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1. Introduction

In this paper we shall study the scattering and spectral theory for the linear
Boltzmann operator. Consider the linear Boltzmann equation

d 
dt n(x t) = — v • grad,n(x, y ,  t)

+ k(x, v', v)n(x, 1/, t)dv' — o-, i (x, v)n(x, v, t)

(x e R d , V E R d
,  T E R ),

which describes a  beam  o f  non-self-interacting neutrons. A positive function
n(x, y, t)  represents the neutron density at time t  with position x  and velocity y.
The first term on the right-hand side of (1.1) describes the free classical motion of
neutrons. The second term represents neutrons produced at a point (x , u) in phase
space due to processes such as scattering and fission. Later we need

v)= k(x, v, v')dv'
R d

which is the total rate of production at a point (x, u). The last term on the right-
hand side of (1.1) represents the loss of neutrons from a point (x, u) in phase space
due to scattering or to absorption.

We work in the Banach space L '(R ,id), because L 1( R )  is a natural space for
the linear Boltzmann o p e ra to r . As we shall see later, under certain assumptions the
linear Boltzmann operator

(Bn)(x, v)=--v • gradx n(x, v)

—  k (x , v)n(x, v')dv' +cra (x, v)n(x, v)

generates a strongly continuous group {e- "3 I — co < t < co}. I t  is  k n o w n  th a t  the
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dynamical operator C . "  is positivity preserving (i.e., it leaves invariant /4(Rid. ,),
the cone of positive functions in L l ( R d o , ) )  for t > 0, and that in  general the inter-
acting dynamics is only one-sided (see Sim on [10]). O n the other hand, the colli-
sion-free linear Boltzmann operator

130= v • grad .,

generates a  strongly continuous group fe -113 0 I — oo < t<  o o  w h e re  th e  dynamical
operator e - 1 -8 0 is positivity preserving for t e R .  Thus the free dynamics is two-
s id e d . The basic objects of the scattering theory are:

(1.2) = s - lim  e tB e—tBo

(1.3) 1 1 - / ,  =s-lim etBo e- ' 14

CO

and the scattering operator S=  Notice that the free dynamics e- "o  occurs
in (1.2) and (1.3) for t < 0, but that e— tB  occurs only for t 0.

In the first part of the paper, we investigate the range of the inverse wave op-
erator 117

+ . More specifically, we prove that the range of -14'(+  is  dense in Li(Ri,d v ).
We follow the line of Enss [2] which was exploited to show the asymptotic com-
pleteness for quantum mechanical potential scattering, but there are many differences
in detail.

First, our work is carried out in the Banach space L 1 whereas Enss's work was
performed in the Hilbert space L 2 .

Secondly, we do not use any asymptotic equality of B  and Bo . Since w e treat
the inverse wave operator, we need only to control  e t Bo. I n  the Enss analysis, as
Simon [9] pointed out, it is important to prove a certain asymptotic equality of an
interacting and a free Hamiltonian.

Finally, so-called decomposition operators used to describe the Enss decom-
position principle are merely multiplication operators in  our case, while they are
pseudo-differential operators in the case of quantum mechanical potential scattering.
The proof of the Enss decomposition principle for the Boltzmann case is easier and
more elementary than for the Schredinger case. Indeed, we d o  not require the
method of stationary phase (compare Simon [9], Perry [5], Davies [1]).

In the second part of the paper, we analyze the spectral properties of B, and B.
We show that the spectrum of Bo consists only of the residual spectrum and coincides
with the imaginary axis. Moreover, using our result on  VP+ , we can show that the
spectrum of B includes that of Bo . We emphasize that the wave operator method is
useful for the spectral analysis of certain operators in Banach space as well as self-
adjoint operators in Hilbert space.

The plan of the paper is as fo llow s. Section 2 contains the main theorem s. In
Section 3, we establish the Enss decomposition principle. In Section 4, we show
that the range of PP+  is  dense in L i(R ia „ ). The spectral properties of B, and B  are
discussed in Section 6 after we prove some abstract theorems in Section 5.

It  is  a  pleasure to thank Professor T. Ikebe for stimulating discussions, and
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Professor Y. Saito for turning the author's interest to the linear Boltzmann equation.

2 .  Main theorems

We define the collision-free linear Boltzmann operator Bo to be the closure of
the operator defined on q,c)(/?..!,) by

(B o n)(x , v )=(v  • grado)(x , v ).

