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Erdos-Rényi law for stationary Gaussian sequences

By

Yong-Kab CHoI

§1. Introduction

Erdds and Rényi [11] discovered a new law of large numbers, nowadays called
the Erdés-Rényi law. This law states that for an i.i.d. sequence {&;; j=1, 2, ---}

with partial sums S,=0 and S,,:jZ'léj, if the moment generating function M(t)=

I exp(t&,) exists for all t<(0, #,). then for each as{M'(t)/M@); t<(0, t,)} and c=c(a)
such that
exp(—1/¢c)=I(a) :=ixL1f M(t)exp(—ta),

we have
lim D(n, [clogn])=a, a.s.,
where
D(n, k)= max M 1<k<n,
0sjsn-k k

and [-] denotes the integral part.

Many general versions of the Erdos-Rényi law for i.i.d. sequences have been
developed by Book [1]~[2], M. Csorgo [5]~[6], S. Csorgo [7], Deheuvels [8]~[9] and
Steinebach [17]~[20] and others.

However, Deo [10] initially developed the original Erd6s-Rényi law to a stationary
Gaussian sequence under a condition on the correlation function. More precisely, sup-
pose {&;; j=1,2, ---} is a stationary Gaussian sequence with E¢,=0, E&=1 and r,=
E&&4n, n=1,2, ---, such that

lim n'*fr,=0  for some B>0
and
0<a==1+2:§ 7y
then for each 0<<c< oo
ELH;D(", [clogn])=0+2/c, a.s..
Our object of this paper is to improve Deo’s result and obtain a general form of

the Erdés-Rényi law for stationary Gaussian sequences. Our result is as follows: Let
{&; 7=1, 2, ---} be a stationary Gaussian sequence with E£& =0, E&=1 and r,=FE& £+,
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for all n==1. Define S,= ;élfj and ES2=g2— as n—oo. For 1<k=<n, set

_ Ss+s—S;
C(n, k)= ogr}gzc‘k Vio. (1)
We assume that the correlation function is either
rngo; n:1, 2y tty (2)
or
lim n*r,=0 for some v>0. (3)

T =00

Then we have for each 0<c<
LimC(n,[clogn])=v2/c, a.s.. (4)

In §4 we obtain an extension of the above result: Suppose that {a.: n=1,2, ---} is
a sequence of positive integers such that

(i) a, is increasing, (5)
(i) Liﬂ% =0 for all >0,

(iii) % is decreasing for some {,>0. (7

Define for n=2

S —S
* = __1ia_"__j_
C*(n, ax) osr;rg)fa,,\/Zlogn Oa, (8)

Then under the condition (2) we have

lim C*(n, a,)=1, a.s.. (9)

T -+00

If ¢, is a regularly varying function, then under the condition (3) we shall also obtain
the result (9). Taking a,=[clogn] in (9), we get (4) from (9) (cf. Remarks 1 and 2).
To obtain these results we shall investigate its upper and lower bound separately.

This work has been done during my stay in the Department of Mathematics, Kyoto
University. [ wish to express my sincere gratitude to professors S. Watanabe, N. Kéno
and S. Kotani for their kind guidance and help in writing this paper.

§2. Upper bound

Theorem 2.1. Let {&;; j=1,2, ---} be a stationary Gaussian sequence with E& =0,
E&=1 and ESi=c%. Then we have for each 0<c<oo

liglsup C(n, [clogn])=+2/c, a.s.. (10)

Proof. Let N be the set of all positive integers. For k=N and ¢>0, let n,=
max{neN; k=[clogn]} so that k=[clogn] if and only if n,_,<n=n,. Then we have,
for large k and any ¢>0
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P{C(ny, [clogny])>V2/c+e)

S —S _—
=P J+lclogngl b
{OSJS"T_a':}flog"”] \/[C IOg nk:lo'[clog ngl >~/2/C+E}

<nyP{Deonte) 5 (a7 4 o)V [T Tog el

Orclogny)l

Snj-OmEEe/O S prhi<exp{—(8,/c)k}
where 0,=0,(¢)>0. Thus
S P{C(ny, [clog mi])>V2/c+e}<oo.
By the Borel-Cantelli lemma,
lirglswup C(ny, [clog ny)SV2/c+e, a.s.,
but we see that from the definition of n,

C(n, [clog n])<C(n,, [clog n,]).

