Infinitesimal Zoll deformations on spheres

By

Chiaki Тѕикамото

(Received Nov. 15, 1982)

1. A Riemannian metric on S^n $(n \ge 2)$ is called a Zoll metric when all the geodesics are closed and have a common length 2π . Let g_t be a one-parameter family of Zoll metrics with g_0 being the standard SO(n+1)-invariant Zoll metric. Then it is known that $h = \partial g_t / \partial t|_{t=0}$ satisfies

*)
$$\int_0^{2\pi} h(\dot{\gamma}(s), \, \dot{\gamma}(s)) ds = 0$$

for each geodesic $\gamma(s)$ of g_0 parametrized by its arclength s, where $\dot{\gamma}(s)$ is its tangent vector.

We say a symmetric 2-form h on S^n is an *infinitesimal Zoll deformation (IZD)* when h satisfies *) for every geodesic of g_0 . The space of *IZD* on S^2 is classically known by Funk [3]. In this paper, we give a description of the space of *IZD* on S^n $(n \ge 3)$. The result will be used to discuss integrability of some *IZD* in a forth-coming paper.

2. Let $S^n = \{x \in \mathbb{R}^{n+1}; |x|^2 = 1\}$ be the standard sphere embedded in the Euclidean space. The induced metric g_0 is the standard Zoll metric on S^n . The special orthogonal group SO(n+1) acts transitively and isometrically on (S^n, g_0) . We denote the complexified spaces of vector fields and symmetric covariant 2-tensor fields on S^n by $\mathscr{X}(S^n)$ and $\mathscr{S}^2(S^n)$ respectively, which are naturally considered as SO(n+1)-modules. The group SO(n+1) acts transitively also on US^n , the unit tangent sphere bundle of S^n , and on Geod S^n , the set of oriented great circles (geodesics), which is in reality an oriented Grassmann manifold. The space of C-valued functions on US^n and on Geod S^n , denoted by $\mathscr{F}(US^n)$ and $\mathscr{F}(\text{Geod}S^n)$ respectively, are SO(n+1)-modules in a natural manner. We fix SO(n+1)-invariant Hermitian inner product on $\mathscr{X}(S^n)$, $\mathscr{S}^2(S^n)$, $\mathscr{F}(US^n)$ and $\mathscr{F}(\text{Geod}S^n)$ as in [6]. We introduce a topology in $\mathscr{X}(S^n)$, etc., by the inner product.

We define SO(n+1)-homomorphisms $L: \mathscr{X}(S^n) \to \mathscr{S}^2(S^n)$, $A: \mathscr{S}^2(S^n) \to \mathscr{F}(\operatorname{Geod} S^n)$, $i: \mathscr{S}^2(S^n) \to \mathscr{F}(US^n)$ and $P: \mathscr{F}(US^n) \to \mathscr{F}(\operatorname{Geod} S^n)$ by

$$L(X) = \mathscr{L}_X g_0 \quad (X \in \mathscr{X}(S^n)),$$

Chiaki Tsukamoto

$$i(h)(x) = h(x, x) \quad (h \in \mathscr{S}^2(S^n), x \in US^n),$$
$$P(f)(\gamma) = (2\pi)^{-1} \cdot \int_0^{2\pi} f(\dot{\gamma}(s)) ds \quad (f \in \mathscr{F}(US^n), \gamma \in \text{Geod}S^n),$$
$$A = P \circ i.$$

A real element h in $\mathscr{S}^2(S^n)$ is an IZD if and only if h is contained in Ker A. If h is real and contained in Im L, i.e., $h = \mathscr{L}_X g_0$ for some real vector field X, then h is a derivative of a trivial one-parameter family of Zoll metrics $g_t = \varphi_t^* g_0$, where φ_t is a one-parameter family of diffeomorphisms generated by X. It means Im L is included in Ker A. Conversely, if g_t is a trivial deformation, the derivative is in Im L. We call a real element in Im L a trivial IZD.

In this section, we shall describe SO(n+1)-modules Ker A and Im L for S^n $(n \ge 3)$, by decomposing them into irreducible SO(n+1)-modules. The detail of each irreducible component will be given in the next section.

