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1. Introduction

In the present paper we shall consider the Schrodinger operator
(L.1) L=—3 -a—+z'b,(x))2+V(x), xER"
ji=1 an

in the Hilbert space L% R"), where i=+/—1 and V(x), b(x)(1<j<n) are real-valued
functions. The scalar potential V(x) is assumed to satisfy

(1.2) V(x)—> —0 as |x| —> =
and
(1.3) Vix)z—Clx|*  (Ix|2Ro)

for some positive constants C, R, and a<2. The spectral theory of L satisfying (1.2)
has been extensively investigated by many authors. For a class of b,(x) and V(x)
satisfying (1.1) and (1.2) with «=2 one can see the following assertions ;

(a) the symmetric operator L defined on C$(R™) is essentially self-adjoint, i.e.,
L has the unique self-adjoint extension H (cf. Ikebe-Kato [11]).

(b) the spectrum of H consisits of all real numbers, i.e., o(H)=R (cf. Eastham
[6], Eastham-Kalf [7]).

(¢) H has no eigenvalues (cf. Eastham-Kalf [7], Uchiyama [24], Uchiyama-
Yamada [25]).

In this paper we shall give a sufficient condition to assure that H is absolutely
continuous, and to derive a spectral representation of H. To this end we study the
limiting absorption method (principle) for L.

The limiting absorption method is, roughly speaking, to investigate the limit of
the resolvent R(z)=(H—z)-' as the non-real z approaches the real axis. More precisely,
it is to choose appropriate weghted L? spaces A, B such that AC L* R™)CB and the
strong limit

R(liiO)fzs——liP;l R(Atie)f in B

exists for any fA. In order to study the limiting absorption method the radiation
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condition is often used as an important tool. by which one can find u=R(A+:0)f among
many solutions of Lu—Au=fecA.
Eidus [8] shows the limiting absorption method for Schrodinger operators in ex-
terior domains with short-range potentials, by making use of the radiation condition
~ o 2
3 O /2 ul'dS —>0

\zi=r| OF

as R—oo, where A>0 and r=|x!. Ilkebe-Saitd [12] develops the limiting absorption
method for Schrodinger operators with long-range potentials, by putting

A=Li={f<Li; Ifls=I0+1-Df|re<oo}
and B=L2;(s>1/2) and considering the radiation condition

Xj
[ x|

(1.4) IIquHs_lE”(—ai—j +iby(x)+ k*(x. Z))u“‘_l<oo (J=1,2, - n),

where
k*(x, D)= -T—i\/Z_+£2_ L

v

(1>0).
Ikebe [9] defines the radiation condition by putting in (1.4)
n—1

ke D=FIVASV 0+ 5

in order to show the spectral representation of Schrodinger operators. Mochizuki-
Uchiyama [20] treats oscillating. long-range potentials and proposes that 2*(x, 1) can
be selected as an approximate solution of the following Riccati-type equation

(1.5) V(x)—l—l—%k(x, A+ ":l k(x, A)—k(x, )*=0
at 'infinity. Saitdo [21] solves the eikonal equation
|VR|2=1~@ (1>0)

and adopts
iz’x/f-a— R(x, )
ax]'

instead of (x;/|x|)k*(x, Z) in (1.4).
Suggested by Mochizuki-Uchiyama [20] we shall define 9% in (1.4) by setting
n—1 ~dV/or

k‘(x, ]): :Z‘\/;(:TV“JS{— _27‘__-4(_2:1/—)

Then we see that the left-hand side of (1.5)1 is equal to

n=1)n=3) V., 5( V,.)z'

(1.6) 4 AA=V) 16\ A=V

which will be a short-range function by assuming an appropriate condition on V(x).
There are also many papers concerning with the spectral representation - of
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Schrédinger operators (e.g.. Agmon [1], lkebe [9], [10], Isozaki [13], Iwatsuka [14].
Jager [15], Mochizuki-Uchiyama [20]). Our purpose in this paper is to construct a
generalized Fourier transform & satisfying the following properties:

(a) & is a unitary operator on L* R™) onto L% R; h) (h=L¥S""*)

(b) & diagonalizes H in the sense that
(FHfAD=AFfXA) for any f=D(H),

where L% R: h) is the Hilbert space consisting of all the A-valued square integrable
functions f(1) with the norm

”f”LZ(n; ;,)—_—(Skllf‘(l)”’z,di)llz

Recently, several authors studied the limiting absorption method and the spectral
representation for Schrodinger operators with exploding potentials. The terminology
of “exploding potentials”, which seems to be originated by Ben-Artzi [3] or Jéager-
Rejto [16], is used in the sense that the potential V(x) is unbounded below at infinity.
We do not know whether such a potential is an important object in Quantum Mechanics,
althogh it seems to be interesting in Mathematics. For the works of second-order
ordinary differential operators with exploding potentials one can be referred to Chapter
XIII and References in Dunford-Schwartz [5].

Jager-Rejto [16] gives a sufficient condition for H to be absolutely continuous under
the condition (1.3) with a@=1. The proof is given along the line of Jiger [15], which
shows resolvent estimates of Schrddinger operator —4+1V(x) by studying second-order
ordinary differential equations in the Hilbert space L*S"-!). Ben-Artzi [3] and
Schwartzman [22] obtain the limiting absorption method for a class of spherically
symmetric potentials. Ben-Artzi [4] extends his result [3] to the case with short-
range perturbations with respect to V(r) and shows that the spectrum of H is absolutely
continuous in any open intervals containing no eigenvalues. Schwartzman [23] gives
the spectral representation of H with spherically symmetric exploding potentials V()
and short-range perturbations with respect to V. The existence or the non-existence
of eigenvalues of H is not discussed in [4] and [23].

Our method is based on lkebe [9], lkebe-Saito [12] and Mochizuki-Uchiyama [20],
which enable us to adopt magnetic potentials b;(x). Our proof of the limiting absorp-
tion method is developed along the line of lkebe-Saitd [12], by using 9% suggested by
Mochizuki-Uchiyama [20].

The contents hereafter are as follows;

§2. The main assumption

§ 3. The limiting absorption method
§ 4. Preliminary propositions

§5. Proof of Theorems in §3

§6. Spectral representation of H
§7. The unitarity of &

In §2 our assumptions and some notations are explained. In §3 we give the result
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of the limiting absorption method. Our resolvent estimate is similar to the one obtained
in Schwartzman [23]. In §4 preliminary proposition are prepared to show the proof
of Theorems in § 3. The proof of Theorems in §3 are seen in §5. In §6 we construct
a generalized Fourier transform & diagonalizing H. Finally, we prove the unitarity
of § in §7.

Acknowledgement. The author wishes to express his sincere gratitude to Prof.
T. Ikebe, Prof. M. Arai and Prof. A. Iwatsuka for valuale advices.

§2. The main assumption

Throughout this paper we shall assume the following condition (A);
(A.1) V(x) can be decomposed as V(x)=V(x)+V(x) such that V,(x) is a real-valued
C? function satisfying

Vo(x)—> —o0 as |x| —> o0

and V,(x) is a real-valued measurable Q; function (8>0), i.e.,

| Vi(y)]*
SII—VIsl | x—y|n-2+h dy
is a bounded function of x&R".
(A.2) There exist positive constants C and <2 such that

—CA+x)*EV(x)=—1,
av,
<
(A.3) 3 <0.
(A.4) Each by(x) is a real-valued C' function.

(A.5) There exists a positive constant d such that

(A5.1) V() (—=V(x)=0(x|"'-%),

(a5 (L S0y—vyayr=o( -,
(A5.3) ("%—xj%‘%)/(—vo(x))”‘=0(lxl"’)
and

(A.5.4) @@‘f—)—;‘/;“i)ﬁ)—:O(rmaun-a)

as r—oo for 17, k<n and l=<|a|=2, where
(0/0x)*=(0/0x,)*1(0/0x)*% -+ (0/0 % 1)
for a multi-index a=(a,, a,, ---, a,), and
la| =a,+as+ - +a,.

(A.6) The unique continuation property holds for L.
The potential Vo(x) satisfying (A.3) is called to be repulsive. One may be referred
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to Arai [2] and Lavine [18] for the work treating repulsive potentials bounded at
infinity.

Under the condition (A) we investigate the limiting absorption method for L. Some
additional conditions, roughly speaking, 5>—;— in (A.5) will be imposed on the condition
(A) in order to study the spectral representation of H.

