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Introduction

On the Teichmiiller space of an arbitrary Riemann surface, we can consider
at least two kinds of convergence of holomorphic abelian differentials. The one
of them is concerned with the distortion estimates with respect to the Dirichlet norm,
and is, in a sense, the most natural kind of convergence, which we call the metrical
convergence (, cf. Definition 2). The other is concerned with the geometrical
structure of the squares of abelian differentials, which we call the geometrical con-
vergence (, cf. Definition 3).

We have already investigated the relation between these two kinds of con-
vergence in the case of compact surfaces ([11]). In this paper, we will treat with the
case of general surfaces and show that the geometrical convergence implies the
metrical one in the case of square integrable differentials (Theorem 2). We also
give sufficient conditions under which the metrical convergence implies the geo-
metrical one (Theorems 3 and 4).

§1 is preliminaries from the theory of Teichmiiller spaces and quasi-conformal
mappings. The definitions of two kinds of convergence and main theorems are
stated and proved in §2. Finally, as applications of main theorems, we will show
in §3 that several fundamental differentials converge both metrically and geometri-
cally.

§1. Preliminaries on the theory of Teichmiiller spaces

Let a Riemann surface R* be arbitrarily given. Then consider all pairs (R, f)
of a Riemann surface R and a quasiconformal mapping f from R* onto R. We say
that (Ry, f;) and (R,, f,) are equivalent if f,of;! is homotopic to a conformal
mapping from R, onto R,. The Teichmiiller space T(R¥) is, by definition, the set of
allequivalence classes of pairsasabove. The Teichmiiller space T(R*) has the usual
Teichmuller metric, cf. [1] Ch. VI, and we call the topology induced by this metric
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the Teichmiiller topology on T(R*). A point of T(R*) is called a marked Riemann
surface, and we denote simply by R the point corresponding to any (R, f) when the
marking (, i.e. the mapping) f is clear from the context. Also in the sequel, excluding
trivial cases, we assume that the universal covering surface of R* is conformally
equivalent to the open unit disk U, ={|z| <1} and T(R*) is non-trivial.

We can define the Teichmiiller space T(R*) by using Fuchsian groups acting on
U,. Let G* be a Fuchsian equivalent of R* acting on U,. Here we also assume
that 1, \/ —1, —1 are contained in the limit set L(G*) of G*. Such a Fuchsian group
is called a normalized Fuchsian group. Now fix a normalized Fuchsian equivalent
G* of R*, and consider all quasiconformal self-mapping of U, which leave 1, \/—1,
—1 fixed. Such a mapping F is called to be compatible with a normalized Fuchsian
group G if FogoF~! is conformal for every g in G. If F is compatible with G, then
F induces an isomorphism F, of G into another normalized Fuchsian group, which
is called a quasiconformal isomorphism of G (induced by F). Returning to G*,
we call the set of images of G* by all quasiconformal isomorphisms of G* the reduced
Teichmiiller space T*(G*) of G*. Then it is well-known ([3] Lemma 2) that T(R*)
can be identified with T#(G*).

Let R and R’ be points in T(R*) and let G and G’ correspond to R and R’, re-
spectively, in T#(G*). Then- for every marking-preserving quasiconformal. self-
mapping f from R onto R, there is the unique quasiconformal self-mapping F of U,
which leaves 1, \/——1, —1 fixed and is compatible with G such that F, is an
isomorphism from G onto G’ and the projection of F on R is identical with the given
f. Wercall this F the lift of f on U, (with respect to G).

Next in general, for every Riemann surface R, every Borel subset E of R and
every homeomorphism f from R into another surface which is quasiconformal on
E, we denote by K(f, E) the maximal dilatation of f on E, namely,

K(f, Ey=ess.sup,g (Lf| +1£:D/(1 1.1 = 1fzD),

where f, and f, are the generalized derivatives of f with respect to z and z with
generic local parameter z. Then the convergence of a sequence {R,};=; to R,
in T(R*) in the sense of the Teichmiiller topology is equivalent to the condition
that there is a sequence of marking-preserving quasiconformal mapping f, from
R, onto R, such that lim K(f,, Ro)=1. Relating to this characteirzation of the

n—o0

Teichmiiller topology, we can consider the following topology on T(R*) which .is
apparently weaker than the Teichmiiller topology.

Definition 1. Let P be a given set of punctures of R*,-and far every R in T(R¥*),
denote by Py the set of punctures of R corresponding to P. . We say that a sequence
{R,}¥., in T(R*) converges to R,e T(R*) in the sence of the (P-)weak topology
if there is a sequence of marking-preserving homeomorphisms f, from R, onto R,
such that for every neighbourhood V of P, (in R, U Pg,) we can find an N satisfying
that f, is quasiconformal on Ry—V for every n>N and it holds that
liﬁ:oK(f,,, Ry—V)=1.
fn
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We call such a sequence {f,}%, as above a weakly admissible sequence for
{R,}2o (with respect to P). If P is empty (, i.e. lim K(f,, Ro)=1. then we call it
n—»o0

simply an admissible sequence for {R,}%-o.

Here it is clear that the convergence in the sense of the Teichmiiller topology
implies that in the sense of any (P-)weak topology. If the given set P of punctures of
R* is a finite set, then we can show the converse, hence in such a case, the
(P-)weak topology is equivalent to the Teichmiiller topology. Namely, we can
show the following.

