . Now, let $\alpha\in(E_{8}^{c})_{1}$ and put

$$a1=(\Phi, P, Q, r, s, t).$$
 $a\bar{1}=(\Phi_1, P_1, Q_1, r_1, s_1, t_1)$

where 1=(0, 0, 0, 1, 0, 0). Then, from the relations $[1, \underline{1}] = -2\underline{1}$, $[\overline{1}, \underline{1}] = 1$, $[1, \overline{1}] = 2\overline{1}$, that is, [a1, 1] = -21, $[a\overline{1}, 1] = a1$, $[a1, a\overline{1}] = 2a\overline{1}$, we have

$$P=0, \quad s=0, \quad r=1,$$
 $\Phi=0, \quad P_1=-Q, \quad s_1=1, \quad r_1=-\frac{t}{2},$ $\Phi_1=\frac{1}{2}Q\times Q, \quad Q_1=-\frac{t}{2}Q-\frac{1}{3}\Phi_1Q, \quad t_1=-\frac{t^2}{4}-\frac{1}{16}\{Q,Q_1\}$

respectively. So α has the form

On the other hand, we have

$$\exp\left(\frac{t}{2}\right)\exp(Q)\bar{1} = \begin{pmatrix} \frac{1}{2}Q \times Q \\ -Q \\ -\frac{t}{2}Q - \frac{1}{6}(Q \times Q)Q \\ -\frac{t}{2} \\ 1 \\ -\frac{t^2}{4} + \frac{1}{96}\{Q, (Q \times Q)Q\} \end{pmatrix} = \alpha\bar{1}$$

and also we have

$$\exp\left(\frac{t}{2}\right)\exp(Q)1=\alpha 1, \quad \exp\left(\frac{t}{2}\right)\exp(Q)\underline{1}=\alpha \underline{1}.$$

Therefore $\exp(-Q)\exp\left(-\frac{t}{2}\right)a\in E_7^C=\{\beta\in E_8^C|\beta 1=1,\beta\bar{1}=\bar{1},\beta\underline{1}=\underline{1}\}\cong \{\beta\in \operatorname{Iso}_C(\mathfrak{P}^C,\mathfrak{P}^C)|\beta(P\times Q)^{-1}=\beta P\times\beta Q\}$ (which is a simply connected complex Lie group of type E_7). Hence

$$(E_8^{\mathbf{C}})_1 = \exp(\mathfrak{P}^{\mathbf{C}})\exp(\mathbf{C})E_7^{\mathbf{C}}$$

Furthermore, for $\beta \in E_7^C$, it is easy to see that

$$\beta(\exp(Q))\beta^{-1} = \exp(\beta Q), \qquad \beta(\exp(t))\beta^{-1} = \exp(t).$$

This shows that $\exp(\mathfrak{P}^{c})\exp(\underline{C})$ is a normal subgroup of $(E_{8}^{c})_{\underline{1}}$. Hence we have a split exact sequence

$$1 \longrightarrow \exp(\mathfrak{P}^{\mathbf{C}})\exp(\underline{\mathbf{C}}) \longrightarrow (E_8^{\mathbf{C}})_{\underline{1}} \longrightarrow E_7^{\mathbf{C}} \longrightarrow 1.$$

Therefore $(E_8^C)_{\underline{1}}$ is the semi-direct product of $\exp(\underline{\mathfrak{P}}^C)\exp(\underline{C})$ and E_7^C . Thus we have the hemeomorphism

$$E_8^C/(\exp(\mathfrak{P}^C)\exp(C))E_7^C\simeq\mathfrak{W}^C$$
.

In particular, \mathfrak{B}^c is a 248-(56+1+133)=56 dimensional complex manifold.

Remark. Theorem 30 gives another proof of the connectedness of the group E_8^C (see [I-Y] Theorem 18). In fact, the proof of Theorem 30 shows that the connected component $(E_8^C)_0$ of E_8^C containing the identity acts transitively on \mathfrak{B}^C , so \mathfrak{B}^C is connected, and from the homeomorphism $E_8^C/(\exp(\mathfrak{P}^C)\exp(\underline{C}))E_7^C\simeq\mathfrak{B}^C$ we see that the group E_8^C is also connected.

Proposition 31. \mathfrak{W}^{C} is a complex submanifold of \mathfrak{e}_{8}^{C} .

Proof. Consider a subset U of \mathfrak{W}^c :

$$U = \{ (\Phi, P, Q, r, s, t) \in \mathfrak{B}^{C} | t \neq 0 \}$$

$$= \left\{ (\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8}^{C} \middle| P = \frac{r}{t}Q - \frac{1}{6t^{2}}(Q \times Q) Q \right\}$$

$$s = -\frac{t}{r^{2}} + \frac{1}{96t^{3}}\{Q, (Q \times Q) Q\}$$

 $=\exp(\operatorname{ad}(\bar{\mathfrak{P}}^c\oplus C\oplus \bar{C}))$ 1 (see Theorem 30, Proof of Case (1)).