We list some notations used in this paper;

9 I
E,ar—ﬁ;,DJ‘——ﬂHbJ("f),

aj: an

Du=(Dyu, Dy, -, Dyt), |Du|=(g 1Dul?)”
B(R)={xeR"; |x|<R},

S(Ry={x=R"; |x|=R},

E(R)={x=R"; |x|>R},

B(R, p)={xeR"; R<|x|<p},

K#(a, b)={z=C"; a<Rez=), 0< +£Imz<1},

L%, is the weighted L* space with the norm

1 lo=(J, a4 15000 1) ™,
Li= Lo, [F1=1f L,

L}, ¢ 0 denotes the weighted L*® space of all functions f(x) such that ¥—V, felL?,
with the norm

[ flvys.o=Il ¥=Vo fls. 2.
ngfo; s'—:LIZ'O: s, RNy ”f"Voz s:”f”Vo: S, RM
H.(8) is the Sobolev space of all L*£) functions with L*Q) distribution derivatives

up to the m-th order, inclusive,

Hn=H,(R").

Hnooc is the class of all locally H, functions, B,kz—a—bk—ib, for a vector po-

0x; 0x
tential b(x)=(b,(x), bx), -+, ba(x)).
Under the condition (A) the Schrédinger operator L has the unique self-adjoint
operator H with the domain

2.1 D(H)={u€Hy,1oc; LusL¥R")}

(cf. Ikebe-Kato [11]), and H has no eigenvalues (cf. Uchiyama [24], Uchiyama-Yamada
£25]).
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§3. The limiting absorption method
Let us take any K*(a, b)
K*(a, by={zeC; a<Rez<h, 0< +Imz<L1}

and choose a positive number K sufficiently large so that

3.1 a—Vyx)=1, x€E(R)

in view of (A.1). Then put

(3.2) k=Fk(x z)=——i\/2——Vo(§)+ﬁ:i———a—f!—°—
’ ’ 2r 4z—V,)

for z=K*(a. b) and x=E(R), where we take the square root z as Im+/ z >0 for a
non-real z. Then we have

3.3) +Revz—V(x)>0 for z=K*(a, b)
and x&FE(R). For a real number 4 define

k*(x, 2):lifgl k(x, A+ie)

=Fiva-viot - e
Now we introduce
(3.4) D;=9(2)=D;+%,;k(x, 2),
.@,:g),(z):lé‘:l 5D,
for a non-real z and
(3.5) D5=D(A)=D;+2;k*(x, A),

D;=D(N)= 3 £,9

for a real A.
Let z,& K*(a, b)(ze=K (a, b)) and let u(x) be an H, o solution of

Lu-—-zu=f=L} (s>%).

Then the solution u(x) is said, following Ikebe-Saito [12] and Mochizuki-Uchiyama [20],
to satisfy the outgoing (incoming) radiation condition, if z,= K *(a, b)(zo=K ~(a, b)) and

(3.6) 1D zo)ulls-1 ear<=  (1=j=n)

or if z, is real and

3.7 1D3(zo)ulls-1. pcry <o
(197)ulls-1. e <oe)  (I=j=n)

Under the condition (A) we have the following theorems, which will be proved
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in §5.

Theorem 3.1. For any K=*(a, b) and any s such that %<s§min(l, -l%i) there
exists a positive constant C such that

1R fllvy-s=CIl flls,
1D;R@)f ls-r.ec=Clflls (=jsn)
for any f€L? and z€K*(a, b), where R(z)=(H—2z)".

and

Theorem 3.2. Let s be as in Theorem 3.1 and f€Li. Then for any real number
A there exists a unique solution u*=u*(A, f)(u =u (A, fNEHs 10cN\L} ;- of
Lu—Au=f
such that u*(u~) satisfies the outgoing (incoming) radiation condition. For any sequence

{zn} in C satisfying

limzp=2 and Imz,>0, m=l,2, -

1M ~—>00

(Im zn<0, m=1,2, --)
we have
R(zn)f —> u*(u~)  strongly in L.

The solution u*(u-) as above is denoted by .R(Z-l—iO)f(R(Z—z'O)f).

Theorem 3.3. Let s be asin Theorem 3.1 and f€ L% Then R(A+10)f and R(A—i0)f
are L}, valued strongly continuous functions with respect to AER.

Since (A.2) gives
(3.8) ol -s < lellyg;-s

for any real s, the continuity of R(A+340) f in L{,-, with respect to 4 in Theorem 3.3
implies the continuity in L2,. Therefore the following assertion can be proved by the
same argument as in §3 of lkebe-Saito [12].

Corollary 3.4. Let E be the spectral measure of the self-adjoint operator H, i.e.,
H——-SmldE(Z). Let s be as in Theorem 3.1. Then for any real numbers a, b and fe

L% we have

(E(a, O, flre
=L

b . .,
Vo Sa<R(l+zO)f—R(l—zO)f, >da,

where {u, v):SMu(x)v(—x)dx for ue L%, and ve L2

Therefore, H is an absolutely continuous operator.
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§4. Preliminary propositions

Throughout this section we assume the condition (A), while some proposition may
hold under a weaker condition.

Lemma 4.1. For any compact set K in C and any R>0 there exists a positive con-

stant C such that

j=1 SB(R)

ou
3x,~

’dxgcg O (L2} dx

B(R

for any ue Cy(R™) and z= K(for the proof see, e.g., lkebe-Saitd [12], Lemma 2.1 or
Weidmann [26], Auxiliary theorem 10.26).

Lemma 4.2. Let z be a non-real number and R be sufficiently large so that (3.1)
holds. Assume that ¢=¢(r) is a real-valued C' function such that ¢(R)=0. Then we have

780 ReSE(R)go(r)(L—z)u@Tﬁ dx

R e e e e e Ca ) (L E Y

+gRe[D7u(Vomzt oot

B i
+Re[(pw) 5 @) (57—

a0l
L,rVo + L;h )]

+Im[(gou)j.él(79;u_)i,B,,(x)]}dx

for every us CH(R™), where

A
Wz=Vy)”

9 9 _ 9b, b,

h=

L=r-2 2% _ 06 _ 9b;
T x, Tor’ TV 0x, ox

n
|£Du|2=j§=_‘i | Djul?.

Proof. 1t follows from (1.1), (3.4) and (A.l) that

4.2) (L—z)u:—j"ng;quvu—zu
=— é"‘ D{D;—z;R)u+Vou+V,u—zu

ok  n-—1 z)u

= — ;D1Q1u+k0ru+('§‘+_r— k+V0+V1_

=—3

j=

n
1

D,Q,u+k££),u+(%l:—+

n

:1 k—k2+Vo+V1_Z)u.
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Integration by parts us to obtain an identity

(4.3) —ReSE(R)goJZ,l (D,9)D7udx

=—Re S (p L (D D) Doudx
{ Do+ “D(|g>u12 |9, ul)+¢Re, 2 (g),u)x,D,.cp,u}d

i,
ot

(ED,u)x;(D ED,u D,Q,u)dx

S:)I.‘Drulz}dx

Noting that

. . N (0 0
Djﬂ)l—D,.Cl)j—k(xle—x,Dl)-f-(x, aA.j —x, axl >+I(a_ijz—a—xlbj>

) . 0k
:k(:%,Qj—xj.‘Dz)+<x; a x, a‘C )+ZBJ¢

and
0 0 n . a

(44) Lj———?’ an — XA a?’ ; ( X —x,—a—;)
we have from (4.3) that
(4.5) —ReSE(mgo 209D dx

_ 2__(1_0,___ n—1 2 /_2_ 2

—SE(R){ r 2 2r ¢+[Re k]go)l@ul +((P ¥ [Re k](p)l.‘D,ul

+¢Re 2——~—(£D,u)u+go Imjélle,,(ﬂ)ju)u}dx
The definition (3.2) of k(x, z) gives
_ ZLJV'O

(4.6) Lik= eV, + L;h
Therefore (4.1) follows from (4.2), (4.3), (4.5) and (4.6). (cf. Lemma 2.2 in Ikebe-Saitd
[12], which shows a similar identity.) Q.E.D.

Lemma 4.3. Let —;—<s§l. For each K*(a, b) there exist positive constants C and
R such that

4.7 19ulz-s. 2= 2 1Dl 0
<C{llulig,; s-1-s+I(L—2)ulit}
for any usC3(R") and zeK*(a, b).

Proof. Choose R so large by means of (A.l), (A.2) and (A.5.1) that
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(4.8) a—V(x)>1, xEE(R)
and
(4.9) Vi(x) is bounded in E(R).