Taking Cartesian coordinates $\{x_1, x_2, ..., x_{n+1}\}$ in \mathbb{R}^{n+1} , we consider SO(n+1) as a matric group. We set m = [(n+1)/2]. We fix a Cartan subalgebra t of the Lie algebra of SO(n+1) as follows.

$$\mathbf{t} = \{R(\mu_1, \dots, \mu_m); \ \mu_i \in \mathbf{R}\},\$$
$$R(\mu_1, \dots, \mu_m) = \begin{pmatrix} R(\mu_1) & 0 \\ & \ddots & \\ & R(\mu_m) \\ 0 & (*) \end{pmatrix},\$$

$$R(\mu) = \begin{pmatrix} 0 & -\mu \\ \mu & 0 \end{pmatrix}.$$

(We put 0 at (*) when n is even.) We define elements λ_i (i = 1, 2,..., m) in t* by

$$\lambda_i(R(\mu_1,...,\mu_m)) = \sqrt{-1}\mu_i \quad (i=1, 2,..., m).$$

They form a basis of t*. We fix a lexicographical order in $\sum \mathbf{R}\lambda_i \subset t^*$ such that $\lambda_1 > \lambda_2 > \cdots > \lambda_m$.

A finite dimentional SO(n+1)-module over C decomposes into weight spaces, i.e., irreducible (1-dimensional) t-modules, and the t-action on each weight space is specified by the weight, an element in t* which is a linear combination of λ_i with integral coefficients. An irreducible SO(n+1)-module V is characterized by its highest weight, the weight of maximal order in the weights of V. We denote the irreducible SO(n+1)-module with the highest weight Λ by $V(\Lambda)$.

We denote by SO(n) the isotropy subgroup of SO(n+1) at $o = (0,..., 0, 1) \in S^n$. We fix a Cartan subalgebra t' of the Lie algebra of SO(n) as follows. Infinitesimal Zoll deformations

$$\mathbf{t}' = \begin{cases} \mathbf{t} & (n: \text{ even}) \\ \\ \{R(\mu_1, ..., \mu_{m-1}, 0); \ \mu_i \in \mathbf{R}\} & (n: \text{ odd}). \end{cases}$$

Since $t' \subseteq t$, we may consider λ_i to be an element of t'^* . We can talk about the highest weight of an irreducible SO(n)-module and can represent it as a linear combination of λ_i (excluding λ_m if n is odd) with integral coefficients.

The complexified tangent space at o, $(T_oS^n)^e$, is an irreducible SO(n)-module with the highest weight λ_1 and the symmetric tensor product of its dual space $S^2(T_oS^n)^{*e}$ is a sum of two irreducible SO(n)-modules with the highest weights 0 and $2\lambda_1$.

We can decompose the SO(n+1)-module $X(S^n)$ into irreducible SO(n+1)modules by examining which irreducible SO(n+1)-module contains an irreducible SO(n)-module isomorphic to $(T_oS^n)^c$ (cf. [6] Proposition 2.4, 2.5 and 3.2). Using the well-known branching law for $SO(n+1) \supset SO(n)$ (see Boerner [2]), get we the following proposition.

Proposition 2.1. The SO(n+1)-module $\mathscr{X}(S^n)$ $(n \ge 3)$ includes a dense submodule isomorphic to the following.

$$\sum_{k=1}^{\infty} V(k\lambda_1) \oplus \sum_{k=0}^{\infty} V(k\lambda_1 + (\lambda_1 + \lambda_2))$$
$$(\oplus \sum_{k=0}^{\infty} V(k\lambda_1 + (\lambda_1 - \lambda_2)) \text{ when } n = 3).$$

Notice that Ker L is the complexified space of Killing vector fields. It is an irreducible SO(n+1)-module with the highest weight $\lambda_1 + \lambda_2$ when $n \ge 4$ and is a sum of two irreducible SO(4)-modules with the highest weights $\lambda_1 + \lambda_2$ and $\lambda_1 - \lambda_2$ when n=3. The decomposition of Im L is given as follows (cf. [6] Proposition 2.7 and 2.3).

Proposition 2.2. The SO(n+1)-module Im $L(n \ge 3)$ includes a dense submodule M_0 isomorphic to the following.

$$\sum_{k=1}^{\infty} V(k\lambda_1) \oplus \sum_{k=1}^{\infty} V(k\lambda_1 + (\lambda_1 + \lambda_2))$$
$$(\oplus \sum_{k=1}^{\infty} V(k\lambda_1 + (\lambda_1 - \lambda_2)) \text{ when } n = 3)$$

In the same way, we can decompose $\mathscr{S}^2(S^n)$.

