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Introduction

In this note, we present a simple analytic method to determine the singularity of
periods of the normalized abelian differentials, with a given normal behavior on an
arbitrary Riemann surface, under the deformation by pinching a finite number of loops.
For the sake of simplicity, we discuss only differentials of the first kind. The case
of a compact Riemann surface has been deeply investigated, especially under the
deformation by pinching a single loop (cf. [1] and [5]).

1. Notations and definitions

We first recall some definitions and known results (cf. [3]).

1) Let R, be an arbitrary Riemann surface, not necessarily of finite topological
type, with a finite number of nodes. Denote by N(R,) the set {p;}}-, of all nodes of
R,, and set R,=R,—N(R,). Recall that R; is a union of ordinary Riemann surfaces
whose universal coverings are conformally equivalent to the unit disk, and that each
p; has a neighborhood homeomorphic to the subset {|z| <1, |w|<1, zw=0} in C*

For every j, we fix a neighborhood U; of p; on R, such that each component,
say U;, (I=1, 2), of U;—{p;} is mapped conformally onto D,={0<|z|<1} by a
mapping, say, z=z;,(p). Also we assume that {U;}7-, are mutually disjoint. In the
sequel, we consider z;; also as a canonical local parameter on U, , for every j and /.

Let m be a positive integer and {u(?):t€d™} with 4={|{|<1} be a family of
Beltrami coefficients on R, (i.e. bounded (—1, 1) forms on R, with [|p(t)[~<1 for every
t) such that ¢#(0)=0 and that the support of every u(¢) is contained in R,—U, where
U is the union of all U,. Further suppose that p(#) depends holomorphically on t=4™
(with respect to the sup norm). Let f* be a quasiconformal mapping of Rjonto another
union R; of Riemann surfaces with the complex dilatation u(t). Since f* is conformal
on U, we may identify f%U; ;) with U, ,, and hence may consider z;, as a conformal
mapping of f%U, ;) onto D, or as a canonical local parameter on f'(U, ), for every
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7 and /.

Next let t€4™ and s=(s,, -, $n)E(4’)" be given arbitrarily, where 4'={|{|<1/2}.
Let R, s be the Riemann surface possibly with nodes, obtained from R; by deleting
two punctured disks {0<|z;,|<|s;|*?} (I=1,2) in U;—{0} and by identifying the
resulting borders into a loop Cj,; s under the mapping

25,27 (s/z;(P)),

for every j. Here, for every j such that s;=0, nothing should be removed from
U;—{0}, and R; , has a node corresponding to p;.

Thus we have a family {R.: (¢, s)€2=4"x(4')"*} of Riemann surfaces possibly
with nodes, which we call the complex pinching deformation family with the center R,
and with the deformation data ({u(t)}, U).

In the sequel, we consider R{;=R,,—\U~L.C;.s as a subset of R;, and hence
consider the mapping (f*)™' as a quasiconformal mapping of R/, into R, for every
t, s)9.

2) Set 4*=4'—{0} (={0<|z|<1/2}). Then for every (t, s)€Q*=4™X(4*)", R, ;
is an ordinary Riemann surface. Fix (¥, s*)e£2* once for all, and denote R s simply
by R*. Let F be the embbeding (f**)™* of (R*)” (=R ) into R,. Then it is easy to
see that there is a canonical homology base &=F(R*)={A,, B:}f, of R* modulo the
ideal boundary (, where g may be infinite,) which satisfies the following condition;

(#) for every p;€EN(R,), C;=F '({|z;.|=1/2}) is either

(i) freely homotopic to some A,<Z5 (with a suitable orientation), or

(ii) letting E, be the set of all A, corresponding to nodes of R, as in (i), C; is a
loop on R*—{A;, B,: A5 —E,} dividing R*—{A,: A,€E,}.

ford

Here note that all curves in & except for {B,: A= E,} can be considered as ones on
R, and E,=5(R,)={A:, B:: Ar€&5—E,} as a homology base of R} modulo the ideal
boundary.