Since ¢ is arbitrary, we have

limsup C(n, [clog n])=+v2/c, a.s..

N—sc0

§3. Lower bound

First we shall consider the case in which the assumption (2) holds. In this case
we need a preliminary lemma due to Slepian [16].

Lemma 3.1. Let {&;7=1,2, -} and {9;; j=1, 2, .-} be standard normal random
vaiables with cov(&;, &))=cov(%s, ;) for each i#j=1, ---, n. Then for any real u,, -+, un.

P{&;<u; for j=1, -, n}SP{9;Su; for j=1, -, n}.

We note that if cov(§y, £;)<0 for i#j=1, ---, n.

P{max &S ua} SO(ua)", (11)
1sfsn
where @(-) denotes the standard normal distribution function.

Theorem 3.1. Let {&;; j=1, 2, ---} be a stationary Gaussian sequence with E&,=0
and E&i=1 such that ES:=c% and r,-=E&£,42 <0, n=1. Then we have for each 0<c< o

lirnninf C(n, [clog n])=+2/c, a.s..

Proof. For each 0<c<o and ne N, we define the positive integer h, by

h,.=[ n ]
clogn

For /=1, 2, ---, h,, we define the partial sum




562 Yong-Kab Choi
Zn,1=E-vierogniat - FEitcrogna-
Since E&.6.,<0 for n#m,
EZ.Z. <0, i#]. ‘ 12)

Note also that
var(zn. i)zgtzclog nl

for 7=1, ---, h,, and
Zn i 4
2 ~N(Q, 1). (13)
O(clognl
From (12) and (13), we can apply the inequalty (11) to the sequence {Z, ;; =1, -+, N},

Then we get for 0<e<+2/c and large n
P{C(n, [clog n])S+2/c—¢}

S S; _—
=P Systetonm=Si o a7
{OSJSII. [clog n]'\/[c log n]a[clogn] <+2/c 6}

=P{ max ———— _Zns <(V2—ec)Viog n n}

1s§shn Orclog
S{O((VZ—eVO)Viog n)}rn.
If up=(v/Z—ev/E)WIog n and Z~N(0, 1), then
O(un)=1—P(ZZun)
sexp{—P(Zzus)}.
Clearly there exist 8”>0 and K >0 such that for all sufficiently large n, we have
P(ZZu,,)ZK(——————)exp(———u Yz kn

and
ha=znt-@m®,
Thus we get

O(un)'n Sexp{—haP(ZZua)} Sexp{—Kn”} (14)
where 8’=67/2>0. Then for large n and some §'>0
P{C(n, [clog n])£+2/c—¢c}<exp{—Kn"}
Therefore, the series '
iP{C(n, [clog n])=v2/c—¢}
is convergent and using the Borel-Cantelli lemma we get

liminf C(n, [clog n])=+2/c, a.s..

n—sc0

From Theorems 2.1 and 3.1 we can conclude
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Theorem 3.2. Under the assumptions of Theorem 3.1, we have for each 0<c< oo
Li_[g C(n, [clog n])=+2/c, a.s..
Next we shall consider the case in which the condition (3) holds.
Theorem 3.3. Let {&;; j=1, 2, ---} be a stationary Gaussian sequence with E& =0,
E&i=1 and ESi=0%— as n—oo, Let the correlation r, be such that

lim 7*7,=0 (15)

n oo

for some v>0. Then for each 0<c<co
Iix;r_lglf C(n, [clogn])=+2/c, a.s..
For the proof of Theorem 3.3, we shall need the following lemmas.
Lemma 3.2. (Leadbetter et al. [15]) Let {&;; j=1, 2, --- n} be N(0, 1)-random varia-

bles with cov(¢;, &;)=A:; such that

5=max|/1U| <l .
i1#J
Then for any real numbers u, and integers 1L, <l <--<lp,<n with k,<n,

ul

I){maxfljéun}§¢(uu)kn+1\’ > lmlexp(-———l_i_lml )

1sfsky 15i<jsky

where rij:/hi,j and K=K(0) is a constant independent of n.

Lemma 3.3. Let &;(j=1, 2, -+, n), 8, kn and ry; be as in Lemma 3.2. Assume that
|71 <p1i-j<1@=#7) and, for some v>0 '

Om<lin™" for all m=1,2, -, k,—1.
Then, there exist §,>0, 2>7,>0 and K >0 depending on 6 and v only such that for all
0<7]<770
u2
Yy o.— ; _—
ne 1st§skn|r”lexP( 14|75l )
<Kn-%,
where u,=+/(2—7n)logn, 0<9n<2.

