Infinitesimal Zoll deformations on spheres

By
Chiaki Tsukamoto

(Received Nov. 15, 1982)

1. A Riemannian metric on $S^{n}(n \geqq 2)$ is called a Zoll metric when all the geodesics are closed and have a common length 2π. Let g_{t} be a one-parameter family of Zoll metrics with g_{0} being the standard $\operatorname{SO}(n+1)$-invariant Zoll metric. Then it is known that $h=\partial g_{t} /\left.\partial t\right|_{t=0}$ satisfies

$$
\int_{0}^{2 \pi} h(\dot{\gamma}(s), \dot{\gamma}(s)) d s=0
$$

for each geodesic $\gamma(s)$ of g_{0} parametrized by its arclength s, where $\dot{\gamma}(s)$ is its tangent vector.

We say a symmetric 2-form h on S^{n} is an infinitesimal Zoll deformation (IZD) when h satisfies $*$) for every geodesic of g_{0}. The space of $I Z D$ on S^{2} is classically known by Funk [3]. In this paper, we give a description of the space of $I Z D$ on $S^{n}(n \geqq 3)$. The result will be used to discuss integrability of some $I Z D$ in a forthcoming paper.
2. Let $S^{n}=\left\{x \in \boldsymbol{R}^{n+1} ;|x|^{2}=1\right\}$ be the standard sphere embedded in the Euclidean space. The induced metric g_{0} is the standard Zoll metric on S^{n}. The special orthogonal group $S O(n+1)$ acts transitively and isometrically on (S^{n}, g_{0}). We denote the complexified spaces of vector fields and symmetric covariant 2 -tensor fields on S^{n} by $\mathscr{X}\left(S^{n}\right)$ and $\mathscr{S}^{2}\left(S^{n}\right)$ respectively, which are naturally considered as $S O(n+1)$-modules. The group $S O(n+1)$ acts transitively also on $U S^{n}$, the unit tangent sphere bundle of S^{n}, and on Geod S^{n}, the set of oriented great circles (geodesics), which is in reality an oriented Grassmann manifold. The space of \boldsymbol{C}-valued functions on $U S^{n}$ and on Geod S^{n}, denoted by $\mathscr{F}\left(U S^{n}\right)$ and $\mathscr{F}\left(\operatorname{Geod} S^{n}\right)$ respectively, are $S O(n+1)$-modules in a natural manner. We fix $S O(n+1)$-invariant Hermitian inner product on $\mathscr{X}\left(S^{n}\right), \mathscr{S}^{2}\left(S^{n}\right), \mathscr{F}\left(U S^{n}\right)$ and $\mathscr{F}\left(\operatorname{Geod} S^{n}\right)$ as in [6]. We introduce a topology in $\mathscr{X}\left(S^{n}\right)$, etc., by the inner product.

We define $\quad S O(n+1)$-homomorphisms $\quad L: \mathscr{X}\left(S^{n}\right) \rightarrow \mathscr{S}^{2}\left(S^{n}\right), \quad A: \mathscr{S}^{2}\left(S^{n}\right) \rightarrow$ $\mathscr{F}\left(\operatorname{Geod} S^{n}\right), i: \mathscr{S}^{2}\left(S^{n}\right) \rightarrow \mathscr{F}\left(U S^{n}\right)$ and $P: \mathscr{F}\left(U S^{n}\right) \rightarrow \mathscr{F}\left(G e o d S^{n}\right)$ by

$$
L(X)=\mathscr{L}_{X} g_{0} \quad\left(X \in \mathscr{X}\left(S^{n}\right)\right),
$$

$$
\begin{aligned}
& i(h)(x)=h(x, x) \quad\left(h \in \mathscr{S}^{2}\left(S^{n}\right), x \in U S^{n}\right) \\
& P(f)(\gamma)=(2 \pi)^{-1} \cdot \int_{0}^{2 \pi} f(\dot{\gamma}(s)) d s \quad\left(f \in \mathscr{F}\left(U S^{n}\right), \gamma \in \operatorname{Geod} S^{n}\right), \\
& A=P \circ i .
\end{aligned}
$$

A real element h in $\mathscr{S}^{2}\left(S^{n}\right)$ is an IZD if and only if h is contained in $\operatorname{Ker} A$. If h is real and contained in $\operatorname{Im} L$, i.e., $h=\mathscr{L}_{x} g_{0}$ for some real vector field X, then h is a derivative of a trivial one-parameter family of Zoll metrics $g_{t}=\varphi_{t}^{*} g_{0}$, where φ_{t} is a one-parameter family of diffeomorphisms generated by X. It means $\operatorname{Im} L$ is included in Ker A. Conversely, if g_{t} is a trivial deformation, the derivative is in $\operatorname{Im} L$. We call a real element in $\operatorname{Im} L$ a trivial IZD.

