Some remarks on Euclid rings

By

Masayoshi NAGATA

(Received March 30, 1984)

In the present note, we show that the notion of a Euclid ring may be defined as below, and then it is quite easy to prove that the direct sum of a finite number of Euclid rings is again a Euclid ring.

Definition 1. A commutative ring R with identity is called a Euclid ring if there is a mapping φ of $R - \{0\}$ into some ordered set M with minimum condition satifying the condition:

If a, $b \in R$ and if $a \neq 0$, then there are q, $r \in R$ such that b = aq + r with either r=a or $\varphi r < \varphi a$.

In the circumstances, we say that (R, M, φ) is a Euclid ring.

Definition 2. r as above is called a right residue at the division of b by a; for the case where a=0, we say b is the right residue at the division of b by 0.

We show in this note also that if R is a Euclid ring, then we can choose a well-ordered set W and a mapping ϕ of $R-\{0\}$ into W so that (R, W, ϕ) is a Euclid ring in the sense of Nagata [1]. This means that, by defining $\phi(0)$ to be smaller than any element of W, our Euclid ring becomes a Euclid ring in the sense of Samuel [2].

Proposition 1. If (R, M, φ) is Euclid ring, then R is a principal ideal ring.

Proof. Let I be a non-zero ideal in R. Take a minimal element $\varphi a(a \in I)$ among $\{\varphi x | x \in I, x \neq 0\}$. For an arbitrary b in I, let r be a right residue at the division of b by a. By the minimality of φa , we have r=a. This means that b is divisible by a. Thus I=aR. Q.E.D.

Assume now that (R, M, φ) and (S, N, ψ) are Euclid rings. Let $M'=M \cup \{t\}$, $N'=N \cup \{u\}$ with t and u bigger than any element of M and N, respectively. We extend φ and ψ so that $\varphi 0=t$ and $\psi 0=u$. Let $M' \times N'$ be an ordered set by defining that $(m', n') \ge (m, n)$ if and only if $m' \ge m$ and $n' \ge n$. Then $M' \times N'$ satisfies the minimum condition. A mapping (φ, ψ) of the direct sum R+S into $M' \times N'$ is naturally defined by $(a, b) \rightarrow (\varphi a, \psi b)$. Then we have

Theorem 2. The direct sum $(R+S, M' \times N', (\varphi, \psi))$ is a Euclid ring.

Masayoshi Nagata

Proof. Let (a, b) and (c, d) be elements of R+S with $(a, b)\neq (0, 0)$. Let r, s be right residues at the division of c, d by a, b, respectively. Then we have one of the following cases:

(1)	(r, s) = (a, b)	(2)	$r=a, \ \psi s < \psi b$
(3)	$\varphi r < \varphi a$, s=c	(4)	$\varphi r \! < \! \varphi a$, $\psi s \! < \! \psi b$
(5)	$a = 0, b \neq 0, r = c$	(6)	$a \neq 0, b=0, s=d$

It is obvious that the cases (1)-(4) are good. As for the case (5), if $c \neq 0$, then $\varphi c < \varphi 0$ (by definition) and $\psi s \leq \psi b$, and this is a good case. If c=0, then either s=b or $\psi s < \psi b$, and this is also a good case. The case (6) is similar. Q. E. D.

Theorem 3. If R is a Euclid ring, then there is a mapping ρ of $R - \{0\}$ into a suitable well-ordered set W so that (R, W, ρ) is a Euclid ring.

For the proof of this, it suffices to prove the following:

Proposition 4. If M is an ordered set with minimum condition, then there is a mapping f of M into a suitable well-ordered set W so that if $a, b \in M$ and if a > b, then fa > fb.

Proof. Take a well-ordered set W which is big enough (if we need later, we are allowed to enlarge W by adding new elements which are bigger than any element of the original W). We define f inductively. Namely, consider an element w of W, and assume that for all y < w, $f^{-1}(y)$ are defined. Let M_w be the complement of $T_w = \bigcup_{y < w} f^{-1}(y)$ with respect to M. Then we define $f^{-1}(w)$ to be the set of minimal elements in M_w . Thus we defined f on the union of all of $f^{-1}(w)$. If the union is not M, then we can go on further, because of the minimum condition. Therefore f is a mapping of M into W. If a > b $(a, b \in M)$, and if fb = w, then a is in M_y for $y \le w$ $(y \in W)$ because $a > b \in M_y$ and a is not a minimal element in any such M_y . Therefore, we have fa > fb. Q.E.D.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- M. Nagata, On Euclid algorithm, C.P. Ramanujam A Tribute, Stud. Math. 8, Tata Inst. Fund. Res., (1978), 175-186.
- [2] P. Samuel, About Euclidean rings, J. of Alg., 19 (1971), 282-301.

422