It is known that —Bo is the infinitesimal generator of a strongly continuous group of
positivity preserving isometries on Ll(Rd,) and that

(2.1) [e-taon] (x, v)= n(x— tv, v).

(See Hejtmanek [3], Reed-Simon [8], Simon [10].)
Throughout the  paper we shall assume that the  pair (k, cra )  is  regular, i.e.,
( j  ) k(x, v ', v) is a nonnegative measurable function on R 3 " and cra (x , v) is  a

nonnegative measurable function on R 2 ";
(ii) For each (x, v'), k(x, -) is in L 1(1 0 ;
(iii) o-

a (x , v) and u p (x , v )= k (x , v , v ')dv ' are  essentially  bounded functions
on R 2 ";

(iv) There is a com pact set D in R I so that k (x , v ', v ) and o-
a (x , v ) vanish if

x( D.

The linear collision operator A  is a sum of two operators:

(A i n)(x , v )= —  k(x , v ', v )n(x , v ')dv '

(A 2 n)(x, v)= o -
a (x, v)n(x, v).

As is easily seen, A, and A2, and hence A, are bounded operators with norms
and I a I L ,  respectively. Here denotes the norm in L(RLd„).

Now, define the linear Boltzmann operator B by

B= B 0 + A.

In order to show that —B generates a strongly continuous group, we need the follow-
ing

Proposition 2 . 1 .  Let — T generate a contraction group on a B anach space X .
If  A  is a  bounded operator on X , then — (T+ A ) generates a strongly continuous
group with

Ile-
t(T+A)ii<eltimAil

f or t real.

The proof of Proposition 2.1 (in a more general set-up) is given in Appendix.
From Proposition 2.1 it follows that —B generates a strongly continuous group
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with

(2.2) etB exp [ ( 1(licrpli. + Iler„11.)]

for t real. (An estimate sharper than (2.2) can be found in Reed-Simon [8 ]. )  Simon
[10] showed that C r is positivity preserving for t positive.

The existence of W_ and PV.,_ was investigated by Hejtmanek [3], Simon [10],
and Voigt [11 ] .  I n  this paper, we shall not examine the existence of W_ and VP+ .

Before stating the m ain theorems, we introduce some no ta tion . L e t T  be a
linear operator in a Banach space. Then o-(T ) , (T ) , o -,(T), O r (T) respectively repre-
sent the spectrum, the point spectrum, the continuous spectrum and the residual
spectrum o f  T . F o r  these definitions, see Yosida [12, p. 209].

One of our main results now reads:

Theorem 2.2. Let (k, Ga ) b e  a  regular pair. A ssum e that the inverse wave
operator -If + exists. T h e n  Ran (1T4. ) is a dense subspace of L 1 (12 ).

We shall determine the spectrum of Bo completely.

Theorem 2.3. The spectrum a(B 0 ) consists of the im aginary  axis and coincides
with the residual spectrum 0 r(Bø )

From Theorem 2.3 it is clear that r( B 0 ) and ac (Bo ) are empty. Regarding the
spectrum of B, we have

Theorem 2 .4 .  Let (k, o-
a) be a regular pair and assume that W +  exists. T h e n

the spectrum cr(B) is included in the strip

{ ,le CIO< Re A< licrpll +

Moreover, the residual spectrum T r (B) includes the im aginary  axis.

3 .  The Enss decomposition principle

In  this section we establish the Enss decomposition principle. Before stating
it, we introduce some notation which will be employed in the sequel without further
reference. For any interval / c R , we define

Q(1)= G Rd  I 11 G 11 •

When it is convenient, we also use the notation SAIL, 52(/),. The multiplication
operator by the characteristic function of f2(1)x  x Rg will be denoted by F(Ixi e /).

Theorem 3 . 1 .  L et (k, o-
a)  be a  regular pair, and let M  be a positive number

w ith D cS 2([0,M ]) .,. L e t  0 < a< b < + o o . T hen  there  ex ist th ree  f am ilies,
{D,.±}„0 and  { 14} ,.,,, of  positiv ity  preserving bounded operators in  L 1(1q 1„) with
the following properties:

(i) F o r ev ery  r> 0 a n d  ev ery  n e Li(Rida)  w i t h  supp ncR x C2([a, b])„

+ + 14.)n  = n ,
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(here supp n denotes the support of n).
(ii) For every r> 2M

e BD=e_tBpD,  t 0

(iii) For every  r> 0

F(1 x I < e - t BoD.r = 0,1 0

and

F(Ix l< Itl )e - rBoD, =0, 0•

(iv) For every r>0, t real and every n e LAR,idv )

supp [et BoD ,e - tBon]csupp n.

