On the singularity of the periods of abelian differentials with normal behavior under pinching deformation

Dedicated to Professor Tatsuo Fuji'i'e on his sixtieth birthday

By

Masahiko TANIGUCHI

Introduction

In this note, we present a simple analytic method to determine the singularity of periods of the normalized abelian differentials, with a given normal behavior on an arbitrary Riemann surface, under the deformation by pinching a finite number of loops. For the sake of simplicity, we discuss only differentials of the first kind. The case of a compact Riemann surface has been deeply investigated, especially under the deformation by pinching a single loop (cf. [1] and [5]).

1. Notations and definitions

We first recall some definitions and known results (cf. [3]).

1) Let R_0 be an arbitrary Riemann surface, not necessarily of finite topological type, with a finite number of nodes. Denote by $N(R_0)$ the set $\{p_j\}_{j=1}^n$ of all nodes of R_0 , and set $R'_0 = R_0 - N(R_0)$. Recall that R'_0 is a union of ordinary Riemann surfaces whose universal coverings are conformally equivalent to the unit disk, and that each p_j has a neighborhood homeomorphic to the subset $\{|z|<1, |w|<1, zw=0\}$ in C^2 .

For every j, we fix a neighborhood U_j of p_j on R_0 such that each component, say $U_{j,l}$ (l=1, 2), of $U_j - \{p_j\}$ is mapped conformally onto $D_0 = \{0 < |z| < 1\}$ by a mapping, say, $z = z_{j,l}(p)$. Also we assume that $\{\overline{U}_j\}_{j=1}^n$ are mutually disjoint. In the sequel, we consider $z_{j,l}$ also as a canonical local parameter on $U_{j,l}$ for every j and l.

Let *m* be a positive integer and $\{\mu(t): t \in \Delta^m\}$ with $\Delta = \{|\zeta| < 1\}$ be a family of Beltrami coefficients on R_0 (i.e. bounded (-1, 1) forms on R_0 with $\|\mu(t)\|_{\infty} < 1$ for every *t*) such that $\mu(0)=0$ and that the support of every $\mu(t)$ is contained in $R_0-\overline{U}$, where *U* is the union of all U_j . Further suppose that $\mu(t)$ depends holomorphically on $t \in \Delta^m$ (with respect to the sup norm). Let f^t be a quasiconformal mapping of R'_0 onto another union R'_t of Riemann surfaces with the complex dilatation $\mu(t)$. Since f^t is conformal on *U*, we may identify $f^t(U_{j,l})$ with $U_{j,l}$, and hence may consider $z_{j,l}$ as a conformal mapping of $f^t(U_{j,l})$ onto D_0 , or as a canonical local parameter on $f^t(U_{j,l})$, for every

Received March 5, 1990

j and l.

Next let $t \in \Delta^m$ and $s = (s_1, \dots, s_n) \in (\Delta')^n$ be given arbitrarily, where $\Delta' = \{|\zeta| < 1/2\}$. Let $R_{t,s}$ be the Riemann surface possibly with nodes, obtained from R'_t by deleting two punctured disks $\{0 < |z_{j,l}| < |s_j|^{1/2}\}$ (l=1, 2) in $U_j - \{0\}$ and by identifying the resulting borders into a loop $C_{j,t,s}$ under the mapping

$$z_{j,2}^{-1}(s_j/z_{j,1}(p)),$$

for every j. Here, for every j such that $s_j=0$, nothing should be removed from $U_j-\{0\}$, and $R_{t,s}$ has a node corresponding to p_j .

Thus we have a family $\{R_{t,s}: (t, s) \in \Omega = \Delta^m \times (\Delta')^n\}$ of Riemann surfaces possibly with nodes, which we call the complex pinching deformation family with the center R_0 and with the deformation data $(\{\mu(t)\}, U)$.

In the sequel, we consider $R_{t,s}^{"}=R_{t,s}-\bigcup_{j=1}^{n}C_{j,t,s}$ as a subset of R_{t} , and hence consider the mapping $(f^{t})^{-1}$ as a quasiconformal mapping of $R_{t,s}^{"}$ into R_{0} , for every $(t, s) \in \Omega$.

