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Introduction

In this note, we present a simple analytic method to determine th e  singularity of
periods o f  th e  normalized abelian differentials, with a  given normal behavior on an
arbitrary Riemann surface, under the  deformation by pinching a finite number of loops.
F o r  th e  sake o f  simplicity, we discuss only differentials of the first k ind . The case
of a com pact R iem ann surface has been deeply investigated, especially under the
deformation by pinching a single loop (cf. [1] and [5]).

1. Notations and definitions

We first recall some definitions and known results (cf. [3]).

1 )  L e t R ,  b e a n  arbitrary Riemann surface, not necessarily of finite topological
type, with a  finite number of nodes. Denote by N(R 0 )  the  se t lp ,m , of all nodes of
R o ,  a n d  s e t  Rto =R 0 —N(R 0 ). Recall that 12,1,  is a union of ordinary Riemann surfaces
whose universal coverings are conformally equivalent to the unit d isk , a n d  that each
p .  a  neighborhood homeomorphic to the  su b se t 14 <1, I w I <1, zw= 0} in  C .

F o r  every j ,  w e  f ix  a  neighborhood U., of p, on R o such that each component,
say U 1, ,  (1 =1 ,2 ) , o f U, — { 1),}  is mapped conform ally  onto Do= {0<  z  <1 } b y  a
mapping, sa y , z=z,, t (p). Also we assume that {U,}7=, are  mutually disjoint. In the
sequel, we consider z , 0 also  as a  canonical local parameter o n  U5, 1 f o r  every j  and 1.

Let m  be a positive integer a n d  p (t): tE 4 14 1 w ith  4=11C1 <11 be a  fam ily of
Beltrami coefficients on R o (i. e . bounded (-1 , 1) forms on R o w ith  Ilp(t)J < 1  for every
t) such that ft(0)= 0 and that the support of every p (t) is contained i n  R o — U , where
U is the union of a ll U. F u rth er suppose that p (t) depends holomorphically on t EZlni
(with respect to the  sup norm ). L et f t  be a quasiconformal mapping of 1?[, onto another
union Iti1 of Riemann surfaces with the complex dilatation p(t). Since f t  is conformal
on  U , we may identify f t (U.,,i) with U,, I ,  and hence may consider z5 ,1 a s  a  conformal
mapping o f  f t (U,,1) onto Do ,  or as a  canonical local param eter on f t ( U,,0), for every
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j  and 1.
N ext le t tE 4 ' and s=(si, ••• , sn )E(ZIT be given arbitrarily, where S = .-{ I <1/2 }.

Let R s,s b e  the Riemann surface possib ly  w ith  nodes, ob ta ined  from  R ; by deleting
tw o  p u n c tu re d  d isk s  {0< I < s',71 1 ' 2 } (1 = 1 ,2 )  i n  U1 —{0} a n d  by identify ing  the
resulting borders into a  loop C,, t , ,  under the mapping

'(s)/z1, ,(P)),

for every j. H ere, for e v e ry  j  s u c h  th a t  s ,= 0 ,  noth ing  should  be  rem oved from
{0}, and R s,, has a  node corresponding to p,.

T h u s  w e  have a  fam ily  {R": (t, s)E,S2=.11mX(41 )n} of Riemann surfaces possibly
w ith nodes, w hich w e call the complex pinching deformation family with the center Ro
and w ith the deformation data ({p(t)}, U).

In  the sequel, w e consider R'4, -.=R s,,—UT,C 1,0,s a s  a  su b se t o f  R s', a n d  hence
consider th e  m apping (f ) - '  as a quasiconformal mapping of into Ro , for every
(t, s)E,S2.

2 )  Set J*=-S---101 (=I0<  zl<1/21). T hen fo r  e v e ry  (t, s)ES2*=4 7'1 X(4*)n, Rt,s
is  an ordinary Riemann surface. F ix  (t*, s*),(2* once for all, and denote R m s .  simply
by R * .  Let F  be  the embbeding (r ) - '  of (R*)" (=-R's'..,.) into R o . Then it is easy to
se e  th a t  th e re  is  a  canonical homology base 8-- -- 8(R*)=- {A 0 , .130 } 1 o f  R* modulo the
ideal boundary ( , where g  m ay be infinite,) which satisfies the  following condition ;

( # )  for every p1EN(R0), C 1 = F  ' ({ 1 z3,11=1/21) is either
( i ) freely homotopic to som e A k E E  (w ith  a  suitable orientation), or
(ii) le tting Eo b e  the set of a ll A k  corresponding to nodes of R, as in ( i ), C, i s  a

loop on R*—{A k , B k :A k E E — E ,}  dividing R*—{Ak: A 0EE0} .

