Variations of meromorphic differentials under quasiconformal deformations

Dedicated to Professor M. Ozawa on his sixtieth birthday

By
Fumio Maitani

(Communicated by Prof. Y. Kusunoki, October 9, 1982)

Introduction.

The motivations of this paper come from our previous study (KusunokiMaitani [7]) and the recent results due to I. Guerrero [5] and H. Yamaguchi [14]. In [7] we gave the first variational formulas for fundamental meromorphic differentials on open Riemann surfaces induced by quasiconformal deformations, where those differentials should have the boundary behavior subject to (complex) behavior spaces and the "first" above suggests the first derivatives. While, Guerrero [5] discussed the firft variational formula of Green's functions on finite Riemann surfaces by using the quasiconformal mappings and Fuchsian groups, and he asked its generalization to arbitrary hyperbolic Riemann surfaces. And Yamaguchi [14] showed the second variational formulas for Robin's constants and some other quantities under variational consideration for a certain analytic family of Stein manifolds.

In this paper we shall study the variational formulas of various differentials under quasiconformal deformations of arbitrary open Riemann surfaces, and give an answer to Guerrero's question and also show the second variational formulas for various meromorphic differentials under quasiconformal deformations. Practically we develop our previous method by using the (real) behavior spaces of Shiba's type and obtain the similar formulas for wider classes of meromorphic differentials than those in [9], which are applicable for Green's functions, Neumann's functions and so forth. We also show a certain differentiability property of their meromorphic differentials, which allows us to establish the second variational formulas for those differentials under quasiconformal deformations. If we take a specific kind of behavior space, we can obtain the second variational formulas for Green's functions, Robin's constants and some others, which have the similar forms as those due to Yamaguchi.

The author would like to express his sincere thanks to Professor H. Yamaguchi at Shiga University for his genial encouragement.

§ 1. Quasiconformal deformation and spaces of differentials.

1. We shall investigate the deformation of a Riemann surface R as follows. Consider Beltrami differentials $\mu(z, t) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}$ on R with a complex parameter $t(t$ may be the set of parameters $\left(t_{1}, \cdots, t_{n}\right)$) varying in a domain about 0 . We shall assume the following condition A ;
2. $\mu(z, t)$ is measurable, $\mu(z, 0) \equiv 0$ and

$$
\|\mu(\cdot, t)\|_{\infty}=\mathrm{ess} \sup |\mu(z, t)|<1
$$

2. for every t there exists a constant M_{t} such that

$$
\|\mu(z, t+h)-\mu(z, t)\|_{\infty} \leqq|h| M_{t}
$$

for sufficiently small h,
3. for almost all $z \in R, t \rightarrow \mu(z, t)$ is holomorphic.

For each t, denote by $R^{t}\left(R^{0}=R\right)$ the Riemann surface which has basic surface R and the conformal structure induced by $\mu(z, t)$. Let f_{t} be the quasiconformal homeomorphism from R to R^{t} with Beltrami coefficient $\mu(z, t)$. We express f_{t} sometimes as $\zeta=f_{t}(z)$ in terms of respective generic local parameter z and ζ of R and R^{t}. Then $\mu(z, t)=\zeta_{z} / \zeta_{2}$.

In the present paper, such a family $\left\{R^{t}\right\}$ is treated as a deformation of R. Now $f_{t}: R \rightarrow R^{t}$ defines the homeomorphism of differentials as follows; for any first order differential $\lambda=a \mathrm{~d} z+b \mathrm{~d} \bar{z}$ on R, we denote by $f_{i}^{\#}(\lambda)$ the pull back $\lambda \circ f_{t}^{-1}$, that is,

$$
f_{l}^{\#}(\lambda)=\left[\left(a \circ f_{\imath}^{-1}\right) z_{\zeta}+\left(b \circ f_{\imath}^{-1}\right)(\bar{z})_{\zeta}\right] \mathrm{d} \zeta+\left[\left(a \circ f_{\imath}^{-1}\right) z_{\zeta}+\left(b \circ f_{\imath}^{-1}\right)(\bar{z}) \bar{\zeta}\right] \mathrm{d} \bar{\zeta},
$$

where the derivatives are taken in the sense of distribution. Note that $\left(f_{t}^{-1}\right)^{\#}$ and $\left(f_{t^{\prime}} \circ f_{t}^{-1}\right)^{\#}$ are defined similarly and that $\left(f_{t^{\prime}} \circ f_{t}^{-1}\right)^{\#}=\left(f_{t^{\prime}}\right)^{\#} \circ\left(f_{t}^{-1}\right)^{\#}$ and $f_{t}^{\#} \circ\left(f_{t}^{-1}\right)^{\#}$ is an identity mapping. The $f_{i}^{\#}$ will induce a deformation of spaces of differentials.

Let $\tilde{\Lambda}=\tilde{\Lambda}(R)$ be the Hilbert space of square integrable complex differentials whose inner product is given by

$$
\left(\lambda_{1}, \lambda_{2}\right)_{R}=\iint_{R} \lambda_{1} \wedge * \overline{\lambda_{2}}=i \iint_{R}\left(a_{1} \bar{a}_{2}+b_{1} \bar{b}_{2}\right) \mathrm{d} z \mathrm{~d} \bar{z},
$$

where $\lambda_{i}=a_{i} \mathrm{~d} z+b_{i} \mathrm{~d} \bar{z} \in \tilde{A}(R), \quad i=1,2$ and $* \lambda_{2}=-i a_{2} \mathrm{~d} z+i b_{2} \mathrm{~d} \bar{z}$ is the conjugate differential of λ_{2}, z being a local parameter. We regard the same set $\tilde{\Lambda}(R)$ as a Hilbert space over the real number field with another inner product

$$
\left\langle\lambda_{1}, \lambda_{2}\right\rangle=\operatorname{Re}\left(\lambda_{1}, \lambda_{2}\right),
$$

where Re means the real part (cf. Shiba [13]). Hereafter we use this space and write it $\Lambda=\Lambda(R)$. The following subspaces of Λ will be used:

$$
\begin{aligned}
& \Lambda_{c}=\Lambda_{c}(R)=\{\lambda \in \Lambda ; \lambda \text { is a closed differential }\}, \\
& \Lambda_{h}=\Lambda_{h}(R)=\{\lambda \in \Lambda ; \lambda \text { is a harmonic differential }\}, \\
& \Lambda_{e o}=\Lambda_{e o}(R)=\left\{\lambda \in \Lambda_{c} ;\langle\lambda, \omega\rangle=0 \text { for any } \omega \in \Lambda_{h}\right\} .
\end{aligned}
$$

2. We return to the mapping $f_{t}^{\#}$. The $f_{t}^{\#}$ gives an isomorphism from $\Lambda(R)$ to $\Lambda\left(R^{t}\right)$, because

$$
\left\|f_{t}^{\ddagger}(\lambda)\right\|_{R^{t}}^{2} \leqq \frac{1+k}{1-k}\|\lambda\|_{R}^{2} \quad \text { for any } \quad \lambda \in \Lambda(R),
$$

where $\|\mu(\cdot, t)\|_{\infty} \leqq k<1$. Further, for any Dirichlet potential W_{0} on R^{t} the composite $W_{0}{ }^{\circ} f_{t}$ is also a Dirichlet potential (cf. [4]), henceforce $f_{t}^{\#}$ gives an isomorphism from $\Lambda_{e o}(R)$ to $\Lambda_{e o}\left(R^{t}\right)$. Let P_{h} denote the projection from Λ to Λ_{h} and $\left(f_{t}\right)_{h}^{*}$ the composite mapping $P_{h} \circ f_{i}^{\#}$ from $\Lambda(R)$ to $\Lambda_{h}\left(R^{t}\right)$. Then, clearly $\left(f_{t}^{-1}\right)_{h}^{\#}=\left\{\left(f_{t}\right)_{n}^{\#}\right\}^{-1}$ on $\Lambda_{h}\left(R^{t}\right)$ and $\left(f_{t}\right)_{n}^{\#}$ gives an isomorphism from $\Lambda_{h}(R)$ to $\Lambda_{h}\left(R^{t}\right)$. The following lemma shows a correspondence by $f_{i}^{\#}$ between the inner products in $\tilde{\Lambda}(R)(\Lambda(R))$ and $\tilde{\Lambda}\left(R^{t}\right)\left(\Lambda\left(R^{t}\right)\right)$.

Lemma 1. (see, [7], [9])

$$
\begin{array}{lll}
\left(f_{t}^{\#}\left(\omega_{1}\right),-* f_{t}^{\#}\left(\omega_{2}\right)\right)_{R t}=\left(\omega_{1}, \omega_{2}\right)_{R} & \text { for any } & \omega_{1}, \omega_{2} \in \Lambda(R), \\
\left(\left(f_{t}\right)_{n}^{\#}\left(\sigma_{1}\right),-*\left(f_{t}\right)_{n}^{\#}\left(* \sigma_{2}\right)\right)_{R^{t}}=\left(\sigma_{1}, \sigma_{2}\right)_{R} & \text { for any } & \sigma_{1}, \sigma_{2} \in \Lambda_{h}(R) .
\end{array}
$$

We know $f_{\hat{t}}\left(\quad\left(\Lambda_{c}(R)\right)=\Lambda_{c}\left(R^{t}\right)\right.$, because by Lemma 1

$$
\left\langle f_{t}^{\#}(\sigma),{ }^{*} \omega\right\rangle_{R t}=\left\langle\sigma, *^{*}\left(f_{t}^{-1}\right)^{\#}(\omega)\right\rangle_{R}=0
$$

for $\sigma \in \Lambda_{c}(R), \omega \in \Lambda_{e 0}\left(R^{t}\right)$. Further we have the following.
Lemma 2. (cf. [10], [11]) The f_{i}^{*} and $\left(f_{t}\right)^{*}$ preserve the periods of closed differentials.