In this section, we shall describe $\operatorname{SO}(n+1)$-modules $\operatorname{Ker} A$ and $\operatorname{Im} L$ for S^{n} ($n \geqq 3$), by decomposing them into irreducible $S O(n+1)$-modules. The detail of each irreducible component will be given in the next section.

Taking Cartesian coordinates $\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$ in \boldsymbol{R}^{n+1}, we consider $\operatorname{SO}(n+1)$ as a matric group. We set $m=[(n+1) / 2]$. We fix a Cartan subalgebra t of the Lie algebra of $S O(n+1)$ as follows.

$$
\begin{aligned}
\mathrm{t}= & \left\{R\left(\mu_{1}, \ldots, \mu_{m}\right) ; \mu_{i} \in \boldsymbol{R}\right\}, \\
& R\left(\mu_{1}, \ldots, \mu_{m}\right)=\left(\begin{array}{rr}
R\left(\mu_{1}\right) & 0 \\
\ldots & \\
0 & R\left(\mu_{m}\right) \\
0 & (*)
\end{array}\right), \\
& R(\mu)=\left(\begin{array}{rr}
0 & -\mu \\
\mu & 0
\end{array}\right) .
\end{aligned}
$$

(We put 0 at (*) when n is even.)
We define elements $\lambda_{i}(i=1,2, \ldots, m)$ in t^{*} by

$$
\lambda_{i}\left(R\left(\mu_{1}, \ldots, \mu_{m}\right)\right)=\sqrt{-1} \mu_{i} \quad(i=1,2, \ldots, m) .
$$

They form a basis of t^{*}. We fix a lexicographical order in $\sum R \lambda_{i} \subset t^{*}$ such that $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}$.

A finite dimentional $S O(n+1)$-module over C decomposes into weight spaces, i.e., irreducible (1 -dimensional) t-modules, and the t-action on each weight space is specified by the weight, an element in t^{*} which is a linear combination of λ_{i} with integral coefficients. An irreducible $S O(n+1)$-module V is characterized by its highest weight, the weight of maximal order in the weights of V. We denote the irreducible $S O(n+1)$-module with the highest weight Λ by $V(\Lambda)$.

We denote by $S O(n)$ the isotropy subgroup of $S O(n+1)$ at $o=(0, \ldots, 0,1) \in S^{n}$. We fix a Cartan subalgebra t^{\prime} of the Lie algebra of $S O(n)$ as follows.

$$
\mathfrak{t}^{\prime}= \begin{cases}\mathfrak{t} & (n: \text { even }) \\ \left\{R\left(\mu_{1}, \ldots, \mu_{m-1}, 0\right) ; \mu_{i} \in \boldsymbol{R}\right\} & (n: \text { odd }) .\end{cases}
$$

Since $\mathrm{t}^{\prime} \subseteq \mathrm{t}$, we may consider λ_{i} to be an element of $\mathrm{t}^{\prime *}$. We can talk about the highest weight of an irreducible $S O(n)$-module and can represent it as a linear combination of λ_{i} (excluding λ_{m} if n is odd) with integral coefficients.

The complexified tangent space at $o,\left(T_{o} S^{n}\right)^{c}$, is an irreducible $S O(n)$-module with the highest weight λ_{1} and the symmetric tensor product of its dual space $\mathrm{S}^{2}\left(T_{o} S^{n}\right)^{* c}$ is a sum of two irreducible $S O(n)$-modules with the highest weights 0 and $2 \lambda_{1}$.

We can decompose the $S O(n+1)$-module $X\left(S^{n}\right)$ into irreducible $S O(n+1)$ modules by examining which irreducible $S O(n+1)$-module contains an irreducible $S O(n)$-module isomorphic to ($\left.T_{o} S^{n}\right)^{r}$ (cf. [6] Proposition 2.4, 2.5 and 3.2). Using the well-known branching law for $S O(n+1) \supset S O(n)$ (see Boerner [2]), get we the following proposition.