(y )  Fo r every  r> 0

D r0e - t B 0  O.

Basically, Dr+n (respectively, Dr- n) is the part of n outside the ball S2([0, r ])x  and
with velocities pointing outwards (respectively, inwards).

Theorem 3.1 has an important corollary.

Corollary. (i) I f  W_ exists, then (W_ — I)D,7 =0 for every  r>2M.
(ii) I f  17P+ ex ists, then (ITT+  — 1)D,1-  =0 f or every r > 2M.

Remark. As mentioned in the introduction, e in general positivity pre-
serving only for t positive. B ut it follows from Theorem 3.1 that for every r>2M,
e- tBD,.-  is positivity preserving for t negative. This may be physically reasonable.

To prove Theorem 3.1, we need a lemma.

Lemma 3.2. L et 0 < a  < b  <  + , and let 0< T Then there exist two
functions g  E Cœ OR1 {0 }) X  RD with the following properties:

(i) 0<g ± (x, v)<1 f o r  a l l  (x, v).
(ii) g + (x, v)+ g _(x, v)=1 i f  (x, v) e (Rd \ {0})x S2([a, b]).
(iii) su p p  g ± c {(x, y) e (Rd \ {0}) x Rd I e S-2([a/2, 2b]), cos 0(x, v) T- r}.

Here 0(x, 11) denotes the angle between x and v.

P ro o f . Let 1// be a function in C (R )  which is 0 off (a/2, 2b), 1 on [a, b] with
0 < t/i <1. Let ry+ b e  a  function in  C ([—  1, 1]) which is 0  o n  [ —1, —T], 1 on
[T, 1] with 0<n + < 1 .  Set n_ = 1 — ri+ . Now, define

g ± (x, v)= 1/410/±(cos 0(x, y))
Since

cos 0( x ,  v)= I ix ivi,
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it follows that g ± are in C ( (R \  {0}) x RD. It is then obvious that g  ±  have
properties (i), (ii) and (iii) of the lemma. Q. E. D.

Proof o f  Theorem 3.1. First choose T  so  that 0 <  <VT/2. It follows from
Lemma 3.2 that there exist two functions g ±  in CœOR,x' \ {0}) x 10,) with properties
(i), (ii) and (iii) of Lemma 3.2. Pick a function 9 in Cœ(R) which is 0 on (— co, 1],
1 on [2, co) with O p < 1 .  For every r  0, set

(Pr(x) = (P(i xl/r) •

We define operators D and D?. by

(D,n)(x, v »,(x )n (x , y)

(Inn) (x, y)= (1— (p,.(x))n(x, y) .

It is then obvious that D  and D,? are positivity preserving and bounded. Since D;±-
are multiplication operators, it follows from the expression (2.1) that (iv) of the
theorem holds. Moreover, it follows from (ii) of Lemma 3.2 that (i) of the theorem
holds.

Now, we shall prove (iii) of the theorem for D .  (The proof for /)■ is similar.)
It suffices to show that for every t 0, r>0  and every n

(3.1) supp [e - rpo At'n] c Q ([max , , c e ) )  x

Let (x, v) be in supp [ciBoD;'- ii]. Writing

[ e - t BoDi n](x, y)

= g + (x — tv, y)yor(x— tv)n(x— tv, v)

and using (iii) of Lemma 3.2, we see that

and thus

(3.2) 2tv • (x —tv) > — I_  e 2121v 12 _ __ 6 -2.
I

x _ t v 12
1 ') 

for every t> 0 and every y>0. Combining (3.2) and the identity

1x12 =t 2 102 +2tv•(x - 1v)+ lx•—tr12 ,

we get

ix i2> _ (1. _ 8- 2 ) I x  —  tv 1
2

for every t 0 and every E > 0. Taking e=,./.2-  and noting that x — tv is in supP
we have
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(3.3) IXI2 % r2.4

Similarly, taking e= \ 1312 and noting that (x— tv, y) is in supp g  we have

lx12 > 1 ( l a t ) 2

4  2  /

for t,>..0. Thus, (3.3) and (3.4) yield (3.1).
Next we prove (ii) of the theorem for D . (T h e  p ro o f  for D  i s  sim ilar.) It

suffices to show that for all n in C g ( R )

