Some remarks on Euclid rings

By
Masayoshi Nagata

(Received March 30, 1984)

In the present note, we show that the notion of a Euclid ring may be defined as below, and then it is quite easy to prove that the direct sum of a finite number of Euclid rings is again a Euclid ring.

Definition 1. A commutative ring R with identity is called a Euclid ring if there is a mapping φ of $R-\{0\}$ into some ordered set M with minimum condition satifying the condition:

If $a, b \in R$ and if $a \neq 0$, then there are $q, r \in R$ such that $b=a q+r$ with either $r=a$ or $\varphi r<\varphi a$.

In the circumstances, we say that (R, M, φ) is a Euclid ring.
Definition 2. r as above is called a right residue at the division of b by a; for the case where $a=0$, we say b is the right residue at the division of b by 0 .

We show in this note also that if R is a Euclid ring, then we can choose a well-ordered set W and a mapping ψ of $R-\{0\}$ into W so that (R, W, ψ) is a Euclid ring in the sense of Nagata [1]. This means that, by defining $\psi(0)$ to be smaller than any element of W, our Euclid ring becomes a Euclid ring in the sense of Samuel [2].

Proposition 1. If (R, M, φ) is Euclid ring, then R is a principal ideal ring.
Proof. Let I be a non-zero ideal in R. Take a minimal element $\varphi a(a \in I)$ among $\{\varphi x \mid x \in I, x \neq 0\}$. For an arbitrary b in I, let r be a right residue at the division of b by a. By the minimality of φa, we have $r=a$. This means that b is divisible by a. Thus $I=a R$.
Q.E.D.

Assume now that (R, M, φ) and (S, N, ψ) are Euclid rings. Let $M^{\prime}=M \cup\{t\}$, $N^{\prime}=N \cup\{u\}$ with t and u bigger than any element of M and N, respectively. We extend φ and ψ so that $\varphi 0=t$ and $\psi 0=u$. Let $M^{\prime} \times N^{\prime}$ be an ordered set by defining that (m^{\prime}, n^{\prime}) $\left(m, n\right.$) if and only if $m^{\prime} \geqq m$ and $n^{\prime} \geqq n$. Then $M^{\prime} \times N^{\prime}$ satisfies the minimum condition. A mapping (φ, ψ) of the direct sum $R+S$ into $M^{\prime} \times N^{\prime}$ is naturally defined by $(a, b) \rightarrow(\varphi a, \psi b)$. Then we have

Theorem 2. The direct sum $\left(R+S, M^{\prime} \times N^{\prime},(\varphi, \psi)\right)$ is a Euclid ring.

Proof. Let (a, b) and (c, d) be elements of $R+S$ with $(a, b) \neq(0,0)$. Let r, s be right residues at the division of c, d by a, b, respectively. Then we have one of the following cases:
(1) $\quad(r, s)=(a, b)$
(2) $r=a, \psi s<\psi b$
(3) $\varphi r<\varphi a, s=c$
(4) $\varphi r<\varphi a, \psi s<\psi b$
(5) $a=0, b \neq 0, r=c$
(6) $\quad a \neq 0, b=0, s=d$

It is obvious that the cases (1)-(4) are good. As for the case (5), if $c \neq 0$, then $\varphi c<\varphi 0$ (by definition) and $\psi s \leqq \psi b$, and this is a good case. If $c=0$, then either $s=b$ or $\psi s<\psi b$, and this is also a good case. The case (6) is similar.
Q.E.D.

Theorem 3. If R is a Euclid ring, then there is a mapping ρ of $R-\{0\}$ into a suitable well-ordered set W so that (R, W, ρ) is a Euclid ring.

For the proof of this, it suffices to prove the following:
Proposition 4. If M is an ordered set with minimum condition, then there is a mapping f of M into a suitable well-ordered set W so that if $a, b \in M$ and if $a>b$, then $f a>f b$.

Proof. Take a well-ordered set W which is big enough (if we need later, we are allowed to enlarge W by adding new elements which are bigger than any element of the original W). We define f inductively. Namely, consider an element w of W, and assume that for all $y<w, f^{-1}(y)$ are defined. Let M_{w} be the complement of $T_{w}=\bigcup_{y<w} f^{-1}(y)$ with respect to M. Then we define $f^{-1}(w)$ to be the set of minimal elements in M_{w}. Thus we defined f on the union of all of $f^{-1}(w)$. If the union is not M, then we can go on further, because of the minimum condition. Therefore f is a mapping of M into W. If $a>b$ ($a, b \in M$), and if $f b=w$, then a is in M_{y} for $y \leqq w(y \in W)$ because $a>b \in M_{y}$ and a is not a minimal element in any such M_{y}. Therefore, we have $f a>f b$.
Q.E.D.

Department of Mathematics
 Kyoto University

References

[1] M. Nagata, On Euclid algorithm, C. P. Ramanujam A Tribute, Stud. Math. 8, Tata Inst. Fund. Res., (1978), 175-186.
[2] P. Samuel, About Euclidean rings, J. of Alg., 19 (1971), 282-301.