Proof. Let $\gamma \subset R$ be a Jordan closed curve and V_{γ} be a ring domain such that γ is a component of the boundary ∂V_{γ} and is oriented so that V_{γ} is seen on the left hand of γ. Take a C^{∞}-function S_{γ} on $R-\gamma$ such that the support of S_{γ} is in $V_{r}, S_{r}=1$ on a neighbourhood of γ in V_{r}. Note that ($\omega, * \mathrm{~d} S_{r}$) $=\int_{\gamma} \omega$ for C^{1}-closed differential ω and C^{1}-curve γ. Similarly, take a $S_{f_{t}(\gamma)}$ on R_{t} for the Jordan curve $f_{t}(\gamma)$. Then $S_{f_{t}(\gamma)} \circ f_{t}-S_{\gamma}$ is a Dirichlet potential on R, hence $\mathrm{d}\left(S_{f_{t}^{(\gamma)}}-S_{\gamma} \circ f_{t}^{-1}\right) \in \Lambda_{e o}\left(R^{t}\right)$. Thus for a closed differential ω on R,

$$
\begin{aligned}
\left(f_{t}^{\#}(\omega), *{ }^{*} S_{\left.f_{t}(\gamma)\right)_{R t}}\right. & =\left(f_{t}^{\#}(\omega), * \mathrm{~d}\left(S_{f_{t}(\gamma)}-S_{\gamma} \circ f_{\imath}^{-1}\right)+{ }^{*} \mathrm{~d}\left(S_{\gamma} \circ f_{\imath}^{-1}\right)\right)_{R^{t}} \\
& =\left(f_{t}^{\#}(\omega), * f_{t}^{\#}\left(\mathrm{~d} S_{\gamma}\right)\right)_{R_{t} t}=\left(\omega, * \mathrm{~d} S_{\gamma}\right)_{R} .
\end{aligned}
$$

Symbolically we can write as

$$
\int_{f_{l}(\bar{j})} f_{t}^{\ddagger}(\omega)=\int_{r} \omega .
$$

A closed differential ω is said to be exact (semiexact) if it has a vanishing period along every cycle (dividing cycle), i.e.,

$$
\left(\omega, * \mathrm{~d} S_{\gamma}\right)=0 \text { for any cycle } \gamma \text { (dividing cycle). }
$$

Let $\Lambda_{e}, \Lambda_{s e}, \Lambda_{h e}$ and $\Lambda_{h s e}$ be the spaces of exact, semiexact, harmonic exact and
harmonic semiexact differentials respectively. By Lemma 2, these spaces are preserved by $f_{t}^{\#}$ or $\left(f_{t}\right)_{n}^{\#}$. As was already shown, the locally exactness is preserved by $f_{i}^{\#}$. On the other hand $f_{i}^{\#}\left({ }^{*} \omega\right)$ does not always coincide with ${ }^{*} f_{i}^{\#}(\omega)$. This comes from the difference of conformal structures. We shall observe the distortion by $f_{i}^{\#}$.

Lemma 3.

$$
\left\|f_{i}^{\sharp}(* \omega)-* f_{i}^{\#}(\omega)\right\| \leqq \frac{2 k}{\sqrt{1-k^{2}}}\|\omega\| \quad \text { for any } \quad \omega \in \Lambda \text {, }
$$

where $|\mu(\cdot, t)| \leqq k<1$. The equality holds if and only if $|\mu(\cdot, t)|=k$ almost everywhere on the support of ω.

Proof. For any $\omega=a \mathrm{~d} z+b \mathrm{~d} \bar{z} \in \Lambda$, we have

$$
\begin{aligned}
\left\|f_{i}^{\#}(* \omega)-*_{i}^{\#}(\omega)\right\|_{R t}^{2} & =4 i \iint_{R^{t}}\left(|a|^{2}+|b|^{2}\right)\left|z_{\bar{\zeta}}\right|^{2} \mathrm{~d} \zeta \mathrm{~d} \bar{\zeta} \\
& =4 i \iint_{R}\left(|a|^{2}+|b|^{2}\right) \frac{|z \bar{\zeta}|^{2}}{\left|z_{\zeta}\right|^{2}-|z \bar{\zeta}|^{2}} \mathrm{~d} z \mathrm{~d} \bar{z} \\
& \leqq 4 i \frac{k^{2}}{1-k^{2}} \iint_{R}\left(|a|^{2}+|b|^{2}\right) \mathrm{d} z \mathrm{~d} \bar{z}=4 \frac{k^{2}}{1-k^{2}}\|\omega\|^{2} .
\end{aligned}
$$

The equality holds if and only if $\left|z_{\bar{\xi}} / z_{\zeta}\right|=k$ on the support of ω.

Proposition 1.

(i) $\left|\left(f_{i}^{\#}\left(\omega_{1}\right), f_{i}^{\#}\left(\omega_{2}\right)\right)_{R t}-\left(\omega_{1}, \omega_{2}\right)_{R}\right| \leqq \frac{2 k}{1-k}\left\|\omega_{1}\right\|\left\|\omega_{2}\right\|$ for $\omega_{1}, \omega_{2} \in \Lambda(R)$,
(ii) $\left|\left(\left(f_{t}\right)_{n}^{\#^{2}}(\sigma), f_{t}^{\sharp}(\omega)\right)_{R t}-(\sigma, \omega)_{R}\right| \leqq \frac{2 k}{1-k}\|\sigma\|\|\omega\|$ for $\sigma \in \Lambda_{h}(R), \omega \in \Lambda(R)$, where $\mid \mu(\cdot, t) \| \leqq k$.

Proof. (i) By Lemma 1,

$$
\begin{aligned}
\left|\left(f_{t}^{\#}\left(\omega_{1}\right), f_{t}^{\#}\left(\omega_{2}\right)\right)_{R t}-\left(\omega_{1}, \omega_{2}\right)_{R}\right| & =\left|\left(f_{t}^{\#}\left(\omega_{1}\right), *\left(f_{t}^{\#}\left(* \omega_{2}\right)-* f_{f}^{\#}\left(\omega_{2}\right)\right)\right)_{R t}\right| \\
& \leqq\left\|f_{t}^{\#}\left(\omega_{1}\right)\right\|\left\|f_{t}^{\#}\left(* \omega_{2}\right)-* f_{t}^{\#}\left(\omega_{2}\right)\right\| \\
& \leqq \frac{2 k}{1-k}\left\|\omega_{1}\right\|\left\|\omega_{2}\right\| .
\end{aligned}
$$

(ii) Take the orthogonal decomposition of ω;

$$
\omega=\omega_{1}+\omega_{2}+{ }^{*} \omega_{3}, \quad \omega_{1} \in \Lambda_{h}, \omega_{2}, \omega_{3} \in \Lambda_{e o} .
$$

Then we have

$$
\begin{aligned}
\left|\left(\left(f_{t}\right)_{n}^{\#}(\sigma), f_{t}^{\#}(\omega)\right)_{R_{t}}-(\sigma, \omega)_{R}\right| & =\left|\left(\left(f_{t}\right)_{n}^{\#}(\sigma),\left(f_{t}\right)_{n}^{)_{n}}\left(\omega_{1}+{ }^{*} \omega_{3}\right)+*\left(f_{t}\right)_{n}^{\#}\left(*\left(\omega_{1}+{ }^{*} \omega_{3}\right)\right)\right)\right| \\
& =\left\|\left(f_{t}\right)_{n}^{\#}(\sigma)\right\|\left\|\left(f_{t}\right)_{n}^{\#}\left(\omega_{1}+{ }^{*} \omega_{3}\right)+*\left(f_{t}\right)_{n}^{\#}\left(*\left(\omega_{1}+{ }^{*} \omega_{3}\right)\right)\right\| \\
& \leqq \frac{2 k}{1-k}\|\sigma\|\|\omega\| .
\end{aligned}
$$

3. We investigate the variations of Green's function, reproducing differentials and some other fundamental differentials under our deformations. For the purpose of systematic investigation of these differentials, we introduce behavior spaces.

Let $\Gamma=\Gamma(R)$ be the subspace of $\Lambda(R)$ which consists of real differentials and $\Gamma_{h}=\Gamma_{h}(R)=\Gamma(R) \cap \Lambda_{h}(R)$. For any subspace $\Gamma_{x}(R)$ of $\Gamma_{h}(R)$, we set

$$
\Lambda_{x}(R)=\Gamma_{x}(R)+i^{*} \Gamma_{x}(R)^{\perp}
$$

where $* \Gamma_{x}(R)^{\perp}=\left\{* \lambda \in \Gamma_{n} ;\langle\lambda, \omega\rangle=0\right.$ for any $\left.\omega \in \Gamma_{x}\right\}, i=\sqrt{-1}$. We call such a space Λ_{x} a behavior space (cf. [7], [13]). Clearly $\Lambda_{x}(R)$ is a subspace of $\Lambda_{h}(R)$ and $i^{*} \Lambda_{x}(R)$ is the orthogonal complement of $\Lambda_{x}(R)$ in $\Lambda_{h}(R)$, i. e., $\Lambda_{h}(R)=$ $\Lambda_{x}(R)+i^{*} \Lambda_{x}(R)$. Now $\left(f_{t}\right)_{n}^{\#}\left[\Lambda_{x}(R)\right]$ is a subspace of $\Lambda_{h}\left(R^{t}\right)$ and is written as $A_{x}\left(R^{t}\right)$. Then we have the following.

Proposition 2.

$$
\begin{aligned}
& \left(f_{t}\right)_{n}^{*}\left[* \Gamma_{x}(R)^{\perp}\right]=*\left(\left(f_{t}\right)_{n}^{*}\left[\Gamma_{x}(R)\right]\right)^{\perp} \\
& \Lambda_{h}\left(R^{t}\right)=\Lambda_{x}\left(R^{t}\right) \dot{+} i^{*} \Lambda_{x}\left(R^{t}\right),
\end{aligned}
$$

and $\Lambda_{x}\left(R^{t}\right)$ is a behavior space.
Proof. For an $\omega \in \Gamma_{x}(R)$ and a $\sigma \in \Gamma_{x}(R)^{\perp}$, by Lemma 1,

$$
\left(\left(f_{t}\right)_{n}^{\#}(\omega),-^{*}\left(f_{t}\right)_{n}^{\#}(* \sigma)\right)_{R t}=(\omega, \sigma)_{R}=0 .
$$

Hence $*\left(f_{t}\right)_{n}\left[\Gamma_{x}(R)\right]$ is orthogonal to $\left(f_{t}\right)^{\#}\left[{ }^{*} \Gamma_{x}(R)^{\perp}\right]$. If $\tau \in \Gamma_{h}\left(R^{t}\right)$ is orthogonal to $*\left(f_{t}\right)_{n}^{*}\left[\Gamma_{x}(R)\right]+\left(f_{t}\right)_{Z_{n}}\left[* \Gamma_{x}(R)^{\perp}\right]$, then for an $\omega \in \Gamma_{x}(R)^{\perp} \quad 0=\left(\left(f_{t}\right)^{*}(* \omega), \tau\right)_{R t}=$ $\left({ }^{*} \omega, \omega^{*}\left(f_{t}^{-1}\right)_{n}^{\#}(* \tau)\right)_{R}$. Therefore $\left(f_{t}^{-1}\right)_{n}^{\#}(* \tau) \in \Gamma_{x}(R)$ and ${ }^{*} \tau \in\left(f_{t}\right)_{n}^{\#}\left[\Gamma_{x}(R)\right]$. Thus $\tau=0$ and the assertion follows.