In order to prove Lemma 4.3 we make use of'Lemfna 4.2 by putting
o(M)=0r—R)(1+r)**-*,
where { is a C* function on R such that {'=0
1, t=1
(4.10) C(t):{
0, t=0.
Then the left-hand side of (4.1) is estimated by Schwarz inequality as
4.11) ReSE(R)go(L-—z)uQ—,u dx
SIL=2)ull|Drulle-1,p -
Let us consider the right-hand side of (4.1). Since
¢’ =2s=1)(14+r)*2L(r—R)+1+r)*"'{'(r—R)
2@s—1X147r)?  for r2R+1,

Imvz=V(x)>0,

0.V, ]_ 1 (3-V.)Rez—V,)
4z—V,) 4 (Rez—V)*+(Im z2)

Re hi=Re| - - 20
as a result of (A.3) and (4.8), we see

1 ’ - 17 2 1 -
4.12) [790 ()+(Amv/z=V, +Re ()| 9u*2 (s =5 KL+ Dul* (2 R+1).
It follows from the condition s<1 that

f___ r_ 28-2(0 _];
L —p'=(1+7) (2 zs+r)>0. (rzR+1),

which and (3.4) yield

(4.13) (¢ )ioul—19.u1920  ¢ZR+D).
The conditions (A.1), (A.5.3), (A.5.4) and (3.2) imply
(4.14) gk
_(Dnsy) @Y. 58V,
47 4(2—Vo) 16 Z_Vo)
=0(r'-9,
LV,

PV, V=T S0
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and

Ljh =——LL,( 0.V, )

r 4r z—V,
_l (ajVo—;eJarVo)arVo . 1 ajarVo—'ﬁja,z-Vo _0( _1_5)
~1 (z—V o) 1 z-V, =Y

as |x|—oo uniformly in z&K*(a, b). Thus we have from Lemma 4.2, (4.8), (4.9), (4.11),
(4.12), (4.13), (A.2), (A.5.1), (A.5.2) that

l £8-2 2 .
(4.15) (s—§)SE(M(1+r)2 | Dl x

A

C,{SB(R’RMIQJuIzdx+SE(R)(l+r)2"‘|£Du| (]| (147)1-8 4=V 'o‘dx}

C,S | Du|2dx+CollDulls-r gemllullvy s-1-5,
B(R,R+1)

A

where C, is a positive constant independent of uC%R") and z€K*(a, b). In view
of Lemma 4.1 we obtain

(4.16) REL dxs Collulgrsn+I(L—2)ulbwsn)

SB(R.RH

SClllullty s-1-a+I(L—2)ull?)

where C, and C, are independent of u and z. Now gathering (4.15) and (4.16) and
noting s>(1/2) one can find a positive constant C, independent of u and z such that

(4.17) 19ul2-1. S Callulldy s-1-s+ I L—2)ulli+1Dulle-1. el Ullve; s-1-5
1
SClullfy s-1-s+ ML —2)ulli+el Dulli-1 pr+ - lul?g s-1-2)

for any ¢>0. Therefore one can show (4.7) by taking ¢ in (4.17) so small that eC,<1.
Q.E.D.

Lemma 4.4. For any K*(a, b) and s>% there exist posz'tz'vé constants C and R
such that

Null3 -0, 200 S C o 2wl 3 -5+ (L —2Dull3+1Duli-1 )

for every usC3(R™), z&K*(a, b) and p>R.
Proof. Recalling the definition (3.4) of 9, and putting

‘W,=Revz—V,, W,=Imvz—V,
one obtains

@1®)  1o.ul=|(D Wit wer S mY|
=|(Dr+wat 25 L4Re )u|"+O¥,—Im A | u| =20, ~Im i) Im{(D, )]

=(W,—Im h)?*|u|*=2(V,—Im ) Im[(D,w)a].
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The condition (A.1) and (A.5.4) show

—a,V,

T

—> 0 as |x] —>

uniformly in z&K*(a, b). Choose R sufficiently large so that

1 V() 1
(4.19) lh(x,Z)l<—2—, a 5 22

for x€E(R). Then we have from (A.2) and (4.19)

(4.20) WizWi—Wi=Re[z—Vy(x)]=a—V4(x)
=40 Vi) o La—vianz

and from (3.3)
(4.21) 2|Wy| =z +(W,~Im h)g-;—]W‘[ for +Imz>0.

Therefore it follows from (4.18), (4.20) and (4.21) that

2 1
2 2 P, 2
(4.22) 21D, ut| = A | D, u|=+ Wi—Im ) | D, |
=+(W,—=Imh)|u|*F2Im[(D,u)a]
g‘/lv" lul*F2Im{(D,u)a]  for +Imz>0.

Taking the imaginary part of an integral

j:SB(R)(L—z)u-ﬁ dx
we have

Im j=—ImSS(R)(D,.u)ﬁ dS—(Im z)S lulidx.

B¢
The above inequality and
(4.23) el -s=llullvg-s,

which is a consequence of (A.2), yield
(4.24) i‘Ss(R)(Dru)ﬁ dSEIL—2)ulldlull-s=I(L—2)ullsl ullvy;-s

for £Imz>0. (4.22) and (4.24) are gathered to obtain

(4.25) —i—g V=V, |u|’dS§.25 D ul*dS+2|(L—2)ullellullvy;-s

St Sty
for any t>R. Multiplying (4.25) by (1+¢)-?* and integrating with respect to t over
Lo, =)(p>R) we have
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—llu ”12’0;—3.3(57)
4

= dt
209wl pep 2L —Dullul g
1 1-28
S+ )1, s e (L 2Dl uliee)

which completes the proof. Q.E.D.

Lemma 4.5. Let z be a non-real number and t be a real number. Then there exist
no non-trivial solutions u(x) of

Lu—zu=0
such that ueH, ocMNLE.

Proof. Let u(x) be an arbitrary solution of
(4.26) Lu—zu=0
belonging to H,,,c\L: We shall show that if u is an H,,,c solution of (4.26) satisfying
(4.27) ues L? for a real number ¢,
then we have
(4.28) [1DuleLli
(a is the number appearing in (A.2)) and
(4.29) ueLliiqio-caro-
Since a<2 in consequence of (A.2), the repeated use of the above result gives finally

ucs Lt
and, therefore,
ueD(H) and Hu=zu

in view of (2.1). Since z is non-real, the self-adjointness of H shows u=0.
We shall prove first (4.28). Integrating

(L—2)u-(147)*-*7=0

over B(R, p) and taking the real part we have

(4.30) SB(R p)(l+r)"-a]Du|zdx
=[SS(P)_S.S»'(R)jl(l-*-r)“_ar Re[(D.uw)&#]dS
B(R,

—(2t—a)S (A+n-e Rel(D,w)aldx

+S (Re z— V(X142 u|*dx,
B(R. p>



598 - Osanobu Yamada

where

[SS(p)—SS(R)]f dS:SS(P)f dS_Ss(R)f das.

Let R be so large that (4.9) is valid. Then the condition (A.2) and the fact us L} give
(4.31) S A4 V) L4 )4 u]d x < oo .
E(R)
The second integral of the right-hand side of (4.30) is estimated by
[, fer s Durte b u
B(R, p) 13

for every ¢>0. This fact and (4.30), (4.31) imply that we can obtain

(4.32) S (14-7)%-%| Du|2d x < oo
E(R)
if we show
(4.33) Iiminfg (1+r)2-* Re[(D,w)it]dS<0,
. po S¢pd
where

lim inf f(p)=lim [inf f(»)].
peo pee T2p

Suppose that (4.33) is not true. Then there would exist positive constants § and p,
such that

(4.34) Ss(,»(“”)"'“ Re[(D,u)i]dS28>0

for p>p,. Integrating (4.34) over [p,, p.](ps<p:) With respect to p gives

(4.35) (pz—pl)ﬁgg

=%[stz)—Ss(m)](l_}-r)u-a ul*dS— %Sacm-pw( ":1 + zlt-::’x )(H—r)“'“ lul*dx.

The assumption ue L} yields

)(1+r)“'" Re[(D,u)a]dS

B(p1. P2

lim inf p,SS(P (L7)|u[*dS=0
2.

pa-ce

and that the right-hand side of (4.35) has a finite inferior limit as p,—oo, while the

left-hand side of (4.35) diverges to infinity. This is a contradiction. Thus, (4.28) has

been proved. ’
Finally, we prove (4.29). Consider the imaginary part of

S (Lu-&u)(l#—r)““'“””ﬁ dx.
B(R, p)
Then we have by integration by parts

(4.36) (Im z)g (Lryeei=cm |y
n

B(R.
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:—.[SS(p)—Sst(l+r)zm_(am Im{(D,u)21dS

a w o
+SB(R,p)(2t+1— 7)(1_*_,,)2: @D Im(D,u)aldx .

In view of u€L? and |Du|E L} (ai»» We have
(I4r)*-@®u| | Dul

=14r)u|(l+r)-@®| Dule L?
and

lim inf pS (14| 4| | Du|dS=0.
S¢pd
Taking the inferior limit as p—oo in (4.36) we have from

(3.37) IIm zlSE (e o
C

S| g (LFPH @ ] | DuldS+ |2t+1- %‘SE(R)(1+V)”'("/“[u| |Duldx

which shows (4.29). Q.E.D.