Here note tha t a ll curves in  E  except fo r {B k : A k Eo}  can be considered as o n e s  on
a n d  E0, ---- E(R0)={Ak, Bk : AkEE—E.} as a  homology base of Rr, modulo the  ideal

boundary.
N ext, fix  a normal behavior space Po(R o ), i .  e . a  subspace o f  P h (R o ), the Hilbert

space consisting o f  a ll square integrable complex harmonic differentials on which
satisfies the following conditions ;

) r o(R0)Crhse(Ro),

ii) w=0 for every co r o(Ro ) and AkEE0,Ak

iii) r0(R o)+*ro(R .)--r0(R 0) (a direct sum), and
iv )  P o(R 0 )-=- Po(Ro).

And w e say  tha t a  complex harmonic or meromorphic differential 0  on has T o-
behavior if  there  ex ist a  in  r o (R 0)  and df in  P eo(R o) such  tha t 0.-- -- a+df outside o f a
compact set on Ro. (This condition imposes nothing on  0  w hen Ro i s  compact.)

For every 'L E S , the k-th normalized abelian differential Ok (R o) o f  th e  f irst k ind
w ith T o -behavior i s ,  by definition, a holomorphic differential (on RD w ith  P o-behavior
on Ro uniquely determ ined by the  following conditions ;
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Ok(R0)=akk, fo r  e v e r y  A k EE ,Ah

(ii) Ok (R o ) has simple poles at tw o punctures of R  corresponding  to  every  node
p ,  such that th e  algebraic intersection number C, xB k be tw een  C , and  B k  is  non-zero,
where C , is  a s  in  (# ) w ith  positive orientation w ith  respect t o  0< I z,, i l <1/21.

(iii) yik (R o ) is holomorphic at two punctures of R corresponding to every other node.

Rem ark. W hen R , is  compact and without nodes, th e  above Ok(R o )  is  th e  classical
k-th normal differential o f  th e  first k ind  w ith  respect to  E o .

2 .  Main theorem and proof

F ix  (t, s)E Q  arb itrarily . W e can  define  a norm al behavior space r o (R,,   ) o n  1?0 ,0

corresponding to 1 0(R 0 )  in  a  natural m anner (c f. the  proof o f  [3 , Theorem  1]). Also
by  the condition (# ), we can regard every A k E E  as a  curve o n  R t,s, which we denote
b y  the  same A k .  A nd w e can define, sim ilarly a s  above, th e  k-th norm alized abelain
differential g5k(Rt ,k )  o f  t h e  first k ind  w ith  P o-behavior on R 0 0 f o r  every k , which is
again uniquely determined (c f . [3, § 2]).

O n the  o ther hand, B k  determines a  curve on  .1?0, 0 no t un iquely , b u t  o n ly  modulo
In • A k  : nE  Z } fo r  every A k E E D .  So the  period

kk(t, s)= L95k(Rt,  )

o f  Ok (R t ,k )  along B „ should be considered only modulo Z  w hen h = k .  A n y  w a y , we
know the  following

Proposition (c f . [2 , Theorem 6]). F ix  a  relativ ely  com pact open b all W  in Q*
arbitrarily . T hen any  continuous branch of  r h h (t, s) on W  is holom orphic on B*.

Moreover,

aiThkn   a l r h ,  dr,,k=>..] dt•-] ds•i=1 ut, J=1 OS j j

is  a  well-defined holomorphic 1-form  on Q*.

F o r th e  sake o f convenience, we include i n  §  3  a  s ta n d a rd  p roof of Proposition
(w hich is strongly inspired by Ahlfors' argument).

Now the m ain  purpose o f  t h i s  n o te  i s  t o  g iv e  a  s im p le  an a ly tic  p roo f o f  th e
following

Theorem. Fix  h  a n d  k .  Then

1 i t  ( N  k . N  4 )  d s ,  
d7rhk  s,27ri 3=1 2. j '

can be ex tended holom orphically  to the whole Q , w here w e set N i, =C i x B y  f o r  every
j  and p.



1066 M asahiko Taniguchi

R em ark . Compare w ith [4 , Theorem 5]. The case th a t  n=1 has been investigated
in  [1] and [5].