Then U is an open set of \mathfrak{W}^{c} and salo a submanifold of \mathfrak{e}_{8}^{c} . Now, for an open set $V = \{(\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8}^{c} | t \neq 0\}$ of \mathfrak{e}_{8}^{c} , we have

$$U=V\cap \mathfrak{W}^c$$

(in general, $\alpha U = \alpha V \cap \mathfrak{B}_{C}$ and $\mathfrak{B}_{C} = \bigcup_{a \in E_{8}^{C}} \alpha U$). This implies that \mathfrak{B}^{C} is a (regular) submanifold of e_{8}^{C} .

8. The manifold \mathfrak{W}_1 .

We define a space \mathfrak{W}_1 in $\mathfrak{e}_8^{\mathbf{C}}$ by

$$\mathfrak{W}_1 = \{R \in \mathfrak{W}^c | < R, R > = 4\}.$$

In order to prove that \mathfrak{W}_1 is a 115 dimensional manifold, we use the following well-known

Lemma 32. Let M be a differentiable manifold, $f: M \to \mathbb{R}$ a differentiable mapping and $N = \{ p \in M \mid f(p) = 0 \}$. Suppose rank $(df)_p \neq 0$ for all $p \in N$, then N is a submanifold of M with codimension 1.

Proposition 33. \mathfrak{W}_1 is a 115 dimensional connected compact manifold.

Proof. Define a mapping $f: \mathfrak{B}^{c} \to R$ by $f(R) = \langle R, R \rangle - 4$. Then f is obviously differentiable because \mathfrak{B}^{c} is a submanifold of $\mathfrak{e}_{8}^{c} = C^{248} = R^{496}$ (Proposition 31). We shall show that $(df)_{R} \neq 0$ for $R \in f^{-1}(0) = \mathfrak{B}_{1}$. Consider a curve λR , $0 < \lambda < \infty$, in \mathfrak{B}^{c} through $R \in \mathfrak{B}^{c}$. Then it is a differentiable curve with respect to λ from Proposition 31. Now, for $R \in \mathfrak{B}_{1}$,

$$(df)_{R}\left(\frac{\partial}{\partial\lambda}\right)_{R} = \frac{\partial f}{\partial\lambda}(\lambda R)|_{\lambda=1} = \frac{\partial}{\partial\lambda}(\langle\lambda R,\lambda R\rangle - 4)|_{\lambda=1} = \frac{\partial}{\partial\lambda}4\lambda^{2}|_{\lambda=1} = 8 \neq 0.$$

Hence rank $(df)_R=1$ for $R \in \mathfrak{W}_1$. Therefore \mathfrak{W}_1 is a dim $\mathfrak{W}^c-1=116-1=115$ dimen-

sional submanifold of \mathfrak{W}^c from Lemma 32. Clearly \mathfrak{W}_1 is compact. \mathfrak{W}_1 is connected, since \mathfrak{W}_1 is the image of \mathfrak{W}^c (which is connected) by a continuous mapping $h: \mathfrak{W}^c \to \mathfrak{W}_1$, $h(R) = \frac{2R}{\langle R, R \rangle}$.

Theorem 34. The homogeneous space E_8/E_7 is homeomorphic to the manifold \mathfrak{B}_1 :

$$E_8/E_7 \simeq \mathfrak{W}_1 = \{R \in \mathfrak{e}_8^C | R \times R = 0, < R, R > = 4\}.$$

Proof. Obviously the group E_8 acts on \mathfrak{B}_1 and the isotropy subgroup at $\underline{1}$ is E_7 ([I-Y] Theorem 26). Therefore the orbit $E_8\underline{1}$ (which is homeomorphic to E_8/E_7) through $\underline{1}$ is a 248–133=115 dimensional submanifold of \mathfrak{B}_1 , because E_8 is a compact Lie group. Since $E_8\underline{1}$ and \mathfrak{B}_1 are both connected manifolds, have the same dimension 115 and $E_8\underline{1}$ is a compact submanifold of \mathfrak{B}_1 , they must coincide: $E_8\underline{1}=\mathfrak{B}_1$. Thus we have $E_8/E_7\simeq E_81=\mathfrak{B}_1$.

DEPARTMENT OF MATHEMATICS, SHINSHU UNIVERSITY

References

- [F] H. Freudenthal, Beziehung der E₇ und E₈ zur Oktavenebene, X, Nederl, Akad. Weten. Proc., Ser. A, 66=Indag. Math., 25 (1963), 457-471.
- [I-Y] T. Imai and I. Yokota, Simply connected compact simple Lie group E₈₍₋₂₄₈₎ of type E₈, Jour. Math., Kyoto Univ., 21 (1981), 741-762.