2) Set $\Delta^* = \Delta' - \{0\}$ (={0<|z|<1/2}). Then for every $(t, s) \in \Omega^* = \Delta^m \times (\Delta^*)^n$, $R_{t,s}$ is an ordinary Riemann surface. Fix $(t^*, s^*) \in \Omega^*$ once for all, and denote R_{t^*,s^*} simply by R^* . Let F be the embbeding $(f^{t^*})^{-1}$ of $(R^*)''$ (= R''_{t^*,s^*}) into R_0 . Then it is easy to see that there is a canonical homology base $\Xi = \Xi(R^*) = \{A_k, B_k\}_{k=1}^g$ of R^* modulo the ideal boundary (, where g may be infinite,) which satisfies the following condition;

(#) for every $p_j \in N(R_0)$, $C_j = F^{-1}(\{|z_{j,1}|=1/2\})$ is either

(i) freely homotopic to some $A_k \in \mathbb{Z}$ (with a suitable orientation), or

(ii) letting E_0 be the set of all A_k corresponding to nodes of R_0 as in (i), C_j is a loop on $R^* - \{A_k, B_k : A_k \in \mathbb{Z} - E_0\}$ dividing $R^* - \{A_k : A_k \in E_0\}$.

Here note that all curves in Ξ except for $\{B_k : A_k \in E_0\}$ can be considered as ones on R'_0 , and $\Xi_0 = \Xi(R_0) = \{A_k, B_k : A_k \in \Xi - E_0\}$ as a homology base of R'_0 modulo the ideal boundary.

Next, fix a normal behavior space $\Gamma_0(R_0)$, i.e. a subspace of $\Gamma_h(R_0)$, the Hilbert space consisting of all square integrable complex harmonic differentials on R'_0 , which satisfies the following conditions;

- i) $\Gamma_0(R_0) \subset \Gamma_{hse}(R_0)$,
- ii) $\int_{A_k} \omega = 0$ for every $\omega \in \Gamma_0(R_0)$ and $A_k \in \mathcal{Z}_0$,
- iii) $\Gamma_0(R_0) + *\Gamma_0(R_0) = \Gamma_h(R_0)$ (a direct sum), and
- iv) $\Gamma_0(R_0) = \overline{\Gamma_0(R_0)}$.

And we say that a complex harmonic or meromorphic differential ϕ on R'_0 has Γ_0 behavior if there exist α in $\Gamma_0(R_0)$ and df in $\Gamma_{e0}(R_0)$ such that $\phi = \alpha + df$ outside of a compact set on R_0 . (This condition imposes nothing on ϕ when R_0 is compact.)

For every $A_k \in \Xi$, the k-th normalized abelian differential $\phi_k(R_0)$ of the first kind with Γ_0 -behavior is, by definition, a holomorphic differential (on R'_0) with Γ_0 -behavior on R_0 uniquely determined by the following conditions;

1064

(i)
$$\int_{A_h} \phi_k(R_0) = \delta_{kh}$$
 for every $A_h \in \mathbb{Z}$,

(ii) $\phi_k(R_0)$ has simple poles at two punctures of R'_0 corresponding to every node p_j such that the algebraic intersection number $C_j \times B_k$ between C_j and B_k is non-zero, where C_j is as in (#) with positive orientation with respect to $\{0 < |z_{j,1}| < 1/2\}$.

(iii) $\phi_k(R_0)$ is holomorphic at two punctures of R'_0 corresponding to every other node.

Remark. When R_0 is compact and without nodes, the above $\phi_k(R_0)$ is the classical *k*-th normal differential of the first kind with respect to Ξ_0 .