Since $\Gamma_{n s e}=\Lambda_{h s e} \cap \Gamma_{h}$ and $\Gamma_{n e}=\Lambda_{h e} \cap \Gamma_{h}$ are preserved by $\left(f_{t}\right)_{h}$, the spaces $\Gamma_{h m}=* \Gamma_{n s e^{\perp}}$ and $\Gamma_{n o}=* \Gamma_{n e}{ }^{\perp}$ are also preserved by $\left(f_{t}\right)_{n}^{\text {昔. Set }} \Lambda_{-1}=\{0\}+i \Gamma_{n}$, $\Lambda_{0}=\Gamma_{h e}+i \Gamma_{h o}$ and $\Lambda_{1}=\Gamma_{h m}+i \Gamma_{h s e}$. Then $\left(f_{t}\right)^{\#}\left[\Lambda_{i}(R)\right]=\Lambda_{i}\left(R^{t}\right), i=-1,0,1$. These are important behavior spaces which are related to fundamental functions and differentials on the surfaces. A canonical differential (a meromorphic differential whose real part is a distinguished differential) has Λ_{1}-behavior (cf. [13]). A meromorphic differential whose real part is a differential of difference of the Green's (resp. Neumann's) functions with different poles has Λ_{-1}-behavior (resp. A_{0}-behavior).

§ 2. Variational formulas of certain meromorphic differentials.

4. We shall show some variational formulas of specific kind of meromorphic differentials. We begin with showing the continuity property of certain meromorphic differentials.

Lemma 4. A meromorphic differential ϕ^{t} on R^{t} satisfing the condition $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0} \in \Lambda_{x}(R)+\Lambda_{e o}(R)$ is uniquely determined by ϕ^{0}.

Proof. Let a meromorphic differential $\tilde{\phi}^{t}$ also satisfy the above condition. Then $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}-\tilde{\phi}^{t}\right) \in \Lambda_{x}(R)+\Lambda_{e o}(R)$ and $\phi^{t}-\tilde{\phi}^{t} \in \Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$. Therefore analytic differential $\phi^{t}-\tilde{\phi}^{t}$ has no poles and belongs to $\Lambda_{x}\left(R^{t}\right)$. Thus ($\phi^{t}-\tilde{\phi}^{t}$) $=i^{*}\left(\phi^{t}-\tilde{\phi}^{t}\right) \in \Lambda_{x}\left(R^{t}\right) \cap i^{*} \Lambda_{x}\left(R^{t}\right)$ and $\phi^{t}=\tilde{\phi}^{t}$.

Proposition 3. Let $\left\{\phi^{t}\right\}$ be meromorphic differentials such that $\left(f_{t}^{-1}\right)^{\sharp}\left(\phi^{t}\right)-\phi^{0}$ $\in \Lambda_{x}(R)+\Lambda_{e 0}(R)$. If f_{t} is conformal in a neighbourhood V of the poles of $\phi^{\prime \prime}$, then

$$
\left\|\left(f_{t}^{-1}\right)^{\sharp}\left(\phi^{t}\right)-\phi^{0}\right\|_{R} \leqq \frac{\sqrt{2} k(t)}{1-k(t)}\left\|\phi^{0}\right\|_{R-V},
$$

where the Beltrami coefficient $\mu(\cdot, t)$ of f_{t} has absolute values less than $k(t)(<1)$.
Proof. Since $\Lambda_{x}+\Lambda_{e o}$ is orthogonal to $i^{*}\left(\Lambda_{x}+\Lambda_{e 0}\right)$, we have

$$
\left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, i^{*}\left(\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}\right)\right\rangle=0 .
$$

Write

$$
\begin{aligned}
& \left(\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)+i^{*}\left(f_{t}^{-1}\right)^{\#}\left(\phi_{t}\right)\right) / 2=\omega, \\
& \left(\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-i^{*}\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)\right) / 2=\sigma .
\end{aligned}
$$

Then $\left(f_{\imath}^{-1}\right)^{\sharp}\left(\phi^{t}\right)-\phi^{0}=\omega-\phi^{0}+\sigma$. Note that $\left(\omega-\phi^{0}, \sigma\right)=0$ and $\sigma=\omega \mu \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}$. It follows that

$$
\begin{aligned}
& \left\|\omega-\phi^{0}\right\|=\|\sigma\| \leqq k(t)\|\omega\|_{R-V}, \\
& \|\omega\|_{R-V} \leqq \frac{1}{1-k(t)}\left\|\phi^{0}\right\|_{R-V},
\end{aligned}
$$

and

$$
\left\|\omega-\phi^{0}\right\|=\|\sigma\| \leqq \frac{k(t)}{1-k(t)}\left\|\phi^{0}\right\|_{R-V}
$$

Therefore

$$
\begin{aligned}
\left\|\left(f_{\imath}^{-1}\right)^{\#}\left(\phi^{\imath}\right)-\phi^{0}\right\|_{R}^{2} & =\left\|\omega-\phi^{0}\right\|^{2}+\|\sigma\|^{2} \\
& \leqq 2\left(\frac{k(t)}{1-k(t)}\right)^{2}\left\|\phi^{0}\right\|_{R-V}^{2}
\end{aligned}
$$

This proposition convince us of the smoothness of ϕ^{t}.
Theorem 1. Let $\left\{\phi^{t}\right\}$ be meromorphic differentials such that $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0} \in$ $\Lambda_{x}(R)+\Lambda_{e o}(R)$. Assume that the Beltrami coefficient $\mu(z, t)$ of f_{t} satisfies condition A and the support of $\mu(z, t)$ does not meet an open set V including poles of ϕ°. Then for $t=u+i v$ there exist differentials ϕ_{u}^{t} and ϕ_{v}^{t} in $\Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$ such that

$$
\begin{aligned}
& \lim _{\tilde{u} \rightarrow 0}\left\|\frac{\left(f_{t^{\circ}} f_{t+\bar{u}}^{-1}\right)^{\#}\left(\phi^{t+\tilde{u}}\right)-\phi^{t}}{\tilde{u}}-\phi_{u}^{t}\right\|_{R^{t}}=0, \\
& \lim _{\tilde{v} \rightarrow 0}\left\|\frac{\left(f_{t} \circ f_{t+i \overline{\tilde{t}})^{\#}}{ }^{\#}\left(\phi^{t+i \tilde{v}}\right)-\phi^{t}\right.}{\tilde{v}}-\phi_{v}^{t}\right\|_{R^{t}}=0,
\end{aligned}
$$

where \tilde{u} and \tilde{v} are real. Further,

$$
\begin{aligned}
\phi_{u}^{t}-i^{*} \phi_{u}^{t} & =-i\left(\phi_{v}^{t}-i^{*} \phi_{v}^{t}\right) \\
& =\phi^{t} \frac{2}{1-|\mu(z(\zeta), t)|^{2}} \cdot \frac{\zeta_{z}}{\bar{\zeta}_{\bar{z}}} \cdot \frac{\partial}{\partial t} \mu(z(\zeta), t) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta} .
\end{aligned}
$$

Proof. First note that the Beltrami differential $\nu(\zeta, \tau) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{d} \zeta}$ on R^{t} of the quasiconformal homeomorphism $f_{t+\tau^{\circ}} f_{t}^{-1}$ (from R^{t} to $R^{t+\tau}$) is

$$
\nu(\zeta, \tau) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta}=\frac{\mu(z, t+\tau)-\mu(z, t)}{1-\overline{\mu(z, t)} \mu(z, t+\tau)} \cdot \frac{\zeta_{z}}{\bar{\zeta}_{\bar{z}}} \cdot \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta}
$$

and satisfies the similar condition as in A. Since

$$
\left(f_{t+\bar{u}}^{-1}\right)^{\#}\left(\phi^{t+\bar{u}}\right)-\left(f_{\iota}^{-1}\right)^{\#}\left(\phi^{t}\right) \in \Lambda_{x}(R)+\Lambda_{e o}(R),
$$

we have

$$
\left(\left(f_{t^{\circ}} f_{\imath+\tilde{u}}^{-1}\right)^{\#}\left(\phi^{t+\tilde{u}}\right)-\phi^{t}\right) / \tilde{u} \in \Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right) .
$$

We show that $\left(\left(f_{t^{\circ}} f_{t+\tilde{u}}^{-1}\right) \neq\left(\phi^{t+\tilde{u}}\right)-\phi^{t}\right) / \tilde{u}$ converges in $\Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$ as \tilde{u} tends to 0 . Write

$$
\begin{aligned}
& \omega_{\tilde{u}}=\left\{\left(f_{t} \circ f_{\bar{t}+\bar{u}}^{-1}\right)^{\#}\left(\phi^{t+\bar{u}}\right)+i^{*}\left(f_{t} \circ f_{t+\bar{u}}^{-1}\right)^{\#}\left(\phi^{t+\bar{u}}\right)\right\} / 2, \\
& \sigma_{\tilde{u}}=\left\{\left(f_{t} \circ f_{t+1}^{-1} \bar{u}\right)^{\#}\left(\phi^{t+\tilde{u}}\right)-i^{*}\left(f_{t} \circ f_{t+\bar{u}}^{-1}\right)^{\#}\left(\phi^{t+\tilde{u}}\right)\right\} / 2,
\end{aligned}
$$

then $\omega_{\tilde{u}}+\sigma_{\tilde{u}}-\phi^{t} \in \Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$. For real \tilde{u} and \tilde{v}, we have

$$
0=\left\langle\left(\omega_{\tilde{u}}+\sigma_{\tilde{u}}-\phi^{t}\right) / \tilde{u}-\left(\omega_{\tilde{v}}+\sigma_{\tilde{v}}-\phi^{t}\right) / \tilde{v}, i^{*}\left(\left(\omega_{\tilde{u}}+\sigma_{\tilde{u}}-\phi^{t}\right) / \tilde{u}-\left(\omega_{\tilde{v}}+\sigma_{\tilde{v}}-\phi^{t}\right) / \tilde{v}\right)\right\rangle .
$$

By the same way as the proof of Proposition 3,

$$
\begin{aligned}
& \left\|\left(\omega_{\tilde{u}}-\phi^{t}\right) / \tilde{u}-\left(\omega_{\tilde{v}}-\phi^{t}\right) / \tilde{v}\right\|_{R^{t}}=\left\|\sigma_{\tilde{u}} / \tilde{u}-\sigma_{\tilde{v}} / \tilde{v}\right\|_{R^{t}} \\
& \leqq \\
& \quad+\left(\left(\omega_{\tilde{u}}-\phi^{t}\right) / \tilde{u}-\left(\omega_{\bar{v}}-\phi^{t}\right) / \tilde{v}\right) \nu(\zeta, \tilde{v}) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta} \|_{R^{t}} \\
& \left.\quad+\| \omega_{\bar{u}}-\phi^{t}\right)(\nu(\zeta, \tilde{u})-\nu(\zeta, \tilde{v})) / \tilde{u} \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta} \|_{R^{t}} \\
&
\end{aligned}
$$

