On the singularity of the periods of abelian differentials with normal behavior under pinching deformation

Dedicated to Professor Tatsuo Fuji'i'e on his sixtieth birthday

By

Masahiko TANIGuChi

Introduction

In this note, we present a simple analytic method to determine the singularity of periods of the normalized abelian differentials, with a given normal behavior on an arbitrary Riemann surface, under the deformation by pinching a finite number of loops. For the sake of simplicity, we discuss only differentials of the first kind. The case of a compact Riemann surface has been deeply investigated, especially under the deformation by pinching a single loop (cf. [1] and [5]).

1. Notations and definitions

We first recall some definitions and known results (cf. [3]).

1) Let R_{0} be an arbitrary Riemann surface, not necessarily of finite topological type, with a finite number of nodes. Denote by $N\left(R_{0}\right)$ the set $\left\{p_{j}\right\}_{j=1}^{n}$ of all nodes of R_{0}, and set $R_{0}^{\prime}=R_{0}-N\left(R_{0}\right)$. Recall that R_{0}^{\prime} is a union of ordinary Riemann surfaces whose universal coverings are conformally equivalent to the unit disk, and that each p_{j} has a neighborhood homeomorphic to the subset $\{|z|<1,|w|<1, z w=0\}$ in \boldsymbol{C}^{2}.

For every j, we fix a neighborhood U_{j} of p_{j} on R_{0} such that each component, say $U_{j, l}(l=1,2)$, of $U_{j}-\left\{p_{j}\right\}$ is mapped conformally onto $D_{0}=\{0<|z|<1\}$ by a mapping, say, $z=z_{j, l}(p)$. Also we assume that $\left\{\bar{U}_{j}\right\}_{j=1}^{n}$ are mutually disjoint. In the sequel, we consider $z_{j, l}$ also as a canonical local parameter on $U_{j, l}$ for every j and l.

Let m be a positive integer and $\left\{\mu(t): t \in \Delta^{m}\right\}$ with $\Delta=\{|\zeta|<1\}$ be a family of Beltrami coefficients on R_{0} (i.e. bounded ($-1,1$) forms on R_{0} with $\|\mu(t)\|_{\infty}<1$ for every $t)$ such that $\mu(0)=0$ and that the support of every $\mu(t)$ is contained in $R_{0}-\bar{U}$, where U is the union of all U_{j}. Further suppose that $\mu(t)$ depends holomorphically on $t \in \Delta^{m}$ (with respect to the sup norm). Let f^{t} be a quasiconformal mapping of R_{0}^{\prime} onto another union R_{t}^{\prime} of Riemann surfaces with the complex dilatation $\mu(t)$. Since f^{t} is conformal on U, we may identify $f^{t}\left(U_{j, l}\right)$ with $U_{j, l}$, and hence may consider $z_{j, l}$ as a conformal mapping of $f^{t}\left(U_{j, l}\right)$ onto D_{0}, or as a canonical local parameter on $f^{t}\left(U_{j, l}\right)$, for every
j and l.
Next let $t \in \Delta^{m}$ and $s=\left(s_{1}, \cdots, s_{n}\right) \in\left(\Delta^{\prime}\right)^{n}$ be given arbitrarily, where $\Delta^{\prime}=\{|\zeta|<1 / 2\}$. Let $R_{t, s}$ be the Riemann surface possibly with nodes, obtained from R_{t}^{\prime} by deleting two punctured disks $\left\{0<\left|z_{j, l}\right|<\left|s_{j}\right|^{1 / 2}\right\}(l=1,2)$ in $U_{j}-\{0\}$ and by identifying the resulting borders into a loop $C_{j, t, s}$ under the mapping

$$
z_{j, 2}{ }^{-1}\left(s_{j} / z_{j, 1}(p)\right),
$$

for every j. Here, for every j such that $s_{j}=0$, nothing should be removed from $U_{j}-\{0\}$, and $R_{t, s}$ has a node corresponding to p_{j}.