To prove Theorem , fix h  and k once fo r a ll. T hen in  th e  p roo f of Proposition,
w e actually show the following

arm , Lemma 1. For ev ery  (t, s)EQ*, (t, s) is equal toat,

f or ev ery  i, where (considering f t  as a m apping of  R o —Ü into R 0 ,8 ) w e set

pi,t—( a
a t

P
i (t)(1— 1[ ( t)1 2)- V t)z/ (P ),)-(ft) -1

aTchk and '( t  s )  is equal toas, 

G,(t, —2,,80k(R0,8)A9Sh(Rt,8),
J  R 5

f or ev ery  j .  Here (considering z,, 1 as  a  m apping of  f t ({1/2<1.21l<11)cR0,8
and) denoting by  X(x) the characteristic function of  [3/5, 4/5] on R , w e set

in to  D o

2s,•log(4/3) X(1 z1)• (z /2) 612 ) .z ,
' .2 ' 8i dz 

A lso w e know  the following

Lemma 2. For ev ery  (t, s)ES2*, set X0,8=1,8 — UY=1.i=1f t ({0<lz,,01 _1/2}). Then
f o r e v e ry  p ,  the  f unction  Ep(t, s)=- 110p(R0,8)11xt ,, on (.2* is locally  bounded in  D . i.e.
f or ev ery  relativ ely  compact open ballV in  Q, E, is bounded on Vr)S2*. H e re  1101I2x  is

the Dirichlet energy  55x 0A*0 o f  g5 on X.

This lem m a is an immediate corollary of [4, § 3 Proposition]. But we will include
a  rather elementary proof in § 4.

Now by Lemma 2, w e can easily  show the following

Lemma 3 .  F i (t, s) and G(t, s)=s,•G,(t, s) are locally  bounded o n  Q  f o r e v e ry  i
and j ,  respectively.

P ro o f .  By Lemma 1, I Fi(t, s)•Ek(t, s )  a n d  I 5,(t, s)1 sli-
• Ek (t, s)•E k (t, s). Hence the assertion follows by Lemma 2. q. e. d.

Proof  o f  T heorem . B y Proposition, Lemma 3 and Riemann's extension theorem,
a ll F i (t, s) and 5 1(t, s) can be extended to holomorphic functions on the whole D.

S o  i t  r e m a in s  o n ly  to  show  th a t ,  fo r  e v e ry  j, s )  tends t o  the constant
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1  
2 7 r i

N
' '

k  N h  when (t, s)ES2* tends to any ( T , S)E S2 —  S2* such that S,=0.

F ix U  /  arbitrarily, and write çbp(Rt 8)0zi - i  a s  ap (t, s, z )ds on  D={ 1/2< I zI <1 }
for every p  and (t, s) Q .  Then it is known ([3 , Corollary 4 ]) that ap (t, s, z ) is holo-
morphic on Q x D .  In particular, when (t, s) tends to ( T , S ) in  Q, ap(t, s, z ) converges
to ai,( T , S , z ) locally uniformly on D .  (Recall that the proof o f [3 , Corollary 4 ]  uses
a  sim ilar argument as that of Proposition does. So it is rather standard, and hence
omitted.)

Hence for every point ( T , S )GQ— Q* with S3 = 0 , we can see that &(t, s) converges
to

21 4 / 5 (e ')2•irdrd0  
a k ( T , S , re 1° )•a h (T , S , 7-0 ° )

0 3 / 5 log(4/3)

as (t, s)E,Q* tends to (T, S).
1Since Laurent's expansion of a i,( T , S , z )  has such  a  fo rm  as

27ri • z
E;T=oci,(T, S )•zn for every p , we conclude that

5415 1 drI =     N ,k •N ,h127ri .
3 / 5  lo g (4 /3 )  r  2 7 r i

Thus we have proved Theorem.

3 .  Proofs of Proposition and Lemma 1

Fix k, h and (t o , so )E Q *  arbitrarily. First we w ill recall the proof of [ 2 ,  Lemma
7 ] , which shows that (any continuous branch of) r h k  is differentiable with respect to
each t, at (t o, so). L e t  g° (=g°'°0) be the quasiconformal mapping of R=R 0 0 ,0 0  to
R (t)=R t ,, o ,  coincident with f t -f - '  on R '0 ,00 (a n d  hence conformal on R— f(R o —U,)),
where an d  in  th e  sequel, we set f= f  to. T h e n  note that the complex dilatation v(t)
(=,( t ,  so)) of g t  is equal to

(Cti(t) —  p(to))(1 —  p(to)p(t)) - z ) / (  f  ) ) c '  f

where we denote by z  a  generic local parameter on  R .  In particular, v (t) depends
holomorphically on t.

Next set
w0=y55(R(t)).gt — 05(R),

for every t Œ4°°, where and in the sequel, g5og is  the pull-back of 95 by g.
Then as in the proof of [2 , Lemma 7 ] , we have

k h(t y s )  7 r k 11(t S O =
 — 55 R (Ot Açb h (R)

A standard argument originally due to Ahlfors shows that, for every i, (arc h k/ati)(to, so)
exists and equals to
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R  at,

a y  
(too k(R)A Oh( R ).