Remark. In the above proof we have used the condition a<2 in (A.2). Without
this condition we can not expect the assertion in general. In fact, there is a simple
counterexample. Consider the case n=1. Then, u=exp(-—-ix%/2) satisfies

—u"—x*u=iu
and
uelL?
for any s>1/2.

Proposition 4.6. Let R be a positive number and f(x) a C' function near S(R).
Then there exists a positive constant C independent of R such that '

= SCEEE sup SHI(LyfX)|

reS(R
for any x', x”<S(R).

Proof. For any row vectors x’, x”&S(R) consider an orthogonal matrix U=[u;]
such that

xU=y'=(R,0, -, 0),
x"U=y"=(R cosf, Rsing. 0, -, 0),
where 0<6 <=, and define 4
g(x)=f(xU™).

Then we have from the orthogonality of {/
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no Of n
._.ng Ujp an (XU 1),

and
og, . & ., 0g &, of _
or = B, 7,2, B g, GUT

_O0f i
= 'a‘r (xU )
Put y=xU. Then it is seen also from the orthonality of U

(4.39) (LX) =| 131 25 0)-30 |

=| &1 gL -0 G|

j=1

=% [lxlu;k%f—_(x)—-\’jujkjj;‘(x)“

s=1l

aim 5 0)) =(Z L)
or =

(2

=1
Hence we obtain
(4.39) [ f(x")—f(x")=|g(3")—8(y")]

=‘S:%—g(R cost, Rsint, 0, --- | 0)dt|

=I5.(-

S:R{——( gi gﬁ cost) smt+(——‘——a—— sxnt) cost dt‘

=60 max {[(L,:g)¥)|+ (LX)}
yES(R)

3g

An elementary inequality ,
4 .0 =,
R-6= 2R2 <2R 7sm—2———2|y 7|
=2 |x'—x"|  (0=6<nm)
2
together with (4.38) and (4.39) yields the required inequality. Q.E.D.
Proposition 4.7. Put

g(R)= |S<1R>| o 77545 (1SR =(, 45).

Then for each real 2
sup, | VI=V(x)—g(R)] —> 0 (R —> o0)

eSS

Proof. Since
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Vi—V, —¥=V,

2
T(VATV, + V=V (Va—Ve+v/=V,)

— 0  (Jx|—> )
in view of (A.l), it suffices to handle the case A=0. The condition (A.5.3) implies
Ly 7V0 = LV A=V =00
as r=|x|—oco. Therefore setting f(x)= ¥—V, in Proposition 4.6 we have
| ¥=V(x)—g(R)|=

1 o -
TS‘TWISS(R,( V=Vy(x)— ¥--Vi()dS,

¢’ b C— -5
S TSR Vs 1+ ) PES=0R?),
as R—co, where the constant C’ is independent of R. Q.E.D.

Lemma 4.8. Let 2 be a real number. There exist no non-trivial solutions u € H, oc 0f
Lu=2u

satisfying the outgoing (incoming) radiation condition.

Proof. Let u(x) be an H,, oc solution of Lu=2Au and satisfy the outgoing radiation
condition. Then we shall show u=0. In the case that u(x) satisfies the incoming
radiation condition one can show x=0 similarly. A simple calculation gives

(4.40) I.CD:'uI’:l(D,—-ix/T:Vo_—l-%l—-{-h)ur

n—1 2
=1 D,ul* A=V lul*+(Z= 1) |ul?

n—1
2r

+2( +h) Re[(D,u) it]—2v/ A=V Im[(D, )] .

If we take R, so large that

(4.41) A=V(x)=1,
l n—1 / }z’ﬁf_‘_l 9,Ve |1

o A T A

o7 (Ix] 2 Ro)

by means of (A.l) and (A.5.4), we obtain from (4.40)

(4.42) I-‘Di’ulzz—l—{ | Drul*+(A—Vo)|ul*} —=2v/2=VoIm[(D,w)a] (x| ZRy)

It follows from Proposition 4.7 that
e(x)= ¥Y2—Vo(x)—g(lx])— 0, [x] —> o0,

Take a sufficiently large number R,(R,>R,) so that
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1
!e(x)l.§§ (lx1=Ry)
Then (4.42) implies

(@Fu))| P2 S { | Do |- (A= V ) |7}

%-1*{IDrulz+(2—Vo)|lt|2}~2g(7’)2Im[(Dru)ﬁ]—l( W:Vo(7§+—l—)|u| |Drul,
2 2 16
from which and (4.41) we obtain
(4.43) Iwiulgg-%{|Dru|2+(1—Vo)lul’}—2g(r)21m[(Dru)ﬁ] (IxI=Ry).
Taking the imaginary part of

S (Lu—2Auw)it dx=0,

B(R)

implies.

lmg (D, )it dS=0,

S(R)

which and (4.43) give

1
+ 2 2
(4.44) . SS(R)I.(D,uI dSz= 8SS(R){ID,uI +(A=Vo)lul?}dS

for R>R,. On the other hand we see
lim inf R“"S | DFu|?dS=0
R-co S(R)
in view of 9fusL?_,. Hence it follows from (4.44)

(4.45) lir;l inf R““S {1 Du|*+(A—=V)|ul?}dS=0.

SR

It is well known under a weaker condition that every eigenfunction satisfying (4.45)
vanishes identically in an exterior domain E(R)(see, e.g., Uchiyama [24]). Thus we
have ©=0 by the unique continuation property (A.6). Q.E.D.

§5. Proof of Theorems in §3.

We start with the following Lemma.

Lemma 5.1. Let z be a non-real number. Then the set
- {Lu—zu; ueCXR™)

is dense in L} for every teR.

The above Lemma is a consequence of Lemma 4.5 (cf. Lemma 1.10 in Ikebe-Saito
[12]. where a detailed proof is given).
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Lemma 5.2. Lot l<sgmin(1, “2“5) and f&L® Suppose that {un)CC3(R™) and

2
{zn}CC satisfy

(5.1) {um} is bounded in L},
(5.2) (L=zp)im —> f strongly in L%,
(5.3) Im z,>0, m=1, 2, -

(Im zp,<0, m=1, 2, ---),
(5.4) Zm —> Zo, m—> oo,

Then there exist a subsequence {um,} of {um} and uyEH, 10cN\L} ;-5 such that

(5.5) Um, —> Uy Strongly in L},
(5.6) 1o 1S a solution of
(L—z)ue=f

and satisfies the outgoing (incoming) radiation condition.

Proof. 'The assumptions (5.1), (5.2) and Lemma 4.1 imply the numerical sequence

I,Z(B(R))}m=1. 2,0

n a
{” UmllLzcan+ 20 H Ty Um
j=1 Xj

is bounded for each R>0. In view of Rellich’s theorem (see, e.g., Mizohata [19],
Theorem 3.3) we can choose a subsequence {um,} of {un} and u,& Lf,. such that

(5.7) Um, —> U iD L%..

The assumptions (5.2), (5.4) and Lemma 4.1 are again used to show that
(5.8) U H, 100 Um, —> Uy In Hjjec

and that the limit function u, satisfies

5.9 Lu,—zyu,=fL?

in the distribution sense. Making use of Lemma 3 in Ikebe-Kato [11] in view of
(A.1), (A.2) and (5.9), we obtain that u, belongs to H, oc. Noting s=<(140)/2 and,
therefore,

”u”Vo;x-l—6§”u”V0;—:»

we have from Lemma 4.3, (5.1) and (5.2)
{D(zm)um} is bounded in Li.; gy
for a sufficiently large R,, which together with Lemma 4.4 and (5.7) shows
(5.10) v Um, —> U strongly in L§;-,.
Lemma 4.3, (5.2) and (5.10) are used to show that

{D(zm,)um,} is a Cauchy sequence in Lf-, rwxp,
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which, (5.4) and (5.8) give
D(zm )bm, —> DH(zo)u,o (D (zo)uo)
strongly in L{., gy. Thus u, satisfies the outgoing (incoming) radiation condition,
which was to be shown. Q.E.D.

Before showing Theorem 3.1 we prove the following Lemma.

1 . .-
Lemma 5.3. Let s>—. Then for any real a, b there exists a positive constant C

2
such that
lullyg-s =< ClI(L—2)u]ls

for any zeK*(a, b) and usCH(R").
Proof. Since it suffices to prove the assertion for a sufficiently small s, we may

assume

1 . 140
0 <s§m1n(1, 5

so that we can use Lemma 5.2. Suppose that the assertion is false. Then there would
be a sequence {u,}CCS(R™) and {zn}CK"*(a, b)(or {zn}CK(a, b)) such that

lumllyg-s=1,  (L—2)um——>0 in L§.