Proof. For the 6 given in Lemma 3.2, we take ¢’ such that 0<d<4’<1, and choose
a such that

1-¢° _1-9
0<e<TH5 <175
Let 0<p<d'—4d. We split ', into two sums:
2
v - _ ux
“n= 1st<zj‘sk,, Ir”lexD( 147yl

1i-f1<(n®)
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2

Un
+ Isi<215kn lr”|exD( 1+|r{;|)

1i—j12(na]

=YP4+FP, say.
Then,

Un
w __on_
Zpss 1si§skn exP( 1+5)
11-§1<(n @]

Sokant® {eXp(-%’z'_)}“‘“")

S5n1+a(n-1+(77/2))2/(1+5)

<on~41,
2 0'—éo
where Al——<1+d—m+—l+—6)>0
In order to estimate 3¢, we define for each k=1, 2, -+, k,—1,
Or=sup{pm; kSm<k,—1}. (16)

Then
or=Fk" for k=1,2, -, k,—1.

Set p=[n%]. If p<k,—1, then we have
0,=p". an
From the assumption of the lemma, (16) and (17), we have
(7] S01i-5S0,<p7" (18)

for 7, j such that 1<i<j<k, and |i—j|=p. Choose 2>%,>>0 so small that 7,<6"—o
and A,=av—,>0. Then we have from (18)

uZ

IO= 3 |rylex (—__’L——)

" 1st<_15k,,l is/€xp 14|74yl
11—-j12[na]

2
<[n*]> 3 eXp(—uf.)exp(—u"lr”l)
151<jsky 271

It—jik[na]

<[n*]”n® exp(—ui)exp(ui[n®]™)
=[n*]*n" exp((2—n)log n)[n*]™)
<K[n®]*n7

SKn 42

for some constant K. This completes the proof.
From Lemmas 3.2 and 3.3 we can obtain the following

Lemma 3.4. Let {&;; j=1, 2, -, n} be N(O, 1)-random variables with cov(&,, &;)=
Az such that d=max| Ayl <1. Let 150, <l,<--<ly,<n and k,<n be arbitrary positive
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integers. For a subsequence {§i;; j=1, -+, ka} of the sequence {&;; j=1,2, -+, n}, let
rijz/hi,j(iqtj) be such that |ri;|<pi-5<1 and for some v>0

om<m, m=1,2, -, ka—1. (19)

Then there exist constants 0,>0, 2>1,>0 and K depending only on & and v such that
for all 0<n<n,,

P{ max & ;Sun} S@(un)n+Kn-. (20)

15jskp

where u,=~/2—n)log n, 0<2< .
In proving Theorem 3.3 we shall make use of Lemma 3.4.

Proof of Theorem 3.3. Let 8>0 be a constant such that B8>2/v for v>0 given
in the Theorem. Then for given 0<c<c and n N, we define the positive integer
k, of Lemma 3.4 by

o= tog mt o )
"7 Lclog n+(og n)f I
For this k, and i=1, ---, k,, we also define the partial sum

Yn.tzf(t-m[clog n1+ldog BN 41+ +&itcog n)+(i-DIog B+
Then by the assumption of the theorem,

Var(Y,,:)=0% 10g n1 Y]
and
Yas SN0, i=l, e k. 22)

Olclog nl

Define r,(i, j)=correlation(Y,.;, Y.;), i#J, and let m=|i— | ; then be the assumptions
of the theorem we obtain for large =

E(Yn,iYns)
o‘fc log nl

SKIE{(6ti-vterog ni+tog mBn 41+

[rai, D=

+&itcrog n1+ct-idog mBINEU-D e log n14Tclog BB 1
+&jtclog n1+¢j-1icdog 12BN}

S K[log nJ?|7¢s-i-1iciog ni+¢-1)clog 7871
1

" <K(log n)? {(m—1)[c log n]+m[(log n)ﬁ]}v

. K

éW<m‘ i (23)

where K is a constant. In Lemma 3.4 if we set p=2—(v2—eV¢)? for 0<e<
v/2]¢, then u,=(v2—ev/c)v/log n. We now apply Lemma 3.4 for
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Yn,
511— :