Theorem 1. Let a finite set P of punctures of R* be given, and suppose that R,
converges to Ry in T(R*) in the sense of the (P-)weak topology. Then R, converges
to Ry also in the sense of the Teichmiiller topology.

To prove Theorem I, first we note the following

Lemma 1. Let R, converge to R, in the sense of the (P-)weak topology with
an abitrarily given (finite or infinite) set P of punctures of R*. Then we can
find a sequence of marking-preserving M-quasiconformal mappings f, from R,
onto R, with some M (< + o) and a sequence {V,}7-, of neighbourhoods of Pg,
such that /k\ Vi=Pgre Vi Viiy and lim K(f,, Ro—V,)=1 for every k.

Proof (cf. the proof of [10] I Lemma 2). Let {g,}%, be a weakly admissible
sequence for {R,}v-o, and Pp,={p;}}-; (NS +0). Then for every j, we can find
a fundamental neighbourhood system {V'4}%_; of p; (on RoU {p;}) such that VJ—
Vi, is a doubly connected region with the smooth compact boundary curves whose
whose modulus is not less than one for every n. Also we may assume that {V{}¥_,

are mutually disjoint, and set V,= U Vi for every n. Then from the assumption,

for every n, there is an N, such that f,,, is 2-quasi-comformal on R,—V,,, for every
m>N,. Here we may assume that N, ., is greater than N, for every n.

Fix n and let m be any integer such that N,<m<N,,,. And take conformal
mappings H; and FIj from Vi—{p;} and g, (Vi—{P;}) onto U;={0<]z|<1},
respectively, for every j. Here because the modulus of V4 —VJ,, and g,(Vi-Vi,)
are not less than 1 and [/2, respectively, we can ﬁnd an absolute constant
r less than one (depending on neither n nor j) such that each of the regions
Hj(V{;—V{::l) and H(g,(Vi-Vi,,)) contains the annulus {r<|z|<1} for every j.
Now by [8] Theorem I1-8-1, there are M-quasiconformal self-mapping {h;}}_,
of U, with an M, depending only on r such that hjsﬁjogmoH;I on the annulus
{r<lz]<1} for every j. Next because h(0) is contained in {|z| <r}, the mapping

T(z)=(z— hO)/(1 - h,(0)-2) is an M2<= i
U, such that T;(h;(0))=0 and T;(z)=z on the circle {|z| =1} for every j.

Thus set f,=g,, on R,—V, and f,=(H ) leThoH; for every j, then from
above we can see that f,, is M, - M,-quasiconformal mapping from R, onto R,, for
every m. For the whole sequence {f,}%.;, it holds that lim K(f,,, Ro—V,)=

mapping of
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lim K(g,,, Ro—V,) for every fixed k, which implies that {f,}&_, and {V,}2, are

m—o0

desired sequences with M=M - M,. g.e.d.
Next the following fact is essentially well-known.

Lemma 2. Let {F,}%, be a sequence of M-quasiconformal self-mappings of
U, which leave 1, v/"L — 1 fixed and are compatible with a given normalized
Fuchsian group G. Then there is a subsequence {F,.}%-, wheih converges locally

uniformly to an M-quasiconformal self-mapping of U, which also leaves 1, \/Tl—,
—1 fixed and is compatible with G.

Proof. First by the reflection principle, we may consider that every F, is also
an M-quasiconformal self-mapping of the Riemann sphere C. Restrict cvery F,
on D=C—-{I, \/_—-I, — 1}, then by [8] Theorems II-5-1 and 11-5-5 there is a
subsequence {F,}%., which converges locally uniformly on D to a function F.
Here F is an M-quasiconformal self-mapping of D or a constant I, \/:Tor —1.
But, for example, if F=1, then since F,(I)=1I for every n, where I is the circular
arc between \/:_l and —1 not containing z=1 on {|z] =1}, we should have a con-
tradiction. Hence F is an M-quasiconformal self-mapping of D. And it is clear
that F leave U, 1, \/—_l —1 fixed and is compatible with G. q.e.d.

Also we note the following, in a sense well-known

- Lemma 3. Let {R,}5=o and P be asin Lemma 1 and { f,};-, be a weakly admis-
sible sequence for {R,}%o. Let G, be the point in T*(G*) corresponding to R,
Sfor every n and F, be the lift of f, on U, with respect to G,. Then F, converges
locally uniformly to the identical mapping on U,, and hence G, converges to G,
elementwise (, i. e. algebraically).

Proof. As in the proof of Lemma I, we can construct a sequence of
M-quasiconformal mappings f, from R, onto R, (with a suitblae M) such that for
every V, obtained in Lemma | there is an N such that f,=f, on R,—V, for every
n>N. Let F, be the lift of f, on U, with respect to G, then by Lemma 2 every
subsequence of {F,'%, conlains a subsequence which converges locally uniformly
to an M-quasiconformal sell-mapping F. Also because it holds that
lim K(f,, Ro— V) =lim K(f,, Ro—V,)=1 for every V, from above and F, leaves

n—+00

n—o0

[, \/———1— —1 fixed for every n, we see by [8] Theorem 1V-5-2 that F is conformal
and leave 1, /=T, —1 fixed, hence is the identical mapping. Thus we can conclude
the assertions. ' q.e.d.