Thus we have a family $\left\{R_{t, s}:(t, s) \in \Omega=\Delta^{m} \times\left(\Delta^{\prime}\right)^{n}\right\}$ of Riemann surfaces possibly with nodes, which we call the complex pinching deformation family with the center R_{0} and with the deformation data $(\{\mu(t)\}, U)$.

In the sequel, we consider $R_{t, s}^{\prime \prime}=R_{t, s}-\bigcup_{j=1}^{n} C_{j, t, s}$ as a subset of R_{t}^{\prime}, and hence consider the mapping $\left(f^{t}\right)^{-1}$ as a quasiconformal mapping of $R_{t, s}^{\prime \prime}$ into R_{0}, for every $(t, s) \in \Omega$.
2) Set $\Delta^{*}=\Delta^{\prime}-\{0\}(=\{0<|z|<1 / 2\})$. Then for every $(t, s) \in \Omega^{*}=\Delta^{m} \times\left(\Delta^{*}\right)^{n}, R_{t, s}$ is an ordinary Riemann surface. Fix $\left(t^{*}, s^{*}\right) \in \Omega^{*}$ once for all, and denote $R_{t *, s *}$ simply by R^{*}. Let F be the embbeding $\left(f^{t *}\right)^{-1}$ of $\left(R^{*}\right)^{\prime \prime}\left(=R_{\left.t *, s^{*}\right)}^{\prime \prime}\right.$ into R_{0}. Then it is easy to see that there is a canonical homology base $\Xi=\Xi\left(R^{*}\right)=\left\{A_{k}, B_{k}\right\}_{k=1}^{\}}$of R^{*} modulo the ideal boundary (, where g may be infinite,) which satisfies the following condition;
(\#) for every $p_{j} \in N\left(R_{0}\right), C_{j}=F^{-1}\left(\left\{\left|z_{j, 1}\right|=1 / 2\right\}\right)$ is either
(i) freely homotopic to some $A_{k} \in \Xi$ (with a suitable orientation), or
(ii) letting E_{0} be the set of all A_{k} corresponding to nodes of R_{0} as in (i), C_{j} is a loop on $R^{*}-\left\{A_{k}, B_{k}: A_{k} \in \Xi-E_{0}\right\}$ dividing $R^{*}-\left\{A_{k}: A_{k} \in E_{0}\right\}$.
Here note that all curves in Ξ except for $\left\{B_{k}: A_{k} \in E_{0}\right\}$ can be considered as ones on R_{0}^{\prime}, and $\Xi_{0}=\Xi\left(R_{0}\right)=\left\{A_{k}, B_{k}: A_{k} \in \Xi-E_{0}\right\}$ as a homology base of R_{0}^{\prime} modulo the ideal boundary.

Next, fix a normal behavior space $\Gamma_{0}\left(R_{0}\right)$, i.e. a subspace of $\Gamma_{h}\left(R_{0}\right)$, the Hilbert space consisting of all square integrable complex harmonic differentials on R_{0}^{\prime}, which satisfies the following conditions;
i) $\Gamma_{0}\left(R_{0}\right) \subset \Gamma_{\text {hse }}\left(R_{0}\right)$,
ii) $\int_{A_{k}} \omega=0$ for every $\omega \in \Gamma_{0}\left(R_{0}\right)$ and $A_{k} \in \Xi_{0}$,
iii) $\Gamma_{0}\left(R_{0}\right)+{ }^{*} \Gamma_{0}\left(R_{0}\right)=\Gamma_{h}\left(R_{0}\right)$ (a direct sum), and
iv) $\Gamma_{0}\left(R_{0}\right)=\overline{\Gamma_{0}\left(R_{0}\right)}$.