We may assume, without loss of generality, that z, coverges to a complex number z,.
Therefore Lemma 5.2 enables us to choose a strongly convergent subsequnce {un,} in
L3,;-s such that the limit function u, satisfies

Luo=2z0u,

and the outgoing (or incoming) radiation condition. In view of Lemma 4.5 (if z, is
non-real) and Lemma 4.8 (if z, is real) we have u,=0. This is a contradiction, since

]-:lkl_r‘ll “umk”l’o;—sznuo”V(.;—szoy

which completes the proof. Q.E.D.
Now we prove our Theoroms.

Proof of Theorem 3.1. Let feL: By virtue of Lemma 5.1 we can take a sequence
{um}C CH(R™) such that

(5.11) (L=2)um —> f in L2,

Lemma 5.3 shows that {u,} is a Cauchy sequence in L#;.s Let u be the limit function.

Then u satisfies
(L—2u=f

in the distribution sense. Therefore Lemma 3 of lkebe-Kato [11] gives u&H,,1oc and,
by (2.1) and feL!CL¥R"),

ue D(H), (H—2u=f.
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Since z is non-real, we have

u=(H-—2z)'f.
Hence we obtain from Lemma 5.3
(5.12) ICH—=2)" fllvg-s=llullvy;-s
=11,il£rgollumllvo;-,§c lim [(L—2)un]s

=Clflls-
Since unp—u in L, s and (L—2)un—(L—2)u in L}, Lemma 4.1 yields that
(5.13) un converges in Hy joc to u.
Lemma 4.3 and 5.3 are combined to obtain
(5.14) 1Dumls-1. 8. > SCllumlvys-1-s+I(L—2)unls}
SC{llumlve;-s+I(L—2)umlls}
SC'I(L—=2)unls

for some positive constants C, C’, R and any p>R. Making m tend in (5.14), we have
from (5.11) and (5.13)

“-‘Du||x-1:B(R,p)§C'“f”s
and, by making p tend to infinity,
1Dulls-1:2cr =C'I| flls,
which and (5.12) complete the proof. Q.E.D.
Proof of Theorem 3.2. Let f be as in Theorem 3.2 and {z,} be a sequence such

that zm—4 and Im 2z, >0(m=1, 2, ---). Then put va=(H—2z,)"'f. One can take {u,}C
C2(R™), by means of Lemma 5.1, such that

1
(5.15) I(L=zn)um—flls=—.
m
In view of Theorem 3.1 and (5.15) we have
(5.16) ”vm—um“l’o:—s:”(H_'zm)_l(f_(L_zm)um)uvo:—:

' C
sCIf—(L—zmunls .

Since {vn} is bounded in L$,.-, from Theorem 3.1, {un} is also bounded in L},._; from
(5.16). Therefore we use Lemma 5.2 to choose a convergent sequence {un,} in L},
with the limit u* satisfying the outgoing radiation condition and

(L=Mu*=f.
From (5.16) we see

vmk'_>u+ in ng'o:-:-
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It remains to show that v,—u* in L}, as m—oo. Otherwise, one would have a
subsequence {vmy} of {v.} and a positive constant é such that

(5.17) lomg-—u*llvy:-220.

Applying the same argument as shown we can choose a subsequence {vnmy} Of {vnmy}
and v*€L§ .-, such that

(5.18) Ump —> v in L, (L=Awr=f

and v* satisfies the outgoing radiation condition. Since, by Lemma 4.8, the solution
of (L—2A)u=/f satisfying the outgoing radiation condition is unique, v* must be equal
to u*. Hence, (5.18) contradicts to (5.17).

For another sequence {z7} such that zj,—A(Im z7, >0, m=1, 2, ---), we can choose,
by the same argument as above, w*&L}.., satisfying (L—2)u=f and the outgoing
the radiation condition such that

R(zm)f — w* strongly in  L{ .-
Lemma 4.8 is again used to get u*=w*. Therefore we have

lim R(zn)f=u*=v*=1lim R(z},,)f

m—oo
and see that the limit is independent of the choice of {z,} such that z,—co.
Q.E.D.

Proof of Theorem 3.3. Theorem 3.2 shows that for every f&L?and every closed
interval [a, b]

(5.19) R(x+ }n) f ——> RQ+i0)f
and
(5.20) R(z— %) f—> RQA—i0)f

in L§,.-; as m—oo, uniformly for 2&€[a, b]. We shall show (5.19)(as (5.20) can be shown
similarly). Otherwise, there would be f=L}, an interval [a, b], a positive number ¢,
and numerical sequences {m;}, {n:}, {4:} such that

i
My

(5.21) | R(au+ =)= R(2s+ ;—k)f

gso ’
Voi-8

my—oo, me<n, and A,<[a, b]. In view of the compactness of [a, b] we may assume
that 4, converges to a real number 4,. Then Theorem 3.2 gives

?
Mg

lkiglR(/h+

)7 =tim R (a+-1) r=RG+i0S,

which contradicts to (5.21). The uniform convergence of (5.19) and (5.20) shows the
continuity of R(A+:0)f in L$,.-. with respect to A. Q.E.D.
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§6. Spectral representation of f

We shall assume hereafter the following conditions stronger than (A.4) and
(A.5);

(A.4) Each byx) is a real-valued C? function..
(A.5) There exists a positive constant 6 such that

%<5§1 and

(A5.1) Vi (x)/(=Vox)H=0(x|-%,
(A5.2)  Bju(x)=0;0:(x)—0,bj(x)=0(]x|"'"%),
59,Bu(0)=0(1 x| =),
(A5.3) (LVo)/(=Vox))"*
=(r8;V o— 1,0,V o)/ (= V o(x)*=0(| x| %),

(LIV =V () P=0(] x| 41979),

(0/0x)V o(x)

(A.5.4) e

=0(Ix|7'")  (rl=2),

as | x| —oo, where 1=7, k=n.

Lemma 6.1. Assume the condition (A) with (A.4) and (A.5) Let A€R, f&L} and
u=R(A+10)f. Then we have
|9*u| e LAE(R)),

where R is so large that @* can be defined as seen in §3.

Proof. It follows from Lemma 4.3 (by putting s=1) that
(6.1) DVl e = Cllvlvy:-s+I(L—A—ie)|,}

for every veC3(R) and 0<e<1. It should be remarked that the condition (A.5.4) is
used in Lemma 4.3 only to estimate : '

(n—1)Xn—3) _8V. _ 5/3,V,

@1h=""——45 WV 16\z—V,

)z=0(r"“’), as r—oo.

The condition (A.5.4)" shows that (4.14)=0(»"*) and, therefore, (4.14)=0(r"*-% from

0<1. Noting 5>-;— we have from Lemma 5.3

lvllyg-a= CICL —A—ielly,
which and (6.1) imply
1DV e S C/(L—A—ie)|,

for every veC%(R™) and 0<e<1. Since the set
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{Lu—zu; usCy(R")} (Im z#0)

is dense in L? from Lemma 5.1, it is seen, by the similar arguement to the proof of
Theorem 3.1, that

(6.2) IDR(A+ie)f e < C I fll:.

for 0<e<1. Put umzR(/H- %)f Then Theorem 3.2 shows

Um —> U
and

Lum—lum=f+ni;um —> f
strongly in L$,..,. Then we have from Lemma 4.1
(6.3) Up —> U in Hy e
The inequality (6.2) yields
(6.4) 1Dumllser, o> = C Il flly
for any p>R. Taking the limit as m—oo in (6.4), we have from (6.3)
1D ullser. » =C’Il fllx
and, by making tend to infinity,

1D*ullgcry =C’ I fll:.
Q.E.D.

Lemma 6.2. Let A€R, %<s§l and feL? Put u=R(A+i0)f. Then there exists

a sequence {Rn} such that Rp—oo and

(6.5) lim Ss X ){R},:“x/—Vu lul*+R%-'D*u|*}dS=0.
Bm

Mm-s00

For any sequence {Rn} satisfying (6.5) the following limit

(6.6) lim SS(R NIV, ul*dS

m-so0

exists and is equal to
o <, f>=T P} =Iml<u, 5]
where
Cu, vy={ | xR x

for ueL?, and ve Ll

Proof. Since ueL},.-, from Theorem 3.2, and |D*u|&EL}-, pcry from the assump-
tion, we have

lim inf Rgs RNV Ll R 97 ) dS =0,
C

R—soo
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Therefore, the existtence of {Rn} satisfying (6.5) is insured. Green’s formula and the

definition (3.5) of 97 yield

6.7) Sm (uf=af)dx

{u(—=D%u+Vi—2aa)—(D*u+Vu—2Au)a}dx

SB(Rm)

S {(D,w)iz—(D-u)}dS
SRp)

S(Rm)

:2;‘5 «/Z—VolulzdS—!-S (D) —@FDu}dS
S(Ry)

for a sufficiently large R,. The condition (A.3) and (6.5) imply

(6.8) lim SSR )[Qtul-!ula’Séli S ){R};""‘«/—V., lul?+ R%E-'D*u|*}dS=0.
m—o0)S(Rm Lilndad

S(Rp

Thus, Lemma 6.8 follows from (6.7) and (6.8). Q.E.D.