- ’
O (clog nl

Thus from (14), (20) and (22), we obtain for some é’, ,>>0 and all large n
P{C(n, [clog n])<~2/c—¢}

S _
=I’{ max =~ —riclosnl YJ <«/2/c—s}
0sjsn-fclogn) «/[C log n]a[c log 7l

]':1, (LRI kn_

<P{max 1 (Va—cveviogn}
15jskn O(clognl
§¢(un)k"+1{n~6°
Zexp(—n®)+Kn-%, (24)

where K is a constant. For given k<N, set n,=min{n=N; k=[clog n]} so that
k=[clog n] if and only if n,<n<n,. From (24) we get for k large and some 6” >0,

P{C(n;, [clog ni])<~/2/c—¢}
<exp{—(np)¥ }+ K (nz)%
<exp{—[exp(k/c)]¥ }+ K[exp(k/c)]-%

<Kexp(—d”k).
Thus

SIP{C(ni, [clog m])<v2/c—e}<oo.
By the Borel-Cantelli lemma
lirp_.iol}f C(n;, [clogni])=+2/c—e, a.s..
Since ¢ is arbitrary, we have
li;ri?f C(n, [clogn])=+2/c, a.s..

Combining Theorems 2.1 and Theorem 3.3, we have

Theorem 3.4. Under the assumptions of Theorem 3.3, we have for 0<c<oo,

limC(n, [clogn])=+/2/c, a.s..

§4. An extension

In this section we shall also assume that {&;; /=1, 2, ---} is a stationary Gaussian
sequence with E& =0 and E&i=1.

4.1. Upper bound. To obtain an extension of Theorem 2.1. we shall make use
of the similar techniques as in Chan [4] and Steinebach [20].

Theorem 4.1.1. Let ES2=a}, and the sequence {a,; n=1,2, ---} satisfy the con-
ditions (5) and (6). Then we have
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limsup C*(n, a,)<1, a.s..

Proof. Let ¢>0 be given, and {>0 be such that 0<{<2e+e?. Let %k be any
integer such that 1<k<n-. Then for large n
P { max C*(n, k)>1+¢}

1sksn-

::I){lgggfio;}gi k§7§T5g3{?;;:>1_F5}

- v 5 P{—Gi>(1+e)~/2_@7¢}

1sksnlosjsn-k

SKnpite-drl=Kp-r (25)

where K is a constant and r=2¢+¢*—{>0. Take 6#>1 and consider the following
sequence of integers {[#']; i=1, 2, ---}. Then for large 7, (25) yields
P{ max CX[6'], k)>1+e}=K[6'] 7.
1skst0']&

Thus
=P max C*([G] R)>14e}l<

i 1cksfigd

By the Borel-Cantelli lemma,

llmsup{ max C*[0], k)}<1+4e, a.s.. (26)

-s00 S

For any 6>1 and given 7, suppose [#i']1<n<[#*]. Then it is obvious that

log[oi] 1/2
* < * el IR
max C*n, k)<, max C*([6'], B log[0"‘]) @7)
Since 10[?0[ ]t] is decreasing,
log[6] _ [61
1= Togtor =y ! (@8)
as i—o and #—1. From (26), (27) and (28), we get
limsup { max C*(n, k)}<14+¢, a.s.. (29)
N—oo lSkSn
We note that whenever a,< n® for large n,
C*(n, a,)< max C*¥(n, k). (30)

1sksnb

Thus from (29) and (30) the proof is complete.
4.2. Lower bound.

Theorem 4.2.1. Let ESi=c2 and rn=E&61:.50, n=l. Let the sequence {a,;
n=1, 2, ---} satisfy the conditions (5) and (6). Then

liminf C*(n, a,)=1, a.s..

M ~eno
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Proof. The proof is very similar to that of Theorem 3.1. But we should remark
that for given a,, if we define the positive integer /, by

2],

hp=nt-@m

then there exists 67 >0 such that

since a,<n‘ for large n.

From Theorems 4.1.1 and 4.2.1 we can conclude

Theorem 4.2.2. Under the asumptions of Theorem 4.2.1, we have

lim C*(n. a,)=1, a.s..