Proposition 2.1. The $S O(n+1)$-module $\mathscr{X}\left(S^{n}\right)(n \geqq 3)$ includes a dense submodule isomorphic to the following.

$$
\begin{aligned}
\sum_{k=1}^{\infty} V\left(k \lambda_{1}\right) & \oplus \sum_{k=0}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}+\lambda_{2}\right)\right) \\
& \left(\oplus \sum_{k=0}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}-\lambda_{2}\right)\right) \text { when } n=3\right)
\end{aligned}
$$

Notice that $\operatorname{Ker} L$ is the complexified space of Killing vector fields. It is an irreducible $S O(n+1)$-module with the highest weight $\lambda_{1}+\lambda_{2}$ when $n \geqq 4$ and is a sum of two irreducible $S O(4)$-modules with the highest weights $\lambda_{1}+\lambda_{2}$ and $\lambda_{1}-\lambda_{2}$ when $n=3$. The decomposition of $\operatorname{Im} L$ is given as follows (cf. [6] Proposition 2.7 and 2.3).

Proposition 2.2. The $S O(n+1)$-module $\operatorname{Im} L(n \geqq 3)$ includes a dense submodule M_{0} isomorphic to the following.

$$
\begin{aligned}
\sum_{k=1}^{\infty} V\left(k \lambda_{1}\right) & \oplus \sum_{k=1}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}+\lambda_{2}\right)\right) \\
& \left(\oplus \sum_{k=1}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}-\lambda_{2}\right)\right) \text { when } n=3\right)
\end{aligned}
$$

In the same way, we can decompose $\mathscr{S}^{2}\left(S^{n}\right)$.
Proposition 2.3. The $S O(n+1)$-module $\mathscr{S}^{2}\left(S^{n}\right)(n \geqq 3)$ includes a dense submodule isomorphic to the following.

$$
\begin{aligned}
& \sum_{k=0}^{\infty} V\left(k \lambda_{1}\right) \oplus \sum_{k=2}^{\infty} V\left(k \lambda_{1}\right) \\
& \quad \oplus \sum_{k=1}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}+\lambda_{2}\right)\right) \oplus \sum_{k=0}^{\infty} V\left(k \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)\right) \\
& \quad\left(\oplus \sum_{k=1}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}-\lambda_{2}\right)\right) \oplus \sum_{k=0}^{\infty} V\left(k \lambda_{1}+2\left(\lambda_{1}-\lambda_{2}\right)\right) \text { when } n=3\right) .
\end{aligned}
$$

To determine the decomposition of $\operatorname{Ker} A$, we first study the $S O(n+1)$-module $\mathscr{F}\left(U S^{n}\right)$.

Let σ be the antipodal mapping on $S^{n}, \sigma(x)=-x\left(x \in S^{n} \subset \boldsymbol{R}^{n+1}\right)$. The quotient manifold of S^{n} by the involution σ is a real projective space $P^{n}(\boldsymbol{R})$. We consider $\mathscr{F}\left(P^{n}(\boldsymbol{R})\right)\left[\mathscr{S}^{2}\left(P^{n}(\boldsymbol{R})\right)\right]$ as a subspace of $\mathscr{F}\left(S^{n}\right)\left[\mathscr{S}^{2}\left(S^{n}\right)\right]$ consisting of σ^{*}-invariant functions [symmetric 2-forms]. The differential σ_{*} defines an involution on $U S^{n}$. The quotient manifold of $U S^{n}$ by σ_{*} is $U P^{n}(\boldsymbol{R})$, the unit tangent sphere bundle of $P^{n}(\boldsymbol{R})$. We consider $\mathscr{F}\left(U P^{n}(\boldsymbol{R})\right)$ as a subspace of $\mathscr{F}\left(U S^{n}\right)$ consisting of $\left(\sigma_{*}\right)^{*}$ invariant functions. We have an identity $i\left(\sigma^{*} h\right)=\left(\sigma_{*}\right)^{*} i(h)\left(h \in \mathscr{S}^{2}\left(S^{n}\right)\right)$.

