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Introduction

On the Teichmtiller space of an arbitrary Riemann surface, we can consider
at least two kinds of convergence of holomorphic abelian differentials. The one
of them is concerned with the distortion estimates with respect to the Dirichlet norm,
and is, in a sense, the most natural kind of convergence, which we call the metrical
convergence ( ,  cf. Definition 2). The other is concerned w ith the geometrical
structure of the squares of abelian differentials, which we call the geometrical con-
vergence (, cf. Definition 3).

W e have already investigated the relation between these two kinds of con-
vergence in the case of compact surfaces ( [1 1 ]) . In this paper, we will treat with the
case of general surfaces and show tha t the geometrical convergence implies the
metrical one in the case of square integrable differentials (Theorem 2). We also
give sufficient conditions under which the metrical convergence implies the geo-
metrical one (Theorems 3 and 4).

§I is preliminaries from the theory of Teichmtiller spaces and quasi-conformal
m appings. The definitions of two kinds of convergence and main theorems are
stated and proved in §2. Finally, as applications of main theorems, we will show
in §3 that several fundamental differentials converge both metrically and geometri-
cally.

§1 . Preliminaries on the theory of Teichmiiller spaces

Let a Riemann surface R * be arbitrarily given. Then consider all pairs (R , f )
of a Riemann surface R and a quasiconformal mapping f  from R* onto R .  We say
that (R 1 ,  f i )  and (R 2 ,  f 2 )  are equivalent if f e f i '  is hom otopic to a  conformal
mapping from R , onto R 2 .  The Teichmiiller space T(R*) is, by definition, the set of
all equivalence classes of pairs as a b o v e . The Teichmiiller space T(R*) has the usual
Teichmuller metric, cf. [1] Ch. VI, and we call the topology induced by this metric
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the Teichmiiller topology on T (R * ). A point of T(R*) is called a marked Riemann
surface, and we denote simply by R the point corresponding to any (R ,f )  when the
marking (, i.e. the mapping)f is clear from the context. Also in the sequel, excluding
trivial cases, we assume that the universal covering surface of R * is  conformally
equivalent to the open unit disk U, = {}zi <1} and T(R *) is non-trivial.

We can define the Teichmilller space T(R*) by using Fuchsian groups acting on
U 1 . Let G* be a  Fuchsian equivalent of R* acting on U1 . Here we also assume
that 1, .\/ —1, —1 are contained in the limit set L(G*) of G * .  Such a Fuchsian group
is called a normalized Fuchsian g ro u p . Now fix a normalized Fuchsian equivalent
G* of R*, and consider all quasiconformal self-mapping of U , which leave 1, —  1,
—I fixed. Such a mapping F is called to be compatible with a normalized Fuchsian
group G if Fog0E - ' is conformal for every g in G .  If F is compatible with G, then
F induces an isomorphism F *  o f  G into another normalized Fuchsian group, which
is called a quasiconform al isomorphism of G (induced by F ) .  Returning to G*,
we call the set of images of G* by all quasiconformal isomorphisms of G* the reduced
Teichmiiller space V (G*) of G * . Then it is well-known ([3] Lemma 2) tha t T(R*)
can be identified with T 4 (G*).

Let R and R ' be points in T(R*) and let G and G' correspond to R and R ',  re-
spectively, i n  r ( G * ) .  Then• fo r  every marking-preserving quasiconformal self-
mapping f  from R onto R ', there is the unique quasiconformal self-mapping F of U,
which leaves 1, \ i/ —1, — I fixed and  is  compatible w ith  G  such that F *  i s  an
isomorphism from G onto G' and the projection of F on R  is identical with the given
f . We call this F the lif t o f f  on U1 (with respect to  G).

Next in general, for every Riemann surface R , every Borel subset E  of R  and
every homeomorphism f  from R  into another surface which is quasiconformal on
E, we denote by K (f , E) the maximal dilatation of f  on E, namely,

K(f, E)=ess.supz.E(ifz1+

where L and f  a r e  th e  generalized derivatives of f  with respect to  z  and f  with
generic local parameter z. Then the  convergence o f  a  sequence {R„} ,  t o  R 0

in  T(R*) in  the  sense of the Teichmilller topology is equivalent to the condition
that there is a  sequence o f  marking-preserving quasiconformal mapping f „ from
R , onto R „ such that lim K(f,„ R 0 )= 1 .  Relating to this characteirzation of the

Teichmtiller topology, we can consider the following topology o n  T(R*) which is
apparently weaker than the Teichmüller topology.

Definition 1. Let P be a given set of punctures of R*, and for every R in T(R*),
denote by P R  the set of punctures of R corresponding to P .  We say that a sequence
{R„} 1 i n  T(R*) converges to . R0  E  T(R*) in  the  sence o f the (P-)weak topology
if there is a  sequence of marking-preserving homeomorphisms f , ,

 from  R , onto R„
such that for every neighbourhood V of P R . (in R o 11 P R O we can find an N  satisfying
th a t  f ,  i s  quasiconformal o n  R0 — V f o r  e v e ry  n > N  a n d  it h o ld s  t h a t
lim K(f,„ R 0 — V)=1.
n . c0
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We call such a  sequence { f„} , as above a w eakly  admissible sequence for
{R„},,w= 0  (with respect to  P ) .  If P is empty (, i.e. lim K(f„, R 0 )=1 . then we call it

simply an admissible sequence for {R„} 0 .

Here it is clear that the convergence in the sense of the Teichmiiller topology
implies that in the sense of any (P-)weak topo logy . If the given set P of punctures of
R* is a  finite se t, th en  w e  can  show the converse, hence in  such a case, the
(P-)weak topology is equivalent to th e  Teichmtiller topology. Namely, we can
show the following.

Theorem 1. Let afflue set P of punctures of R* be given, and suppose that R„
converges to R, in T(R*) in the sense of the (P-)weak topology. Then R„ converges
to R o  also in the sense of the Teichmiiller topology.