N—sc0

Remark 1. For each 0<c<oo, set a,=[clog n] in Theorem 4.2.2. Then Theorem
3.2 follows immediately from the fact that with probability 1

1=lim C*(n, [clog n])

=lim

max Sjttclog 1= S; ([C log n])‘”
neco 0sfsn-[clog n]\/[C log n]afc log 71

2logn
=}lim C(n, [clog n])Vc/2.

Theorem 4.2.3. Let ES2=0% and r,=E&,&,+, such that

(1) @, is a regulary varying function, . 31

(ii) ln1£r°1° n'r,=0 for some v>0. (32)
Assume that the sequence {a,; n=1, 2, ---} satisfies the conditions (5), (6) and (7). Then

we have
liminf C*(n, a,)=1, a.s..
TM—s0co

Before proving the theorem, we need some lemmas.

Lemma 4.1. Let the sequence {an; n=1, 2, ---} satisfy the conditions (5), (6) and (7).
Let ES:=02 and further, for some a>0, ¢,=n"“h(n) where h(n) is a slowly vrrying
function. For 8>1 and a positive integer i, let [0*]<n<[6'*'] and

Ni={n; n—a.=<[0']—acenn}.

Then we have

(i) limsup max max IS“"_'MJ’_zo, a.s.. (33)

imee  [001ans(0i+1105i5(001-apny V210 N G4,

and

(ii) limsup max max 1S5, =5;l =0, a.s. (34)

ivoo | mEN;n-aysist0i-aggiyV210g N0,
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Proof. First let us prove (i). From (7) we see that

L é(T:t]_)c(’g §%

argi;
and

an 0(0

= >0.
aAn—Aagpi) 040—1 >

Thus by (5) and (31), for large i and any ¢>0 we can take M >0 such that

An__, = M (35)

O'an—a[oi]

and Me>+2.
From (35) we get for large i and any ¢>0

Sitan—S ;
p{ max Si+an—Ssvaton] - E}
0sisti-aggiy V210804,

Sen=Sewal . y1og Zon |

ap-argiy an=-arfi]

<16, {
§K0-(.=2M2-1)i (36)

where K is a constant. Thus we have for large :

Sjta,—S ;
P{ - max_ max |Ssvan—Ssvatonl ge}
0950+ 110850 -aggiy V2108 M Ta,

SKQ- Dt

Therefore, we get

S )
T \totisnsipi+1iosssoi-ariy V2108 noa,

By the Borel-Cantelli lemma, (i) follows. Similarly, we can obtain (ii) when neN;.
Lemma 4.2. Under the assumptions of Lemma 4.1, we have

n-sco

liminf C*(n, a,,)g‘l',ilnll liminf C*([6'], ay4), a.s.. (37)

Proof. First consider the case n¢& N, in [0']<n<[6*']. Then

S —S;

C*(n, a,)= max —2n I

05js0011-aggiy v2logn Oa,
> max Sj+a£ai1_sj

0sjsl041-aggiy V2 log n Oa,

: S -S
—max max [Ss4ap—Ssvasy “"—. (38)
neNiosjsti-agy; V2108 N 0a,

From (33) and (38) we get
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liminf C*(n, a,)=liminf  max Sisatyin— S
nsoo iwoo  0sju[0%1-appiq V2 log n Ga,
2 liminf €07, awy max  (Z0s)(BLOD V0o a0
T s ’ ][ﬂijgnsmiﬂl o'an IOgl:al“] ' T
Since —-!Oi T s decreasing and
Tappin __, 1, as i—oo and 6@-1. (40)

min .
[0;1sns(9t+1] Oq,

(37) follows from (39). Next consider the case n.=N;. Then

Siiarnii—S;
C*(n, ay)= max - =etén. =/
05js0081-aggiy v2log n Oa,

|Ssean—Sisata:
—max max tan_ Ditargn|
nEN ;055sL081-apgi; V2lognao, .

— max max R ALd Wt A 41)
nENin-ansistil-aggiy V2 108 1 0a,

From (33), (34) and (41), we obtain (39) again. Then in the same way, (37) can be
concluded and the proof is complete.