We set $o^{\prime}=(1,0, \ldots, 0) \in S^{n}$ and $v_{0}=(0,1,0, \ldots, 0) \in T_{o^{\prime}} S^{n}$, where we identified $T_{o^{\prime}} S^{n}$ with the hyperplane $\left\{x_{1}=0\right\}$ in \boldsymbol{R}^{n+1}. Let $S O(n-1)$ be the isotropy subgroup at $v_{0} \in U S^{n}$ of $S O(n+1)$ acting on $U S^{n}$.

Proposition 2.4. Let $V(\Lambda)$ be an irreducible $S O(n+1)$-module with the highest weight Λ. We denote by $\Gamma(\Lambda)$ the sum of $\mathrm{SO}(n+1)$-submodules of $\mathscr{F}\left(U S^{n}\right)$ which are isomorphic to $V(\Lambda)$.
a) $\Gamma(\Lambda) \neq\{0\}$ if and only if $\Lambda=k_{1} \lambda_{1}+k_{2}\left(\lambda_{1}+\lambda_{2}\right)\left(\right.$ or $k_{1} \lambda_{1}+k_{2}\left(\lambda_{1}-\lambda_{2}\right)$ when $n=3)$ for non-negative integers k_{1} and k_{2}.
b) If $k_{1}+k_{2}$ is odd, then $\Gamma(\Lambda) \subset \operatorname{Ker} P$.
c) If $k_{1}+k_{2}$ is even, then $\Gamma(\Lambda) \subset \mathscr{F}\left(U P^{n}(R)\right)$.

Proof. We first notice that an $S O(n+1)$-submodule of $\mathscr{F}\left(U S^{n}\right)$ isomorphic to $V(\Lambda)$ is specified by the $S O(n-1)$-invariant elements in $V(\Lambda)$ (cf. [6], the argument preceding Definition 2.12).

Neglecting the $S O(2)$-part in the branching law for $S O(n+1) \supset S O(2) \times S O(n-1)$ given in [5], we obtain the branching law for $S O(n+1) \supset S O(n-1)$. This enables us to determine which irreducible $S O(n+1)$-module includes an irreducible $S O(n-1)$ submodule with the highest weight 0 , i.e., a non-zero $S O(n-1)$-invariant element, thus we obtain the part a).

If $k_{1}+k_{2}$ is odd, we have no $S O(2) \times S O(n-1)$-invariant element in $V(\Lambda)$, which can be seen by the branching law for $S O(n+1) \supset S O(2) \times S O(n-1)$. Therefore $\Gamma(\Lambda)$ is included in $\operatorname{Ker} P$ (cf. [6] Lemma 2.4).

If $k_{1}+k_{2}$ is even, we can see that every $S O(n-1)$-invariant element in $V(\Lambda)$ is also invariant under $\{I d,-I d\} \times S O(n-1)(\subset S O(2) \times S O(n-1))$, which is the isotropy subgroup at $\left[v_{0}\right] \in U P^{n}(\boldsymbol{R})$ of $\operatorname{SO}(n+1)$ acting on $U P^{n}(\boldsymbol{R})$. Thus the corresponding subspace $\Gamma(\Lambda)$ is included in $\mathscr{F}\left(U P^{n}(\boldsymbol{R})\right)$.

Proposition 2.5. The $S O(n+1)$-module Ker A includes a dense submodule $M_{0} \oplus M_{1} \oplus M_{2}$, where M_{0} is as given in Proposition 2.2 and

$$
\begin{aligned}
M_{1} & \cong \sum_{k=1}^{\infty} V\left((2 k+1) \lambda_{1}\right) \\
M_{2} & \cong \sum_{k=0}^{\infty} V\left((2 k+1) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)\right) \\
& \left(\oplus \sum_{k=0}^{\infty} V\left((2 k+1) \lambda_{1}+2\left(\lambda_{1}-\lambda_{2}\right)\right) \text { when } n=3\right)
\end{aligned}
$$

Proof. Let $V_{\text {even }}\left[V_{\text {odd }}\right]$ be an irreducible $S O(n+1)$-submodule of $\mathscr{S}^{2}\left(S^{n}\right)$ isomorphic to $V\left(k_{1} \lambda_{1}+k_{2}\left(\lambda_{1}+\lambda_{2}\right)\right.$) (or $V\left(k_{1} \lambda_{1}+k_{2}\left(\lambda_{1}-\lambda_{2}\right)\right.$) when $n=3$) with $k_{1}+k_{2}$ even [odd]. By Proposition 2.4 c$), V_{\text {even }}$ is a subspace of $\mathscr{S}^{2}\left(P^{n}(\boldsymbol{R})\right)$.