And we say that a complex harmonic or meromorphic differential ϕ on R_{0}^{\prime} has $\Gamma_{0}{ }^{-}$ behavior if there exist α in $\Gamma_{0}\left(R_{0}\right)$ and $d f$ in $\Gamma_{e 0}\left(R_{0}\right)$ such that $\phi=\alpha+d f$ outside of a compact set on R_{0}. (This condition imposes nothing on ϕ when R_{0} is compact.)

For every $A_{k} \in \Xi$, the k-th normalized abelian differential $\phi_{k}\left(R_{0}\right)$ of the first kind with Γ_{0}-behavior is, by definition, a holomorphic differential (on R_{0}^{\prime}) with Γ_{0}-behavior on R_{0} uniquely determined by the following conditions;
(i) $\int_{A_{h}} \phi_{k}\left(R_{0}\right)=\delta_{k h} \quad$ for every $\quad A_{h} \in \boldsymbol{Z}$,
(ii) $\phi_{k}\left(R_{0}\right)$ has simple poles at two punctures of R_{0}^{\prime} corresponding to every node p_{j} such that the algebraic intersection number $C_{j} \times B_{k}$ between C_{j} and B_{k} is non-zero, where C_{j} is as in (\#) with positive orientation with respect to $\left\{0<\left|z_{j, 1}\right|<1 / 2\right\}$.
(iii) $\phi_{k}\left(R_{0}\right)$ is holomorphic at two punctures of R_{0}^{\prime} corresponding to every other node.

Remark. When R_{0} is compact and without nodes, the above $\phi_{k}\left(R_{0}\right)$ is the classical k-th normal differential of the first kind with respect to Ξ_{0}.

2. Main theorem and proof

Fix $(t, s) \in \Omega$ arbitrarily. We can define a normal behavior space $\Gamma_{0}\left(R_{t, s}\right)$ on $R_{t, s}$ corresponding to $\Gamma_{0}\left(R_{0}\right)$ in a natural manner (cf. the proof of [3, Theorem 1]). Also by the condition (\#), we can regard every $A_{k} \in \Xi$ as a curve on $R_{t, s}$, which we denote by the same A_{k}. And we can define, similarly as above, the k-th normalized abelain differential $\phi_{k}\left(R_{t, s}\right)$ of the first kind with Γ_{0}-behavior on $R_{t, s}$ for every k, which is again uniquely determined (cf. [3, §2]).

On the other hand, B_{k} determines a curve on $R_{t, s}$ not uniquely, but only modulo $\left\{n \cdot A_{k}: n \in \boldsymbol{Z}\right\}$ for every $A_{k} \in E_{0}$. So the period

$$
\pi_{k h}(t, s)=\int_{B_{h}} \phi_{k}\left(R_{t, s}\right)
$$

of $\phi_{k}\left(R_{t, s}\right)$ along B_{h} should be considered only modulo \boldsymbol{Z} when $h=k$. Any way, we know the following

Proposition (cf. [2, Theorem 6]). Fix a relatively compact open ball W in Ω^{*} arbitrarily. Then any continuous branch of $\pi_{h k}(t, s)$ on W is holomorphic on B^{*}.

Moreover,

$$
d \pi_{h k}=\sum_{i=1}^{m} \frac{\partial \pi_{h k}}{\partial t_{i}} d t_{i}+\sum_{j=1}^{n} \frac{\partial \pi_{h k}}{\partial s_{j}} d s_{j}
$$

is a well-defined holomorphic 1-form on Ω^{*}.
For the sake of convenience, we include in §3 a standard proof of Proposition (which is strongly inspired by Ahlfors' argument).

Now the main purpose of this note is to give a simple analytic proof of the following

Theorem. Fix h and k. Then

$$
d \pi_{h k}-\frac{1}{2 \pi i} \cdot \sum_{j=1}^{n}\left(N_{j, k} \cdot N_{j, h}\right) \cdot \frac{d s_{j}}{s_{j}}
$$

can be extended holomorphically to the whole Ω, where we set $N_{j, p}=C_{j} \times B_{p}$ for every j and p.