To prove Theorem 1, first we note the following

Lemma 1. Let R„ converge to R , in the sense of  the (P-)weak topology with
an abitrarily  given (f inite or inf inite) set P  of  punctures of R * .  Then we can
f ind  a sequence of  m ark ing-preserv ing M -quasiconform al m appings f„ from  R o

onto R „ w ith som e M  (<+ cc) and a sequence {Vk } ,  of neighbourhoods of PR o

such that n Vk = P R 0 , VkD and lim K(f,„ R o —Vk)=1 for every k.
n-■co

Proof (cf. the proof of [10] I Lemma 2). Let {g},œ,., 1 b e  a  weakly admissible
sequence for {R„} 0 , and PR 0 ={ p i }11, 1 (I% +  c c ) .  T h e n  for every j ,  we can find
a fundamental neighbourhood system {V } 1 o f  pi  (on  R , u {pi }) such that Vin

is a doubly connected region with the smooth compact boundary curves whose
whose modulus is not less than one for every n. Also we may assume th a t {11} 11= 1

N
are mutually disjoint, and set V „= \.) 1/1, for every n. Then from the assumption,

j= 1
for every n, there is an N„ such that f„, is 2-quasi-comformal on R 0 — +  2  for every
m > N „.  Here we may assume that N„.„, is greater than N„ for every n.

Fix n and let in be any integer such that  N ,,‹m <N 1 . A n d  take conformal
mappings l i ;  a n d  f t ;  from V!, — {pi }  a n d  g(1/4— {Pi }) o n t o  L/1= {0 < zl <1},
respectively, for every j. Here because the modulus of VI,— V4, 1 and  g,„(1/1, — Vin .")
a re  n o t le ss  th an  1  a n d  1/2, respectively, w e can find a n  absolute constant
r  less than one (depending o n  neither n  nor j )  such that each o f  th e  regions

V4+ 1 )  and Fii (g„,(V", — V 1 )) contains the annulus { r <Izi <1}  for every j.
N ow  by [8 ] Theorem II-8-1, there are M 1-quasiconformal self-mapping
of U , with an  M 1 depending only on r such that  h j R j o g o H j 1

 o n  th e  annulus
< 1} for every j. Next because 11; (0) is contained in  {izi <r} , the mapping

"Ti (z)=--(z—hi (0))/(1—h i (0).2) is  a n  M  (— rr quasiconformal self-mapping of

U1 such that Ti (hi (0))= 0 and 7:;(z)._ z  on the circle {I zl =1} for every j.
Thus set g  o n  R,— V„ and f„,=-(FI i ) - - loTi ohi oll i  f o r  every j ,  then from

above we can see that f,„ is M, • M r quasiconformal mapping from Ro onto R„, for
every m . F o r  th e  whole sequence {f,} 1 ,  i t  h o ld s  th a t  lim K(f„„ R o —Vk)=

m



308 Masahiko Taniguchi

lim K(g„„ R o — K) for every fixed k, which implies that ff,„1
1
 and {17,} ,  are

m- , 00

desired sequences with M=M, • M,. q. e. d.

Next the following fact is essentially well-known.

Lem m a 2. Let {F„} , be a sequence of M-quasiconformal self-mappings of
U , which leave I, -  I f ixed and  are  compatible with ci given norm alized
Fuchsian group G . T hen there is a subsequence whcih converges locally
uniform ly  to an M -quasiconformal self-mapping of U, which also leaves 1, — 1 ,
—1 f ixed and is compatible with G.

P ro o f  First by the reflection principle, we may consider that every F„ is also
an M-quasiconformal self-mapping of the Riemann sphere e. Restrict every F„
o n  D=C—{t, \./ — 1, — 11, then by [8] Theorems 11-5-1 and 11-5-5 there is a
subsequence IF„,1,"»,, which converges locally uniformly on D  to  a  function F.
Here F  is an M-quasiconformal self-mapping of D or a constant 1, .\/— I or —1.
But, for example, if 1' 1 ,  then since F„(I)=1 for every n, where J is the circular
arc between V-1 and —I not containing z = 1 on 11z1= 11, we should have a con-
tradiction. H ence F  is an M-quasiconformal self-mapping of D .  And it is clear
that F leave U1 ,1 , —1, —1 fixed and is compatible with G. q. e. d.

Also we note the following, in a sense well-known

Lemma 3. Let {R„} 0 and P be as in L em m a 1 and tf„1,m,_, be a  weakly admis-
sible sequence f o r {R„} ,3,. L et G„ be the point in  r( G * )  corresponding to R„
f o r every  n and F„ be the lif t of f ,, on U 1 w ith  respect to G o . T hen F„ conv erges
locally  uniform ly  to the identical m apping on U 1 ,  and hence G„ converges to G o

elementwise (, j. e. algebraically).

Pro o f . As in  the p ro o f  o f  Lem m a 1, w e can construct a  sequence of
M-quasiconformal m appings from  R o o n to  R„ (with a suitblae M) such that for
every V, obtained in Lemma 1 there is an N  such that o n  R„—Vk for every
n > N .  Let "P„ be the lift of f„ on U , with respect to G o , then by Lemma 2 every
subsequence of 1F„1_, contains a subsequence which converges locally uniformly
t o  a n  M-quasiconformal self-m apping F. A ls o  b e c a u s e  i t  h o ld s  th a t
lim K(1„, Ro - vk) =1im K(f,„ R o — Vk)= 1  for every V k from  above and F„ leaves

1, N/ —1, —1 fixed for every n, we see by [8] Theorem IV-5-2 that F is conformal
and leave 1, — 1, — I fixed, hence is the identical mapping. Thus we can conclude
the assertions. q .  e .  d.