But every element in $\mathscr{S}^{2}\left(P^{n}(\boldsymbol{R})\right) \cap \operatorname{Ker} A$ is contained in $\operatorname{Im} L$ by Michel [4]. Thus a module $V_{\text {even }}$ is included in $\operatorname{Ker} A$ if and only if it is included in M_{0}. On the other hand, Proposition 2.4 b) implys that a module $V_{\text {odd }}$ is always included in $\operatorname{Ker} A$. The sum of $V_{\text {odd }}$ which are not included in M_{0} is written as $M_{1} \oplus M_{2}$.
3. We give here an explicit description of M_{1} and M_{2}. Let $H_{k}(k \geqq 0)$ be the space of harmonic homogeneous polynomials of degree k on \boldsymbol{R}^{n+1}. Restricting the elements on S^{n}, we consider H_{k} to be a subspace of $\mathscr{F}\left(S^{n}\right)$. It is known that H_{k} is an irreducible $S O(n+1)$-submodule of $\mathscr{F}\left(S^{n}\right)$ with the highest weight $k \lambda_{1}$. We define submodules $V_{0, k}$ and $V_{1, k}$ of $\mathscr{S}^{2}\left(S^{n}\right)$ by

$$
\begin{aligned}
& V_{0, k}=\left\{\text { Hess } f ; f \in H_{k}\right\}, \\
& V_{1, k}=\left\{f \cdot g_{0} ; f \in H_{k}\right\},
\end{aligned}
$$

which are $S O(n+1)$-submodules isomorphic to $V\left(k \lambda_{1}\right)$ except $V_{0,0}(=\{0\})$. Since Hess $f=(1 / 2) \cdot \mathscr{L}_{(\operatorname{grad} f)} g_{0}, V_{0, k}$ is included in $\operatorname{Im} L$, and hence coincides with the submodule of M_{0} isomorphic to $V\left(k \lambda_{1}\right)(k \geqq 1)$. If f is an odd function on S^{n} with respect to σ^{*}, then $f \cdot g_{0}$ is an element of $\operatorname{Ker} A$. Thus, if k is odd, then $V_{1, k}$ is included in $\operatorname{Ker} A$. We have $V_{0,1}=V_{1,1}$ and $V_{0,2 k+1} \cap V_{1,2 k+1}=\{0\}$ when $k \geqq 1$, although $V_{1,2 k+1}$ is not orthogonal to $V_{0,2 k+1}$. It follows that a submodule of $\operatorname{Ker} A$ isomorphic to $V\left((2 k+1) \lambda_{1}\right)$ is always included in $V_{0,2 k+1}+V_{1,2 k+1}$. Therefore M_{1} is essentially the sum of $V_{1,2 k+1}(k \geqq 1)$.

Proposition 3.1. A real element in M_{1} is an IZD of conformal type $f \cdot g_{0}$ (f : a real odd function on S^{n}) up to a triavial IZD.

Remark. When $n=2, I Z D$ of conformal type are only possible non-trivial $I Z D$.

Let $V_{2,2 k+1}$ be the irreducible $S O(n+1)$-submodule of M_{2} with the highest weight $(2 k+1) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)$ when $n \geqq 4$, or be the sum of two irreducible $S O(4)$ submodules with the highest weights $(2 k+1) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)$ and $(2 k+1) \lambda_{1}+2\left(\lambda_{1}-\lambda_{2}\right)$ when $n=3$. Notice that the real or imaginary part of an element in $V_{2,2 k+1}$ is again contained in $V_{2,2 k+1}$.

Let r be a curvature-like 4-tensor on \boldsymbol{R}^{n+1};

$$
\begin{aligned}
& r_{i j k l}=-r_{j i k l}=-r_{i j l k}, \\
& r_{i j k l}+r_{j k i l}+r_{k i j l}=0 .
\end{aligned}
$$

We say r is Ricci-null when $\sum_{i=1}^{n+1} r_{i j i l}=0$. We denote by K_{2} the space of Ricci-null curvature-like tensors, which is an irreducible $S O(n+1)$-module with the highest weight $2\left(\lambda_{1}+\lambda_{2}\right)$ when $n \geqq 4$, and is a sum of two irreducible $S O$ (4)-modules with the highest weights $2\left(\lambda_{1}+\lambda_{2}\right)$ and $2\left(\lambda_{1}-\lambda_{2}\right)$ when $n=3$.