For the second term, from condition A,

$$
|(\nu(\zeta, \tilde{u})-\nu(\zeta, \tilde{v})) / \tilde{u}| \leqq\left(1+\left|\frac{\tilde{v}}{\tilde{u}}\right|\right) \frac{M_{t}}{1-\|\mu(z, t)\|_{\infty}},
$$

and by Proposition 3,

$$
\left\|\omega_{\tilde{u}}-\phi^{t}\right\| \leqq \frac{k_{t}(\tilde{u})}{1-k_{t}(\tilde{u})}\left\|\phi^{t}\right\|_{R t-V t}
$$

where $k_{t}(\tilde{u})=\sup _{\zeta \in R^{t}}|\nu(\zeta, \tilde{u})| \leqq \frac{M_{t}|\tilde{u}|}{1-\|\mu(z, t)\|_{\infty}}, \quad V^{t}=f_{t}(V)$ and

$$
\left\|\phi^{t}\right\|_{R^{t}-V t} \leqq\left\|\phi^{t}-f_{i}^{\#}\left(\phi^{0}\right)\right\|_{R^{t-V} t}+\left\|f_{i}^{\#}\left(\phi^{0}\right)\right\|_{R^{t-V t}} .
$$

For the third term we have also an estimation. Let $\nu(\zeta, \tau)$ be holomorphic on
$|\tau| \leqq \varepsilon$. Then for $|\tilde{v}|,|\tilde{u}| \leqq \varepsilon / 2$,

$$
\begin{aligned}
|\nu(\zeta, \tilde{u}) / \tilde{u}-\nu(\zeta, \tilde{v}) / \tilde{v}| & =\left|\frac{1}{2 \pi i} \int_{\mid \tau \tau=\varepsilon}\left(\frac{\nu(\zeta, \tau)}{\tau(\tau-\tilde{u})}-\frac{\nu(\zeta, \tau)}{\tau(\tau-\tilde{v})}\right) \mathrm{d} \tau\right| \quad(\nu(\zeta, 0)=0) \\
& =\left|\frac{\tilde{u}-\tilde{v}}{2 \pi i} \int_{|ז|=\varepsilon} \frac{\nu(\zeta, \tau)}{\tau(\tau-\tilde{u})(\tau-\tilde{v})} \mathrm{d} \tau\right| \\
& \leqq|\tilde{u}-\tilde{v}| \frac{4 M_{t}}{\left(1-\|\mu(z, t)\|_{\infty}\right) \varepsilon} .
\end{aligned}
$$

Thus, if $|\tilde{v}| \leqq|\tilde{u}| \leqq \varepsilon / 2$,

$$
\begin{aligned}
& \left\|\left(\omega_{\tilde{u}}+\sigma_{\tilde{u}}-\phi^{t}\right) / \tilde{u}-\left(\omega_{\bar{v}}+\sigma_{\tilde{v}}-\phi^{t}\right) / \tilde{v}\right\|_{R^{t}} \\
& \quad=\sqrt{2}\left\|\left(\omega_{\tilde{u}}-\phi^{t}\right) / \tilde{u}-\left(\omega_{\tilde{v}}-\phi^{t}\right) / \tilde{v}\right\|_{R} t \\
& \quad \leqq \frac{\sqrt{2}}{1-k_{t}(\tilde{v})} \cdot \frac{M_{t}}{1-\|\mu(z, t)\|_{\infty}}\left(\frac{2 k_{t}(\tilde{u})}{1-k_{t}(\tilde{u})}+\frac{4}{\varepsilon}|\tilde{u}-\tilde{v}|\right)\left\|\phi^{t}\right\|_{R^{t-V t}} .
\end{aligned}
$$

This proves that $\left(\left(f_{t} \circ f_{t+\tilde{u}}^{-1}\right){ }^{\#}\left(\phi^{t+\tilde{u}}\right)-\phi^{t}\right) / \tilde{u}$ converges to a differential ϕ_{u}^{t} in $\Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$ as \tilde{u} tends to 0 . In the same way we can get a differential ϕ_{v}^{t} in $\Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$ as

$$
\lim _{\tilde{v} \rightarrow 0}\left(\left(f_{t^{\circ}} f_{t+i \bar{v}}^{-1}\right)^{\#}\left(\phi^{t+i \tilde{v}}\right)-\phi^{t}\right) / \tilde{v} .
$$

From our notations, $\phi_{u}^{t}=\lim _{\tilde{u} \rightarrow 0}\left(\omega_{\tilde{u}}+\sigma_{\tilde{u}}-\phi^{t}\right) / \tilde{u}$, hence

$$
\begin{aligned}
\phi_{u}^{t}-i^{*} \phi_{u}^{t} & =2 \lim _{\tilde{u} \rightarrow 0} \frac{\sigma_{\tilde{u}}}{\tilde{u}} \\
& =2 \lim _{\tilde{u} \rightarrow 0}\left(\frac{\omega_{\tilde{u}}-\phi^{t}}{\tilde{u}} \nu(\zeta, \tilde{u}) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta}+\phi^{t} \frac{\nu(\zeta, \tilde{u})}{\tilde{u}} \cdot \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta}\right) .
\end{aligned}
$$

By the way

$$
\begin{aligned}
\left\|\frac{\omega_{\tilde{u}}-\phi^{t}}{\tilde{u}} \nu(\zeta, \tilde{u}) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta}\right\| & \leqq \frac{1}{|\tilde{u}|} \cdot \frac{k_{t}(\tilde{u})^{2}}{1-k_{t}(\tilde{u})}\left\|\phi^{t}\right\|_{R^{t-V t}} \\
& \leqq \frac{|\tilde{u}|}{1-k_{t}(\tilde{u})}\left(\frac{M_{t}}{1-\|\mu(z, t)\|_{\infty}}\right)^{2}\left\|\phi^{t}\right\|_{R t-V t}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\phi_{u}^{t}-i^{*} \phi_{u}^{t} & =\left.2 \phi^{t} \frac{\partial}{\partial \tau} \nu(\zeta, \tau)\right|_{\tau=0} \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta} \\
& =2 \phi^{t} \frac{1}{1-|\mu(z, t)|^{2}} \cdot \frac{\zeta_{z}}{\bar{\zeta}_{\bar{z}}} \cdot \frac{\partial}{\partial t} \mu(z, t) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\phi_{v}^{t}-i^{*} \phi_{v}^{t} & =2 \phi^{t} \lim _{\tilde{v} \rightarrow 0} \frac{1}{\tilde{v}} \nu(\zeta, i \tilde{v}) \frac{\mathrm{d} \bar{\zeta}}{\mathrm{~d} \zeta} \\
& =\left.2 i \phi^{t} \frac{\partial}{\partial \tau} \nu(\zeta, \tau)\right|_{\tau=0} \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\phi_{u}^{t}-i^{*} \phi_{u}^{t} & =-i\left(\phi_{v}^{t}-i^{*} \phi_{v}^{t}\right) \\
& =\phi^{t} \frac{2}{1-|\mu(z, t)|^{2}} \cdot \frac{\partial}{\partial t} \mu(z, t) \frac{\zeta_{z}}{\bar{\zeta}_{\bar{z}}} \cdot \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta} .
\end{aligned}
$$

We shall write

$$
\frac{\partial}{\partial t} \phi^{t}=\frac{1}{2}\left(\phi_{u}^{t}-i \phi_{v}^{t}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{t}} \phi^{t}=\frac{1}{2}\left(\phi_{u}^{t}+i \phi_{v}^{t}\right) .
$$

Then by Theorem $1 \frac{\partial}{\partial \bar{t}} \phi^{t}=i^{*} \frac{\partial}{\partial \bar{t}} \phi^{t}$ and this is a holomorphic differential on R^{t}. Here we give one of the first variational formulas.

Theorem 2. Let ϕ^{t} and ϕ^{t} be meromorphic differentials on R^{t} such that $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}$ and $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\psi^{0}$ belong to $\Lambda_{x}(R)+\Lambda_{e o}(R)$. Assume that the Beltrami coefficient $\mu(z, t)$ of f_{t} satisfies the condition A and the support of $\mu(z, t)$ does not meet a neighbourhood of poles of ϕ^{0} and ψ^{0}. Then

$$
\begin{aligned}
\frac{\partial}{\partial t}\left\langle f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0},{\overline{\psi^{0}}}_{R} & =\frac{1}{2}\left(\frac{\partial}{\partial t} \phi^{t}, \bar{\phi}^{t}\right)_{R^{t}} \\
& =\frac{i}{2} \iint_{R} \hat{\phi}^{t} \hat{\psi}^{t} \frac{\partial}{\partial t} \mu(z, t) \zeta_{z}^{2} \mathrm{~d} z \mathrm{~d} \bar{z}
\end{aligned}
$$

where $\phi^{t}=\hat{\phi}^{t} \mathrm{~d} \zeta$ and $\phi^{t}=\hat{\phi}^{t} \mathrm{~d} \zeta$.
Proof. Observe that

$$
\begin{aligned}
& \frac{\partial}{\partial u}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \overline{\phi^{0}}\right\rangle_{R} \\
& =\lim _{\tilde{u} \rightarrow 0} \frac{1}{\tilde{u}}\left\langle\left(f_{t+\tilde{u}}^{-1}\right)^{\#}\left(\phi^{t+\tilde{u}}\right)-\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right), \bar{\phi}^{0}\right\rangle_{R} \\
& =\lim _{\tilde{u} \rightarrow 0}\left\langle\frac{\left(f_{t} \circ f_{t+\bar{u}}^{-1}\right)^{\#}\left(\phi^{t+\tilde{u}}\right)-\phi^{t}}{\tilde{u}},-* f_{t}^{\sharp}\left(* \overline{\phi^{0}}\right)\right\rangle_{R^{t}} \\
& =\left\langle\phi_{u}^{t},-i^{*} f_{t}^{\sharp}\left(\overline{\psi^{0}}\right)\right\rangle_{R^{t}} .
\end{aligned}
$$

Since ϕ_{u}^{t} and $f_{i}^{\#}\left(\overline{\psi^{0}}\right)-\overline{\psi^{t}}$ belong to $\Lambda_{x}\left(R^{t}\right)+\Lambda_{e o}\left(R^{t}\right)$, we know

$$
\frac{\partial}{\partial u}\left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \overline{\phi^{0}}\right\rangle_{R}=\left\langle\phi_{u}^{t}, \overline{\psi^{t}}\right\rangle_{R^{t}} .
$$

Similary

$$
\frac{\partial}{\partial v}\left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\phi^{\iota}\right)-\phi^{0}, \overline{\phi^{0}}\right\rangle_{R}=\left\langle\phi_{v}^{t}, \overline{\psi^{t}}\right\rangle_{R^{t}} .
$$

Therefore

$$
\frac{\partial}{\partial t}\left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \overline{\psi^{0}}\right\rangle_{R}=\frac{1}{2}\left(\left\langle\phi_{u}^{t}, \overline{\psi^{t}}\right\rangle_{R^{t}}-i\left\langle\phi_{v}^{t}, \overline{\psi^{t}}\right\rangle_{R t}\right) .
$$

On the other hand,

$$
\left(\frac{\partial}{\partial t} \phi^{t}, \overline{\psi^{t}}\right)_{R t}=\left\langle\frac{\partial}{\partial t} \phi^{t}, \overline{\psi^{t}}\right\rangle_{R t}-i\left\langle i \frac{\partial}{\partial t} \phi^{t}, \overline{\psi^{t}}\right\rangle_{R t} .
$$