Proposition 6.3. Put
Alx)= ,—? S:b,(tx)x,dt

and

Bix)=by(x)—0;A(x).

Then we have
(6.9) Bi(x)=0(r"%,
(6.10) i 0,8(x)= O(r-c1-8)

j=1

as r—oo, and

(6.11) jz, x;B4x)=0.

Proof. (6.9) and (6.10) follow from Iwatsuka [14], Proposition 2.1 by using (A.5.2)
and

a,A(x)zbj(x)-l-S: 5 B dt,

which and the skew-symmetricity of the matrix {Bj.} give

1 n
:21 x,x,,B,,,(tx)t dt=0.

,Z:J. xlﬁf(x)z_g

Thus, (6.11) is proved. Q.E.D.

0J

Definition 6.4. Let &) be a C* function on R such that
1, t=1,

co-]
0, t=0.

Then we define
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0, D=\ VIV L=V tands
and
Wx, &, G IR D ALV ) A=V )~ D REH)

for a C~ function ¢ defined near the sphere S™-', where R¥ is so large that V,(x) is
bounded in E(R¥).

Proposition 6.5. Let iIER, l<s<c$ and ¢ be as in Definition 6.4.

(6.12) w(x, A, @)E L,

(6.13) D5u(x, 2, §)=iLB(x)+T {x, Vn(x, 4, ¢>+%v<x, A L),
and

(6.14) Diu(x, A, $)=0

for | x| ZR¥+1 such that 2—V (x)=2, where

Ly=r0;,—x,0,
and

_ 'I'L_ s C(l_vo(tf)) T X (TN — o
Ui, == LV ) ey VA VAT G-V ) |dt

Moreover, we have
(6.15) Uix, Hh=0@%, 0,F[x, Hh=0@F- %) a5 r—> 00 (1Zj<n).
(L_z)v(x’ 2, ¢)EL51

(6.16)
[D*u(x, A, )l € L2s.

Proof. (6.12) can be shown from (A.l), (A.2) as follows

lu(x, 4, §)| = %r"""”z(l—Vo(x))‘”‘C(R—Vo(x)—l)C(r—R’&‘)I¢(fr)l

S CAX—V o) (1) | §(2)]
E L=, _
for any s>(1/2), where C(4) is independent of x and ¢. Noting
A= LA,
we have, by an elementary calculation
(6.17) Dju=(0;41b(x)(x, 2, ¢)
9,V o(x)

1, . [P .
:[_ Tk, 2)+zx,-x/2»—Vo(x)—zB,A(x)+zb,(x)+m]v(x, 2. 8)

1
+7U(X, A L;$)
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for any x satisfying |x|=R¥+1and 2—V(x)=2. So, (6.13)follows from the definition
(3.4) of 9 and Proposition 6.3. (6.14) is seen from

ZZ] %;B(x)=0 ‘
by (6.11), and
(6.18) ,313 #L,= 121 (r&9.,— £,%,8,)=1d,—73, =0,
which gives
(6.19) g £ x, H=0.

Put &(t)=+/t. Then the choice of {(¢) implies

<0 ¢ =t
t

+@Ew|={ ¢

26(t)

&( Al =1,

for a positive constant C. Hence, we have, making use' of (A.5.3) and (A.3),

. R C . 1z C R oy
e, DS [ Z LV DIt | T LV eI A=V )t
< ‘Cl S'“ IC' (141)-*dt=0(r-?)
x| R x|

as r—oo, where C’ is a positive constant, and R is a sufficiently large numbéf' such
that '

(6.20) A A—Vy(x)=2, and |x|ZR§+1.

Similarly, one can estimate

——(L,V

0¥ (x, AH=— Uix, D

N
Xy vy T
C o
o+ CE -V et
e 2\72 , _ élc naLPIEr _ <
e e - S e - e

(Ix1=2R),

E |’
—S;" L3 v.,xtx)[

using (A.5.3)" and (A.3), as follows,
[(L;Vo)x) C"
OH L DS vi-vo T i DI T

=0(r*- »40(r- ”)+O(r")+0(r"”” BN1O(r-¥)  as r—o,

N [0 41070,

where C” is a positive constant, which shows
0, [(x, H=0(r-1»-%) as r—oo
because of >(1/2). Finally, we shall prove (6.16). It follows from (4.2), (4.14), (6.13),
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(6.14) and Proposition 6.3 that
n 1
(L—Du(x, 4, ¢5)=—IZ=31 D;{i[ﬁ;(XHWJ(x, Alu(x, 4, ¢)+—r—v(x, A, Lj¢)}

(n—1Xn—3) o, 5 /1 8.V, e
v Ty 16 ) [ 4

and, by noting (6.11), (6.17) and (6.18),
(6.21) (L=2u(x, 2, ¢)

+HVio+

n . . o . a Vo
—_— j;l {[z(&,l”,+8,ﬁj)+z(wj+ﬁj)<zqf,+zﬁj+zuj_—vo))]v(x, 2, ¢)

3 Vo 1
+[‘%‘(ﬁ/+w1)_z(%jjvs]v(x, A, Lj¢)+—rz—v(x, A, L§¢)}
(n—=1)(n—=3) oV, 5 /_a,vo 2]
+[V‘(")+ & da-v. 16 \x—vo) ]”("' % 9)

for |x|=R. The condition (A.5). (6.9), (6.10) and (6.15) show

lgj(X)=0(r'5), éa/ﬂJ(X)=0(r‘<”z""),
Wj(x, 1):0(7-5)_ 3,11Tj(x, D=0(@r-a1»-3),
oV, . | B e
T =007, VAV ) =00 )

as r—oo, which suggests that all the coefficients of u(x, 4, @), v(x, 4, L;¢) and
v(x, 4, L%, ¢) in (6.21) are
O(r-19-8 Y —V(x)), r—oco.

According to Proposition 6.5, v(x, 4, ¢), v(x, 2, L;¢) and v(x, A, L3¢) belong to L} _,
for every s>(1/2). Hence, we obtain

(L—Au(x, A, ¢)sL?

for every s<d, which shows the first assertion of (6.16). The second assertion of
(6.16) follows from (6.10), (6.13) and (6.15). Q.E.D.

In view of Lemma 6.2 we obtain that for each feL?

(RG22 Y2=V (Rn RA+i0)fIRn D mor, 2.

is a bounded sequence in the Hilbert space h=L?*S"").
We shall show below that

{Rip =112 10Em DetdEmd 7 — V(R Y R(A+i0) f IR mer.r..

is a Cauchy sequence in h.

Lemma 6.6. Let —;—<s§~#, AER, fel} and u=R(A+:0)f. Take a sequence

{Rn} as in (6.5) in Lemma 6.2 and put
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wm_\/ R(n x)/z -iORp-. i)emzkm)‘\/z Vo(Rm )u(Rm )
Then there exists a positive constant C such that

(wn—wy, @)l éC[(¢|Ih['|f|ll.8(llm.kl)+”u”Vo: -5, BBy Rp T D U BeRy. v
.3 (a1 9701748) |+ CLO* Ul 0,0 0

x| & RIG=V R Ll
for g HY(R2) and Ri>Rn>R, where 2 is an open neighborhood of S™' and R is the
number satisfying (6.20).

Proof. 1t suffices to prove Lemma 6.6 for any ¢ =C=(S*"). In view of Definition
6.4 we have

(wm.¢)h—g «/Xtvouﬁds,

SRy

for R.=2R, where v=v(x, 4, ) So, the same calculation as seen in (6.7) gives
20w, @

:ZiS VIVauo dS:S
SRy S(R

(Bm

{u@)ﬁ—(@:u)a}ds+g (D, uwYo—u(D.o)}dS
b) S(Rm)

=Ssazm>{u@_i—vj_(g):u)ﬁ}ds_SB(Rm){ﬁ(L—l)u—-u(L—Z)v}dx .

(4.2) and (4.14) give us to obtain

(n—1Xn—=3) 9V, (a Vo ]
4r? 42—V, 16

Therefore we have, noting (6.14) in Proposition 6.5,
(6.22)

(L=2w=— 3 D;Djv+k*(x, x)g>,+v+[v,(x>+

2w, ¢),.=—SS(Rm)(£D;'u)z') dS—SB(Rm)[— f17+u(L——"X)v']dx:—Ss(Rm)(ED;‘u)ﬁ ds

R e e L

0tV 0.V \?]-
TAa=vy 16(2—V., ]”}‘”'
Thus we have, by integration parts and by using (L—2u=/f, the definition (3.5) of
D} and (6.14),

(6.23)  2{(wm—wi, P

:_[SS(RI)_Ssui!m)](g;.u)lj dS*S B(Rm R fvdx+ 2 SB(R,,, ,(Q?u)mdx

(n—1Xn—3) azv PR
+SB(RM.R,>“[V‘T " 4; "4(1—10/,0“13'(1—1/00)2]”‘1"
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=—L—L+L+1,.