Next, fix a normal behavior space ["y(R,), i.e. a subspace of [',(R,), the Hilbert
space consisting of all square integrable complex harmonic differentials on R;, which
satisfies the following conditions;

1) ro(Ro)Crhse(Ro);
i) SA w=0 for every w&l (R,) and A,E5,,
k

iii) Mo(Ro)+*o(Ro)=1"1(R,) (a direct sum), and

iv) I(Ro)=1"(R,).

And we say that a complex harmonic or meromorphic differential ¢ on R; has I7,-
behavior if there exist a in I'((R,) and df in I".o(R,) such that g=a-+df outside of a
compact set on R, (This condition imposes nothing on ¢ when R, is compact.)

For every A,€5, the k-th normalized abelian differential ¢.(R,) of the first kind
with [-behavior is, by definition, a holomorphic differential (on R}) with I",-behavior
on R, uniquely determined by the following conditions;
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(i) SAh(ﬁk(Ro):akn for every A,e5,

(ii) ¢@+(R,) has simple poles at two punctures of R; corresponding to every node
p; such that the algebraic intersection number C;X B, between C; and B, is non-zero,
where C; is as in (#) with positive orientation with respect to {0<|z; .| <<1/2}.

(iii) @#(R,) is holomorphic at two punctures of R; corresponding to every other node.

Remark. When R, is compact and without nodes, the above ¢.(R,) is the classical
k-th normal differential of the first kind with respect to &,.

2. Main theorem and proof

Fix (¢, s)e arbitrarily. We can define a normal behavior space ['o(R, ;) on R,
corresponding to I'o(R,) in a natural manner (cf. the proof of [3, Theorem 1]). Also
by the condition (#), we can regard every A,€X5 asa curve on R, ;, which we denote
by the same A,. And we can define, similarly as above, the k-th normalized abelain
differential ¢@.(R, ) of the first kind with I",-behavior on R, for every k, which is
again uniquely determined (cf. [3, §2]).

On the other hand, B, determines a curve on R, not uniquely, but only modulo
{n-A,:neZ} for every A,E, So the period

manlt, )= $a(Ru.)

Bp

of ¢.(R, ) along Bj, should be considered only modulo Z when h=k. Any way, we
know the following

Proposition (cf. [2, Theorem 6]). Fix a relatively compact open ball W in Q%
arbitrarily. Then any continuous branch of zmni(t, s) on W is holomorphic on B*.
Moreover,
m onne ua 0T h

dﬂhk:iél atl dti—l_j=l aSj

de

is a well-defined holomorphic 1-form on Q%*.

For the sake of convenience, we include in §3 a standard proof of Proposition
(which is strongly inspired by Ahlfors’ argument).

Now the main purpose of this note is to give a simple analytic proof of the
following

Theorem. Fix h and k. Then

de
Sj

1 n
dﬂhk_"‘zﬁ' ng(Nj.k'Nj.h)'

can be extended holomorphically to the whole 2, where we set N; ,=C;XB, for every
j and p.
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Remark. Compare with [4, Theorem 5]. The case that n=1 has been investigated
in [1] and [5].

To prove Theorem, fix & and % once for all. Then in the proof of Proposition,
we actually show the following

Lemma 1. For every (t, s)E 2%, O ns (t, s) s equal to
ot

F 9=(], —pm b ReIAG(Re),

for every i, where (considering f* as a mapping of Ry—U into R, ) we set

pro = (GO 1 I FOR)

0 .
and ghk (t, s) is equal to
S;

Gt =, B RLINGR),

for every j. Here (considering z;, as a mapping of f'({1/2<1z;:|<1})CR,: s into D,
and) denoting by X(x) the characteristic function of [3/5, 4/5] on R, we set

—1 _. dz
lj.s—(mx(lﬂ)'(2/2)$>°2;‘,1~
Also we know the following

Lemma 2. For every (t, s)& 2%, set X, s=Rl :—\UL. j-1/'({0< 2,1 £1/2}). Then
for every p, the function E(t, s)=|6(Re.:)lx, , on Q* is locally bounded in Q. i.e.
for every relatively compact open ballV in Q, E, is bounded on VNR*. Here ||k is

the Dirichlet energy Ssxgb/\*gb_ of ¢ on X.