Since $\frac{\partial}{\partial \bar{t}} \phi^{t}$ is holomorphic, we have $\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \overline{\phi^{t}}\right)_{R^{t}}=0$. Thus

$$
\begin{aligned}
& \left\langle\frac{\partial}{\partial t} \phi^{t}, \overline{\psi_{t}}\right\rangle_{R^{t}}=\left\langle\frac{\partial}{\partial t} \phi^{t}+\frac{\partial}{\partial \bar{t}} \phi^{t}, \overline{\phi^{t}}\right\rangle_{R^{t}}=\left\langle\phi_{u}^{t}, \overline{\phi^{t}}\right\rangle_{R^{t}}, \\
& \left\langle i \frac{\partial}{\partial t} \phi^{t}, \overline{\phi_{t}}\right\rangle_{R^{t}}=\left\langle i\left(\frac{\partial}{\partial t} \phi^{t}-\frac{\partial}{\partial \bar{t}} \phi^{t}\right), \overline{\phi^{t}}\right\rangle_{R^{t}}=\left\langle\phi_{v}^{t}, \overline{\psi^{t}}\right\rangle_{R^{t}},
\end{aligned}
$$

and

$$
\frac{\partial}{\partial t}\left\langle\left(f_{\iota}^{-1}\right)^{\sharp}\left(\phi^{t}\right)-\phi^{0}, \overline{\psi^{0}}\right\rangle_{R}=\frac{1}{2}\left(\frac{\partial}{\partial t} \phi^{t}, \overline{\psi^{t}}\right)_{R i} .
$$

Further we have

$$
\begin{aligned}
\left(\frac{\partial}{\partial t} \phi^{t}, \bar{\phi}^{t}\right)_{R^{t}} & =\left(\phi_{u}^{t}, \overline{\psi^{t}}\right)_{R^{t}}=\frac{1}{2}\left(\phi_{u}^{t}+i^{*} \phi_{u}^{t}+\phi_{u}^{t}-i^{*} \phi_{u}^{t}, \overline{\phi^{t}}\right)_{R^{t}} \\
& =\frac{1}{2}\left(\phi_{u}^{t}-i^{*} \phi_{u}^{t}, \overline{\psi^{t}}\right)_{R^{t}}=\left(\left.\phi^{t} \frac{\partial}{\partial \tau} \nu(\zeta, \tau)\right|_{\tau=0} \frac{\mathrm{~d} \bar{\zeta}}{\mathrm{~d} \zeta}, \overline{\psi^{t}}\right)_{R^{t}} \\
& =\left.i \iint_{R t} \hat{\phi}^{t} \hat{\psi}^{t} \frac{\partial}{\partial \tau} \nu(\zeta, \tau)\right|_{\tau=0} \mathrm{~d} \zeta \mathrm{~d} \bar{\zeta} \\
& =i \iint_{R} \hat{\phi}^{t} \hat{\psi}^{t} \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} .
\end{aligned}
$$

This completes the proof.
Remark. Although ψ^{0} has poles, $\left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\phi^{l}\right)-\phi^{0}, \bar{\psi}^{0}\right\rangle_{R}$ is defined by principal value because the integral vanishes in a neighbourhood of poles. The notation of the inner product will be used also in such a case.

Let $p \in R$ and V_{1} be a parametric disc about p with a local variable z. We set $V_{r}=\left\{p^{\prime} \in V_{1} ;\left|z\left(p^{\prime}\right)\right|<r\right\} \quad(0<r \leqq 1)$ and $P_{n}=\{p, q\}$ for $n=0,\{p\}$ for $n \geqq 1$. Take a $q \in V_{1 / 2}$. Then there exist functions $s_{n} \in C^{2}\left(R-P_{n}\right)$ such that

$$
\begin{aligned}
& s_{0}= \begin{cases}\log \left|\frac{z}{z-z(q)}\right| & \text { on } \\
0 & \bar{V}_{1 / 2} \\
0 & \text { on } \\
R-V_{1},\end{cases} \\
& s_{n}= \begin{cases}-\frac{1}{n} \operatorname{Re} \frac{1}{z^{n}} & \text { on } \quad \bar{V}_{1 / 2} \quad(n \geqq 1) . \\
0 & \text { on } \quad R-V_{1}\end{cases}
\end{aligned}
$$

Denote $\mathrm{d} s_{n}=\sigma_{n}$. Now since $\int_{|z|=1 / 2} * \sigma_{n}=\int_{|z|=1} * \sigma_{n}=0$, there exists a C^{1}-closed differential $\tilde{\sigma}_{n}$ such that $\tilde{\sigma}_{n}=* \sigma_{n}$ on $\left(R-V_{1}\right) \cup \bar{V}_{1 / 2}$. Then $\sigma_{n}+{ }^{*} \tilde{\sigma}_{n} \in \Lambda$ and $\sigma_{n}+{ }^{*} \tilde{\sigma}_{n}=0$ on $\left(R-V_{1}\right) \cup \bar{V}_{1 / 2}$. By the orthogonal decomposition we can write

$$
\sigma_{n}+* \tilde{\sigma}_{n}=\lambda_{n}+\tilde{\lambda}_{n}, \quad \lambda_{n} \in \Lambda_{x}+\Lambda_{e o}, \quad \tilde{\lambda}_{n} \in i^{*} \Lambda_{x}+* \Lambda_{e o} .
$$

Set $\phi_{n}=\sigma_{n}-\lambda_{n}=\tilde{\lambda}_{n}-{ }^{*} \tilde{\sigma}_{n}$. Then ϕ_{n} is closed and coclosed, hence ϕ_{n} is harmonic in $R-P_{n}$. Since $i^{*} \phi_{n}=i^{*} \tilde{\lambda}_{n}$ on $R-V_{1}$, the meromorphic differential $\psi_{n}=\phi_{n}+i^{*} \phi_{n}$
has Λ_{x}-behavior (cf. [7], [13]). The ψ_{0} (resp. $\psi_{n}, n \geqq 1$) has singularities $\frac{\mathrm{d} z}{z}-\frac{\mathrm{d} z}{z-z(q)}\left(\right.$ resp. $\left.\frac{\mathrm{d} z}{z^{n+1}}\right)$. Further note that

$$
\psi_{n}-\left(\sigma_{n}+i \tilde{\sigma}_{n}\right)=\phi_{n}-\sigma_{n}+i\left({ }^{*} \phi_{n}-\tilde{\sigma}_{n}\right)=-\lambda_{n}+i^{*}{\left.\tilde{\tilde{\lambda}_{n}}\right), ~}_{\text {an }}
$$

and $\psi_{n}-\left(\sigma_{n}+i \check{\sigma}_{n}\right)$ belongs to $\Lambda_{x}+\Lambda_{e o}$. Assume that \bar{V}_{1} does not meet the support of μ. Similarly we can construct a meromorphic differential on R^{t} as ψ_{n} and denote it $\psi_{x, n}^{t}$. Note that $\left(f_{t}^{-1}\right)^{\#}\left(\psi_{x, n}^{t}\right)-\psi_{n} \in \Lambda_{x}(R)+\Lambda_{e o}(R)$. For a meromorphic differential ψ^{t} with $\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0} \in \Lambda_{x}(R)+\Lambda_{e o}(R)$,

$$
\begin{aligned}
& \left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, \bar{\psi}_{n}\right\rangle_{R-V_{1}} \\
& =-\left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, i^{*}\left(\overline{\psi_{n}-\left(\sigma_{n}+i \tilde{\sigma}_{n}\right)}\right)\right\rangle_{R-V_{1}} \\
& =\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, i^{*}\left(\overline{\psi_{n}-\left(\sigma_{n}+i \tilde{\sigma}_{n}\right)}\right)\right\rangle_{V_{1}} \\
& =\operatorname{Re} i \int_{\partial V_{1}}\left(\Psi^{t} \circ f_{t}-\Psi^{0}\right) \psi_{n} \\
& = \begin{cases}-2 \pi \operatorname{Re}\left\{\Psi^{t} \circ f_{t}(p)-\Psi^{t} \circ f_{t}(q)-\left(\Psi^{\circ}(p)-\Psi^{0}(q)\right)\right\} & \text { for } \\
-\frac{2 \pi}{n!} \operatorname{Re}\left\{\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{\iota}(p)-\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{0}(p)\right\} & \text { for } n \geqq 1,\end{cases}
\end{aligned}
$$

where Ψ^{t} is a primitive function of ψ^{t} on a neighbourhood of $f_{t}\left(V_{1}\right)$. Now let $\tilde{V}_{\varepsilon}=\{z ;|z|<\varepsilon\} \cup\{z ;|z-z(q)|<\varepsilon\}$. Then

$$
\begin{aligned}
& \lim _{t \rightarrow 0} i \int_{\partial \tilde{V}}\left(\Psi^{t} \circ f_{t}-\Psi^{0}\right) \psi_{0} \\
& =-2 \pi\left\{\left(\Psi^{t} \circ f_{t}(p)-\Psi^{0}(p)\right)-\left(\Psi^{t} \circ f_{t}(q)-\Psi^{0}(q)\right)\right\} .
\end{aligned}
$$

Hence, even if the support of μ contains p and q, we have

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left\langle\left\langle f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, \bar{\psi}_{0}\right\rangle_{R-\tilde{V}_{s}} \\
& =-2 \pi \operatorname{Re}\left\{\Psi^{t} \circ f_{l}(p)-\Psi^{0}(p)-\left(\Psi^{t} \circ f_{l}(q)-\Psi^{0}(q)\right)\right\} .
\end{aligned}
$$

Hereafter, the singular integral $(\omega, \sigma)_{R}$ means the principal value $\lim (\omega, \sigma)_{R-\tilde{v}_{\varepsilon}}$ if it has a finite value. The space $i \Lambda_{x}={ }^{*} \Gamma_{x}{ }^{1}+i \Gamma_{x}$ is also a behavior space which is denoted by $\Lambda_{*_{x} \pm}$. If ψ_{x} has Λ_{x}-behavior, then $i \psi_{x}$ has $\Lambda_{* x^{\perp}}$-behavior.

