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Infinitesimal Zoll deformations on spheres
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1. A Riemannian metric on S " (n is called a  Z oll m etric when all the
geodesics are closed and have a common length 27r. Let g , be a  one-parameter
family of Zoll metrics with g ,  being the standard SO(n+1)-invariant Zoll metric.
Then it is known that h = 0 9 ,1 8 1 I t= o  satisfies

*)
J o  

11(1(s), * N S  =0

for each geodesic y(s) of g , parametrized by its arclength s, where 1)(s) is its tangent
vector.

We say a symmetric 2-form h on S" is an infinitesimal Zoll deformation (IZD)
when h satisfies *) for every geodesic of go . The space of IZ D on 52 is classically
known by Funk [3]. In this paper, we give a description of the space of IZ D on
S" (n 3). The result will be used to discuss integrability of some IZ D in a forth-
coming paper.

2. L et S" = R " ';  lx12 = 1 }  b e  the standard sphere em bedded in the
Euclidean space. The induced metric g ,  is the standard Zoll metric on S " .  The
special orthogonal group S O(n+1) acts transitively and isometrically on (S", g 0 ).
We denote the complexified spaces of vector fields and symmetric covariant 2-tensor
fields on S" by X(S") and .99 2 ( 5 )  respectively, which are naturally considered as
SO(n+1)-modules. The group S O(n+1) acts transitively also on US ", the unit
tangent sphere bundle of S", and on GeodS", the set of oriented great circles
(geodesics), which is in  reality an  oriented Grassmann manifold. The space of
C-valued functions on US" and on GeodS", denoted by .F (U S") and F(GeodS")
respectively, are SO(n+1)-modules in a natural manner. We fix SO(n+1)-invariant
Hermitian inner product on X (S"), 9 2 (5"), . (US") an d  .F(GeodS") a s  in  [6].
We introduce a topology in .f (S "), etc., by the inner product.

W e  d e f in e  S O (n+1)-hom om orphism s L : '(S ")— ° 2 (S"), A:
.F(GeodS"), 9 ' 2 (S")—>F(US") and P: F(US")—>.F(GeodS") by

L (X )=..rx g o  ( X  e X(S")),
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i(h )(x )=h(x , x ) (h E 6 2 (S"), X E U S ),

P(f)(y)=(2.7 ) - ' • 1 2: f (11(s))ds (f e.F(US "), y e GeodS"),

A = P.i.

A real element h in 9 9 2 (S") is an IZD if and only if h is contained in Ker A .  If  h is
real and contained in Im L , i.e., It =..rx g o for some real vector field X , then h  is a
derivative of a trivial one-parameter family of Zoll metrics g,= (p t *g 0 ,  where cp, is a
one-parameter family of diffeomorphisms generated by X .  It means Im L is included
in Ker A .  Conversely, if g r is a trivial deformation, the derivative is in Im L . W e
call a real element in Im L a triv ial IZD.

In  th is section, we shall describe SO(n+1)-m odules Ker A and Im L for S"
(n _ 3), by decomposing them into irreducible S O(n +1)-m odules. The detail of
each irreducible component will be given in the next section.

Taking Cartesian coordinates {x 1 , x 2 ,..., x„, 1 } in R"+', we consider SO(n +1)
as a matric group. We set in = [(n  +1)/2]. We fix a Cartan subalgebra t of the
Lie algebra of SO(n +1) as follows.

i ={R(Pt,.—  14); fli e RI ,

 

R (Pi)

0

   

R(pi,..., p„,)=

[0 —
R (u)=

p 0

 

(We put 0 at (*) when n is even.)
We define elements Ai (i = 1, m) in t* by

At(R02 1, • • • , / )) = — 1 111
 (i=1 , 2,..., in).