Proof  of  Theorem  1. F i r s t  let P,,,, =',p i }7=, with a finite N , and G„ e Pr(G*)
correspond to R„ for every n. Also let g i  be a parabolic element of Go corresponding
to a loop freely homotopic to pi  on Ro  for every j. Then we can take a so-called
cusped region, say H i  for g i , namely, H i  is an open disk in U , such that g ( H ) =H i

and g(H i ) n H i  is empty for every g in Go  — : n  is  any  in teger}  (, cf. for example,
[4 ] IV 9.10 Theorem). Here we may also assume that {G 0 (H j )}7, 1 are mutually
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disjoint, where Go (Hi ) = g(H i ). T hen  Vi =(G o (H i )/Go )u  {pi }  is  a  neighbour-
geGo

hood of pi  for every j ,  and se t V =  V) Vi .
j=1

Next from the  assumption a n d  Lemma 1, w e can find a  weakly admissible
sequence o f M-quasiconformal mappings f „ from Ro o n to  R „.  And take another
neighbourhood V' of P corresponding also to cusped regions such that V' is contained
in  V, then we can decompose every f „ as f ,=f ,,,of„, 2 so  th a t L . ,  and f ,„  are  M-
quasiconformal mappings from some R,', =!,, 2 (R o )  in  T(R*) onto R„ and from  Ro

onto R,'„ respectively, which are  conformal on f„, 2( r )  and  Ro — V ', respectively.
(Such a  decomposition can be obtained from the decomposition of the  complex
dilatation of j;,.) And we have that

hm K(f„,,, K (f ,,,, K (f„ R 0 — V')=
, 0 0 //-■

Hence if we can construct an admissible sequence 111„r"„_, for {R;,},T= 0  (with R = R 0 )
then we can conclude that {f,,,,./i„} , is an admissible sequence for {R„} 0 , that is,
R„ converges to  Ro in the sense of the Teichmhller topology.

Now to construct such a  sequence, first fix a  conformal mapping S i ,„ from
U, onto H =  z>0} which maps the fixed point of gi ,„= (F „ )(g i ) to  the infinity,
where F„ is the lift of f ,"  on U 1 w ith  respect to G o and  F 0 (z) z. Here we also
assume that S7!„-, Si3O (0)=- 0 for every n and j. Then note that because the fixed
point of gi ,„.converges to g1,0 by Lemma 3, we see that S  to  Si3O locally
uniformly. Set Si ,o (fi i ) =/-/I=Ilm z>c i l  with some positive ci  and  le t V ' corre-
spond to H;={ 1m  z> c} Si ,o . Also set L1 = {lm z =c} with c'.; =(c i +c)/2 and

L'o , then F,, conformal, hence holomorphic, in  a  neighbourhood
of 1,1 for every n and ]. L e t  F„,i (x+V  —1. c)=u„, j (x )+  • v „ , ; ( x ) ,  then (u )'(x)
and (v„,; )'(x ) (and v,, 1 (x ) itself) are periodic from the construction (whose periods
are multiples of the real number ei , where SL o ogi oV o (z )= z+ e i , hence independent
of n), and converge to I and 0, respectively, uniformly on Li , for F„ converges locally
uniformly to the identical mapping on Li  by Lemma 3, and F„.1  is  holomorphic in
a neighoburbood of L1 independent of n.

In particular, if n  is sufficiently large, then ti„,i (x) is strictly monotonously in-
creasing, so if we set

+.\/ —1 y)= u„, i (x )+ —  I  ((y — c'.;) + v„, i (x))

on T i ={1m z > ( ; ) ,  then F„, 1 i s  a  homeomorphism from H '; o n to  F„,i ( I I )  such
that F„,j ------F„,1 on L i . Moreover, because it holds that

2 (F i) :((ti„)"(v)+ 1 + —1 .(1)„,i )'(.0), and

2(F„, j ).., =-((u„, i )'(x)— 1 + — 1 (t)„,i )'(x)) on fri

H'i) converges to I as n tends to  + co for every j. Thus defining

F „=F „ o n  U, — G0 (S7 1
0 (trj)), and

i= 1

F „= (F „ ),(g ).(S i ,„)I — or„, i 0Si3 O og — I o n  g(SL'0(11:;))
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for every g e Go  a n d  every j ,  we have a sequence of quasiconformal self-mapping

P„ of U, compatible with G o such that lim K(F„, U ,)=1im K(F„, G0 (S5,1
0  (H )) )  =

n-oo i=i
I. Hence projecting F„ on Ro , we have a desired admissible sequence for {R„} 0 .

q. e. d.

Finally we also note the following lemma which can be obtained by a  slight
modification of the above proof of Theorem 1.

Lemma 4. L et R„ converge to  Ro  i n  T(R*) and a f inite set P  of puctures of
R* be giv en. T hen there is an  admissible sequence {f„} , f o r {R„} 0 such that
f„ is conformal on some neighbourhood V of PRo (on Ro  u PR )  f or every large n.

Pro o f . Let {f„}T, =, be any admissible sequence fo r {R„} 0 , and we use the
same notations as in the proof of Theorem 1 . Here we also take two sufficiently
large di  and d; (other than c'i) such that dj>d j > max {c'j, max v i (x)} for every j.

Li

And first on {c"; <y < d1 } we define

y —  c 'j F„,i (x +V —1 • y)= u„, Vi ( x ) +  —1• —• „ (d  — v„,i (x)) + v„, j (x)). ci

N ext le tting  Sj ,„v„.S7,'„(z)=z+e j , „ (  o r  equivalently, es ,„=u„, j (x+e j )—u„, j (x)),
set e(j, n)=e i ,„/ej (which is positive and converges to 1 as n tends to  + co by Lemma 3)
and define on {di < y<d'i }

F„, j (x+ — 1 • y )=  .
c
3
;  e (j, n )•x+   u„,j(x)+\/ —1. y.

Finally on {d'i  < y} we define

F„,j (z)=e(n, j)• z— \ / —1 • (e(n, j)— 1) • d;.
z

And using P,, 1 (z) instead of F„, ; (z) in the proof of Theorem 1, we can construct
an admissible sequence {h „ } ,  for IR'„I 0 such that every h„ is conformal on V"

which corresponds to G0(Si3(1m z> di' )). Here taking d.';  sufficiently large,

we may assume that h; 1 4;,, 2 ( V ') contains V" for every n. (This is possible, because
//,-; 1 ,1„,2 is weakly admissible for {S„} 0 with S„= R0 for every n, hence by Lemma 3
h; 10f„,2 ( r )  tends t o  V '. )  Thus we conclude that {f„,ch„} i  i s  an admissible se-
quence for {1?„} 0 such that every f,./7„ is conformal on  V". q. e. d.