Proposition 4. Let $\left(f_{t}^{-1}\right)^{\#}\left(\psi^{l}\right)-\psi^{0} \in \Lambda_{x}(R)+\Lambda_{e 0}(R)$. Then

$$
\begin{aligned}
& \left\langle\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, \overline{\psi_{x, 0}^{0}}\right\rangle_{R}=-2 \pi \operatorname{Re}\left\{\Psi^{t} \circ f_{t}(p)-\Psi^{\circ}(p)-\left(\Psi^{t} \circ f_{t}(q)-\Psi^{\circ}(q)\right)\right\}, \\
& \left\langle\left(f_{t}^{-1}\right)^{\#}\left(i \psi^{t}\right)-i \psi^{0}, \overline{\psi_{x}^{0}}{ }_{x, 0}\right\rangle_{R}=2 \pi \operatorname{Im}\left\{\Psi^{t} \circ f_{t}(p)-\Psi^{0}(p)-\left(\Psi^{t} \circ f_{t}(q)-\Psi^{0}(q)\right)\right\} .
\end{aligned}
$$

If the support of μ does not meet $V_{\varepsilon}=\{z ;|z|<\varepsilon\}$,

$$
\begin{aligned}
& \left\langle\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, \overline{\psi_{x, n}^{0}}\right\rangle_{R} \\
& =-\frac{2 \pi}{n!} \operatorname{Re}\left\{\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{\iota}(p)-\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{\circ}(p)\right\} \quad \text { for } \quad n \geqq 1,
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(i \psi^{t}\right)-i \psi^{0}, \overline{\left.\psi_{* x, n}^{0}\right\rangle_{R}}\right. \\
& =\frac{2 \pi}{n!} \operatorname{Im}\left\{\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{l}(p)-\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{0}(p)\right\} \quad \text { for } \quad n \geqq 1 .
\end{aligned}
$$

Thus, applying Theorem 2 we can get the variational formulas with respect to $\Psi^{t} \circ f_{t}(p)$ and $\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{t}(p)$.

Proposition 5. Let $\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0} \in \Lambda_{x}(R)+\Lambda_{e o}(R)$. Under the similar condition as in Theorem 2,

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left\{\Psi^{t} \circ f_{t}(p)-\Psi^{t} \circ f_{t}(q)\right\}=-\frac{i}{4 \pi} \iint_{R} \hat{\psi}^{t}\left(\hat{\psi}_{x, 0}^{t}+\hat{\psi}_{* x, 0)}^{t}\right) \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z}, \\
& \frac{\partial}{\partial \bar{t}}\left\{\Psi^{t} \circ f_{t}(p)-\Psi^{t} \circ f_{t}(q)\right\}=\frac{i}{4 \pi} \iint_{R} \overline{\psi^{\prime}\left(\hat{\psi}_{x, 0}^{t}-\hat{\psi}_{* x^{1}, 0}^{t}\right) \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z}} \\
& \frac{\partial}{\partial t} \cdot \frac{\mathrm{~d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{l}(p)=-\frac{n!}{4 \pi} i \iint_{R} \hat{\psi}^{t}\left(\hat{\psi}_{x, n}^{t}+\hat{\psi}_{* x+n}^{t}\right) \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} \\
& \frac{\partial}{\partial \bar{t}} \cdot \frac{\mathrm{~d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{l}(p)=\frac{n!}{4 \pi} i \iint_{R} \hat{\psi}^{t}\left(\hat{\psi}_{x, n}^{t}-\hat{\psi}_{* x^{t}, n}^{t}\right) \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z}
\end{aligned}
$$

If $\Gamma_{x}=* \Gamma_{x^{\perp}}$, then $\psi_{x, n}^{t}=\psi_{x^{\perp}, n}^{t}$. Hence we have the following by Proposition 5.
Corollary. Let $\Lambda_{x}=i \Lambda_{x}$ and $\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0} \in \Lambda_{x}(R)+\Lambda_{e 0}(R)$. Then $\Psi^{t} \circ f_{t}(p)$ $-\Psi^{t}{ }^{\circ} f_{\iota}(q)$ and $\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} \Psi^{t} \circ f_{\iota}(p)$ are holomorphic with respect to t (cf. [7]).
5. Next we show one of the second variational formulas.

Theorem 3. Under the similar condition as in Theorem 2,

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \bar{t} \partial t}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0},{\overline{\psi^{0}}}_{R}\right. & =\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \overline{\frac{\partial}{\partial t} \psi_{t}}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}} \psi^{t}, \overline{\frac{\partial}{\partial t} \phi^{t}}\right)_{R t}\right\} \\
& =\frac{i}{2} \iint_{R}\left(\hat{\phi}_{t}^{t} \hat{\psi}^{t}+\hat{\psi}_{\imath}^{t} \hat{\phi}^{t}\right) \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z},
\end{aligned}
$$

where $\frac{\partial}{\partial \bar{t}} \phi^{t}=\bar{\phi}_{\bar{t}}^{t} \mathrm{~d} \zeta$ and $\frac{\partial}{\partial \bar{t}} \psi^{t}=\hat{\phi}_{\bar{t}}^{t} \mathrm{~d} \zeta$.
Proof. Let $\omega^{t}=\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)+i^{*}\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)=2 \hat{\phi}^{\iota} \zeta_{2} \mathrm{~d} z, \quad \sigma^{t}=\left(f_{\imath}^{-1}\right)^{\#}\left(\psi^{t}\right)+i^{*}\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)$ $=2 \hat{\psi}^{\iota} \zeta_{2} \mathrm{~d} z$. By Theorem 2, observe that

$$
\begin{aligned}
& \frac{\partial}{\partial u} \cdot \frac{\partial}{\partial t}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \bar{\psi}^{0}\right\rangle_{R} \\
& =\frac{1}{8} \lim _{\tilde{u} \rightarrow 0} \frac{1}{\tilde{u}}\left\{\left(\omega^{t+\tilde{u}} \mu_{t}(z, t+\tilde{u}) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \overline{\sigma^{t+\tilde{u}}}\right)_{R}-\left(\omega^{t} \mu_{t}(z, t) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \overline{\sigma^{t}}\right)_{R}\right\} \\
& =\frac{1}{8} \lim _{\tilde{u} \rightarrow 0}\left\{\left(\frac{\omega^{t+\tilde{u}}-\omega^{t}}{\tilde{u}} \mu_{l}(z, t+\tilde{u}) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \overline{\sigma^{t+\tilde{u}}}\right)_{R}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\omega^{t} \frac{\mu_{t}(z, t+\tilde{u})-\mu_{\iota}(z, t)}{\tilde{u}} \cdot \frac{\mathrm{~d} \bar{z}}{\mathrm{~d} z}, \overline{\sigma^{t+\tilde{u}}}\right)_{R} \\
& \left.+\left(\omega^{t} \mu_{\iota}(z, t) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \frac{\overline{\sigma^{t+\tilde{u}}-\sigma^{t}}}{\tilde{u}}\right)_{R}\right\} .
\end{aligned}
$$

We know

$$
\begin{aligned}
& \lim _{\tilde{u} \rightarrow 0} \frac{\omega^{t+\tilde{u}}-\omega^{t}}{\tilde{u}}=\left(f_{\imath}^{-1}\right)^{\#}\left(\phi_{u}^{t}\right)+i^{*}\left(f_{\imath}^{-1}\right)^{\#}\left(\phi_{u}^{t}\right), \\
& \lim _{\tilde{u} \rightarrow 0} \frac{\sigma^{t+\tilde{u}}-\sigma^{t}}{\tilde{u}}=\left(f_{\imath}^{-1}\right)^{\#}\left(\psi_{u}^{t}\right)+i^{*}\left(f_{\imath}^{-1}\right)^{\#}\left(\psi_{u}^{t}\right)
\end{aligned}
$$

and write them $2 \omega_{u}^{t}$ and $2 \sigma_{u}^{t}$ respectively. Hence

$$
\begin{aligned}
& \frac{\partial}{\partial u} \cdot \frac{\partial}{\partial t}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \overline{\psi^{0}}\right\rangle_{R} \\
& =\frac{1}{8}\left\{\left(2 \omega_{u}^{t} \mu_{t}(z, t) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \overline{2 \hat{\phi}^{t} \zeta_{2} \mathrm{~d} \bar{z}}\right)_{R}+\right. \\
& \left(2 \hat{\phi}^{\iota} \zeta_{z} \frac{\partial}{\partial t} \mu_{l}(z, t) \mathrm{d} \bar{z}, \overline{2 \hat{\phi}^{t} \zeta_{2} \mathrm{~d} z}\right)_{R} \\
& \\
& \\
& \left.+\left(2 \hat{\phi}^{\iota} \zeta_{2} \mu_{t}(z, t) \mathrm{d} \bar{z}, \overline{2 \sigma_{u}^{t}}\right)_{R}\right\} .
\end{aligned}
$$

Similarly we can get

$$
\begin{aligned}
& \frac{\partial}{\partial v} \cdot \frac{\partial}{\partial t}\left\langle\left(f_{t}^{-1}\right)^{\sharp}\left(\phi^{t}\right)-\phi^{0}, \bar{\psi}^{0}\right\rangle_{R} \\
& =\frac{1}{8}\left\{\left(2 \omega_{v}^{t} \mu_{t}(z, t) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \overline{2 \bar{\phi}^{t} \zeta_{z} \mathrm{~d} z}\right)_{R}+\right. \\
& \begin{aligned}
& \left(2 \hat{\phi}^{\iota} \zeta_{z} \frac{\partial}{\partial t} \mu_{t}(z, t) \mathrm{d} \bar{z}, \overline{2 \hat{\psi}^{\iota} \zeta_{2} \mathrm{~d} z}\right)_{R} \\
& \left.+\left(2 \hat{\phi}^{\iota} \zeta_{2} \mu_{t}(z, t) \mathrm{d} \bar{z}, \overline{2 \sigma_{v}^{t}}\right)_{R}\right\}
\end{aligned}
\end{aligned}
$$

where $2 \omega_{v}^{t}=\left(f_{\imath}^{-1}\right)^{\#}\left(\phi_{v}^{t}\right)+i^{*}\left(f_{\imath}^{-1}\right)^{\#}\left(\phi_{v}^{t}\right), 2 \sigma_{v}^{t}=\left(f_{\imath}^{-1}\right)^{\#}\left(\phi_{v}^{t}\right)+i^{*}\left(f_{\imath}^{-1}\right)^{\#}\left(\phi_{v}^{t}\right)$. Therefore

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \bar{t} \partial t}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \overline{\phi^{0}}\right\rangle_{R} \\
& =\frac{1}{4}\left\{\left(\left(\omega_{u}^{t}+i \omega_{v}^{t}\right) \mu_{t}(z, t) \frac{\mathrm{d} \bar{z}}{\mathrm{~d} z}, \overline{\hat{\phi}^{\iota} \zeta_{2} \mathrm{~d} z}\right)_{R}+\left(\hat{\phi}^{\iota} \zeta_{2} \mu_{t}(z, t) \mathrm{d} \bar{z}, \overline{\left.\sigma_{u}^{t}+i \sigma_{v}^{t}\right)_{R}}\right\}\right. \\
& =\frac{i}{2} \iint_{R}\left(\hat{\phi}_{t}^{t} \hat{\psi}^{t}+\hat{\psi}_{t}^{t} \hat{\phi}^{t}\right) \mu_{t}(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} \\
& =\frac{i}{2} \iint_{R t}\left(\hat{\phi}_{t}^{t} \hat{\psi}^{t}+\hat{\varphi}_{t}^{t} \hat{\phi}^{t}\right) \frac{\mu_{c}(z, t)}{1-|\mu(z, t)|^{2}} \cdot \frac{\zeta_{\bar{z}}}{\bar{\zeta}_{\bar{z}}} \mathrm{~d} \zeta \mathrm{~d} \bar{\zeta} \\
& =\frac{1}{4}\left\{\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \overline{\phi_{u}^{t}-i^{*} \phi_{u}^{t}}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}} \psi^{t}, \overline{\phi_{u}^{t}-i^{*} \phi_{u}^{t}}\right)_{R t}\right\} \quad \text { (by Theorem 1) } \\
& =\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \overline{\frac{\partial}{\partial t} \psi^{t}-i^{*} \frac{\partial}{\partial \bar{t}} \psi^{t}}\right)_{R^{t}}+\left(\frac{\partial}{\partial \bar{t}} \psi^{t}, \overline{\frac{\partial}{\partial t} \phi^{t}-i^{*} \frac{\partial}{\partial \bar{t}} \boldsymbol{m}^{t}}\right)_{R t}\right\} \\
& =\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \overline{\frac{\partial}{\partial t} \psi^{t}}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}} \psi^{t}, \overline{\frac{\partial}{\partial t} \phi^{t}}\right)_{R t}\right\} .
\end{aligned}
$$