2. Main theorem and proof

Fix $(t, s) \in \Omega$ arbitrarily. We can define a normal behavior space $\Gamma_0(R_{t,s})$ on $R_{t,s}$ corresponding to $\Gamma_0(R_0)$ in a natural manner (cf. the proof of [3, Theorem 1]). Also by the condition (#), we can regard every $A_k \in \Xi$ as a curve on $R_{t,s}$, which we denote by the same A_k . And we can define, similarly as above, the k-th normalized abelain differential $\phi_k(R_{t,s})$ of the first kind with Γ_0 -behavior on $R_{t,s}$ for every k, which is again uniquely determined (cf. [3, §2]).

On the other hand, B_k determines a curve on $R_{t,s}$ not uniquely, but only modulo $\{n \cdot A_k : n \in \mathbb{Z}\}$ for every $A_k \in E_0$. So the period

$$\pi_{kh}(t, s) = \int_{B_h} \phi_k(R_{t,s})$$

of $\phi_k(R_{t,s})$ along B_h should be considered only modulo Z when h=k. Any way, we know the following

Proposition (cf. [2, Theorem 6]). Fix a relatively compact open ball W in Ω^* arbitrarily. Then any continuous branch of $\pi_{hk}(t, s)$ on W is holomorphic on B^* . Moreover.

$$d\pi_{hk} = \sum_{i=1}^{m} \frac{\partial \pi_{hk}}{\partial t_i} dt_i + \sum_{j=1}^{n} \frac{\partial \pi_{hk}}{\partial s_j} ds_j$$

is a well-defined holomorphic 1-form on Ω^* .

For the sake of convenience, we include in §3 a standard proof of Proposition (which is strongly inspired by Ahlfors' argument).

Now the main purpose of this note is to give a simple analytic proof of the following

Theorem. Fix h and k. Then

$$d\pi_{hk} - \frac{1}{2\pi i} \cdot \sum_{j=1}^{n} (N_{j,k} \cdot N_{j,h}) \cdot \frac{ds_j}{s_j}$$

can be extended holomorphically to the whole Ω , where we set $N_{j,p}=C_j \times B_p$ for every j and p.

Remark. Compare with [4, Theorem 5]. The case that n=1 has been investigated in [1] and [5].

To prove Theorem, fix h and k once for all. Then in the proof of Proposition, we actually show the following

Lemma 1. For every $(t, s) \in \Omega^*$, $\frac{\partial \pi_{hk}}{\partial t_i}(t, s)$ is equal to

$$F_i(t, s) = \iint_{R_{t,s}} - \mu_{i,t} \phi_k(R_{t,s}) \wedge \phi_h(R_{t,s}),$$

for every i, where (considering f^{t} as a mapping of $R_{0}-\overline{U}$ into $R_{t,s}$) we set

$$\mu_{i,t} = \left(\frac{\partial \mu}{\partial t_i}(t)(1-|\mu(t)|^2)^{-1}(f^t)_z/(\bar{f}^t)_{\bar{z}}\right) \circ (f^t)^{-1}$$

and $\frac{\partial \pi_{hk}}{\partial s_j}(t, s)$ is equal to

$$G_{j}(t, s) = \iint_{R_{t,s}} -\lambda_{j,s} \phi_{k}(R_{t,s}) \wedge \phi_{h}(R_{t,s}),$$

for every j. Here (considering $z_{j,1}$ as a mapping of $f^t(\{1/2 < |z_{j,1}| < 1\}) \subset R_{t,s}$ into D_0 and) denoting by $\chi(x)$ the characteristic function of [3/5, 4/5] on R, we set

$$\lambda_{j,s} = \left(\frac{-1}{2s_j \cdot \log(4/3)} \chi(|z|) \cdot (z/\overline{z}) \cdot \frac{d\overline{z}}{dz}\right) \circ z_{j,1}.$$

Also we know the following

Lemma 2. For every $(t, s) \in \Omega^*$, set $X_{t,s} = R_{t,s}^{\prime} - \bigcup_{j=1, l=1}^{n} f^{l}(\{0 < |z_{j,l}| \le 1/2\})$. Then for every p, the function $E_p(t, s) = \|\phi_p(R_{t,s})\|_{X_{t,s}}$ on Ω^* is locally bounded in Ω . i.e. for every relatively compact open ball V in Ω , E_p is bounded on $V \cap \Omega^*$. Here $\|\phi\|_X^2$ is the Dirichlet energy $\iint_X \phi \wedge^* \bar{\phi}$ of ϕ on X.