They form a basis of t*. We fix a lexicographical order in ERA ; t *  such that

A finite dimentional SO(n+1)-module over C  decomposes into weight spaces,
i.e., irreducible (1-dimensional) t-modules, and the t-action on each weight space is
specified by the weight, an element in t*  which is a linear combination of 21 with
integral coefficients. A n  irreducible S O(n+1)-m odule V  is characterized by its
highest weight, the weight of maximal order in the weights of V  We denote the
irreducible SO(n+1)-module with the highest weight A  by V(A).

We denote by SO(n) the isotropy subgroup of SO(n +1) a t o=(0,..., 0, 1) e S".
We fix a Cartan subalgebra t' of the Lie algebra of SO(n) as follows.
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t (n: even),
t'

0); p i  R} (n: odd).

Since f ct, we may consider A, to  be  an  element o f  t '* .  W e can talk about the
highest weight of an irreducible SO(n)-module and can represent it as a linear com-
bination of 2 ; (excluding 2,, if n is odd) with integral coefficients.

The complexified tangent space at o, (1 0 S ")', is  a n  irreducible SO(n)-module
with the  highest weight 1, and  the  symmetric tensor product o f  its dual space
S2 (T0 S")*" is a  sum  of two irreducible S000-modules with the highest weights 0
and 22 1 .

W e can decompose th e  SO(n +0-m odule X (S ") into irreducible SO(n+ 1)-
modules by examining which irreducible SO(n+1)-m odule contains a n  irreducible
SO(n)-module isomorphic to (T„S")' (cf. [6] Proposition 2.4, 2.5 and 3.2).  Using
the well-known branching law for SO(n + 1)D SO(n) (see Boerner [2]). get we the
following proposition.

Proposition 2.1. T he S O (n +1 )-m o d u le  X (S ) (n 3 ) includes a d e n se  sub-
module isomorphic to the following.

V (la i ) C), E,T, o  V(k2 1 +(A i + 2 2 ))

(0EZ°=0 MAI +(Ai — 22)) when n=3).

Notice that Ker L  is the complexified space o f Killing vector fields. It is an
irreducible SO(n+1)-module with the highest weight 2, +1 2 when n 4 and is a sum
of two irreducible SO(4)-modules with the highest weights A i  +2 2 and  A, —12 when
n = 3 .  The decomposition of 1m L  is given as follows (cf. [6] Proposition 2.7 and
2.3).

Proposition 2.2. The SO(n+1)-module 1m L  ( n  3) includes a dense submodu le
M, isomorphic to the following.

1/(k2,) 0 E c
k
°
= 1  V(k2 1 +(Ai + 1 2))

E f= i V(kAl ±(A l — 12)) w hen n=3).

In the same way, we can decompose ,99 2 (S").

Proposition 2.3. The SO(n+1)-m odule 99 2 (S") (n 3) includes a dense  sub-
module isomorphic to the following.

vudoeL7=2

e Ez°_, v(k)., +(1,+1 2 ))0 EiT=0 V(k1 1+ 2 (li +
1
2))

(0 Ef=1 M A I -22))0 EZ°=. v(k1 1 +2(1 1 —12 )) when n = 3).

To determine the decomposition of Ker A , we first study the SO(n+1)-module
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Let a be the antipodal mapping on S", u(x)= — x(x e S" ) The quotient
manifold of S" by the involution a is a  real projective space P  (R ).  We consider

.(P"(R)) [..992 (P "(R ))] as a subspace of Y - (S") [9' 2 (S")] consisting of c*-invariant
functions [symmetric 2-forms]. The differential a *  defines an involution on US".
The quotient manifold of US" by a ,  is U Pn(R), the unit tangent sphere bundle of
P " (R ).  We consider (U P"(R)) a s  a  subspace of . (US") consisting o f  (a,,,)*-
invariant functions. We have an identity i(o-*h)=(o-

* )*i(h)(h E ,9"2 (S ")).

We set o' = (1, 0,..., 0) e S " and vo = (0, 1, 0,..., 0) e TS", where we identified
To S" with the hyperplane {x, =0} in R" +1 . Let SO(n — 1) be the isotropy subgroup
at llo E US" of SO(n + 1) acting on US".