Remark. It is very likely that any (P -) weak topology is equivalent to the
Teichmiiller topology, though the author has no  proof at present. Anyway, we
shall use essentially not the weak topology, but the Teichmiiller topology, and we
need only Lemmas 3 and 4 in the sequel.

§ 2 .  Continuity of holomorphic abelian differentials

Let R* be an arbitrary Riemann surface and for every R in T(R*) set
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AAR)= {0: 0 is a holomorphic abelian differential on R}.

Then we can consider the following basic kind of continuity of elements in A 1 (R)
on T(R*), which is in the sequel always equipped with the Teichmilller topology.

Definition 2. (, cf. [11] Definition 1). Let R„ converge to  R o i n  T(R*) and
0„ in  A i (R„) be given for every n. W e say that 0„ converges to  00  m etrically  if
there is an admissible sequence, or m ore generally, a  weakly admissible sequence
(with respect to a  given set P of punctures of R*) { f , }  f o rfor {R„} 0 such that

(*) lirn 0„4,1 °O 11E = 0
n  CO

for every compact set E in R o , where and in the sequel, 04 implies the pull-back of
o by f and II 0  x  implies the Dirichlet norm of 0 on a Borel set X on the surface where
o is defined.

Also we say that 0„ converges to 00  strongly  m etrically , if the set P is contained
in the set Po of all such punctures of Ro  that are poles of 00  and for every neighbour-
hood V of P o , it holds that

(.4') lim 110„4„— 0 06 0 - v  =O.

Next we set

CA,(R)= {0 e A l (R): 0 2  has closed trajectories (cf. [12] §1)} .

And for every 0 in CA l (R) and every simple closed curve c on R, we call the doubly
connected region in  R  swept o u t by all compact regular trajectories of 0 2 freely
homotopic to c on R the characteristic ring domain of  0 f o r c on R, whenever the
region is non-empty. A characteristic ring domain of 0 is called degenerate i f  it
is conformally equivalent to a  punctured disk (, and then 0 has a simple pole at
the puncture). Each characteristic ring domain of 0 determines the free homotopy
class of a simple closed curve separating two boundary components and oriented
so that the period of 0 along it is positive . We denote by L(0) the set of all free
homotopy classes determined by characteristic ring domains o f  0, and  by  L'(0)
the subset of L(0) consisting of all elements corresponding to degenerate characteristic
ring dom ains. A lso for every c in L(0), we denote by 14/,, 0 th e  characteristic ring
domain of 0 for c, and by m e s and  by ac ,0 the  modulus of 147„,0 and the period $0
of 0 along c (, which is positive from above), respectively. Here recall that m c ,, =
+ cc if and only if 14/, is degenerate and that 110 11R= 2 '  E a , 0 . mc ,9  (, which may

c e L (0 )  
be infinite). A lso  w e  set in, ,„= 0 if L(0).

Now we can define another kind of continuity o n  T(R*) for elements in the
above special subset CA,(R) of A,(R).

Definition 3. (, cf. [11] Definition 2). Let R„ converge to  R , in  T(R*) and 0„
in CA,(R„) be given for every n. We say that 0„ converges to 00  geom etrically  if
the following conditions holds.

1) For every c in  L(00 ), there is an N e  such that c belongs also to L(0„) for
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every n> N,..
2) It holds that lirn a c  „,, = a

'
,. 6 0 and lim in ,,  m c ,0 0 for every c  in L(00).' 

3) It h o ld s  th a t  lim ( E  a 2
0 ,60 • m ( ,,0 0 )=  E + G o, w here  L"=

ce L"c e !

L(0 0 ) — L'(0 0).
4 )  It holds that lim (110HIli„ —2 • E

C/D

. on  for every n.

2
M c „0 ) = O,  where X„=R„—

e e l. ' ( oo)

Here note that if L(00 ) is a finite set, which is the case at least if R* is of finite
type, then the above condition 3) follows from the condition 2). Also note tha t if
00 is square integrable, then L"= L(00 )  and the conditions 3) and 4) implies that
lim110„11,,, exists and is equal to 00 R„.

Now as relations between (strongly) metrical convergence and the geometrical
one, we can show the following theorems, which are the main results of this paper
and generalize [11] Corollary 1.

Theorem 2. L et R„ converge to R o  i n  T(R*) and 0„ in CA,(R„) be given f or
every n. If  00  is square integrable and 0„ converges to 00  geom etrically , then 0„
converges to 00  m etrically .

Theorem 3. Let {R,J 0  and {0,,},T= 0  be as in Theorem 2. Suppose that
1) the set L'(00 ) is a f inite set,
2) letting P  be the (f inite) se t o f  punctures of  R0  corresponding to L'(0 0 )

(, which are poles of 00 ), it holds that
 M O O M R O . - V

 is f inite for every neighbourhood V
of P (on R0 U P), and

3 ) f o r every c  in L(00 )  there is an  Ne  such that the period l c  0„ is real for
every n> 1‘10 .

Now if  8„ converges to 00  strongly  m etrically , then 0„ converges to 00  geo-
metrically.

Corollary 1. L et {R„} 0  an d  10„),',L0  b e  as  in  Theorem 2. I f  0 ,  is  square
integrable, the condition 3) in  Theorem 3 holds, and  0„ converges to 00  strongly
metrically , then 0„ converges to 00  geometrically.

Theorem 4. L et 1R„1 0  an d  f0„r„._, be as  in  Theorem 2. S uppose that the
condition 3) in Theorem 3 holds and that

4) lirn sup 110„Il x„ 110011 xc, < + Do,

where X„ are as in Definition 3. If 0„ converges to 00  m etrically , then 0„ converges
to 00  geometrically.