Corollary For $t=\left(t_{1}, \cdots, t_{n}\right)$

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \bar{\psi}^{0}\right\rangle_{R} \\
& =\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \phi^{t}, \overline{\frac{\partial}{\partial t_{i}} \psi^{t}}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi^{t}, \frac{\bar{\partial}}{\partial t_{i}} \phi^{t}\right)_{R t}\right\} \\
& =\frac{i}{2} \iint_{R}\left(\hat{\phi}_{t_{j}}^{t} \hat{\psi}^{t}+\hat{\psi}_{\bar{t}_{j}}^{t} \hat{\phi}^{t}\right) \frac{\partial}{\partial t_{i}} \mu(z, t) \zeta_{z}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} .
\end{aligned}
$$

§3. Remarks for the case of behavior space Λ_{-1}.

6. Here we observe Theorem 3 for $\Lambda_{x}=\Lambda_{-1}=\{0\}+i \Gamma_{h}$. Then our formulas have similar forms as Yamaguchi's corresponding ones (cf. [14]). First note that ψ_{u}^{t} (resp. ψ_{v}^{t}) belongs to $\Lambda_{-1}+\Lambda_{e o}$ and can be written $\psi_{u}^{t}=i \omega+\omega_{0}, \omega \in \Gamma_{h}, \omega_{0} \in \Lambda_{e o}$ (resp. $\psi_{v}^{t}=i \sigma+\sigma_{0}, \sigma \in \Gamma_{h}, \sigma_{0} \in \Lambda_{e 0}$). Hence

$$
\left.\overline{\frac{\partial}{\partial t} \psi^{t}}+\frac{\partial}{\partial \bar{t}} \psi^{t}=\frac{1}{2}\left(\omega_{0}+\overline{\omega_{0}}+i \sigma_{0}+i \overline{\sigma_{0}}\right) \in \Lambda_{e o}\right) .
$$

Therefore $\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \frac{\bar{\partial}}{\partial t} \psi^{t}\right)=-\left(\frac{\partial}{\partial \bar{t}} \phi^{t}, \frac{\partial}{\partial \bar{t}} \psi^{t}\right)$. Thus we have the following.
Theorem 4. Let $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}$ and $\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}$ belong to $\Lambda_{-1}(R)+\Lambda_{e 0}(R)$. Under the similar condition as in Theorem 2,

$$
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}}\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \bar{\psi}^{0}\right\rangle_{R}=-\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \phi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \phi^{t}\right)_{R t}\right\} .
$$

Further, if ψ^{t} is holomorphic in R^{t}, then

$$
\frac{\partial}{\partial t_{i}}\left\langle\left(f_{t}^{-1}\right)^{\sharp}\left(\phi^{t}\right)-\phi^{0}, \bar{\psi}^{0}\right\rangle_{R}=-\frac{1}{2}\left(\psi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \phi^{t}\right)_{R t}, \quad t=\left(t_{1} \cdots t_{n}\right) .
$$

Next we have a variational formula with respect to the inner product.
Theorem 5. Let ϕ^{t} and ϕ^{t} be holomorphic differentials such that $\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}$ and $\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}$ belong to $\Lambda_{-1}(R)+\Lambda_{\text {eo }}(R)$. Under the similar condition as in Theorem 2,

$$
\begin{gathered}
\frac{\partial}{\partial t_{i}}\left\langle\phi^{t}, \psi^{t}\right\rangle_{R t}=\frac{1}{2}\left\{\left(\phi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi^{t}\right)_{R t}+\left(\psi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \phi^{t}\right)_{R t}\right\}, \\
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}}\left\langle\phi^{t}, \psi^{t}\right\rangle_{R t}=\left(\frac{\partial}{\partial \bar{t}_{j}} \phi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi^{t}, \frac{\partial}{\partial \bar{t}_{i}} \phi^{t}\right)_{R t^{\prime}} \quad t=\left(t_{1} \cdots t_{n}\right) .
\end{gathered}
$$

Proof. By Lemma 1 and the property of behavior space,

$$
\begin{aligned}
& \left\langle\phi^{t}, \psi^{t}\right\rangle_{R}-\left\langle\phi^{0}, \psi^{0}\right\rangle_{R} \\
& =\left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, i^{*}\left(f_{\iota}^{-1}\right)^{\#}\left(\psi^{t}\right)\right\rangle_{R}+\left\langle\phi^{0}, i^{*}\left(f_{\imath}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}\right\rangle_{R} \\
& =\left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, i^{*} \psi^{0}\right\rangle_{R}+\left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, i^{*} \phi^{0}\right\rangle_{R} .
\end{aligned}
$$

Since $\phi^{0}+\overline{\phi^{0}}$ and $\psi^{0}+\overline{\psi^{0}}$ belong to Γ_{h}, it holds that

$$
\begin{aligned}
& \left\langle\phi^{t}, \psi^{t}\right\rangle_{R^{t}}-\left\langle\phi^{0}, \psi^{0}\right\rangle_{R} \\
& =-\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\phi^{t}\right)-\phi^{0}, \overline{\phi^{0}}\right\rangle_{R}-\left\langle\left(f_{t}^{-1}\right)^{\#}\left(\psi^{t}\right)-\psi^{0}, \overline{\phi^{0}}\right\rangle_{R} .
\end{aligned}
$$

Thus by Theorem 4 the assertion follows.
7. Now we will apply these theorems to some specific kind of differentials. Then we can get some variational formulas with similar forms as Yamaguchi's. Let C^{0} be a cycle on $R, C^{t}=f_{t}\left(C^{0}\right)$ and $\sigma_{C t}$ be the period reproducing harmonic differentials on R^{t}, i.e., $\left(\omega, * \sigma_{C t}\right)_{R^{t}}=\int_{C^{\prime}} \omega$ for C^{1}-differential $\omega \in \Gamma\left(R^{t}\right)$, where C^{\prime} is a closed curve which is homologous to C^{t}. Then $\sigma_{C t}$ is represented as $\sigma_{C t}=$ $\mathrm{d} S_{C t}+\sigma_{0}$, where $S_{C t}$ is the one as in the proof of Lemma 2 and $\sigma_{0} \in \Gamma_{e o}$. Hence $\psi_{c}^{t}=\sigma_{C t}+i^{*} \sigma_{C t}$ satisfies that $\left(f_{t}^{-1}\right)^{\#}\left(\psi_{c}^{t}\right)-\psi_{c}^{0} \in \Lambda_{-1}(R)+\Lambda_{e o}(R)$.

Formula 1.

$$
\begin{aligned}
& \frac{\partial}{\partial t_{i}}\left\|\psi_{c}^{t}\right\|^{2}=\left(\psi_{c}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{c}^{t}\right), \\
& \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}}\left\|\psi_{c}^{t}\right\|^{2}=2\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{c}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{c}^{t}\right)_{R t^{\prime}}
\end{aligned}
$$

and hence $\left\|\psi_{c}^{t}\right\|^{2}$ is plurisubharmonic.
Note that $\left\|\sigma_{C t}\right\|^{2}$ is equal to the extremal length $\lambda\left(C^{t}\right)$ of the family of curves homologous to C^{t}. Thus

Formula 2.

$$
\begin{aligned}
& \frac{\partial}{\partial t_{i}} \lambda\left(C^{t}\right)=-\frac{i}{2} \iint_{R}\left(\hat{\psi}_{c}^{t}\right)^{2} \frac{\partial}{\partial t_{i}} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z}, \\
& \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \lambda\left(C^{t}\right)=\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{c}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{c}^{t}\right)_{R t^{\prime}}
\end{aligned}
$$

and hence $\lambda\left(C^{t}\right)$ is plurisubharmonic.
Let G_{p}^{t} be Green's function on R^{t} with pole at $f_{\iota}(p)$ and $\psi_{p}^{t}=\mathrm{d} G_{p}^{t}+i^{*} \mathrm{~d} G_{p}^{t}$ $=2 \frac{\partial}{\partial \zeta} G_{p}^{t} \mathrm{~d} \zeta$. If a neighbourhood V of p does not meet the support of $\mu(z, t)$, then $\left(f_{t}^{-1}\right)^{\#}\left(\psi_{p}^{t}\right)-\psi_{p}^{0} \in \Lambda_{-1}(R)+\Lambda_{e 0}(R)$. We know

$$
\begin{aligned}
& \left\langle\left(f_{t}^{-1}\right)^{\#}\left(\psi_{p}^{t}\right)-\psi_{p}^{0}, \overline{\psi_{q}^{0}}\right\rangle_{R}=2 \pi\left(G_{p}^{t}\left(f_{\iota}(q)\right)-G_{p}^{0}(q)\right) \quad \text { for } \quad q(\neq p) \in V, \\
& \left\langle\left(f_{\iota}^{-1}\right)^{\#}\left(\psi_{p}^{t}\right)-\psi_{p}^{0}, \overline{\psi_{p}^{0}}\right\rangle_{R}=2 \pi\left(\gamma^{t}(p)-\gamma^{0}(p)\right) .
\end{aligned}
$$

where $\gamma^{t}(p)=\frac{1}{2 \pi i} \int_{|z|=s} G_{p}^{t}\left(f_{t}(z)\right) \frac{\mathrm{d} z}{z}(z$ is a local variable in V about p, for which the singularity of ψ_{p}^{t} is written as $-\frac{\mathrm{d} z}{z}$). The $\gamma^{t}(p)$ is called the Robin's constant at p on R^{t}.