Proof of Theorem 1. First let Pg ={p;;i=, with a finitc N, and G, e T*G*)
correspond to R, for every n. Also let g; be a parabolic element of G, corresponding
to a loop freely homotopic to p; on R, for every j. Then we can take a so-called
cusped region, say H; for g;, namely, H; is an open disk in U, such that g;(H;)=H;
and g(H;) n H; is empty for every g in Go—{g’: n is any integer} (, cf. for example,
[4] TV 9.10 Theorem). Here we may also assume that {Go(H;)}}-, are mutually
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disjoint, where GO(Hj)— U g(H i) Then Vi=(Go(H,)/Go) U {p;} is a neighbour-
hood of p; for every j, and set V= \/ V;

i

Next from the assumption dnld Lemma [, we can find a weakly admissible
sequence of M-quasiconformal mappings f, from R, onto R,. And take another
neighbourhood V' of P corresponding also to cusped regions such that ¥’ is contained
in V, then we can decompose every f, as f,=f, of,» so that f, , and f, , are M-
quasiconformal mappings from some R, =f, ,(R,) in T(R*) onto R, and from R,
onto R,, respectively, which are conformal on f, ,(V’) and R,— V", respectively.
(Such a decomposition can be obtained from the decomposition of the complex
dilatation of f,.) And we have that

lim K(f, . R,,)—Ilm K(f.1v Ry—f (V') =lim K(f,, Ryp—V')=1.

n—o n=ro

Hence if we can construct an admissible sequence {h,}%-, for {R,}% ¢ (wWith Rg=R)
then we can conclude that { f, ;oh,}%., is an admissible sequence for {R,}, that is,
R, converges to R, in the sense of the Teichmiiller topology.

Now to construct such a sequence, first fix a conformal mapping S;, from
U, onto H={Im z>0} which maps the fixed point of g;,=(F,)«(g;) to the infinity,
where F, is the lift of f, , on U, with respect to G, and Fy(z)=z. Here we also
assume that S7'+S; ,(0)=0 for every n and j. Then note that because the fixed
point of g;, converges to g;, by Lemma 3, we see that S, converges to S; , locally
uniformly. Set S;o(H;)=H*%={Im z>c;} with some positive ¢; and let V' corre-
spond to H;={lmz>c}} by S;,. Alsoset L;={lmz=c}} with c',’—(c1+cj)/2 and
F,;j=S8;.F,S 7%, then F, ; is conformal, hence holomorphic, in a neighbourhood
of L;foreverynandj. LetF, I(x+\/ LocD=u, (x)+ [—1-v, (%), then (u,, ;)'(x)
and (v, ;)'(x) (and v, i(x) itself) are periodic from the construction (whose periods
are multiples of the real number e;, where S; 4og;2S7(z)=2z+e¢;, hence independent
of n), and converge to | and 0, respectively, uniformly on L, for F, converges locally
uniformly to the identical mapping on L; by Lemma 3, and F, ; is holomorphic in
a neighoburbood of L; independent of n.

In particular, i n is sufliciently large, then u, j(x) is strictly monotonously in-
creasing, so if we set

n.j

Fo x4 =1 p)y=u, (x)+ = 1-((y— ¢} + v, ,x))

on H”—{lm z>c’}, then F‘,,.i is a homeomorphism from H} onto F, (H}) such
that F,,J F,;jon L, Moreover, becausc it holds that

Z(I:H[ ((llllj)(\)+l+\ "I (l’,,,)(\)) le'ld
2F, )=, ) ()= 14+ =T-(v, )(x)) on H;
K(F, ;, H}) converges to | as n tends to + o for every j. Thus defining

N
F,=F, on U,;— \U G«(S7h(H}), and
j=1

Fn=(Fn)*(g)°(sj,n)l—OFn.jOSj,Oog—l on g(s_]_,IO(H:y/))
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for every g e G, and every j, we have a sequence of quasiconformal self-mapping
F, of U, compatible with G, such that lim K(F,, U )—11m K(F,, U Go(S7h (HY)) =

n—o

1. Hence projecting F, on Ry, we have a desired adm1s31ble sequence for {R,}%,.
g.e.d.

Finally we also note the following lemma which can be obtained by a slight
modification of the above proof of Theorem 1.

Lemma 4. Let R, converge to Ry in T(R*) and a finite set P of puctures of
R* be given. Then there is an admissible sequence {f,}%-, for {R,}%, such that
f, is conformal on some neighbourhood V of Py, (on Ry U Pg,) for every large n.

Proof. Let {f,}2-, be any admissible sequence for {R,}:>,, and we use the
same notations as in the proof of Theorem 1. Here we also take two sufficiently
large d; and dj (other than c}) such that d;>d;>max {c}, max v, (x)} for every j.

Lj

And first on {c}<y<d;} we define
n j('x+\/_ 1- )’) u, J(X)+\/_ I < Y= cj (d n,j(x)) +vn,j(x)>'

Next letting S; ,°g,°S7%(z)=z+e¢;,(, or equivalently, e;,=u, (x+e;)—u, (x)),
set e(j, n)=e; /e (which is positive and converges to 1 as 1 tends to + oo by Lemma 3)
and define on {d;<y<d;}

F, J(x+,/ =7 _d'_ -e(j, n)-x+ a"i’—d~ Ly, j(X)+/ =Ty,
.l

Finally on {dj <y} we define
Ilj(z) e(n J) Z_\/_] (e(l‘l j)_l) d’

And using FT, .j(2) instead of F, _/(z) in the proof of Theorem 1, we can construct
an admissible sequence {h,, , for {R;}%., such that every h, is conformal on V"~

which corresponds to u GO(S o(Im z>d})). Here taking d; sufficiently large,

we may assume that h,, of,, ,(V’") contains V” for every n. (This is possible, because

o Lof,., is weakly admissible for {S,}-, with S, =R, for every n, hence by Lemma 3
h of,2(V') tends to V'.) Thus we conclude that {f, ;ch,};=, is an admissible se-
quence for {R,}%., such that every f, yoh, is conformal on V". q.e.d.