Corollary 2. L et 1R„1 0  an d  10„1,̀ °,_ , be as iii T heorem  2. 'Suppose that 00

is square integrable, the condition 3) in Theorem 3 holds, and

4') Jim sup 110 611R,, 110011R0 (<  + 00 ).

Now if  0„ converges to 00  m etrically , then 0„ converges to 00  geometrically .
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To prove theorems, first we note the following

Proposition 1. Suppose that R „ converges to R , in  T (R *) in the sense of the
(P-)weak topology  w ith any  given P, and 0„ in A i (R„) is given f o r ev ery  n. T hen
the following conditions are mutually equivalent.

1) 0„ converges to 0, m etrically .
2) For every weakly adm issible sequence {f„},"),_, f o r {R„} 0 ,  the condition

(*) in Definition 2 holds for every compact set E  in R0 .
3 )  For every n, let a„(z)dz be the lif t of 0„ on U , with respect to G„ in  r(G * )

corresponding to R„ (, i.e. the G„-invariant f orm  on U , corresponding to 0„), then
a„(z) converges to a 0 (z ) locally  uniforinly  on U,.

The proof of Proposition 1 is essentially the same as that of [10] II Proposition.
But for the sake of completeness, we include the proof.

P ro o f . First suppose that 0„ converges to 00  metrically with a weakly admissible
sequence {f,}„"_, for {R„} ,. Let F„ be the lift o f f,, on  U , with respect t o  G0 ,
then by Lemma 3, F„(z ) converges to  Fo (z)-a-  z  locally uniformly on U , and G„
converges t o  G , elementwise. Hence for every z0  e U ,, w e can find a positive
r= r (z o )  such that D(z o , r)=  —  z o i <r(z 0 ) }  is projected univalently in to  R „  for

every sufficiently large n . Here we can also assume that r(z 0 ) < ( 1 —  I z 0  I ) for every

z, e U, and r(z 0 ) - 1  is locally bounded on U , .  Now take a compact set E, in U,
arbitrarily, then E = D(z, r(z)) is also compact from above, and because F ; 1 (z )

zeEI
also converges to  F0

- 1 ( z ) .  z  uniformly on E', there is a compact set E 2  in U 1 which
contains F ; 1 ( E )  for every n. So we can take a compact set E in R, which contains
the projection of E , into R0 . And then for every sufficiently large n and every z,
in E , it holds that

"

l a n  ( z 0 ) 1 n r (
1
z 0 ) 2  .

, r (z o ) )  

la (z )1  2  d x d . v ) 2

1 <
n r (z o ) ( S r,V o(zo,r(z .)))

)1/2
lan(F.(z))1 2 •(1(Fn) 2 - 1(F,)±-12 )dxdy

1 1 110„91.„11 E
\ 1 2 n  . r ( z 0 )

(MO „° f 0 0
—  27r •r(z o ) 1E+ 110011E).

So from the assumption, we can see that {a„(z)}„,., are locally uniformly bounded
on U,, hence makes a normal family. Also, similarly, we have that for every z , eE 1 ,

1 lan(z,)—  a,(4)1 IIa,, — ao IlD(zo ,r)• r(z 0 )

1<  v i . r ( z o )  (11c1„— a„°F,JID (z o o.) +  an°Fn ' ((FII)2 1)11D(zo,r)

±  II an°F..(F„). —

Here the first and the second terms in the right hand side converge to 0 by Lemma 3
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and  [8] Theorem V-5-3. And the last term  is majorized b y  110„4,, — 00 11E . hence
also converges to 0 from the assumption. Thus we conclude that the condition 3)
holds.

Next suppose that the condition 3) holds, and let {f„} 1 be any weakly ad-
missible sequence for {R„} ,. Then for every compact set E of Ro we have that

n°.fn °  E

((F,.).- 011 D ±  an'F„ —  aolID ±  ancF„• (F„)ffIl

where D is a compact set in U, whose projection on Ro covers E. Hence by Lemma
3, [8] Theorem V-5-3 a n d  th e  locally uniform convergence of a ( z )  t o  a,(z),
we can conclude that the condition 2) h o ld s . And since it is trivial that 2) implies 1),
we have the equivalence, q. e. d.

In particular, the metrical convergence does not depend on  the  choice of a
weakly admissible sequence. Also the metrical convergence implies the following
weak convergence.

Corollary 3  ( c f .  [1 0] II Corollary 1). L e t {R„} ,  an d  {0„1,', , ,  b e  as in
Proposition I, and  suppose that 0„ converges to 00 m etrically . T hen  f o r every
1-cycle d on R* (, hence on every R in T(R*)), it holds that

lim 0 „ =  0 0 .
11—■ d d

Pro o f . As before, let G„ e T'(G*) correspond to R„, and a„(z)dz and F (z ) be the
lifts of 0„ with respect to  G„ and of f  w ith  respect to G o , respectively, for every n,
We need to show the assertion only in case that d  is a simple closed curve. And
let do E  G, be an element corresponding to d and set d„=(F„) * (d0 ), then by Lemma 3,
it holds that

lim  F„(z )= z  a n d  lim d„cF„(z)=d 0 ( z )  for every z e  U 1 .
u-co

Now fix zo i n  U , .  Then since a (z )  converges locally uniformly to  a 0 (z ) by
Proposition 1, we have that

a„.F„(zo) ,io(zo)
lira 0„=  lirn a„(z)dz= a0(z)dz = 0,.
n—■ h i n ( z o ) iz o i d

Thus we have the assertion. q. e. d.

Next the following lemma is crusial for the proof of Theorems.