(3.5) A .'n=efB  e - f Bo D;En

holds for r>2M and t O. D ifferentiating the right-hand side of (3.5) with respect
to t, we have

(3.6) (etBe-tBo D -,.1-11) = et + A 2 )e - tBodt

for n in Q ( R ) .  By (3.1) we have

(3.7) supp [e - fBoN n]c52((M , co))) x

for t_.>.0 and r> 2 M . Since, by the hypothesis of the theorem, D c 52([0, M])„, it
follows from (3.7) that the  right-hand side of (3.6) vanishes fo r t.?.- 0 and r>2M
(recall the definition of the regular pair). T h i s  implies (3.5).

All that remains is property (v) of the theorem. It suffices to show that

D2e - 'B on --> 0  a s  t + a)

for every n in C ( .e ! , )  with

supp n n {(x, v)1 v=0}=0.

This follows from the fact that for such a data

supp [e - t Bon] c S2([2r, co)) x x

for large lit Q. E. D.

4 .  Proof of Theorem 2.2.

In this section, we prove Theorem 2.2 with the aid of Theorem 3.1. We begin
with the intertwining property.

Proposition 4 . 1 .  L et (k , a a)  be a  regu lar pair and  assum e that W _ and  'CV +
exist. Then the follow ing relations

e - 1 1 3  W _ = W _ C r11 °,

e -t80  frf+=W +e-tB

(3.4)
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hold f or all t e R.

The proof is the same as in the case of strongly continuous unitary groups gener-
ated by self-adjoint operators. See Kato [4, p. 532].

We now turn to the

Proof  of Theorem 2.2. Suppose the contrary. Then we can find a non-trinial
function n in C (R x2 cf0) with

supp n n {(x, v)1 v=0} =0

and n Cl Ran (l ) (CI= closure). By the Hahn-Banach theorem, there is an f e
L ( R d ) (the adjoint space of L '(R d„)) such that
(f , n )= 1 and

(4.1) (f , m )= 0

for all in e Cl R an (W ). C hoose positive numbers R , a and b so that

supp nct2([0, x S2([a, b])„.

Let {Di.} and {/Y;.} be bounded operators having all the properties specified in The-
orem 3.1. Noting

supp [e - tBon] c R  x Offa, bp„

and using (i) of Theorem 3.1, we have

e -tBo n =  D r+ e -1 1 1 0  n+ D,7 e - t B 0  n+ 1:);.)  e - ' 130 n.

We now write

(f , n)=((etB o)',

where

I =((erBo)"f, D  e t  Bon),

I = ((etBo)*f, e -tBo n ) ,

Ill =((e' B o)*f , M e - 1 B° a).

By the corollary to Theorem 3.1 and Proposition 4.1, we see that for r> 2M

=(f, IT/± etBD -)- e - t Bo ii)

which equals zero by (4.1). Since, by (iii) of Theorem 3.1,

(1x1( 4.5 ) = 0

for t 0, we see that

(4.2) (f , F )e tB °D ,7 e- tB0 n)= 0
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for t 0. S ince , by  (iv) of Theorem 3.1,

supp [etB0D,Te - tB on]cQ([0, R] ) „>< O aa,

we have

(4.3) (f, F (ix i> D,7 e  -1.8,0 = 0

for r> 2R. Hence, combining (4.2) and (4.3), we see that 11=0 for t 0 and r> 2R.
Writing

Ill < II f.11 e 1 °

it follows from (v) of Theorem 3.1 that III goes to zero as t—> + co. We have thus
shown that (f, n ) = 0 .  Since (f, n )=1 , this is impossible. Q. E. D.

5. Abstract theorems

In this section we give a few theorems in Banach space which will be used in the
proofs of the next section. We are mainly interested in the residual spectrum of the
infinitesimal generator of a group.

Let X  be a Banach space. B y the adjoint space X * of X  we mean the set of all
bounded anti-linear forms on X .  Let T be a densely defined linear operator in X.
The adjoint operator T * of T is defined in the following way: D(T *) consists of all
g E X * such that there exists an . f E X * with the property

(g , T u)=(f , u) f o r a i !  1 4  e D(T) .