These terms are estimated as follows. It follows from Definition 6.4 that

VI= e, 4, B S = g(0)

for |x|=R,, which yields
1 .
[, /v17dSS 101G (RZR+D)
SRy T
and, by Schwarz inequality,

(6.24) Ls—— 5 (IRETRON

' ! _‘\/ﬂ'—l=m.l SRy r U ) ¢”h
Proposition 6.5 and the proof show

(6.25) lollvy: s =Cliglla

from which and (3.8) we have, by noting -;—<s§ 1;5

=1

) |
(6.26) ””zlgmnm.m,f"d" <1 flls. 5ery. o I0lvy: e S CU Il el -
It follows from (6.9), (6.13), (6.15), (A.3) and (A.5.3)’ that
(6.27) VARS ;3 19301 5k, 2| DTl 5k, 2

n

S19*ul aca o (Clolve-o+ 3

g”gyu“B(Rm,Rl){C’“¢"h+jn (S . ‘(L1¢)(X)|2dx )l/z}

=1 \JBRm. R TP A=V (x))/?

i1

< C" 19" ulncap rp{IB1a+ R77* 53 1A=V ol R )L ig)af

where C, C’ and C” are some positive constants. Since the conditions (A.5.1)’ and
(A.5.4)

(n—1)(n—3) o0V, 570, V,\? _
- =0(r™),
4r? 4(A-V 16\2--V )

(6.28) » 7‘) ( 0) 0

_r1 x — -1-08

/s ey I

. 149

as r—oo, we obtain from (3.8), (6.25) and s§—2~ that
(6.29) [ 1] §”uﬂvoz —(l+6)12,8(8m.kl)”v"~(1+6)lz

=Clullvy: -s. 8k p. 2 1PlIn
for Ri>Rn2ZR,.

Gathering (6.23), (6.24), (6.26), (6.27) and (6.29) completes the proof of Lemma 6.6.

The following Lemma assures the strong convergence of {w,} in h=L*S"").
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Lemma 6.7. Let feLiand Let A, s, u, {Rn} and {wn} be as in Lemma 6.2 and 6.6.
Then the sequence {w.} converges strongly in h to an element woch. The limit w.
is determined uniquely for each f& L% and does not depend on the choice of {R.} satisfy-
ing (6.7).

Proof. Since Lemma 6.2 and 6.6 imply that {wn,} is bounded in & and {(wm, @)a}
is a Cauchy sequence for any ¢=C=(S™"') which is dense in /i. So {(wn, ¢)a} is also a
Cauchy sequence for every ¢ph. Therefore {wn,} has a weak limit w. in h (e.g.,
Kato [17], llI-1-6). We shall see below the strong convergence of {w,} by making use
of Lemma 6.6.

The condition (A.5.4)’. (6.9) and (6.15) show. by a similar calculation to the proof
of (6.13),

[(Lswn)w)]
LRy e ot et YIS (R (R )
= ‘ Rm[—iw,(me. D43, AX R n0)— i@ AY R m@)

~l (a]Vn)(l\)mw)—wj(arVo)(me) ]w
4 A=V (R nw) "

R e O 04 Y 1V (Rno)[(@eX R~ 0@, )R]
SC R YA—V(Ru@)[R7¥ |wn| +REV2(Dju) Rnw)—wf D uXRuw)l] (@ES™),
for R,=R, where C is independent of m. The above inequality yields

(6.30) IL: REHQA=V o(Rm)) L jwmlla

S / n 1/
Vi=Voluwas) (B, . riDaw—Daw1ds)

SRy SR

;’C’R,‘,{”""(S
where C’ is some constant independent of m. Noting
n
121 [(Dy—x;D7)ul®

gj,'z‘, |(1),.—x,1),)u12+|f,g>:'u|2=jé (D= #;Dr+ %, D u | == | D u|?
=1 =1

by means of jﬁ}x,-(D,-—x,D,)—-—O and (3.5), we have from Lemma 6.2, 6.6 and (6.30)
=1
we have

(6.31) . o Nwn—wn, waslSem

for m—oco, where

em=C]|| wm”h["f”x.n(nm.nl)‘F llullvo; -s.s(Rm_R,>+ lD*u ”B(Rm.np

+(Ssmm) | DFu| st)”2+'(gs(m |DFul 2ds)”’]
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+19% . mp| R ([ VaTalupas) ([ rioruias)”],

S(Rm)
Recalling (6.5), s<0, fel} uel},_,, |9 u|eL¥E(R,). (by Lemma 6.1) and the
boundness of {w,} in & (by Lemma 6.2), one can see that the limit llll'g eny exists for
every m, and

limlime,;:=0.

l—00 [—sco

Therefore, it follows from (6.31) that
(W= Wey wi)al S(limeny) —> 0 (as m—o0)
and, by the weak convergence of {w,},
=Wl g =(Wn—We, Wi —We)ha=(W 1 — Weay Win)s—(Wm—Weo Weo)g —> 0,

which shows the strong convergence of {w,}. Finally, we shall prove that the limit
w. does not depend on the choice of {R,} satisfying (6.5). (6.22) and (6.23) imply

(6.32) 2i(wm,¢),,:.—gm )(Q:u)ﬁdS+S {~ro+ jz (D uXDTD)

B(Rp)

(n-1}n—=3)  aV, 5 /9,V, 2]_ )
v vy T T e
where v=uv(x, 4, ¢). In the right-hand side of (6.32) the first term tends to 0 as m— oo,
and the integrand of the second term is integrable over R", as seen in the proof of
Lemma 6.6. Therefore, one can get

(6.33) 20y P=23 lim(w ., ¢>h=gm{—fv+ 2 (@ uX@fo)
(n—1Xn—3) &V, 5 78,Vo\t]. ,_
+“[V‘+ 4t A=V _1—6<2-~V0)]Ud’”

for any ¢ in a dense set C=(S*~') in h. The right-hand side of (6.33) is independent
of the choice of {R,}. So w. is also independent of the choice of {R,}. Q.E.D.

Definition 6.8. Let AR and fe L
FQA)f=s—limw,
M-

=s—lim :/’1—‘1?},{'“”2@""”(’%'- DeidEmd Y-V (R XR(A+i0) fXR ),

m-co N 7T

where s—lim denotes the limit in hA=L*S"").
m—sco

Let E be the spectral measure of the self-adjoint operator H. Then we have

Lemma 6.9. Let fL? and I=(a, b). Then we have

(B, =\ IFQSI3dA

and



Magnetic Schridinger operators 617

1 o
(F(Df, ¢)h='27{<u, (L=2w>—<v, >}
for any ¢=C=(S""), where v=v(x, 1. ¢) and u,=R(A+i0)/f.

Proof. In view of Lemma 6.2 and Definition 6.8 we obtain

(6.34) Im[<uz, f>]=lim§ VITVsuz12dS
Mmoo JS(Rm)
=117jgllwmll?.=llF(2)flli-
Therefore, Corollary 3.4 enables us to obtain

1 (o
i Ja

(BUNS, D=5\ (Cur, 5=z, 5}

=\ 1rrisda.

The second identity follows from (6.22) in the proof of Lemma 6.6, by making m tend
to infiuity. Q.E.D.

Definition 6.10. For each f<L? define and /fi-valued function Ff on R such that
(FfXA=FQAf .
For an interval I==(a, b), L*I; h) denotes the Hilbert space of all h-valued square
integrable functions on [.
Theorem 6.11. For any f L3, Ff isan h-valued strongly continuous function on R.
For any feC7(R™) we have
(FH fYXA)=AF fX2).