Proposition 2.4. Let V(A) be an irreducible SO(n+1)-module w ith the highest
w eight A . W e denote by  T(A ) the sum  of  SO(n+1)-submodules of . (US") which
are isomorphic to V (A ).

a) T(A )0 {0}  if  and only  if  A = k i 2 i + k 2 (2,+ 2 2 ) (or k 1 2 1 +k 2 (2 1 -112 )  when
n=3) f or non-negative integers k , and k 2 .

b) If  k 1 +k 2  is odd, then F(A )c Ker P
c) If  k 1 +k 2  is even, then T(A )c ,F(UP"(R)).

P ro o f . We first notice that an SO(n+1)-submodule of .. "(US") isomorphic to
V(A) is specified by the SO(n-1)-invariant elements in  V(A ) (cf. [6], the argument
preceding Definition 2.12).

Neglecting the SO(2)-part in the branching law for SO(n + 1)D SO(2) x SO(n —1)
given in  [5 ], we obtain the branching law for SO(n + 1)D SO(n — 1). This enables
us to determine which irreducible SO(n+1)-module includes an irreducible SO(n — 1)-
submodule with the highest weight 0, i.e., a non-zero S O(n-1)-invariant element,
thus we obtain the part a).

If k, + k 2  is odd, we have no SO(2) x SO(n-1)-invariant element in V(A), which
can be seen by the branching law for SO(n +1)D SO(2) x SO(n — 1). Therefore T(A)
is included in KerP (cf. [6 ] Lemma 2.4).

If k 1 +k 2  is even, we can see that every S O(n-1)-invariant element in  V(A) is
also invariant under {Id, — Id} x SO(n —1) (= SO(2) x SO(n —1)), which is the isot-
ropy subgroup at [vo ] e U Pn(R) of SO(n + 1) acting on U P"(R ). Thus th e  cor-
responding subspace 1(A) is included in .F(U P"(R)).

Proposition 2.5. T he S O(n+1)-m odule Ker A  includes a d e n se  submodule
M 0 e M 1 OM 2 , where Mo is  as given in Proposition 2.2 and

,T= ,  V ((2k +1)4) ,

My ,T= 0  V ((2k+ + 2  +2 2))

E f= 0  V ((2k+1)2,+2(2,—  2 2 )) w hen n=3).

Pro o f . L e t  Veven[Vodd] b e  a n  irreducible SO(n +1)-submodule o f  Y 2(S")
isom orph ic  to  V(k + k2(2 1 ± 2 2)) ( o r  V(kiAi+ k2(2 1—  22) )  w h e n  n = 3 )  with
k1 + k2 e v e n  [o d d ] . B y  Proposition 2 .4  c), V e v e n  is  a  subspace o f  992(P"(R)).
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But every element in .99 2 (P"(R )) n Ker A is contained in Im L by Michel [4]. Thus
a module V e v  e n  is included in Ker A if and only if it is included in M o . On the other
hand, Proposition 2.4 b) implys tha t a m odule V ."  is always included in  Ker A.
The sum of V." which are not included in M , is written as M 1 M 2 .

3. We give here an explicit description of M , and M y .  Let H k  ( k  0) be the
space of harmonic homogeneous polynomials of degree k on R" 1 . R estric ting  the
elements on S", we consider H k  to  be a  subspace of .F (S " ) . It is know n that Hk

is an irreducible SO(n+1)-submodule of ...F(S") with the highest weight la,. We
define submodules Vo ,, and Vi , k of .5"2 (S") by

VO,k = {Hessf ; fE ,

v1,k= If . go; f

which are SO(n+1)-submodules isomorphic to V(k 1)  except V0 ,0 (= {O}). Since
Hessf=(1/2)

.  2 ( g r a d f ) g 0 ,  
Vo , k  i s  included in  Im L, and  hence coincides with the

submodule of Mo  isomorphic to V(k1 1) ( k 1 ) .  If f  is an odd function on S" with
respect to o-*, then f. go is an element of Ker A .  Thus, if k is odd, then VIA is included
in  Ker A .  W e have V0 ,1 = V1 ,1 a n d  V o ,2 k + l n 17 1, 2 k +  =  {0} when k  1, although
V1,2k + 1 is  n o t  orthogonal t o  I/0,2k +I. It fo llow s tha t a  submodule o f  Ker A
isom orphic to V((2k + 1)).,) is always included i n  V0,2k+ 1 ± V1,2k + 1. Therefore
M , is essentially the sum of V ia k +  (k  1 ).