This lemma is an immediate corollary of $[4, \S 3 \text{ Proposition}]$. But we will include a rather elementary proof in $\S 4$.

Now by Lemma 2, we can easily show the following

Lemma 3. $F_i(t, s)$ and $\tilde{G}_j(t, s) = s_j \cdot G_j(t, s)$ are locally bounded on Ω for every *i* and *j*, respectively.

Proof. By Lemma 1, $|F_i(t, s)| \leq ||\mu_{i,t}||_{\infty} \cdot E_h(t, s) \cdot E_k(t, s)$ and $|\tilde{G}_j(t, s)| \leq ||s_j \cdot \lambda_{j,s}||_{\infty} \cdot E_h(t, s) \cdot E_k(t, s)$. Hence the assertion follows by Lemma 2. q. e. d.

Proof of Theorem. By Proposition, Lemma 3 and Riemann's extension theorem, all $F_i(t, s)$ and $\tilde{G}_j(t, s)$ can be extended to holomorphic functions on the whole Ω .

So it remains only to show that, for every j, $\widetilde{G}_j(t, s)$ tends to the constant

1066

 $\frac{1}{2\pi i} N_{j,k} \cdot N_{j,h} \text{ when } (t, s) \in \mathcal{Q}^* \text{ tends to any } (T, S) \in \mathcal{Q} - \mathcal{Q}^* \text{ such that } S_j = 0.$

Fix $U_{j,l}$ arbitrarily, and write $\phi_p(R_{t,s}) \circ z_{j,l}^{-1}$ as $a_p(t, s, z)ds$ on $D = \{1/2 < |z| < 1\}$ for every p and $(t, s) \in \Omega$. Then it is known ([3, Corollary 4]) that $a_p(t, s, z)$ is holomorphic on $\Omega \times D$. In particular, when (t, s) tends to (T, S) in Ω , $a_p(t, s, z)$ converges to $a_p(T, S, z)$ locally uniformly on D. (Recall that the proof of [3, Corollary 4] uses a similar argument as that of Proposition does. So it is rather standard, and hence omitted.)

Hence for every point $(T, S) \in \Omega - \Omega^*$ with $S_j = 0$, we can see that $\widetilde{G}_j(t, s)$ converges to

$$I = -\iint_{[3/5 \le |z| \le 4/5]} \frac{-1}{2 \cdot \log(4/3)} (z/\bar{z}) a_k(T, S, z) a_h(T, S, z) d\bar{z} \wedge dz$$
$$= \int_0^{2\pi} \int_{3/5}^{4/5} a_k(T, S, re^{i\theta}) \cdot a_h(T, S, re^{i\theta}) \frac{(e^{i\theta})^2 \cdot irdrd\theta}{\log(4/3)},$$

as $(t, s) \in \Omega^*$ tends to (T, S).

Since Laurent's expansion of $a_p(T, S, z)$ has such a form as $N_{jp} \cdot \frac{1}{2\pi i \cdot z} + \sum_{n=0}^{\infty} c_n(T, S) \cdot z^n$ for every p, we conclude that

$$I = \int_{3/5}^{4/5} \frac{N_{jk} \cdot N_{jh}}{\log(4/3)} \cdot \frac{1}{r} \cdot \frac{dr}{2\pi i} = N_{jk} \cdot N_{jh} / 2\pi i.$$

Thus we have proved Theorem.