A symmetric 2 -form $\sum_{i j k l=1}^{n+1} r_{i j k l} x_{i} x_{k} d x_{j} d x_{l}$ for a curvature-like tensor r can be represented as $|x|^{4} \cdot \pi^{*} \theta(r)$ by an element $\theta(r)$ of $\mathscr{S}^{2}\left(S^{n}\right)$, where π is a radial pro-
jection from $R^{n+1} \backslash\{0\}$ to S^{n}. The map $\theta: r \mapsto \theta(r)$ is an injective $S O(n+1)$ homomorphism from the space of curvature-like tensors to $\mathscr{S}^{2}\left(S^{n}\right)$ and $\theta(r)$ is even with respect to σ^{*}.

We set $z_{1}=x_{1}+\sqrt{-1} x_{2}$ and $z_{2}=x_{3}+\sqrt{-1} x_{4}$. Then a maximal vector, i.e., a non-zero element in the weight space of the highest weight, in H_{k} is given by $\left(z_{1}\right)^{k}$. A maximal vector in $\theta\left(K_{2}\right)$ is given by

$$
u=\left(z_{1}\right)^{2} d z_{2} d z_{2}+\left(z_{2}\right)^{2} d z_{1} d z_{1}-z_{1} z_{2}\left(d z_{1} d z_{2}+d z_{2} d z_{1}\right),
$$

and when $n=3$, another maximal vector is given by

$$
u^{\prime}=\left(z_{1}\right)^{2} d \bar{z}_{2} d \bar{z}_{2}+\left(\bar{z}_{2}\right)^{2} d z_{1} d z_{1}-z_{1} \bar{z}_{2}\left(d z_{1} d \bar{z}_{2}+d \bar{z}_{2} d z_{1}\right) .
$$

When $n \geqq 4$, the $S O(n+1)$-submodule of $\mathscr{S}^{2}\left(S^{n \prime}\right)$ generated by $\left(z_{1}\right)^{2 k+1} u(k \geqq 0)$ is an irreducible $S O(n+1)$-submodule with the highest weight $(2 k+1) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)$ and is included in $\operatorname{Ker} A$ since it consists of odd 2-forms with respect to σ^{*}. Therefore it coincides with $V_{2,2 k+1}$. When $n=3$, the $S O(4)$-submodule of $\mathscr{S}^{2}\left(S^{3}\right)$ generated by $\left(z_{1}\right)^{2 k+1} u$ and $\left(z_{1}\right)^{2 k+1} u^{\prime}$ coincides with $V_{2,2 k+1}$. Hence the following proposition is obvious.

Proposition 3.2. A real element in M_{2} can be represented as $\sum f_{a} \cdot \theta\left(r_{a}\right)$, where f_{a} are real odd functions on S^{n} and r_{a} are real Ricci-null curvature-like tensors.

Remark. When f is an odd function on S^{n} and r is a curvature-like tensor on R^{n+1}, the symmetric 2-form $f \cdot \theta(r)$ is always contained in $\operatorname{Ker} A$. When r is a curvature tensor of constant sectional curvature 1, i.e., $r_{i j k l}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}$, the image $\theta(r)$ is the standard metric g_{0}.

Department of Mathematics Kyoto University

References

[1] A. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-HeidelbergNew York, 1978.
[2] H. Boerner, Representation of groups, North-Holland, Amsterdam, 1963.
[3] P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math Ann., 74 (1913), 278-300.
[4] R. Michel, Problèmes d'analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. Fr., 101 (1973), 17-69.
[5] C. Tsukamoto, Spectra of Laplace-Beltrami operators on $S O(n+2) / S O(2) \times S O(n)$ and $S p(n+1) / S p(1) \times S p(n), \quad$ Osaka J. Math., 18 (1981), 407-426.
[6] C. Tsukamoto, Infinitesimal Blaschke conjectures on projective spaces, Ann. scient. Éc. Norm. Sup., 14 (1981), 339-356.