Proposition 2.3. The SO(n+1)-module $\mathscr{S}^2(S^n)$ $(n \ge 3)$ includes a dense submodule isomorphic to the following.

$$\sum_{k=0}^{\infty} V(k\lambda_1) \oplus \sum_{k=2}^{\infty} V(k\lambda_1)$$

$$\oplus \sum_{k=1}^{\infty} V(k\lambda_1 + (\lambda_1 + \lambda_2)) \oplus \sum_{k=0}^{\infty} V(k\lambda_1 + 2(\lambda_1 + \lambda_2))$$

$$(\oplus \sum_{k=1}^{\infty} V(k\lambda_1 + (\lambda_1 - \lambda_2)) \oplus \sum_{k=0}^{\infty} V(k\lambda_1 + 2(\lambda_1 - \lambda_2)) \text{ when } n = 3).$$

To determine the decomposition of Ker A, we first study the SO(n+1)-module $\mathcal{F}(US^n)$.

Let σ be the antipodal mapping on S^n , $\sigma(x) = -x(x \in S^n \subset \mathbb{R}^{n+1})$. The quotient manifold of S^n by the involution σ is a real projective space $P^n(\mathbb{R})$. We consider $\mathscr{F}(P^n(\mathbb{R}))$ [$\mathscr{S}^2(P^n(\mathbb{R}))$] as a subspace of $\mathscr{F}(S^n)$ [$\mathscr{S}^2(S^n)$] consisting of σ^* -invariant functions [symmetric 2-forms]. The differential σ_* defines an involution on US^n . The quotient manifold of US^n by σ_* is $UP^n(\mathbb{R})$, the unit tangent sphere bundle of $P^n(\mathbb{R})$. We consider $\mathscr{F}(UP^n(\mathbb{R}))$ as a subspace of $\mathscr{F}(US^n)$ consisting of $(\sigma_*)^*$ invariant functions. We have an identity $i(\sigma^*h) = (\sigma_*)^*i(h)(h \in \mathscr{S}^2(S^n))$.

We set $o' = (1, 0, ..., 0) \in S^n$ and $v_0 = (0, 1, 0, ..., 0) \in T_{o'}S^n$, where we identified $T_{o'}S^n$ with the hyperplane $\{x_1 = 0\}$ in \mathbb{R}^{n+1} . Let SO(n-1) be the isotropy subgroup at $v_0 \in US^n$ of SO(n+1) acting on US^n .

Proposition 2.4. Let $V(\Lambda)$ be an irreducible SO(n+1)-module with the highest weight Λ . We denote by $\Gamma(\Lambda)$ the sum of SO(n+1)-submodules of $\mathscr{F}(US^n)$ which are isomorphic to $V(\Lambda)$.

a) $\Gamma(\Lambda) \neq \{0\}$ if and only if $\Lambda = k_1 \lambda_1 + k_2 (\lambda_1 + \lambda_2)$ (or $k_1 \lambda_1 + k_2 (\lambda_1 - \lambda_2)$ when n=3) for non-negative integers k_1 and k_2 .

- b) If $k_1 + k_2$ is odd, then $\Gamma(\Lambda) \subset \text{Ker } P$.
- c) If $k_1 + k_2$ is even, then $\Gamma(\Lambda) \subset \mathscr{F}(UP^n(R))$.

Proof. We first notice that an SO(n+1)-submodule of $\mathscr{F}(US^n)$ isomorphic to $V(\Lambda)$ is specified by the SO(n-1)-invariant elements in $V(\Lambda)$ (cf. [6], the argument preceding Definition 2.12).

Neglecting the SO(2)-part in the branching law for $SO(n+1) \supset SO(2) \times SO(n-1)$ given in [5], we obtain the branching law for $SO(n+1) \supset SO(n-1)$. This enables us to determine which irreducible SO(n+1)-module includes an irreducible SO(n-1)submodule with the highest weight 0, i.e., a non-zero SO(n-1)-invariant element, thus we obtain the part a).

If $k_1 + k_2$ is odd, we have no $SO(2) \times SO(n-1)$ -invariant element in $V(\Lambda)$, which can be seen by the branching law for $SO(n+1) \supset SO(2) \times SO(n-1)$. Therefore $\Gamma(\Lambda)$ is included in Ker P (cf. [6] Lemma 2.4).