Remark. It is very likely that any (P-) weak topology is equivalent to the
Teichmiiller topology, though the author has no proof at present. Anyway, we
shall use essentially not the weak topology, but the Teichmiiller topology, and we
need only Lemmas 3 and 4 in the sequel.

§2. Continuity of holomorphic abelian differentials

Let R* be an arbitrary Riemann surface and for every R in T(R¥) set
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A{(R)={0: 0 is a holomorphic abelian differential on R}.

Then we can consider the following basic kind of continuity of elements in A4,(R)
on T(R*), which is in the sequel always equipped with the Teichmiiller topology.

Definition 2. (, cf. [11] Definition 1). Let R, converge to R, in T(R*) and
0, in A,(R,) be given for every n. We say that 6, converges to 0, metrically if
there is an admissible sequence, or more generally, a weakly admissible sequence
(with respect to a given set P of punctures of R*) {f,}%, for {R,}®, such that

(*) ]Ll'g ||0110./;1_00||E=0

for every compact set E in Ry, where and in the sequel, 0-f implies the pull-back of
0 by fand | 0| x implies the Dirichlet norm of 6 on a Borel set X on the surface where
0 is defined.

Also we say that 0, converges to 0, strongly metrically, if the set P is contained
in the set P, of all such punctures of R, that are poles of 6, and for every neighbour-
hood V of P, it holds that

(*’) !{‘12 IIOIIOLI_OOHRo—V=0‘
Next we setA
CA(R)={0€ A,(R): 62 has closed trajectories (cf. [12] §1)}.

And for every 0 in CA(R) and every simple closed curve ¢ on R, we call the doubly
connected region in R swept out by all compact regular trajectories of 62 freely
homotopic to ¢ on R the characteristic ring domain of 0 for ¢ on R, whenever the
region is non-empty. A characteristic ring domain of 0 is called degenerate if it
is conformally equivalent to a punctured disk (, and then 6 has a simple pole at
the puncture). Each characteristic ring domain of 6 determines the free homotopy
class of a simple closed curve separating two boundary components and oriented
so that the period of 0 along it is positive. We denote by L(0) the set of all free
homotopy classes determined by characteristic ring domains of 0, and by L'(6)
the subset of L(0) consisting of all elements corresponding to degenerate characteristic
ring domains. Also for every ¢ in L(0), we denote by W,, the characteristic ring
domain of 6 for ¢, and by m_, and by a,, the modulus of W,, and the period LB
of 6 along c (, which is positive from above), respectively. Here recall that m_,=
+ oo if and only if W, , is degenerate and that [|0]|2=2- Y a2 ,-m_4 (, which may
be infinite). Also we set m,. ,=0 if ce L(6). e

Now we can definc another kind of continuity on T(R*) for elements in the
above special subset CA,(R) of A,(R).

Definition 3. (, cf. [11] Definition 2). Let R, converge to R, in T(R*) and 0,
in CA(R,) be given for every n. We say that 0, converges to 0, geometrically if
the following conditions holds.

1) For every ¢ in L(0,), there is an N, such that ¢ belongs also to L(8,) for
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every n>N,.

2) It holds that lima,, =a,4, and lim m_, =m_q for every c¢ in L(0,).
n—o n—ae

3) It holds that lim( Z aky, Mep)= 2 A% Mg, <+00, where L'=
n=% cel cel.”
L(0o) — L'(0y).
4) 1t holds that lim (||0,1%,—2- X a2, -m.e)=0, where X,=R,— U
n—on cel.” cel’(8p)
W.,, for every n.

Here note that if L(6,) is a finite set, which is the case at least if R* is of finite
type, then the above condition 3) follows from the condition 2). Also note that if
0, is square integrable, then L"=L(0,) and the conditions 3) and 4) implies that
lim |0, g, exists and is equal to [[0y]lk,.
n=saoc

Now as relations between (strongly) metrical convergence and the geometrical
one, we can show the following theorems, which are the main results of this paper
and generalize [11] Corollary 1.

Theorem 2. Let R, converge to Ry in T(R*) and 0, in CA(R,) be given for
every n. If 0, is square integrable and 6, converges to 6, geometrically, then 0,
converges to 0, metrically.

Theorem 3. Let {R,}%, and {0,}%.o be as in Theorem 2. Suppose that

1) the set L'(8y) is a finite set,

2) letting P be the (finite) set of punctures of R, corresponding to L'(8,)
(, which are poles of 0,), it holds that |0, g,-v is finite for every neighbourhood V
of P (on Ry U P), and

3) for every c in L(0,) there is an N, such that the period |, 0, is real for
every n>N._.

Now if 0, converges to 0, strongly metrically, then 0, converges to 0, geo-
metrically.

Corollary 1. Let {R,}%, and {0,};=y be as in Theorem 2. If 0, is square
integrable, the condition 3) in Theorem 3 holds, and 0, converges to 0y strongly
metrically, then 0, converges to 0, geometrically.