Formula 3. For $p \neq q$

$$
\begin{aligned}
& \frac{\partial}{\partial t_{i}} G_{p}^{t}\left(f_{t}(q)\right)=\frac{i}{\pi} \iint_{R} \frac{\partial}{\partial \zeta} G_{p}^{t} \frac{\partial}{\partial \zeta} G_{q}^{t} \frac{\partial}{\partial t_{i}} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} \\
&=\frac{1}{4 \pi}\left(\frac{\partial}{\partial t_{i}} \psi_{p}^{t}, \overline{\phi_{q}^{t}}\right)_{R t}, \\
& \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} G_{p}^{t}\left(f_{t}(q)\right)=-\frac{1}{4 \pi}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{p}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{q}^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{q}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{p}^{t}\right)_{R t}\right\} .
\end{aligned}
$$

Remark. This formula is valid on an arbitrary hyperbolic Riemann surface, and so gives an extension of Guerrero's result on a finite Riemann surface (cf. [5]).

Formula 4.

$$
\begin{gathered}
\frac{\partial}{\partial t_{i}} \gamma^{t}(p)=\frac{i}{\pi} \iint_{R}\left(\frac{\partial}{\partial \zeta} G_{p}^{t}\right)^{2} \frac{\partial}{\partial t_{i}} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} \\
=\frac{1}{4 \pi}\left(\frac{\partial}{\partial t_{i}} \phi_{p}^{t}, \bar{\psi}_{p}^{t}\right)_{R t} \\
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \gamma^{t}(p)=-\frac{1}{2 \pi}\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{p}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{p}^{t}\right)_{R t}
\end{gathered}
$$

and $t \rightarrow \gamma^{t}(p)$ is plurisuperharmonic.
Let R_{*}^{t} be Royden's compactification of R^{t} (see [4]) and $h^{t}(\zeta)$ be real valued continuous Dirichlet function. We know that f_{t} has an extension to a homeomorphism \hat{f}_{t} from R_{*}^{0} to R_{*}^{t} (see [12]) and $h^{t}(\zeta)$ has a continuous extension \hat{h}^{t} to R_{*}^{t}. Let $H_{\hat{\hbar} t}^{t}$ be the solution of the Dirichlet problem on R_{*}^{t} with boundary value \hat{h}^{t} (cf. [4]). For $\hat{h}^{t}=\hat{h}^{0} \circ \hat{f}_{t}^{-1}$, set $\psi_{h}^{t}=\mathrm{d} H_{\hat{h}^{t}}^{t}+i^{*} \mathrm{~d} H_{\hat{h}^{t}}^{t}$. Since $H_{\hat{h}^{t}}^{t} \circ f_{t}-H_{\hat{h}^{0}}^{0}$ is a Dirichlet potential, the holomorphic differential ψ_{h}^{t} satisfies that $\left(f_{t}^{-1}\right)^{\#}\left(\psi_{n}^{t}\right)-\psi_{h}^{0}$ $\in \Lambda_{-1}+\Lambda_{e 0}$.

Formula 5.

$$
\begin{gathered}
\frac{\partial}{\partial t_{i}}\left\|\mathrm{~d} H_{\hbar^{t}}^{t}\right\|^{2}=-i \iint_{R}\left(\frac{\partial}{\partial \zeta} H_{\hbar^{t}}^{t}\right)^{2} \frac{\partial}{\partial t_{i}} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} \\
=\frac{1}{2}\left(\psi_{\hbar}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{\hbar}^{t}\right)_{R^{t}} \\
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}}\left\|\mathrm{~d} H_{\hbar^{t}}^{t}\right\|^{2}=\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{\hbar}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{\hbar}^{t}\right)_{R^{t}}
\end{gathered}
$$

and $\left\|\mathrm{d} H_{\hat{h}^{t}}^{t}\right\|^{2}$ is plurisubharmonic.
Remark. If \hat{h}^{t} is a characteristic function on the boundary, then $H_{\hat{h}^{t}}^{t}$ is called a harmonic measure. Hence Formula 5 gives variational formulas of harmonic measures.

Further note that

$$
\begin{aligned}
& \int_{C t} *^{*} \mathrm{~d} H_{\hat{\hbar}^{t}}^{t}=\frac{1}{2}\left\langle\psi_{h}^{t}, \psi_{c}^{t}\right\rangle_{R t}, \\
& \int_{C^{t}}{ }^{*} \mathrm{~d} G_{p}^{t}-\int_{C} * \mathrm{~d} G_{p}^{0}=-\left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(\psi_{p}^{t}\right)-\psi_{p}^{0}, \overline{\psi_{c}^{0}}\right\rangle_{R} \\
& H_{\hat{\hbar}^{t}}^{t}\left(f_{t}(p)\right)-H_{\hat{\hbar}^{0}}^{0}(p)=\frac{1}{2 \pi}\left\langle\left(f_{\imath}^{-1}\right)^{\#}\left(\psi_{h}^{t}\right)-\psi_{h}^{0}, \overline{\psi_{p}^{0}}\right\rangle_{R} .
\end{aligned}
$$

Formula 6.

$$
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \int_{C t} *{ }^{2} H_{\hat{\hbar}^{t}}^{t}=\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{h}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{c}^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{c}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{h}^{t}\right)_{R t}\right\} .
$$

Formula 7.

$$
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \int_{C t} * \mathrm{~d} G_{p}^{t}=\frac{1}{2}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{p}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{c}^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{c}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{p}^{t}\right)_{R t}\right\}
$$

Formula 8.

$$
\begin{aligned}
& \frac{\partial}{\partial t_{i}} H_{\hbar^{t}}^{t}\left(f_{t}(p)\right)=\frac{i}{\pi} \iint_{R} \frac{\partial}{\partial \zeta} H_{\hbar^{t} t}^{t} \frac{\partial}{\partial \zeta} G_{p}^{t} \frac{\partial}{\partial t} \mu(z, t) \zeta_{2}^{2} \mathrm{~d} z \mathrm{~d} \bar{z} \\
& =\frac{1}{4 \pi}\left(\psi_{p}^{t}, \frac{\bar{\partial} \psi_{i}^{t}}{\partial t_{i}}\right)_{R t}, \\
& \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} H_{\hat{\hbar}^{t}}^{t}\left(f_{t}(p)\right)=-\frac{1}{4 \pi}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{n}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{p}^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{p}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{n}^{t}\right)_{R t}\right\} .
\end{aligned}
$$

At last we refer to Bergmann kernels. Let $\Lambda_{x}=\Lambda_{-1}, \Lambda_{* x}=i \Lambda_{-1}$, and $\psi_{x, 1}$ and $\psi_{* x^{\perp}, 1}$ be the meromorphic differentials with pole $\frac{\mathrm{d} z}{z^{2}}$ at p as in $\S 2,4$. Set $\kappa^{t}=\frac{1}{4 \pi}\left(\psi_{x, 1}^{t}-\psi_{* x^{t, 1}}^{t}\right)\left(=\hat{\kappa}^{t} \mathrm{~d} z\right)$. It is known that κ^{t} is a Bergmann kernel and for $\omega(=\hat{\omega} \mathrm{d} z) \in \tilde{\Lambda}_{a}\left(R^{t}\right)\left(\omega, \kappa^{t}\right)=\hat{\omega}(p)$, particularly $\hat{\kappa}^{t}(p)=\left(\kappa^{t}, \kappa^{t}\right)>0$. Then we have the following formula.

Formula 9.

$$
\begin{aligned}
& \frac{\partial}{\partial t_{i}} \hat{\kappa}^{t}(p)=\left(\kappa^{t}, \frac{\partial}{\partial \bar{t}_{i}} \kappa^{t}\right)_{R t} \\
& \begin{aligned}
\frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \hat{\kappa}^{t}(p) & =\frac{1}{8 \pi^{2}}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{x, 1}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{x, 1}^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} \psi_{* x, 1}^{t}, \frac{\partial}{\partial \bar{t}_{i}} \psi_{*_{x}+, 1}^{t}\right)_{R t}\right\} \\
& =\left(\frac{\partial}{\partial \bar{t}_{j}} \kappa^{t}, \frac{\partial}{\partial \bar{t}_{i}} \kappa^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} L^{t}, \frac{\partial}{\partial \bar{t}_{i}} L^{t}\right)_{R t},
\end{aligned} \\
& \text { (where } \left.L^{t}=\frac{1}{4 \pi}\left(\psi_{x, 1}^{t}+\psi_{\left.x_{x}+, 1\right)}^{t}\right)\right), \\
& \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \log \hat{\kappa}^{t}(p)=\frac{1}{\hat{\kappa}^{l}(p)}\left\{\left(\frac{\partial}{\partial \bar{t}_{j}} \kappa^{t}, \frac{\partial}{\partial \bar{t}_{i}} \kappa^{t}\right)_{R t}+\left(\frac{\partial}{\partial \bar{t}_{j}} L^{t}, \frac{\partial}{\partial \bar{t}_{i}} L^{t}\right)_{R t}\right\}
\end{aligned}
$$

$$
-\frac{1}{\hat{\kappa}^{t}(p)^{2}}\left(\frac{\partial}{\partial \bar{t}_{j}} \kappa^{t}, \kappa^{t}\right)_{R t}\left(\kappa^{t}, \frac{\partial}{\partial \bar{t}_{i}} \kappa^{t}\right)_{R t} .
$$

Hence $\Sigma t_{j} \bar{t}_{i} \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \hat{\kappa}^{\iota}(p) \geqq 0$ and $\Sigma t_{j} \bar{t}_{i} \frac{\partial^{2}}{\partial \bar{t}_{j} \partial t_{i}} \log \hat{\kappa}^{t}(p) \geqq 0$.

Kyoto Technical University

References

E [[1] L.V. Ahlfors, The complex analytic structure of the space of the closed Riemann surfaces, Analytic function, Princeton (1960), 45-66.
[2] L.V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand (1966), 146 pp.
[3] L.V. Ahlfors and L. Sario, Riemann surfaces, Princeton (1960), 382 pp .
[4] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer (1963), 242 pp .
[5] I. Guerrero, Quasiconformal variation of the Green's function, Michigan Math. J., 26 (1979), 351-360.
[6] Y. Kusunoki, Differentiability of period matrices in Teichmüller spaces, Hokkaido Math. J., 10 (1981), Special Issue 435-446.
[7] Y. Kusunoki and F. Maitani, Variations of abelian differentials under quasiconformal deformations, Math. Z., 181 (1982), 435-450.
[8] Y. Kusunoki and M. Taniguchi, A continuity property of holomorphic differentials under quasiconformal deformations, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 5 (1980), 207-226.
[9] F. Maitani, Remarks on the isomorphism of certain spaces of harmonic differentials induced from quasiconformal homeomorphism, Proc. Japan Acad., 56 (1980), 311-314.
[10] A. Marden, The weakly reproducing differentials on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. No. 359 (1965), 32 pp.
[11] C.D. Minda, Square integrable differentials on Riemann surfaces and quasiconformal mappings, Trans. Amer. Math. Soc., 195 (1974), 365-381.
[12] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer (1970), 446 pp .
[13] M. Shiba, On the Riemann-Roch theorem on open Riemann surfaces, J. Math. Kyoto Univ., 11 (1971), 495-525.
[14] H. Yamaguchi, Calcul des variations analytiques, Japanese J. Math., 7 (1981), 319377.