If $k_1 + k_2$ is even, we can see that every SO(n-1)-invariant element in $V(\Lambda)$ is also invariant under $\{Id, -Id\} \times SO(n-1)$ ($\subset SO(2) \times SO(n-1)$), which is the isotropy subgroup at $[v_0] \in UP^n(\mathbb{R})$ of SO(n+1) acting on $UP^n(\mathbb{R})$. Thus the corresponding subspace $\Gamma(\Lambda)$ is included in $\mathcal{F}(UP^n(\mathbb{R}))$.

Proposition 2.5. The SO(n+1)-module Ker A includes a dense submodule $M_0 \oplus M_1 \oplus M_2$, where M_0 is as given in Proposition 2.2 and

$$\begin{split} M_1 &\cong \sum_{k=1}^{\infty} V((2k+1)\lambda_1), \\ M_2 &\cong \sum_{k=0}^{\infty} V((2k+1)\lambda_1 + 2(\lambda_1 + \lambda_2)) \\ & (\bigoplus \sum_{k=0}^{\infty} V((2k+1)\lambda_1 + 2(\lambda_1 - \lambda_2)) \text{ when } n = 3). \end{split}$$

Proof. Let $V_{even}[V_{odd}]$ be an irreducible SO(n+1)-submodule of $\mathscr{S}^2(S^n)$ isomorphic to $V(k_1\lambda_1 + k_2(\lambda_1 + \lambda_2))$ (or $V(k_1\lambda_1 + k_2(\lambda_1 - \lambda_2))$ when n=3) with $k_1 + k_2$ even [odd]. By Proposition 2.4 c), V_{even} is a subspace of $\mathscr{S}^2(P^n(\mathbf{R}))$.

But every element in $\mathscr{S}^2(P^n(\mathbb{R})) \cap \operatorname{Ker} A$ is contained in Im L by Michel [4]. Thus a module V_{even} is included in Ker A if and only if it is included in M_0 . On the other hand, Proposition 2.4 b) implys that a module V_{odd} is always included in Ker A. The sum of V_{odd} which are not included in M_0 is written as $M_1 \oplus M_2$.

3. We give here an explicit description of M_1 and M_2 . Let H_k $(k \ge 0)$ be the space of harmonic homogeneous polynomials of degree k on \mathbb{R}^{n+1} . Restricting the elements on S^n , we consider H_k to be a subspace of $\mathscr{F}(S^n)$. It is known that H_k is an irreducible SO(n+1)-submodule of $\mathscr{F}(S^n)$ with the highest weight $k\lambda_1$. We define submodules $V_{0,k}$ and $V_{1,k}$ of $\mathscr{S}^2(S^n)$ by

$$V_{0,k} = \{ \text{Hess } f ; f \in H_k \},\$$
$$V_{1,k} = \{ f \cdot g_0 ; f \in H_k \},\$$

which are SO(n+1)-submodules isomorphic to $V(k\lambda_1)$ except $V_{0,0}$ (={0}). Since Hess $f=(1/2) \cdot \mathscr{L}_{(\text{grad}f)}g_0$, $V_{0,k}$ is included in Im L, and hence coincides with the submodule of M_0 isomorphic to $V(k\lambda_1)$ ($k \ge 1$). If f is an odd function on S^n with respect to σ^* , then $f \cdot g_0$ is an element of Ker A. Thus, if k is odd, then $V_{1,k}$ is included in Ker A. We have $V_{0,1} = V_{1,1}$ and $V_{0,2k+1} \cap V_{1,2k+1} = \{0\}$ when $k \ge 1$, although $V_{1,2k+1}$ is not orthogonal to $V_{0,2k+1}$. It follows that a submodule of Ker A isomorphic to $V((2k+1)\lambda_1)$ is always included in $V_{0,2k+1} + V_{1,2k+1}$. Therefore M_1 is essentially the sum of $V_{1,2k+1}$ ($k \ge 1$).

Proposition 3.1. A real element in M_1 is an IZD of conformal type $f \cdot g_0$ (f: a real odd function on S") up to a triavial IZD.

Remark. When n=2, *IZD* of conformal type are only possible non-trivial *IZD*.

Let $V_{2,2k+1}$ be the irreducible SO(n+1)-submodule of M_2 with the highest weight $(2k+1)\lambda_1 + 2(\lambda_1 + \lambda_2)$ when $n \ge 4$, or be the sum of two irreducible SO(4)-submodules with the highest weights $(2k+1)\lambda_1 + 2(\lambda_1 + \lambda_2)$ and $(2k+1)\lambda_1 + 2(\lambda_1 - \lambda_2)$ when n=3. Notice that the real or imaginary part of an element in $V_{2,2k+1}$ is again contained in $V_{2,2k+1}$.