Theorem 4. Let {R,}%, and {0,}%, be as in Theorem 2. Suppose that the
condition 3) in Theorem 3 holds and that

4 timsup 6,05, < 165, < + o0,
n—

where X, are as in Definition 3. If 0, converges to 0, metrically, then 8, converges
to 0y geometrically.

Corollary 2. Let {R,}i2y and {0,}%o be as in Theorem 2. Suppose that 0,
Yy Nnsn=0 nfn=0
is square integrable, the condition 3) in Theorem 3 holds, and

4) lim sup |10,/ z, <1160l g, (< +0).

Now if 0, converges to 0, metrically, then 8, converges to 8, geometrically.
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To prove theorems, first we note the following

Proposition 1. Suppose that R, converges to Ry in T(R*) in the sense of the
(P-)weak topology with any given P, and 0, in A(R,) is given for every n. Then
the following conditions are mutually equivalent.

1) 0, converges to 6, metrically.

2) For every weakly admissible sequence {f,}%., for {R,}%-0, the condition
(%) in Definition 2 holds for every compact set E in Ry.

3) For every n, let a,(z)dz be the lift of 0, on U, with respect to G, in T*(G*)
corresponding to R, (, i.e. the G,-invariant form on U, corresponding to 0,), then
a,(z) converges to ay(z) locally uniformly on U,. :

The proof of Proposition 1 is essentially the same as that of [10] II Proposition.
But for the sake of completeness, we include the proof.

Proof. First suppose that 0, converges to 0, metrically with a weakly admissible
sequence {f,}%, for {R,}7%,. Let F, be the lift of f, on U, with respect to G,,
then by Lemma 3, F,(z) converges to Fy(z)=z locally uniformly on U, and G,
converges to G, clementwise. Hence for every zoe U,, we can find a positive
r=1rzy) such that D(z,, r)={]z—zo|<r(zy)} is projected univalently into R, for
every sufficiently large n. Here we can also assume that r(zy) < ,l, (I —|zo|) for every

zo€ U, and r(zy)™! is locally bounded on U,. Now take a compact set E; in U,
arbitrarily, then E{ = \U D(z, r(z)) is also compact from above, and because F;!(z)

also converges to Fa'z;lsz uniformly on E; there is a compact set E, in U, which
contains F,!(E[) for every n. So we can take a compact set E in R, which contains
the projection of E, into R,. And then for every sufficiently large n and every z,
in E, it holds that

< it oo PP = ()l dxdy )

S Tamry 10 5S s 10,0, =G0l + 10ol).

So from the assumption, we can see that {a,(z)},-, are locally uniformly bounded
on Uy, hence makes a normal family. Also, similarly, we have that for every z, € E,,

la(z0) —ao(zo)| < ﬁ llan— a0l p(zour)
0
1
S e —_ oF o . —
\/n~r(zo) ("an a, n||D(zo,r)+||an Fn ((Fn)z 1)”D(zo,r)

+ ”an°Fn . (Fu)z - aO"D(zo,r))'

Here the first and the second terms in the right hand side converge to 0 by Lemma 3
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and [8] Theorem V-5-3. And the last term is majorized by [0,of,— 0, hence
also converges to 0 from the assumption. Thus we conclude that the condition 3)
holds.

Next suppose that the condition 3) holds, and let {f,}®, be any weakly ad-
missible sequence for {R,}:%,. Then for every compact set E of R, we have that

||0n°f;r - 00”E
< "anan : ((Fn)z - I)“D + ”anan_ aO”D + ”anan : (Fn)i "D’

where D is a compact set in U, whose projection on R, covers E.  Hence by Lemma
3, [8] Theorem V-5-3 and the locally uniform convergence of a,(z) to aq(z),
we can conclude that the condition 2) holds. And since it is trivial that 2) implies 1),
we have the equivalence. q.e.d.

In particular, the metrical convergence does not depend on the choice of a
weakly admissible sequence. Also the metrical convergence implies the following
weak convergence.

Corollary 3 (¢f. [10] II Corollary 1). Let {R,}%., and {0,}%, be as in
Proposition 1, and suppose that 0, converges to 0, metrically. Then for every
l-cycle d on R* (, hence on every R in T(R*)), it holds that

lim S 0,= S 0,.
n—o Jd d
Proof. As before, let G, € T*(G*) correspond to R,, and a,(z)dz and F,(z) be the
lifts of 6, with respect to G, and of f, with respect to G,, respectively, for every n,
We need to show the assertion only in case that d is a simple closed curve. And
let dy € G, be an element corresponding to d and set d,=(F,)«(d,), then by Lemma 3,
it holds that
lim F (z)=z and limd,F,(z)=d,(z) forevery zeU,.
n=0 n—o
Now fix zo in U,. Then since a,(z) converges locally uniformly to ay(z) by
Proposition 1, we have that

. . dpoF . (zg) do(zo)
lim S 6, = lim S a,(z)dz = g ao(z)dz = S 0,.
n—=0 Jd n—=o JF,(z0) zZo d
Thus we have the assertion. g.e.d.

Next the following lemma is crusial for the proof of Theorems.