3. Proofs of Proposition and Lemma 1

Fix k, h and $(t_0, s_0) \in \Omega^*$ arbitrarily. First we will recall the proof of [2, Lemma 7], which shows that (any continuous branch of) π_{hk} is differentiable with respect to each t_i at (t_0, s_0) . Let $g^t (=g^{t,s_0})$ be the quasiconformal mapping of $R=R_{t_0,s_0}$ to $R(t)=R_{t,s_0}$, coincident with $f^{t_0}f^{-1}$ on R''_{t_0,s_0} (and hence conformal on $R-f(R_0-U_j)$), where and in the sequel, we set $f=f^{t_0}$. Then note that the complex dilatation $\nu(t)$ $(=\nu(t, s_0))$ of g^t is equal to

$$((\mu(t) - \mu(t_0))(1 - \overline{\mu(t_0)}\mu(t))^{-1}(f_z)/(\bar{f}_{\bar{z}})) \circ f^{-1}$$

where we denote by z a generic local parameter on R. In particular, $\nu(t)$ depends holomorphically on t.

Next set

$$\omega_t = \phi_k(R(t)) \circ g^t - \phi_k(R),$$

for every $t \in \mathcal{A}^m$, where and in the sequel, $\phi \circ g$ is the pull-back of ϕ by g.

Then as in the proof of [2, Lemma 7], we have

$$\pi_{kh}(t, s_0) - \pi_{kh}(t_0, s_0) = -\iint_R \omega_t \wedge \phi_h(R)$$

A standard argument originally due to Ahlfors shows that, for every i, $(\partial \pi_{hk}/\partial t_i)(t_0, s_0)$ exists and equals to

Masahiko Taniguchi

$$-\iint_{R} \frac{\partial \nu}{\partial t_{i}}(t_{0})\phi_{k}(R)\wedge\phi_{h}(R).$$

Here, since

$$\frac{\partial \nu}{\partial t_i}(t_0) = \left(\frac{\partial \mu}{\partial t_i}(t_0) \cdot (1 - |\mu(t_0)|^2)^{-1}(f_z)/(\bar{f}_{\bar{z}})\right) \circ f^{-1},$$

we also conclude the first assertion of Lemma 1.

Next to show the differentiablity with respect to each s_j at (t_0, s_0) , recall that the deformation represented by the parameter s can be considered, locally, as a quasiconformal deformation depending holomorphically on s ([3, Lemma 5]). More precisely, fix j and set $s_0(\zeta) = ((s_0)_1, \dots, (s_0)_{j-1}, \zeta, (s_0)_{j+1}, \dots, (s_0)_n)$. For every ζ with sufficiently small $|\zeta - (s_0)_j|$, define a quasiconformal mapping f^{ζ} of R to $R_{\zeta} = R_{t_0, s_0(\zeta)}$ by assuming that f^{ζ} is equal to the identity on $f(R_0 - U_j)$, and by setting

$$z_{j,1} \circ f^{\zeta_{\circ}} z_{j,1}^{-1}(z) = z \quad \text{on} \quad \left\{ \frac{4}{5} \leq |z| < 1 \right\},$$
$$= z \cdot \left(\frac{4/5}{|z|} \right)^{\log(\zeta/(s_0)_j)/\log(4/3)} \quad \text{on} \quad \left\{ \frac{3}{5} < |z| < \frac{4}{5} \right\},$$
$$= (\zeta/(s_0)_j) \cdot z \quad \text{on} \quad \left\{ |(s_0)_j| < |z| \leq \frac{3}{5} \right\},$$

where we consider $z_{j,1}$ as a conformal mapping of $R - f(R_0 - U_j)$ or $R_{\zeta} - f(R_0 - U_j)$ onto $\{|(s_0)_j| < |z| < 1\}$ or $\{|\zeta| < |z| < 1\}$, respectively, and take the branch of log so that $\log 1=0$. Then f^{ζ} is well-defined for every ζ sufficiently near to $(s_0)_j$, and a simple computation shows that the complex dilatation $\mu(\zeta)$ of f^{ζ} depends holomorphically on ζ . Actually $(d\mu/d\zeta)((s_0)_j)$ has the support in $R - f(R_0 - U_j)$ and is equal to

$$\lambda_{j,s_0} = \left(\frac{-1}{2(s_0)_j \cdot \log(4/3)} \chi(|z|)(z/\bar{z}) \frac{d\bar{z}}{dz}\right) \cdot z_{j,1}.$$

Now the same argument as before shows that $(\partial \pi_{hk}/\partial s_j)(t_0, s_0)$ exists and equal to

$$-\iint_{R_{T,S}}\lambda_{j,s_0}\phi_k(R)\wedge\phi_h(R),$$

which implies the second assertion of Lemma 1.