Proposition 3 . 1 .  A  real elem ent in  M , is  an IZD  of conform al type f. go

( f :  a real odd function on S") up to a triavial IZD.

Remark. W hen n=2 , IZD  o f conformal type are only possible non-trivial
IZD.

L et V 2,2k+  1 b e  the  irreducible SO(n +1)-submodule o f  M y  w ith the  highest
weight (2k +1)A, +2  +,12 )  when o r be the sum of two irreducible SO(4)-
submodules with the highest weights (2k+ 1)),, +2  + 2 ) and (2k +1)2, +2(A, — A2)

when n = 3 . Notice that the real or imaginary part of an element in V 2 2 k + l  is again
contained in I/2 ,2k +  1 ,

Let r be a curvature-like 4-tensor on 1?"+ 1 ;

r ijk l
=

r i f i k ,

r i jk l+ r jk i l+ r k u t
= 0

.

We say r is Ricci-null when ErLF1 r 11 = O. W e denote by K y  the space of Ricci-null
curvature-like tensors, which is a n  irreducible SO(n+1)-module with the  highest
weight 2(2., +.1.2 ) when n and is a  sum of two irreducible SO(4)-modules with
the highest weights 2(2. 1 +,12 ) and 20. 1 —.12 ) when n=3.

A symmetric 2-form rumxixkdxidx, for a curvature-like tensor r can be
represented as I xj4  n*0 (r) by an element 0(r) of .9"2 (S"), where it i s  a radial pro-
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jection from  Rn + 1  {O }  t o  S n .  T he m ap  0: ri-0 (r) i s  an injective SO(n+1)-
homomorphism from the space of curvature-like tensors to 9'2 (S9 and 0(r) is even
with respect to a*.

We set z i = x ,  + ,/ - 1 x 2 and  z 2 = x 3 +.,/ —1x4 . Then a  maximal vector, i.e.,
a non-zero element in the weight space of the highest weight, in Hk is given by ( z 1 )k.
A maximal vector in 0(K 2 ) is given by

u=(z,) 2 dz2 dz2 +(z 2 )2 dz,dz 1 —z,z 2 (dz 1dz2 +dz 2 dz 1 ),

and when n=3, another maximal vector is given by

u' =(z ,) 2 df 2 d22 + (2-
2 ) 2 d z i dz , — z ,[22 (dz ,d22 + d22 d z  .

When n the SO(n+1)-submodule of .96.2 (S") generated by (z 1 ) 2 k + 1 u  (lc is
an irreducible SO(n+1)-submodule with the highest weight (2k+ + 2 0 . ,  + . 1 2 ) and
is included in Ker A  since it consists of odd 2-forms with respect to a*. Therefore
it coincides with V2 , 2k+ 1. When n=3, the SO(4)-submodule of .99 2 (S3 ) generated
by (z 1)2 k±lu and  (z 02k+lu, coincides with V2 , 2k+1. H ence th e  following pro-
position is obvious.

Proposition 3 .2 .  A  real element in M 2  can be represented as E f a •O(r0 ), where
f a are  real odd functions on S" and ra  are  real Ricci-null curvature-like tensors.

Remark. When f  is an odd function on Sn and r is a curvature-like tensor on
Rn + 1 , the  symmetric 2-form f A O  is always contained in K er A .  W hen r  i s  a
curvature tensor of constan t sectional curvature 1, i.e., r1 f i a =6 ik 5i i -5 n bi k ,  the
image 0(r) is the standard metric go .
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