This lemma is an immediate corollary of [4, § 3 Proposition]. But we will include
a rather elementary proof in §4.
Now by Lemma 2, we can easily show the following

Lemma 3. Fy(t, s) and 5,-(1‘, s)=s;-Gyt, s) are locally bounded on Q for every i
and j, respectively.

Proof. By Lemma 1, |Fi(t, s)| Sl cllwr En(?, s)- Ex(t, s) and |5,»(t, I =Zlsj 455l
-Eu(t, s)-Ex(t, s). Hence the assertion follows by Lemma 2. q.e.d.

Proof of Theorem. By Proposition, Lemma 3 and Riemann’s extension theorem,
all Fi(t, s) and G,(t, s) can be extended to holomorphic functions on the whole 2.
So it remains only to show that, for every j, G,(t, s) tends to the constant
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%NH-NM when (¢, s)e2* tends to any (7, S)€Q—£2* such that S;=0.
Fix U, , arbitrarily, and write ¢,(R. )z, as au(t, s, 2)ds on D={1/2<|z| <1}
for every p and (¢, s)€£2. Then it is known ([3, Corollary 4]) that a,(t, s, 2) is holo-
morphic on 2XD. In particular, when (¢, s) tends to (7, S) in &, a,(t, s, z) converges
to a,(T, S, z) locally uniformly on D. (Recall that the proof of [3, Corollary 4] uses
a similar argument as that of Proposition does. So it is rather standard, and hence
omitted.)

Hence for every point (7T, S)e2—£* with S;=0, we can see that G {t, s) converges
to

—1 ) )
1_—SSMSWSMMWI/B—)(z/z)ak(T, S, 2an(T, S, 2)dz Ndz

(e*??-irdrd@

=" 0T, 5, ret®)-an(T, S, re )L
— /sak ’ , re h y D, re lOg(4/3) ’

0 Js

as (¢, s)€2* tends to (7T, S).
Since Laurent’s expansion of a,(T, S, z) has such a form as N;,-
2 oca(T, S)-2" for every p, we conclude that

1
2ni-z +

- 4/5 N].k.]\[ﬂl l dr _ .
_Sslﬁm'r g = Von Non/2mi.

Thus we have proved Theorem.

3. Proofs of Proposition and Lemma 1

Fix k, h and (t,, so)=£2* arbitrarily. First we will recall the proof of [2, Lemma
7], which shows that (any continuous branch of) =, is differentiable with respect to
each ¢; at (t,, so). Let g° (=g“*®) be the quasiconformal mapping of R=R, s, to
R(@)=R, s, coincident with f‘-f~' on R s  (and hence conformal on R—f(R,—U,)),
where and in the sequel, we set f=f‘. Then note that the complex dilatation v(¢)
(=u(t, so)) of g* is equal to

()= pt XL = pE ) f I/ (F))o f

where we denote by z a generic local parameter on R. In particular, u(t) depends
holomorphically on ¢.
Next set

0 =¢x(R(1)g'—u(R),

for every t4™, where and in the sequel, ¢-g is the pull-back of o by g.
Then as in the proof of [2, Lemma 7], we have

Faalts so=ualto 5= || i gu(R)

A standard argument originally due to Ahlfors shows that, for every 7, (8ms:/0t:)to, So)
exists and equals to
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_Sgk_gtii(to)gsk(m/\m(m.

Here, since
oy o aﬂ 2\-1 z -1
G t0= (G- (L | ) S I,

we also conclude the first assertion of Lemma 1.