Lemma 5 (¢f. [11] Lemma 3). Let {R,}%, and {0,}2, be as in Proposition 1
abd {f,}*., be any weakly admissible sequence for {R,}o. Suppose that 0,
converges to 0, metrically, 63 has a compact regular trajectory c, andS 0, is real

co
for every n. Then for every neighbourhood V of cq in Ry, there is an N such that 62
has a compact trajectory c, freely homotopic to f,(co) on R, whose preimage f;,(c,)
on R is contained in V for every n>N.
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Proof. Let G, correspond to R, in T(G*) and F, be the lift of f, on U; with
respect to G, for every n. Take a point p on ¢, and fix a lift z, of p with respect
to Gy on U,. And let U and C, be the connected components of the lifts of ¥ and
¢o with respect to G, on U, which contain z,, and consider the function u,(z)=

Im S: a,(t)dt on U for every n. Then since uq=0 on C,, there is a (suitably
(z0)

small) positive ¢ such that the component, say U,, of {z: |uy(z)| <&} containing C,
is contained in U and the boundary of U, in U, consists of two analytic curves (whose
projections into R, are compact regular trajectories in V freely homotopic to cg).
Because F,(z) and u,(z) converge to Fo(z) =z and u(z), respectively, locally uniformly
on U, (by Lemma 3 and the metrical convergence of {0,}, to 6,), u,(F,(z)) also
converges to uy(z) locally uniformly on U,. Hence in particular, there is an N
such that we can find a suitably long compact arc from F,(z,) contained in {z:

u,(F,(2))=0} n U, whose projection on R, covers a simple closed curve, say c,,
in V freely homotopic to ¢, for every n>N. Then from the construction, we can
conclude that ¢, =f,(c;,) is a compact regular trajectory of 02 on R, for every n>N,
which show the assertion. q.e.d.

Lemma 6. Let {R,}%, be as in Proposition 1, 0, CA,(R,) converge to
0, CA,(Ry) metrlcally, and {f,}, be a weakly admissible sequence for {R,}%,.

Then the set U (Int /\ Sal(W,6,))) (, which is called the Carathéodory kernel
of {f7 U (W, )},, 1,) is comc:dent with W_ g for every c in L(0,).

Proof. First by Lemma 5, we can easily see that for every compact subset
E of W, 4, there is an M such that f7W(W,,,) contains E for every n>M. So IntE

is contained in N = \./ (Int ( f\ Sal(W,.4,))). And since E is arbitrary, we conclude

m=n

that W_,, is contamed in N.

Next for every p and every compact neighbourhood V, of P in Ro—m, there
is a compact regular trajectory of 63 intersecting with int V,, for 6, belongs to
CA,(Ro), hence again by Lemma 5, there is an M such that V,—f,(W,, ) is non-
empty for every n>M. So we see that V,— N is non-empty, and since V,, is arbitrary
and N is open, we conclude that peg N. Thus we have shown that N is contained
in W4,

Finally if N—W,_4 were not empty, then there would be a non-trivial simple
closed curve ¢’ in N which is not freely homotopic to ¢. This is a contradiction,
for f,(c’) should be contained in W, 4, for every sufficiently large n (from the definition
of N), hence freely homotopic to ¢c. Thus we have that N=W, . q.e.d.

Lemma 7. Under the same assumption as in Lemma 6, we further assume
that every f, is M-quasiconformal with some M, then it holds that

limm,g =m,q, forevery celL(6,).

n=+o0

Moreover for every celL(0,), setting H,,(p)=b,-exp (ZZLI—-SP 0,,)

c,0,
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on W, with a p, in W., and a real b, such that H_,(W,,)=W,={1<|[z|<exp-
(2nm, )} for every n, the mapping (H,,of,)"" converges locally uniformly to
(H o)™ ' on Wy up to a rotation of W,.

Proof. First by Lemma 5, we can see that liminfm, g >m_,, for f(E) is

n=—0 -
contained in W, 4 for every compact set E in W, , and every n larger than an integer

depending on E, and lim K(f,, E)=1 from the assumption. And taking a sub-

n—o0

sequence if necessary, we may assume that limm_, =m (which is not less than

n—aoo

m.q,). Then by Lemma 6, we can see (, cf. [8] Theorem [1-5-4) that (H,,f,)""
converges locally uniformly on W={1<|z|<exp(2nm)} to a conformal mapping,
say H,, from W onto W,,,. And since H, oH, is a conformal mapping from W
onto W,, we conclude that m=m_,. Hence taking a subsequence is unnecessary,
and (H,,°f,)"! converges locally uniformly on W, to (H,.,)~" up to a rotation of W,

q.e.d.

Here we state the following result which follows at once from Corollary 3 and
Lemmas 5 and 7.

Proposition 2. Let R, converge to Ry in T(R*) and 0,€ CA(R,) be given for
every n. Suppose that the condition 3) in Theorem 3 holds for {0,}%%, and that
0, converges to Oy metrically, then the conditions 1) and 2) of Definition 3 hold.

Finally we recall tha following extremal property of every 6 in CA,(R), which is
essentially due to J. A. Jenkins.

Proposition 3 ([5] Theorem B). Let R be an arbitrary Riemann surface, 0 €
CA,(R) with a finite Dirichlet norm be given, and b(z)|dz| be any non-negative
measurable conformal density on R such that

[ bdz> .

for every ce L(0) and every curve ¢ on R freely homotopic to ¢c. Then it holds that

SSRb(z)dedyZ > ag’o.;nc,e(=—;-||0||§>,

ceL(8)

where z=x+\/—_1~y is a generic local parameter. And the equation holds if
and only if b(z)|dz|=10|.