T* is defined by setting T * g = f .  (For this definition see Kato [4, p. 167].)
We start from the following

Proposition 5.1. Let X  be a B anach space, and let T be a densely defined linear
operator in X . T hen

(i) if ). is in ar(T ), then ;  is in op ( T* );
(ii) if  i s  in ap(T *), then is in either a p (T ) or a,.( T).

The proof is similar to that of P roposition, p. 194 of Reed-Simon [6 ] and is
omitted here.

Theorem 5.2. Let — T be the generator of a strongly continuous sem igroup on
a  B anach space X . S uppose that /1 is  in  ap(T * ) and that f  is a corresponding
eigenvector of T * .  Then

(5.1) (• , e - ' '  ) = e - "(f , u )

for all u E X  and all t  0.

P ro o f . Since D(T) is dense in X , it suffices to prove (5.1) for u  e D (T ) . We
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thus suppose that u e D (T). Set

9(0 (f, e - t (T )u ) .

Then is continuously differentiable, and

(p'(t)= —((T* e-t(T)u).

By the hypotheses of the theorem, yo'(0=0 for t.,>.0. Hence we obtain

( f , e - t ( T— i 'u ) = ( f ,  )

which proves (5.1). Q. E. D.

Theorem 5.2 has a converse if — T is the generator of a group.

Theorem 5.3. Le t —T be the generator of a strongly continuous group on a
Banach space X, and let ;, be a co m p le x  n u m b e r. Suppose that there are a non-
tr iv ia l fo rm  f  in X* and an open  in te rva l! su ch  th a t

(5.2) ( f ,  e - t r u ) = e ( f ,  u )

fo r a ll  u e D(T) and a ll t e l.  T h e n  ,1 is  in c p (T*).

P ro o f . Differentiate the both sides of (5.2) with respect to  t. Then by (5.2)

(5.3) (f , T e - eru)=(ilf , e - tru)

for all u e D(T) and all t e /. S ince  {e - tT} is a group, er- rT takes D(T) onto  D(T).
From this fact and (5.3), it follows that ( f ,  Tu)= (.1f, u) for all u e D(T). This means
that A eo - p (T*). Q. E. D.

6. Spectra o f  Bo and B

W e now  turn to the  proofs of Theorems 2.3 a n d  2 .4 . A s  mentioned in the
introduction, arguments used in  th e  proof o f  Theorem 2.4 show that scattering
theory is a useful tool in spectral analysis of certain operators in Banach space.

We shall denote by iR the imaginary axis.

Proof of Theorem 2.3. S in c e  e --- ' 8 011= 1 for all t e R , it follows from the Hille-
Yosida theorem (see Reed-Simon [7, p. 238]) that a(B 0 ) is included in the imaginary
axis. F o r  p real, define f ,  in  L '(/?d,,,) by

f „(x, 1 , ) = exp vIlv12; •

Then one can easily check that f IL
 e D(14- ) and that

(6.1) Bt f f l  = fl •

By Proposition 5.1 (ii), ip is in either a ( B 0 ) or cr,.(B0 ).
We shall show that  a ( B 0 ) is empty. To this end, suppose that there are a pure

Imaginary number i  ( e R ) and n e L I (R )i d
, v )  such that B o n =  i n .  It suffices to
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show that n = 0 .  We have

(6.2) e-teon=e-a4n.

Let K be a given compact set in RI x (Rcii \ {0}). From (6.2), it follows that

(6.3) Ile-̀13°n111,K=11n111,x

where Ilnili,x= n(x, v)Idxdr. Using the expression (2.1) for e t B o  an d  noting the
K

fact that the velocity of every particle in K is bounded away from zero, one can see
that

(6.4) e-̀11°n111,K

as t +  o o  .  It follows from (6.3) and (6.4) that 11 n111 ,K = O. S in c e  K was arbitrary,
it follows that n = O. H e n c e  o-

 p(B 0 ) is empty. Summing up, we have shown

u(B0 ) c iR  r (B o )

which proves the theorem. Q. E. D.

Proof  o f  Theorem 2.4. Since, by the assumption, I7P+  exists, it follows upon
application of the principle o f  uniform boundedness (see Reed-Simon [6, p. 81])
that 11 et1 3 °e- t B  <C  for all t >0, where C is a  constan t. We get

ile- t B 11 11e- t B ° 1111e' ° e - t r t il < c

for a ll t„.›.0. Applying the  Hille-Yoside-Phillips theorem (see Reed-Simon [7, p.
247]), we have

(6.5) { e C IRe 2<0} p(B).