Lemma 5 (cf. [11] Lemma 3 ). Let {R„},T= 0  and {0„}„c°_, be as in Proposition 1
abd {f, } 9„.=1 b e  an y  w eak ly  adm issible sequence f o r {R„},T= 0 . S uppose th at 0„

converges to 00 m etrically , OF, has a compact regular trajectory  c o  and On is real
co

f or every n .  Then for every neighbourhood V of co  in R o , there is an N such that 0 ,'
has a compact trajectory c„ f reely  homotopic to f„(c o ) on R„ whose preimage f; 1 (c„)
on R , is contained in V for every  n> N.
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P ro o f . Let G„ correspond to  Rn in  T(G*) and F„ be the lift o f f,, o n  U1 with
respect to G o fo r every n. Take a point p on co and  fix a lift zo o f  p with respect
to Go o n  U , .  And let U and Co be the connected components of the lifts of V and
co w ith  respect to G o o n  U , which contain zo , and consider the function u„(z)=
Im a„(t)clt o n  U  for every n. Then since Li, 0 on Co ,  there is a  (suitably

F(zo
small) positive e such that the component, say UE, of {z : luo (z)I <e } containing Co

is contained in U and the boundary of U, in U, consists of two analytic curves (whose
projections into R , are compact regular trajectories in  V freely homotopic to  co ).
Because F„(z) and u„(z) converge to F 0 (z) _ z and uo (z), respectively, locally uniformly
on U, (by Lemma 3 and the metrical convergence of ALT= , to  00 ), u„(F„(z)) also
converges to u 0 (z ) locally uniformly o n  U1 . Hence in particular, there is a n  N
such that we can find a  suitably long compact arc from F„(z o )  contained in  {z:
u„(F„(z))=0} n U , whose projection on Ro  covers a sim ple closed curve, say c„
in  V freely homotopic to  c, for every n> N .  Then from the construction, we can
conclude that c„=f„(c) is a compact regular trajectory of 02„ on R„ for every n> N,
which show the assertion, q. e. d.

Lemma 6. L e t  { R „ } ,  b e  a s  in Proposition 1, 0„  e CA 1(R ,,) converge to
00 e CA,(R o ) m etrically , and {f„} , be a weakly admissible sequence for {R„} 0 .
Then the set (Int n ( ,  w hich is called the  Carathéodory kernel

n=1m —  f l

of {f,V(W,,pn)} ,,) is coincident with Wc , 0 0  for every c in L(00 ).

P ro o f . First by Lemma 5, we can easily see that for every compact subset
E of 147 00 there is an M such that f '(W,,p n)  contains E for every n > M . So Int E
is contained in N =( I n t  ( f ,TAW,,on,))). And since E is arbitrary, we conclude

n=1 m= n
that Wc ,8„ is contained in N.

Next for every p and every compact neighbourhood Vp  of P in Ro  — Wc ,„., there
is a compact regular trajectory o f  06 intersecting with int V .  f o r  00 belongs to
Cil 1(R0 ), hence again by Lemma 5, there is an M  such that Vp —f; 1 ( Wc ,) is non-
empty for every n> M .  So we see that Vo —N is non-empty, and since Vp is arbitrary
and N  is open, we conclude that pe N .  Thus we have shown that N  is contained
in Wc,00.

Finally if N—W 00 were not empty, then there would be a non-trivial simple
closed curve c' in  N  which is not freely homotopic to  c. This is a contradiction,
forf„(c') should be contained in f o r  every sufficiently large n (from the definition
of N), hence freely homotopic to c. Thus we have that N =W o „.. q. e. d.

Lemma 7. Under the sam e assum ption as  in  Lemma 6 , w e further assume
that every i s  M-quasiconformal with some M, then it holds that

lim M c  =  M c , 0 0  for e v e ry  ce L(00 ).
n—■ co

M oreover f o r ev ery  c e L(00 ), se tting  H,,„(p)= b„. exp 2 7 r: /
0
— 1

 ( P

a ,. 0 p .  n
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on Wc A , w ith  a  p„ in a n d  a  re a l b„ such that 1-1 (W,,,o .)=W„={1<1z1<exp.
(27rtn,)} f o r  eve ry  n, th e  m a p p in g  (II 4„) - t  conve rges  loca lly  un ifo rm ly  to
(11,,0 r  on  Wo  up to a  rotation of Wo.

P r o o f .  First by Lemma 5, we can see that Jim inf me,00, for f n (E) is
contained in W , ,  for every compact set E in Wc.,0 0 and every n larger than an integer
depending o n  E , and lirn K(f,„ E)= 1 from  the  assum ption. And taking a sub-

sequence if  necessary, we may assume th a t lim  m ""  =in (which is not less than
'  

111 e0 ) . Then by Lemma 6, we can see (, cf. [8] Theorem 11-5-4) that
converges locally uniformly on W= {1 <1z1<exp (27rm)} to  a  conformal mapping,
say H ,  from W  onto W " ,„ And since 11,,0 .11, is  a  conformal mapping from W
onto Wo , we conclude that m H e n c e  t a k i n g  a  subsequence is unnecessary,
and (H,..„1„) - 1  converges locally uniformly on Wo  to  (H e ,0 ) - 1  up to a rotation of 14/0 .

q. e. d.

Here we state the following result which follows at once from Corollary 3 and
Lemmas 5 and 7.

Proposition 2. L e t R„ converge to R o  in  T(R*) and 0„ e CA,(R„) be given fo r
every n. Suppose that the cond ition  3) in  Theorem 3 h o ld s  fo r {0„1„°°_, and tha t
0„ converges to 00  m e trica lly , then  the conditions 1) and 2) of Defin ition 3 hold.

Finally we recall tha following extremal property of every 0 in CA,(R), which is
essentially due to J. A. Jenkins.

Proposition 3 ([5] Theorem B). Let R be a n  a rb it r a r y  R iem ann surface, 0 e
CA,(R) w ith  a f in ite  D ir ic h le t norm  be  g iven , a n d  b(z)Idz1 be any non-negative
measurable conformal density on R such that

b(z)Idz1>ae ,„

fo r  every ce L(0) and every curve a on R fre e ly  homotopic to c. Then it holds that

55b(z) 2 dxdy . a .m ( = ,
R ce L (0 ) 4 )

where z=x-F \ / —1. y is  a  generic  lo c a l p a ra m e te r. A n d  th e  equation  ho lds i f
and o n ly  if  b(z)Idz1-=101.