Proof. Using the Cauchy-Schwarz’ inequality, it is routine to show that
al o mg o< Sg

for every c in L(f) and that the equality holds if and only if b(z)|dz|=[0]. And
taking the sum for all ¢ in L(f)), we have the assertion. q.e.d.

b(z)*dxdy

cr

Proof of Theorem 2. Suppose that 6, is square integrable and 6, converges to
0, geometrically. Then as noted before, lim [|0,[ g, =00/, hence we may assume
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that {||0,]g,}:0 is a bounded sequence.

Let a,(z)dz be the lift of 6, on U, with respect the group G, in T*(G*) correspond-
ing to R, for every n. Then similarly as the first part of the proof of Proposition 1,
we can see that {a,(z)}%, are locally uniformly bounded on U,. Hence we can find
a subsequence, which is also denoted by {a,(z)}%,. converging to a holomorphic
function, say a(z), locally uniformly on U,. It is clear that a(z)dz is G,-invariant,
so let e A,(Ry) correspond to a(z)dz, then 0 converges to 6 metrically by Prop-
osition 1. Hence by Corollary 3 and the condition 2) of Definition 3, it holds that

S 0= lim ar,,,"=ac_,,o=§ 0,
c JC

for every c in L(6,).

Now we can show that [|0]iz, <[|0¢llg, (< + ). In fact, fix ¢ in L(6,) and let
E be any compact set in W, 4 =R,. Then, since 6, converges to 6 metrically and
f7Y(W_,) contains E for every sufficiently large n by Lemma 5, where {f,}-, is
arbitrarily fixed admissible sequence for {R,}%,, we have from the condition 2) of
Definition 3 that

"0| % = h_l;l; ”9n°fn” % < I'_I:I;’K(fn’ E) * ” Oull.%',.(E)

<lim|6,l%.. ‘o —l|m2 aZg Mg,

n—oo
=2-a2 g, Mco,= 063,

Because E is arbitrarily, we have that 0]y, , < ||00||WC_90. And taking the sum

for all ¢ in L(0,), we have the desired inequality.

Finally consider the density b(z)|dz|=|0|, then we have from above that
f: b(2)|dz| > §:0l=a,,, for every ¢ in L(0,) and every ¢ freely homotopic to ¢ on
R,. Hence by Proposition 3, we have that b(z)|dz| =|0,|, which implies that 8=0,,
for . 0=, 0, for every c in L(0,). Thus taking a subsequence is unnecessary, and
we conclude that 6, converges to 6, metrically. q.e.d.

Proof of Theorems 3 and 4. We have already shown (Proposition 2) that if
0, converges to 0, metrically and {6,}%., satisfies the condition 3) in Theorem 3,
then the conditions 1) and 2) of Definition 3 are satisfied.

Now to prove Theorem 3, further suppose that 6, converges to 0, strongly
metrically and 6, satisfies the conditions 1) and 2) in Theorem 3. Here note that
P in the condition 2) is the set of all punctures where 0, has a pole, which follows
from the condition 2). And take as a V in the condition 2) such a neighbourhood
of P that Ro— V contains X, and every component of the relative boundary of Vis
a trajectory of 63 (contained in Ry— X,). Also let {f,}%, be a weakly admissible
sequence with respect to P such that llm [8,of, — 0ol g, - v =0 for every such a V as

above, whose existence is assured by the strongly metrical convergence of 6, to 6,.
Then by Lemma 5 and the condition 1), we can see that, for arbitrarily fixed ¥ such
as bove, there is an N such that f,!(X,) is contained in R,—V for every n>N.
Hence we have that
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||9n”x,. < ||9,,||/,,(R0—V)$ I 0n°fn“R°—V-
for every n>N. So we have that

lim sup {16, 1x, < 100/l ro-v-

which is finite by the condition 2. And since we can take V arbitrarily close to the
set Ry — X, we conclude that

lim sup 10, 1x, <[10ollx, (< +00),

that is, the condition 4) in Theorem 4 holds. Thus the proof of Theorem 3 is reduced
to that of Theorem 4.

Hence, turning to the proof of Theorem 4, suppose that the condition 4) in
Theorem 4 holds. Then we have from the first paragraph of this proof and the
Fatou’s lemma that

100l x,>lim sup [|0,[x,>2-limsup 3 aZ,, -m.,,
n—+ n—o©  ceL.

>2-liminf ¥ aZ, -m.o >2- 3 liminfa2, -m,g

n—o cel” cel” n—o©

=23 a%,oo *Mg g, = ||00||xo-
celL”
Hence we have that

1 2 —_ 2
lim 3 aZg -m.g = 23 aig,-m.q, and
n—+o celL” cel”

im([6,llx,—2- X a2, m.,,)=0,
n—o celL”

that is, the conditions 3) and 4) of Definition 3 are satisfied. Thus we have shown
Theorems 3 and 4. g.e.d.

§3. Applications of main theorems

First let a 1-cycle ¢ on R* (, which can be considered as a 1-cycle on R for every
R in T(R*),) be given and let o,z be the period reproducing differential for ¢ on R
in the space I',(R) of all square integrable real harmonic differentials on R for every R
(, see for example, [2] Ch. V §12, where —*o_ y is called the reproducing differential
for con R). Andset 0, g=0,r +\/——_1*O'C'R, then we know the following

Proposition 4 ([7] Theorem 5'). If R, converges to Ro in T(R*), then 0, p,
converges to 0.z, strongly metrically for every given c.