Let r be a curvature-like 4-tensor on \mathbb{R}^{n+1} ;

$$r_{ijkl} = -r_{jikl} = -r_{ijlk},$$
$$r_{ijkl} + r_{jkil} + r_{kijl} = 0.$$

We say r is Ricci-null when $\sum_{i=1}^{n+1} r_{ijil} = 0$. We denote by K_2 the space of Ricci-null curvature-like tensors, which is an irreducible SO(n+1)-module with the highest weight $2(\lambda_1 + \lambda_2)$ when $n \ge 4$, and is a sum of two irreducible SO(4)-modules with the highest weights $2(\lambda_1 + \lambda_2)$ and $2(\lambda_1 - \lambda_2)$ when n = 3.

A symmetric 2-form $\sum_{ijkl=1}^{n+1} r_{ijkl} x_i x_k dx_j dx_l$ for a curvature-like tensor r can be represented as $|x|^4 \cdot \pi^* \theta(r)$ by an element $\theta(r)$ of $\mathscr{S}^2(S^n)$, where π is a radial pro-

jection from $\mathbb{R}^{n+1} \setminus \{0\}$ to S^n . The map $\theta: r \mapsto \theta(r)$ is an injective SO(n+1)-homomorphism from the space of curvature-like tensors to $\mathscr{S}^2(S^n)$ and $\theta(r)$ is even with respect to σ^* .

We set $z_1 = x_1 + \sqrt{-1}x_2$ and $z_2 = x_3 + \sqrt{-1}x_4$. Then a maximal vector, i.e., a non-zero element in the weight space of the highest weight, in H_k is given by $(z_1)^k$. A maximal vector in $\theta(K_2)$ is given by

$$u = (z_1)^2 dz_2 dz_2 + (z_2)^2 dz_1 dz_1 - z_1 z_2 (dz_1 dz_2 + dz_2 dz_1),$$

and when n=3, another maximal vector is given by

$$u' = (z_1)^2 d\bar{z}_2 d\bar{z}_2 + (\bar{z}_2)^2 dz_1 dz_1 - z_1 \bar{z}_2 (dz_1 d\bar{z}_2 + d\bar{z}_2 dz_1).$$

When $n \ge 4$, the SO(n+1)-submodule of $\mathscr{S}^2(S^n)$ generated by $(z_1)^{2k+1}u$ $(k\ge 0)$ is an irreducible SO(n+1)-submodule with the highest weight $(2k+1)\lambda_1 + 2(\lambda_1 + \lambda_2)$ and is included in Ker A since it consists of odd 2-forms with respect to σ^* . Therefore it coincides with $V_{2,2k+1}$. When n=3, the SO(4)-submodule of $\mathscr{S}^2(S^3)$ generated by $(z_1)^{2k+1}u$ and $(z_1)^{2k+1}u'$ coincides with $V_{2,2k+1}$. Hence the following proposition is obvious.

Proposition 3.2. A real element in M_2 can be represented as $\sum f_a \cdot \theta(r_a)$, where f_a are real odd functions on S^n and r_a are real Ricci-null curvature-like tensors.

Remark. When f is an odd function on S^n and r is a curvature-like tensor on R^{n+1} , the symmetric 2-form $f \cdot \theta(r)$ is always contained in Ker A. When r is a curvature tensor of constant sectional curvature 1, i.e., $r_{ijkl} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}$, the image $\theta(r)$ is the standard metric g_0 .

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- A. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- [2] H. Boerner, Representation of groups, North-Holland, Amsterdam, 1963.
- [3] P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math Ann., 74 (1913), 278–300.
- [4] R. Michel, Problèmes d'analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. Fr., 101 (1973), 17-69.
- [5] C. Tsukamoto, Spectra of Laplace-Beltrami operators on $SO(n+2)/SO(2) \times SO(n)$ and $Sp(n+1)/Sp(1) \times Sp(n)$, Osaka J. Math., 18 (1981), 407-426.
- [6] C. Tsukamoto, Infinitesimal Blaschke conjectures on projective spaces, Ann. scient. Éc. Norm. Sup., 14 (1981), 339-356.

224