Next to show the differentiablity with respect to each s; at (Zo, so), recall that the
deformation represented by the parameter s can be considered, locally, as a quasicon-
formal deformation depending holomorphically on s ([3, Lemma 5]). More precisely,
fix 7 and set se(Q)=((So)1, *** > (So)j-1, &, (So)je1, ***, (S0)n). For every { with sufficiently
small |{—(s0);|, define a quasiconformal mapping f¢ of R to R;=R,, s, by assuming
that f° is equal to the identity on f(R,—U;), and by setting

zj10f%z; " (2)=z  on {%§|21<1},

. ﬂ log(C/(8¢) P 10og(4/3) i i
__4.(|Z|) on {5<|z|<5},

=@z o {li<lziss)

where we consider z;; as a conformal mapping of R—f(R,—U;) or R;— f(R,— Uj;) onto
{1(s0);1 <lz| <1} or {|€|<|z|<1}, respectively, and take the branch of log so that
log1=0. Then f¢ is well-defined for every { sufficiently near to (s,);, and a simple
computation shows that the complex dilatation () of f* depends holomorphically on
L. Actually (dp/dl)(s0);) has the support in R— f(R,—U;) and is equal to

—1

A= Tog /%)

. dz
X(IZI)(Z/Z)d—Z)ozj,l.
Now the same argument as before shows that (0m,./0s;),, so) exists and equal to
1, aegu®AGUR),
Ry, s

which implies the second assertion of Lemma 1.
Since (to, so) is arbitrary, the assertion of Proposition follows by Hartogs’ theorem.

4. Proof of Lemma 2

To show Lemma 2, fix p and a point (T, S)e£2 arbitrary. Then for every
se(d®)®, (T, s)el*. Fix such an s. Then by a standard argument due to Ahlfors,
we have (cf. [2, Theorems 2-5])

En(t, s)=l¢p(Re. )z, S NPp(Re.s)o8 1 xp,,
= ”¢p(Rz.s)“gt—¢p(RT.s)”Xb3+ "¢p(RT,s)”XT,s
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SKil¢p(Rr,slxr, s

for every ¢, where g is as in § 3 with (#, s0)=(7, s) and K, is the maximal dilatation
of g', which is independent of s.

Since lim,.rK;=1, the following lemma implies that there is an open ball V with
the center (T, S) such that E,(¢, s) is bounded on VN@2*. Since (7, S) is arbitrary,
we can conclude the assertion of Lemma 2.

Lemma 3. Set ¢.=¢,(Rr.s) and consider ¢s as a holomorphic differential on Xr s
for every s. Then we have

lim 16— sl 7, s=0,

Proof. Set ¢y=¢;—¢s. Then ¢; is holomorphic (hence in particular *¢s=—i-¢;)
on X7 s and SA ¢:=0 for every A, (considered as a curve on X7 s). So by the same
D

argument as in the proof of the bilinear relation (cf. the proof of [2, Lemma 1]), we
have

I9:lr, 5=, errde,

where 0Xr s is the relative boundary of Xr s in Ry s and ¥ is a single-valued branch
of the abelian integral of ¢, on 0Xrs. (Note that, by the condition (#),

chbs:O for every s and every component C of 0Xr s, which also implies that the

choice of integral constants of ¥y does not affect the value of the above integral.)
Now since ¢ converges to P, uniformly on 0Xr s as s tends to S by [3, Corollary
47 (cf. Proof of Theorem), we have the assertion. q.e.d.

DEPARTMENT OF MATHEMATICS
KyoTo UNIVERSITY

References

[1] J. Fay, Theta functions on Riemann surface, Lecture Notes in Math. 352, Springer-Verlag,
1973.

[2] Y. Kusunoki and F. Maitani, Variations of abelian differentials under quasiconformal
deformations, Math. Z., 181 (1982), 435-450.

[3] M. Taniguchi, Abelian differentials with normal behavior and complex pinching defor-
mation, J. Math. Kyoto Univ., 29 (1989), 45-56.

[4] M. Taniguchi, Pinching deformation of arbitrary Riemann surface and variational formulas
for abelian differentials, in “Analytic function theory of one complex variable”, Longman
Sci. & Techn., (1989) 330-345.

[5] A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980),
114-143.