Now we are ready to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. Proceeding to the same line as in the proof of Theorem
3.3, we can deduce that for all large n and 0<e<1

P{C*(n, a,.)<1—e}gexp(—-‘}z—n"')—i—Kn“"’, 42)

where K, ¢’ and d, are positive constants. Take #>1 and consider the following
sequence of integers {[#*]; i=1,2, --}. Then the inequality (42) yields for large
number ¢

P{CH[6'], appi<l—e}

Sexp(—5 [67%)+K 07,

Thus the series .
;P{C*([G‘l api)<l—e}

is convergent and

liminf C*[6'], arpi)=1—e, a.s..

i-s00

For given 7, set [#*]J=n=[6'"']. Then from (37) of Lemma 4.2 we have the result.
Combinig Theorems 4.1.1 and 4.2.3, we obtain
Theorem 4.2.4. Under the assumptions of Theorem 4.2.3, we have

lim C*n, a,)=1, a.s..

N—soo
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Remark 2. As in Remark 1, take a,=[clog n] in Theorem 4.2.4. Then Theorem
3.4 follows from the observation that

. [clogn] _ ¢
lim 2logn 2

Corollary. (Deo [10]) Let {£&;; 7=1,2, ---} have the correlation function r,=FE§&., ..
such that
lim n'*fr,=0  for some B>0. (43)

Set

Then for each 0<c< oo
lim D(n, [clog n])=a~2/c, a.s..

Proof. As in Ibragimov [12], we have from the above assumption that

0i=E + - &a)=n+2 X E&é&;
15ijsn
n-1
:n+2§l(n—].)E51$1+j

=n(1+2’5(1-L)r)
=na*{14+o(1)}. (44)
Since (43) and (44) imply the conditions of Theorem 4.2.4, we have with probability 1
1=Ilim C*(n, [clog n))

N-soo

Sj+|:c log n]'—Sj_

=lim max -
new0sjsn-rclogn1v 2 10g n Orelog nl

=lim max Sjttelog n3—S; (
namosjsn-felognl [ clog n]

[clog n] )llzi
2log n g

=lim D(n, [c log n])«/c/——Z%.

§5. Examples

First we shall give an example of Theorem 3.4. Suppose {&;; i=0, +1, £2, ---}
is a strictly stationary sequence with

E&,=0 and O0<Var(§;)<oo. (45)

For all —o0<i<j< o, let Fj denote the Borel o-field of events generated by random
variables £,(/<k<j). For each n=l1, 2, ---, we define the dependence coefficient :

p(m)=sup|correlation(f, g)|, f& Ly(F2), g€ Lo(Ffin), (46)



572 Yong-Kab Choi

where L.(F’) denotes the collection of all F/-measurable random variables. Then the
sequence {&;; i=0, £1, £2, .-} is called a p-mixing if p(n)—0 as n—oo. From
Ibragimov [13]-[14] and Bradley [3] we can see that if
2 p@M<eo 47)
then
(i) the sequence {&;; 7/=0, +£1, £2, ---} has a continuous spectral density f(4) and
(ii) when f(0)#0, 62~2rf(0)n as n—ooo. (48)
From these facts we can deduce
Example 5.1. Let {&;; j=1, 2, ---} be a stationary Gaussian sequence with E&, =0,
E&*=1 and
o(m)s=n™> for some v>0 (49)

and further f(0)#0. Then we obtain the result of Theorem 3.4. For, (49) implies
(47) and (15). Furthermore, since f(0)+0, (48) implies ¢2—co as n—oo. Thus the
conditions of Theorem 3.4 are satisfied.

Example 5.2. Let {X(t); —oo<t<co} be a fractional Brownian motion with the
covariance function

1

E{XOX( =5 {11+ s —[t=s[*}, 0<a<l.

Then
E{X®)—X ()Pt =]t—s|*.

Define random variables
Er=X(n)—X(n—-1), n=1,2, -,
S":,é& and X (0)=0.

Then
ES:=EX(n)}:=n*"

and {&,; n=1, 2, ---} is a stationary Gaussian sequence with E§ =0 and E&=1.

(i) 0<a§% iff E&.6n<0, n#m.

In this case we have from Theorem 3.2

lim C(n, [clog n])=+2/c, a.s.. (50)

In particular, if a=1/2, then {&,; n=1,2, -} is an i.i.d. Gaussian sequence with
E&,=0 and E&*=1, and it is well known that (50) is the result of Erd¢s-Rényi law
for i.i.d. N(0, 1)-sequence.

(ii) Let —;—<a<1, then
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ra=0(n-) as pn--—> o0,

Thus there exists a number v with 0<y<2—2a such that

lim n*»,=0.

n-sco

From Theorem 3.4 we also obtain (50).

{1}
L2

£3]
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