P r o o f .  Using the Cauchy-Schwarz' inequality, it is routine to show that

b(z) 2 dxdy
w,0

for every c in  L(0) and that the equality holds if and only if  b(z)Idzi 101. A n d
taking the sum for all c in L(0), we have the assertion. q. e. d.

Proof o f Theorem 2. Suppose that 00  is  square integrable and 0„ converges to
00 geometrically. Then as noted before, Hun 11 0 ,3 R„=  11°011 Ro, hence we may assume

"— K O
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that {110,,I1R n },T= 0  is a  bounded sequence.
Let a,,(z)dz be the lift of 0„ on U 1 with respect the group Gn in T 4 (G*) correspond-

ing to R„ for every n. Then similarly as the first part of the proof of Proposition 1,
we can see that {a„(z)} , are locally uniformly bounded on U 1 . Hence we can find
a  subsequence, which is also denoted by {a„(z)} ,, converging to a  holomorphic
function, say a(z), locally uniformly on U 1 . I t  is  c lea r  th a t a(z)dz is G o -invariant,
so let 0 e A1(R0 )  correspond to  a(z)dz, then 0 converges to  0 metrically by Prop-
osition 1 . Hence by Corollary 3 and the condition 2) of Definition 3, it holds that

0= lim ac,,n= 0,
c 11-.03 .

for every c in L(0 0 ).
Now we can show tha t 11011R0 (<  +  0 0 ). In fact, fix c in L(0 0 ) and let

E be any compact set in 14/,00 c R0 . Then, since 0„ converges to  0 metrically and
f ; ' (W e ,,, )  contains E for every sufficiently large n by Lemma 5, where ILIœn_, is
arbitrarily fixed admissible sequence for {R, } 0 , we have from the condition 2) of
Definition 3 that

11011i = urn Il enef,11 lirn K(f,„ E)•11 0 „q„(c)u-.00

< Jim II O,, lie . = lim 2.m c , 0 „
n-00

= 2•  m c ,o 0 = 1 1 0  o lliv, ,e.•

Because E  is arbitrarily, we have th a t 110 11 f v „,, o1 1 0 1)11 And taking the sum

for all c in L(00 ), we have the desired inequality.
Finally consider th e  density b(z)IdzI 7=- 101, th en  w e  have from  above that

f, b(z)ldz1>lf, 6 =a o n fo r every c in L(0 0 ) and every i7 freely homotopic to  c  on
R0 . Hence by Proposition 3, we have that b(z)lcizI - - .1 0 0 1 , which implies that 0 Oo,
for f c 0= f,. 0, for every c in L(00 ). Thus taking a  subsequence is unnecessary, and
we conclude that 0„ converges to 00 metrically. q. e. d.

Proof of  Theorems 3 and 4. We have already shown (Proposition 2) th a t if
0„ converges to  00 metrically and  {0„1̀ °„_, satisfies the condition 3) in  Theorem 3,
then the conditions 1) and 2) of Definition 3 are satisfied.

Now to prove Theorem 3, further suppose tha t 0„ converges to  00  strongly
metrically and 0, satisfies the conditions 1) and 2) in  Theorem 3 .  Here note that
P  in the condition 2) is the set of all punctures where 00 has a pole, which follows
from the condition 2 ). And take as a  V in the condition 2) such a  neighbourhood
of P that R0 — V contains X, and every component of the relative boundary of V is
a trajectory of eg (contained in R 0 —X 0 ). Also let { f „ } 1 b e  a  weakly admissible
sequence with respect to  P  such that lim 110 .°L — Oo II v =0 for every such a V as

" - .00

above, whose existence is assured by the strongly metrical convergence of On to  00 .
Then by Lemma 5 and the condition 1), we can see that, for arbitrarily fixed V such
as bove, there is a n  N  such that f ; 1 (X )  is contained in  R0 —V for every n>N.
Hence we have that
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110 „lix„ 1119„lif„(Ro -V)11 0 nInI1R0 -V.

for every n> N .  So we have that

lim sup 110„ x„ 0 0 Ro-V ,

which is finite by the condition 2. And since we can take V arbitrarily close to the
set R0 — X0 , we conclude that

Jim sup Ilea X„
.

11
°

011X0 ( <  +  
0
0 )

n
-
>00

that is, the condition 4) in Theorem 4 holds. Thus the proof of Theorem 3 is reduced
to that of Theorem 4.

Hence, turning to the proof of Theorem 4, suppose that the condition 4) in
Theorem 4 holds. Then we have from the first paragraph of this proof and the
Fatou's lemma that

n-Ko11° 0 1 X o l im  sup 110„Il 2 .lim sup E  a 2,  0
ceL,

,, •

> 2 lim inf E  4. • nt,o > 2 . E  lim inf 4 , 0„•nto ,o nc„
n , œ ceL " ceL"

=2. E oo •mc o =11 0 011xo •ceL"

Hence we have that

n-400 ceL" ceL"
lim E a c2,0„ mc ,0„=  E  ac ,00 •rne ,0„, and2

lim(110 .11x„ — 2 En-.00 ce L"

that is, the conditions 3) and 4) of Definition 3 are satisfied. Thus w e have shown
Theorems 3 and 4. q. e. d.

§ 3 .  Applications of main theorems

First let a 1-cycle c on R* (, which can be considered as a 1-cycle on R for every
R in T(R*),) be given and let cre ,R  be the period reproducing dif ferential for c on R
in the space F h(R) of all square integrable real harmonic differentials on R for every R
(, see for example, [2] Ch. V §12, where — *o-,,R  is called the reproducing differential
for c on R ) .  And set 0, ,R = 0 - c , R + NI —  l*o-

c ,R , then we know the following

Proposition 4 ([7] Theorem 5'). I f  R„ converges to  Ro  i n  T(R*), then
converges to Bo ,R 0  strongly  metrically  for every given c.