Here, since

au
  (to)=(  a

a
 tPa.  ( t . ) . ( 1 - -  p ( t 0 ) 1 2 ) - ( f  z ) / ( f , ) ) . f

-
',

we also conclude the first assertion of Lemma 1.
N ext to  show the differentiablity w ith  respect to  each s, a t (t o, so), recall that the

deformation represented by the parameter s can be considered, locally, a s  a  quasicon-
form al deform ation depending holomorphically on s ([3, Lemma 5 ]) .  More precisely,
fix j  and set  5 o(C)==((5 0)1, ••• ( s o ) i + i ,  • • •  (so)n). For every w ith  s u f f ic ie n t ly
s m a ll  1 C—(so)», define a  quasiconformal m a p p in g  f  of R  to  Rc=R t o ,,,o ( c) by assum ing
th a t fc  is equal to  the identity on f (R o — U,), and by setting

z,,,. f‘oz,,, - J(z)=z on _<1z1 <11 ,

(  4/5  yr'g ( c / ( s °) ' ) / I ' g ( 4 / 2 ) o n  { } <  I  z 1 ,= 2
1 Z

=-- (C/(So)j)* Z o n  {1(s0),1<lzI l l ,

where we consider z,, i a s  a  conformal mapping of R— f(R o — U,) or IA— f (R o — U,) onto
11(s0)31G 1 zI G11 o r  {1C1<1 zl<1 },  respectively, a n d  ta k e  t h e  branch of log so that
lo g  1 = 0 . T h e n  fc  is well-defined for every s u f f ic ie n t ly  n e a r  to  (so),, and a sim ple
computation show s th a t the  complex dilatation p(C) of fz  depends holomorphically on
C. A c tu a lly  (dp/dC)((s o ) , )  has the support in R— f(R o — U,) and is equal to

—1 d2
2 " ° 2(s 0 ),• log(4/3)X ( I z I ) ( z / 2 ) d z  r z " .

Now the same argument as before shows th a t (87„0/as.o(t0, so) exists and equal to

RT,s 2,,00O0(R)A0h(R),

which implies the second assertion of Lemma 1.
Since (t o , s o )  is  a rb itra ry , the assertion of Proposition follows by Hartogs' theorem.

4 .  Proof o f  Lemma 2

T o  show  Lemma 2, f ix  p  a n d  a  p o in t ( T ,  S )E Q  arbitrary. T h e n  f o r  every
s E (L I* ) ',  (T , s )E Q * . F ix  s u c h  a n  s. T hen  by  a standard argument due to  Ahlfors,
w e have (cf. [2, Theorems 2-5])

Ep(t, s)=1145p(R t. t ,s -5.1195p(Rt.  )° xr,

-51195p(R0,8)°e—Op(RT.8)11x2, 0-1-1195p(RT.8)11x2,,
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_5. K0110T (RT,8)11xT , s'
for every t, where g t is as in  § 3 with (t o , so)-- =(T, s) and K t  i s  the maximal dilatation
of gt, which is independent of s.

Since limB_T KB= 1 , the  following lemma implies that there is an open ball V  with
th e  center ( T , S ) such that E p (t, s) is bounded o n  V n Q * . Since ( T, S) is arbitrary,
we can conclude the assertion of Lemma 2.

Lemma 3 .  S et Ot=O n (RT,t) and consider O s a s  a holomorphic dif ferential on
f o r  every s. Then we have

1Lmll¢t—OsIlx,,,,=0,

P ro o f . Set O5 =0,--O s . Then OB is  holomorphic (hence in  particular *08 =—i•gbB )

on X T , s  and .ç = 0  for every A p  (considered a s  a  curve on XT, ) .  So by the  same
A

P

argument as in the proof of the  bilinear relation (cf. the proof o f [2 , Lemma 1]), we
have

1108115fT, s =  a x 7 , ,  s qfs • *- ,

where aXT,s is  the relative boundary of X T , S  in  R T , S  and T s is a single-valued branch
o f  t h e  abelian in tegra l o f  OB o n  aXT ,s. (N o te  th a t ,  b y  th e  co n d itio n  (#),

for every s and every component C  o f  aXT ,s , which also im plies that the

choice of integral constants of T B does not affect the value of the above integral.)
Now since OB converges to q55 uniformly on 8XT ,s as s tends to S by [3, Corollary

4] (cf. Proof of Theorem), we have the assertion. q. e. d.
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