Proof. We will give an outline of another proof than that given in [7] (cf.
[6] 13. Proposition). First let {f,}2, be an admissible sequence for {R,}Z,.
Then from the well-known construction (, see [12] §2,) of *o,, and the Minda’s
theorem ([9] Theorem 4) we can see that (*a, g )of, —*0. g, has {0}-behavior and is
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exact, hence belongs to I',o(R,) for every n. So we conclude that for every n the
inner product

00, n=0c.rer *(Oc R, n—0c r)) R
= (] Oeu0en) A T T B

= —2\/ -1 ac.R,.ofn — 0, Ro *((*ac,R,.)ofn - *or,Ro))Ro=O'

Thus by the standard argument (,cf. the proof of [7] Theorem 1 or [6] Theorem 3)
we can show that for every n

||()C.R,.°fn - gc,Ro”RoS (2kn/(l _kn))' I'oc,Ro”Roa

where k,=(1—K(f,. Ro))/(1+K(f,. Ro)). And since |0, g,lg, is finite, we have
the assertion. q.e.d.

Remark. More refined results on the distortion estimates and the variation
formulas for various harmonic and holomorphic differentials under quasiconformal
deformations are investigated by Y. Kusunoki, F. Maitani and H. Shiga.

Here recall that for every R € T(R¥*) and every 1-cycle ¢, 6, ; belongs to CA(R)
whenever 0, x #0 ([12] Proposition 2). And we can show the following

Theorem 5 (¢f. [11] Proposition). Let R, converge to R, in T(R*) and a
l-cycle ¢ such that 0.z #0 be given. Then 0, converges to 0, g, geometrically.
Proof. First recall that for every Re T(R*) and every l-cycle ¢, the period
*o. g is equal to the algebraic intersection number ¢ x d for every given 1-cycle d.
d

So if a simple closed curve d belongs to L(f, g,), then it holds that

Sd *o g, =cXd= Sa *0.,r,=0,

hence the condition 3) in Theorem 3 holds. And because |0, % =2-f.0.r,
converegs to [0, g,ll%,=2-f. 0. r, by Proposition 4 and Corollary 3, the assertion
follows from Proposition 4 and Corollary 1 or 2. q.e.d.

Next suppose that R* admits the Green’s functions (, i.e. R*&0;). And for
every R e T(R*) and every puncture p of R, set

[—1 o
bpr= "5 (dg(-, p)+/ =1 -*dg(-, p)),

where g(-, p) is the Green’s function on RU {p} with the pole p, and call ¢, the
fundamental differential for p on R.

Then it is clear that ¢, belongs to the class A;So(R U {p}) defined in [12] §2,
and since Im @, is exact, we see from [12] Proposition 1 that ¢, belongs to
CA,(R). Also we can show the following
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Proposition 5. Let R*&0; and fix a puncture p* of R*. Also let R, converge
to Ry in T(R*) and p, be the puncture of R, corresponding to p* for every n. Then
&, CONVETges to @, r, strongly metrically.

Proof. Let {f,}w., and V be as in Lemma 4 with P={p*}, then for every
large n, @, r.ofu—®p0.r, is holomorphic on VU {p,}, hence square integrable
closed differential on Ry U {py}. Also from the definition it is easily seen that
Im (¢, r.ofu— ®po.r,) has {0}-behavior and is exact, hence belongs to I',o(Ro U {po}).
Thus we can show as in the proof of Proposition 4 that

” ¢p,..R,.Ofn - d’po,Ro” Ro < (Zkll/(l - kn)) ° |I¢po,Ro ” Ro-V

(, cf. [6] Theorem 5), from which the assertion follows. q.e.d.

Theorem 6. Under the same assumption as in Proposition 5, ¢, g converges
to @po.r, geometrically.

Proof. The conditions 1) and 2) in Theorem 3 are clearly satisfied from the
definition, and the condition 3) in Theorem 3 also holds, for Im ¢, r is exact for
every n. Hence the assertion follows from Proposition 5 and Theorem 3.  g.e.d.

Finally suppose that R* belongs to the class O;. Then for every Re T(R*)
and every pair {p;, p,} of punctures of R, there is a harmonic function g(p; p;, p,)
on R uniquely determined up to constants by the following conditions;

(a) g(p; pi» p,) is bounded outside any neighbourhood of {p,, p,} (on RU
{pb pZ})’ and

(b) g(z;; py» p2)—(—1)/-log|z;| is harmonic in a neighbourhood of z;=0,
where z;=z/p) is a local parameter near p; with z(p;)=0.

These functions g(p; p,, p,) are sometimes called the Green’s function on the
parabolic surface R with the pair of poles p; and p,. Now we set

—1 S
Pprprk =" (dg(- 5 p1, p2)+/ = T*dg(-; py, p2))

and call ¢, ,, r also the fundamental differential for the pair {p,, p,} on R. Recall
that ¢,, ,, r belongs to CA,(R) again by [12] Proposition 1. And by the same
argument as above, we show the following

Proposition 6. Let R* € Og, and fix a pair {p¥, p%} of punctures of R*. Also
let R, converge to R, in T(R*) and p;, be the puncture of R, corresponding to p*
for every n and each j. Then ¢, .. g, converges to ¢, .. g, strongly metri-
cally.

Theorem 7. Under the same assumption as in Proposition 6, ¢, .. g
converges to ¢, . o, o.r, geometrically.

Remark. We can show again by the same argument as above that such results
as Proposition 5 (or 6) and Theorem 6 (or 7) for every fixed linear combination of
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a finite number of the fundamental differentials for given punctures (or pairs of
two punctures) of R* with real coefficients.
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