P ro o f . We will give an outline of another proof than that given in [7] (cf.
[6] 13. Proposition). First le t { f h },m,=, be an admissible sequence fo r {R„} hc°_0 .
Then from the well-known construction (, see [12] §2,) of *o-

c ,R  and the Minda's
theorem ([9] Theorem 4) we can see that ( * ac,R„)°f, — *7c ,R 0  has {0}-behavior and is
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exact, hence belongs to F„(R 0 ) for every n. So we conclude that for every n the
inner product

°c ,R o , * W c,R „ cf n — °c,120))Ro

= (OC,R  of„— ec,R .) A ( 0 , , R n o f ,
Ro

=  — 2 N/ 1 (ac,R„ °f „  ac ,R o ,  * ( ( * Cfc,R „) °f n  — * ac,R0))Ro 
= OE

Thus by the standard argument (,cf. the proof of [7] Theorem 1 or [6] Theorem 3)
we can show that for every n

Oc  R n
of „  — 0 „R o ll (21c„/(1—k„)).

where k„=(1— K(f„, R 0 ))/(1+K (f , R 0 )). A nd since 110 c , R o l l R o is  f in ite , w e  have
the assertion. q. e. d.

Remark. More refined results on  the  distortion estimates and the variation
formulas for various harmonic and holomorphic differentials under quasiconformal
deformations are investigated by Y. Kusunoki, F. Maitani and H . Shiga.

Here recall that for every R E T(R*) and every 1-cycle c, Oc j z  belongs to CA ,(R)
whenever Oc , R  0 ([12] Proposition 2). And we can show the following

Theorem 5 (cf . [I l ]  Proposition). Let R„ converge to  R o  i n  T(R *) and a
1-cycle c such that 0,, R 0 #0 be giv en. T hen 0 c , Rn converges to 0 , , R0

 geometrically.

P ro o f . First recall that for every R e T(R *) and every 1-cycle c , the period

1d  

*
C c  R  is equal to the algebraic intersection number c x d for every given 1-cycle d.

So if a simple closed curve d belongs to L(Bc ,, o), then it holds that

* 0 " .  R  =C X d = *Gr =0,
d " d

eR 
°

hence the condition 3) in  Theorem 3 h o ld s . A nd b e c a u se  0c,R„ =2 0- c,R„

converegs to MOc,Ro I 0 = 2 Sc ce,R. by Proposition 4 and Corollary 3, the assertion
follows from Proposition 4 and Corollary 1 or 2. q. e. d.

Next suppose that R * admits the Green's functions (, i.e. R*E4 OG ). And for
every R E T(R*) and every puncture p of R , set

Op,R — . ( d g ( . ,  p ) + - 1 P)),

where g(., p ) is the Green's function on Ru { p}  with the pole p, and call Op ,R  the
fundam ental dif ferential for p on R.

Then it is clear that 0 "  belongs to the class A i S o (Ru {p}) defined in  [12] §2,
and since 1m (/)p ,R  i s  exact, we see from [12] Proposition 1 th a t O p , R  belongs to
C A ,(R ). Also we can show the following
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Proposition 5. Let R * 1 3 G and f ix  a puncture p* of R * .  A lso let R„ converge
to R o  in  T(R *) and p„ be the puncture of R„ corresponding to p* for every n. Then

p „ , Rn converges to Op o ,R „ strongly metrically .

P ro o f . L et un I ,  a n d  V  be a s  in  Lemma 4 with P =  { p*} , then for every
large n, p„,R.4n — Opo,R0 i s  holomorphic on V u { P o } »  h e n c e  square integrable
closed differential o n  R0 u {p 0 } . Also from the  definition it is easily seen that
Tm (Op..R.In — Opo.R0) has {0}-behavior and is exact, hence belongs to r e o (R o  U {Po}).
Thus we can show as in the proof of Proposition 4 that

Opo,R. Ro ( 2 k„/( 1 —10) 110 Ro— V

(, cf. [6] Theorem 5), from which the assertion follows. q. e. d.

Theorem 6. Under the same assumption as in Proposition 5, 0 , , , , R ,  converges
to Op o d z o  geometrically.

Pro o f . The conditions 1) and 2) in  Theorem 3 are clearly satisfied from the
definition, and the condition 3) in Theorem 3 also holds, for 1m 01, ,zn is  exact for
every n. Hence the assertion follows from Proposition 5 and Theorem 3. q . e . d .

Finally suppose that R * belongs to the class OG . Then for every R e T(R*)
and every pair { p,, p 2 } of punctures of R , there is a  harmonic function g (p ; p i , p 2 )
on R  uniquely determined up to constants by the following conditions;

(a) g(p; p i , p 2 )  is bounded outside any neighbourhood o f {p,, p2 } (o n  RU
{Pi, P2D, and

(b) g(z i ; p i , p2 ) — (-1)i • log I zi l is harm onic in  a  neighbourhood of z.= O,
where z i =z i (p )  i s  a  lo c a l param eter near p i  w ith  z ( p ) =O.

These functions g(p; p i , 132 )  are sometimes called the Green's function on the
parabolic surface R  with the pair of poles p , and p2 • N o w  w e  set

Opi,p2,R — \
 2

-
7E

1 ( d 9 ( . ; Pi, P2)+- — 1 * dg(• ;  P i ,  P2))

and call 4 p p 2 , R
 also the fundamental dif ferential for the pair {p i , p 2 } on R .  Recall

that Op i ,p "  belongs to C A (R ) again by [12] Proposition 1. And by the same
argument as above, we show the following

Proposition 6. L et R* e 0 G , and f ix  a pair { pf , A l  of punctures of R * .  Also
let R„ converge to R , in T (R *) and p  be the puncture of R„ corresponding to p l
f or every n and each j. Then Op 1 , „,,,2 ,,,,R „ converges to ab

• P I , O .P 2 ,0 ,R 0  strongly  m etri-
cally.

Theorem 7. U nder th e  sam e assum ption as in  Proposition  6, Op 1 2 R n

converges to 45 geometrically.

Remark. We can show again by the same argument as above that such results
as Proposition 5 (or 6) and Theorem 6 (or 7) for every fixed linear combination of
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a finite number of the fundamental differentials for given punctures (or pairs of
two punctures) of R* with real coefficients.
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