Since (t_0, s_0) is arbitrary, the assertion of Proposition follows by Hartogs' theorem.

4. Proof of Lemma 2

To show Lemma 2, fix p and a point $(T, S) \in \Omega$ arbitrary. Then for every $s \in (\mathcal{A}^*)^n$, $(T, s) \in \Omega^*$. Fix such an s. Then by a standard argument due to Ahlfors, we have (cf. [2, Theorems 2-5])

$$E_{p}(t, s) = \|\phi_{p}(R_{t,s})\|_{X_{t,s}} \le \|\phi_{p}(R_{t,s}) \circ g^{t}\|_{X_{T,s}}$$
$$\le \|\phi_{p}(R_{t,s}) \circ g^{t} - \phi_{p}(R_{T,s})\|_{X_{t,s}} + \|\phi_{p}(R_{T,s})\|_{X_{T,s}}$$

1068

$$\leq K_t \| \phi_p(R_{T,s}) \|_{X_{T,s}},$$

for every t, where g^t is as in §3 with $(t_0, s_0) = (T, s)$ and K_t is the maximal dilatation of g^t , which is independent of s.

Since $\lim_{t\to T} K_t = 1$, the following lemma implies that there is an open ball V with the center (T, S) such that $E_p(t, s)$ is bounded on $V \cap \Omega^*$. Since (T, S) is arbitrary, we can conclude the assertion of Lemma 2.

Lemma 3. Set $\phi_s = \phi_p(R_{T,s})$ and consider ϕ_s as a holomorphic differential on $X_{T,s}$ for every s. Then we have

$$\lim_{s \to S} \|\phi_s - \phi_S\|_{X_{T,S}} = 0,$$

Proof. Set $\phi_s = \phi_s - \phi_s$. Then ϕ_s is holomorphic (hence in particular $*\phi_s = -i \cdot \phi_s$) on $X_{T,S}$ and $\int_{A_p} \phi_s = 0$ for every A_p (considered as a curve on $X_{T,S}$). So by the same argument as in the proof of the bilinear relation (cf. the proof of [2, Lemma 1]), we have

$$\|\psi_s\|_{X_{T,S}}^2 = \int_{\partial X_{T,S}} \Psi_s \cdot * \bar{\psi}_s$$

where $\partial X_{T,S}$ is the relative boundary of $X_{T,S}$ in $R_{T,S}$ and Ψ_s is a single-valued branch of the abelian integral of ψ_s on $\partial X_{T,S}$. (Note that, by the condition (#), $\int_C \psi_s = 0$ for every s and every component C of $\partial X_{T,S}$, which also implies that the choice of integral constants of Ψ_s does not affect the value of the above integral.)

Now since ϕ_s converges to ϕ_s uniformly on $\partial X_{T,S}$ as s tends to S by [3, Corollary 4] (cf. Proof of Theorem), we have the assertion. q.e.d.

Department of Mathematics Kyoto University

References

- J. Fay, Theta functions on Riemann surface, Lecture Notes in Math. 352, Springer-Verlag, 1973.
- [2] Y. Kusunoki and F. Maitani, Variations of abelian differentials under quasiconformal deformations, Math. Z., 181 (1982), 435-450.
- [3] M. Taniguchi, Abelian differentials with normal behavior and complex pinching deformation, J. Math. Kyoto Univ., 29 (1989), 45-56.
- [4] M. Taniguchi, Pinching deformation of arbitrary Riemann surface and variational formulas for abelian differentials, in "Analytic function theory of one complex variable", Longman Sci. & Techn., (1989) 330-345.
- [5] A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980), 114-143.