Proof. Let fe=L? and A, =R and take an arbitrary sequence {i.} converging to
A,. Since

(6.35) IF ) f[3= g (RO i0)f . f>—CRAFIOT, 1>

as seen in (6.34), the right-hand side of (6.35) tends to |[F(4,)f|l34 in view of Theorem
3.3. Using the identity

1FAn)f—FQA)fIZ=I1F(An) fI3-—2Re(F(An) S, F(A)/)a+1F Q) SNk,

in order to show F(A,)f—F(4,)f strongly in h, we have only to prove the weak
convergence. Moreover, to this end it suffices to show for g=C=(S")

(6.36) (FQAn)f) @) —> (F(A)f, @) -

because of the boundness of {F(An)f} in h. Set um=R(An+i0)f, vm=0(x, An, ¢) and
gn(x)=[(L—2xnl(x) (m=0,1, ---). Then, Definition 6.4 and (6.21) imply that
limvn(x)=v,(x) and limgn,(x)=g,x) for each xeR". It follows from Proposition 6.5

M—s00

and the proof that there exists a positive constant C:=C(¢) such that
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low() =CA+r) 02 [ gu(x)SC(147) /P13,
which shows. by Lebesgue’s dominated convergence theorem,
(6.37) Um —>v, in L,  gn-—>g, in L}
for any s>(1/2) such that s<d. Lemma 6.9 shows

21(F('lm)fv ¢)h:<um; gm>_<vnTv—f>
and, therefore,

Zi(F(Xm)fr ¢)h=2i(F(lo)f' ¢)h:<um’ (gm '_go)>+<(um—uo)r g0>—<(vm_vo)' f>-

Since u,—u, in L%, from Theorem 3.3, we have (6.36) from (6.37).

Let feCy?(R™). Since Hf belongs to L? with compact support, we have Hf L%
Put g=(H—-A)f and u=R(A+i0)g. Then, u is a solution of (L —2A)u=g and satisfies
the outgoing ratiation condition in view of Theorem 3.2. The compactness of the
support of f implies that f satisfies the outgoing radiation condition. Therefore, u
must coincide with f by virtue of Lemma 4.8. Then we have

R(A+i0XH f—2 /)=,
which shows

(FH fXD)=s—lim R/t 9 Dgtactn Y IV Ry X RO H fX Ro-)
=AF XA,
since the support of f is compact. Q.E.D.

Theorem 6.12. F defined in Definition 6.10 can be uhiquély extended to an isometric
operator F on L¥R™) to fI:L’(R, h). For feD(H) we have

(FHD=AF fXA), a.e. AER.

Proof. Lemma 6.9 and Theorem 6.11 show

FfeH, [Ffla=Ifl

for any fe L% Since L% is dense in L% R™), F can be uniquely extended to an iso-
metric operator on L% R") to H. According to Ikebe-Kato [11], L defined on C3(R™)
is essentially self-adjoint under our condition. Therefore for any feD(H) we can
choose a sequence {f,}CC¥R") such that f,—f, Hf,—Hf in L® Then we have
from 6.11 that

FHfn—> FHf in H,

Ffrn—>Ff in H
and . : ' .
=AF faXA),

Thus, one obtaius
(FHXAD=AF fXA) a.e. iER.
Q.E.D.
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§ 7. The unitarity of &

In this section we shall prove that the isometric operator ¢ defined in Theorem
6.12 is unitary, that is,

(7.1) F maps LXR" onto A=L%R, h)

Lemma 7.1. Let I=(a, b) be an open interval. Then we. have
(F EU) fYD=X(ANF [)A),

for any f€L® where X;(R) is the characteristic function of 1.
Proof. Lemma 6.9 and Theorem 6.12 imply

(7.2) IF E(I)fllie=slll(ff fXDlida

for any f<L* and any open interval /, since L% is dense in L% Take any interval
open interval BC/. Then (7.2) gives

(7.3) SBII(EF E(T) fXD)—(F fXDI& dA=]E(B)(E(I)—1) fli2={ E(B) f — E(B) fll1=0.

On the other hand, for any open interval B’ included in the complement /¢ of I, we
have

(7.4) SB,il(g EU) YA dA=IE(B")E) f||3:=0.
Therefore, (7.3) and (7.4) give

=(F fXA), A1,
(F E(I)f)(l){

=0, Al Q.E.D.
Lemma 7.2. Let feﬁ:Lz(R, h) and I=(a., b). Then we have
(& B £, @)=\ <FQRAD. 8>

for any g€ L%, where A* denotes the adjoint operator of A(F(A)* maps h=L*S""") into
the dual space L%, of L3%).

Proof. It follows from Definition 6.10, Theorem 6.11 and Lemma 7.1 that
(FEUNS, glhe=(f, FEI)g)n
={ (F@. F fonda

=| <F@rf@, g da.
Q.E.D.

Lemma 7.3. Take s>% such that s-—%— is so small as in Theorem 3.1. Then, for
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each A& R, F(R) defined in Definition 6.8 can be uniquely extended to a bounded operator
on L2 to h=L*¥S""). We denote the bounded operator by F‘(Z). Moreover, if we choose
{R,} satisfying (6.5) for each f& L3, we have

(F) £, g=lim(w., ¢,
for any ¢ C=(S*""), where
-—7—=R‘" D12 0Rm D gidBm) Y 2V (R N R(A+0) fXRn+)
as in Lemma 6.6.

Proof. Let fL?andtake {f,}CL%suchthat f,—fin L2 Forany ¢=C=(S"™),
we have, in view of Lemma 6.9,

(F(X)fk,sb)r.—— S, (L=0>—, fl},

where u,==R(A+1:0) f, and v-=uv(x, 4, ¢) as in Definition 6.4. Set u=R(A+70)f. Since
Theorems 3.1 and 3.2 imply

[R(24i0)gllvy: -s=Cl&lls

for any g L% we have u,—u strongly in L}, ,. Noting ueL}_sand (L—A)veL]
by virtue of Proposition 6.5, we have

(7.5) llm(F(X)fkab)h— {<u, (L= v>—<v, ).
Let us take {R,} satisfying (6.5). Then Lemma 6.2 and Theorem 3.1 show
(7.6) "132||wm||3.=528 senn, VAVolul?ds
=Im{<u, HI<ul-l fls
=CIfI3
The same argument as in the beginning of the proof of Lemma 6.6 leads us to obtain
& o, (L—20>—3, 75)
=lim 2125 o e (L=Dv—fo ) dx
=tim§, ,,,VA=Veu0dS

:}im( Wm, ¢)h .
Thus we obtain from (7.5), (7.6), (7.7) that
(7.8) Il'gg( F(R) fr. )al =|1}l[m”( W, | =ClGlal flls,

for any ¢=C=(S""'). Since C=(S""') is dense in h, (7.8) shows the existence of the
weak limit of F(R)f, as k—oo. The weak limit is independent of the choice of {R,}
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in view of (7.5). We denote the weak limit by (1) f. Then, we have from (7.8)
IFQ) Fla=Cl Sl
which shows the boundedness of F‘(,Z) on L2 to h. In view of (7.5) we have
1 S
(FQ) f, pw=1<u. (L=Dv>= 8, )

which and Lemma 6.9 give that 13‘(2) coincide with F(1) on L% Thus we complete
the proof. Q.E.D.

Theorem 7.4. The isometric operator F is unitary on L*R™) onto I:I=L2(R, h).

Proof. In order to prove that ¢ maps L? onto H, it suffices to show that the
null N(F*) consists of zero vector 0 only, that is,

F*f=0 (feH) implies f=0.
Let f&N(F*) and I be an open interval in R. Then, using Lemma 7.2 we have
(7.9) 0=(F*f, EU)@)ra=(f, F(E(I)g)i

=(FEU*f, &)z

=\ <F*f. g da

for any g L% Since L R") is a separable Hilbert space, L% is also separable. In
fact, if we take a countable dense set {¢,} in L?*(R"), then {(14+]|x|)'¢n} is a count-
able dense set in Li. Put ¢.=(14|x[)"'¢.. As a result of (7.9), for each ¢, there
exists a set N, in R such that the Lebesgue measure of N, is equal to zero and

(7.10) CFAFFA), qe>=0,  AEN,.

Let N= Q N,. Then, NV is of Lebesgue measure zero. From (7.10) we obtain

(7.11) (f(A), F(2) g w=<FQ)*f(4), g>=0
for any gL} and A&N. In view of Lemma 7.3 and (7.11)
(7.12) 0=(f(A), FQ) f)=Um(f(2), wn)a

for any fe L% (s>(1/2)). Proposition 6.5 yields

v=u(x, 4, ¢)EL%’0:—81 |Dv| €L em
and
(L—-Avel?

for any ¢=C=(S*"'), where s>(1/2) and s—(1/2) is a sufficiently small number, and
R is a sufficiently large number. Theorem 3.2 shows

v=R(2+i0) g,

where g:==(L —A)v. Substituting f=g in (7.12) and noting then
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(7.13) 10,,,:71”——1?%'“”%““""7"" DoldEnd Y~V (R p X R(A+i0)gXRn-)

T

for any sufficiently large R,. Therefore, (7.12) and (7.13) give

(fQ), ¢)x=0
for any ¢=C=(S""') and A¢N. Thus we have

Ff()=0 a.e.,
which completes the proof. Q.E.D.

Added in proof. Recently, it turns out that the condition a<2 in (A.2), which is
used only to prove Lemma 4.5, can be replaced by a weaker condition V(x)=o0(r*) near
infinity, since Lemma 4.5 can be proved under the later condition by M. Arai and O.
Yamada, [27].
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