We now recall the estimate

II è B Il< exP ft(110.,11.+ II 0-,,11.)1, t.,>•• 0

(see (2.2)). Applying once more the Hille-Yosida-Phillips theorem, we get

(6.6) t;EC1ReA> + P(B) •

From (6.5) and (6.6), the first statement of the theorem follows.
To prove the second, we first claim that

(6.7) an(B) n i R =0.

Indeed, given i  (  e  R ) ,  let n e  L A R ) satisfy the equation Bn Then we
have

e-t n=e - tt4 n.

Let K be a given compact set in R I x (R ‘I \ {O}). Then, as in the proof of Theoremn
2.3, we can show that

(6.8) Ile-tBorv+nik,,---). 0
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as + c o .  Writing

11n111,K=11e- "n111,K

<11e- tB °W+n111,K
±  e -tB0117+  n e - t B n  1 , K

and using (6.8) and the fact that

ile, - , B ow+n — e- tB n I l i - -

as t— > + co, w e see that D ill, =O . Since K  was arbitrary, we conclude that n=0.
These arguments show that any pure imaginary number cannot be an eigenvalue of
B .  Thus we have shown (6.7).

Next, we shall show that

(6.9) (7,.(B )  i  R

which completes the  proof of the theorem. Since, by Theorem 2.2, Ran (WO is
dense in Li(Rd,„), (1717 + )* is one-to-one. For p real, let f  be as given in the proof of
Theorem 2.3. Then it follows from (6.1) and Theorem 5.2 that

(6.10) (f ,„  e - tB o n )=e itg ( f  n)

for all n e  L '(R i) and all t e R .  Replace n in the left-hand side of (6.10) by 17P+  n
and use Proposition 4.1. Then

(6.11)( f , , ,  e - tB olV 0)=((4 -1/' + )*f

for all n e L'(Rid) and all t e  R. Replace n in (6.10) once more by Wf n. Then

(6.12) (fm, e -tB o ffi+ n ) = e iti.((IT/+ ) * f )

for all n e L I( e v ) and all t e  R. Combining (6.11) and (6.12), we get

((17174.)*L„ e - lBn)=eilq(1 717 +
)*f  n )

for all n e 
L i( R x 2 a,„ )

 and all t e R .  Since (117,)* is one-to-one, (117. )* f p is  non-trivial.
By Theorem 5.3, — ip  is  in  ap (B*). I t  fo llo w s fro m  Proposition 5.1 tha t 41 is in
either o p (B ) o r  a ,(B). Noting (6.7), w e see that ip  is  in  o- ,.(B ) .  Hence we have
proved (6.9). Q. E. D.

Appendix

In connection with Proposition 2.1 we establish the  following more general
result.

Proposition. L et — T generate a  strongly continuous group on a  B anach
space X  with
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Ile-
t 9  < M e I t ,  t e R ,

where M  and # are constants. If A  is  a  bounded operator in  X , th e n  —(T+ A)
generates a strongly continuous group w ith

Ile- t ( T + A ) 11‹  Mel t 1(13+  m  II A ll 1E R.

P r o o f .  Since — T  g e n e ra te s  a  semigroup {e - c r ) , "  w ith  Ile- t r Il <Me rfl, it
follows from Theorem 2.1, P .  497 o f K ato  [4] th a t  — T— A  generates a  semigroup
{Ut}t o with

<Met(fl+m II All)

fo r  t  p o s it iv e . Sim ilarly, since T  generates a  semigroup le a lt›o
T+ A  generates a  semigroup {V,},, 0  with

IF AH)Ilti t  <M et ( "A l

for t p o s itiv e . To prove the proposition, it suffices to show that

(A.1) U,V,=1,

(A.2) t>0.

Let u e D(T+ A ) .  Since D(T+ A)= D(T)= D( — T— A ), we have

V,u e D(—T— A ).

Differentiating U,V ,u with respect to  t, we get

d (U V" u)=U (—T— A +T+A)Vt u=0.dt 

Thus

with II et T I<

(A.3) U,V ,u =u, t„>. 0

for all u e D (T ) .  Since D(T) is dense in X, and since U, V, is bounded, (A.3) implies
(A .1 ). The proof of (A.2) is similar. Q. E. D.
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N ote added o n  October 18, 1983. After this paper was submitted, Dr. H.
Emamirad informed the  author that Theorem 2.3 above was already proved by
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