Remark. Compare with [4, Theorem 5]. The case that $n=1$ has been investigated in [1] and [5].

To prove Theorem, fix h and k once for all. Then in the proof of Proposition, we actually show the following

Lemma 1. For every $(t, s) \in \Omega^{*}, \frac{\partial \pi_{h k}}{\partial t_{i}}(t, s)$ is equal to

$$
F_{i}(t, s)=\iint_{R_{t, s}}-\mu_{i, t} \phi_{k}\left(R_{t, s}\right) \wedge \phi_{h}\left(R_{t, s}\right),
$$

for every i, where (considering f^{t} as a mapping of $R_{0}-\bar{U}$ into $R_{t, s}$) we set

$$
\mu_{i, t}=\left(\frac{\partial \mu}{\partial t_{i}}(t)\left(1-|\mu(t)|^{2}\right)^{-1}\left(f^{t}\right)_{z} /\left(\bar{f}^{t}\right)_{\bar{z}}\right) \cdot\left(f^{t}\right)^{-1}
$$

and $\frac{\partial \pi_{h k}}{\partial s_{j}}(t, s)$ is equal to

$$
G_{j}(t, s)=\iint_{R_{t, s}}-\lambda_{j, s} \phi_{k}\left(R_{t, s}\right) \wedge \phi_{h}\left(R_{t, s}\right),
$$

for every j. Here (considering $z_{j, 1}$ as a mapping of $f^{t}\left(\left\{1 / 2<\left|z_{j, 1}\right|<1\right\}\right) \subset R_{t, s}$ into D_{0} and) denoting by $\chi(x)$ the characteristic function of $[3 / 5,4 / 5]$ on \boldsymbol{R}, we set

$$
\lambda_{j, s}=\left(\frac{-1}{2 s_{j} \cdot \log (4 / 3)} \chi(|z|) \cdot(z / \bar{z}) \frac{d \bar{z}}{d z}\right) \cdot z_{j, 1}
$$

Also we know the following
Lemma 2. For every $(t, s) \in \Omega^{*}$, set $X_{t, s}=R_{t, s}^{\prime \prime}-\bigcup_{j=1, l=1}^{n}{ }_{l}^{2} f^{t}\left(\left\{0<\left|z_{j, l}\right| \leqq 1 / 2\right\}\right)$. Then for every p, the function $E_{p}(t, s)=\| \boldsymbol{\phi}_{p}\left(R_{t, s} \|_{x_{t, s}}\right.$ on Ω^{*} is locally bounded in Ω. i.e. for every relatively compact open ball V in Ω, E_{p} is bounded on $V \cap \Omega^{*}$. Here $\|\phi\|_{X}^{2}$ is the Dirichlet energy $\iint_{X} \phi \wedge^{*} \bar{\phi}$ of ϕ on X.

This lemma is an immediate corollary of [4, §3 Proposition]. But we will include a rather elementary proof in $\S 4$.

Now by Lemma 2, we can easily show the following
Lemma 3. $F_{i}(t, s)$ and $\tilde{G}_{j}(t, s)=s_{j} \cdot G_{j}(t, s)$ are locally bounded on Ω for every i and j, respectively.

Proof. By Lemma 1, $\left|F_{i}(t, s)\right| \leqq\left\|\mu_{i, t}\right\|_{\infty} \cdot E_{h}(t, s) \cdot E_{k}(t, s)$ and $\left|\tilde{G}_{j}(t, s)\right| \leqq\left\|s_{j} \cdot \lambda_{j, s}\right\|_{\infty}$ - $E_{h}(t, s) \cdot E_{k}(t, s)$. Hence the assertion follows by Lemma 2.
q.e.d.

Proof of Theorem. By Proposition, Lemma 3 and Riemann's extension theorem, all $F_{i}(t, s)$ and $\tilde{G}_{j}(t, s)$ can be extended to holomorphic functions on the whole Ω.

So it remains only to show that, for every $j, \tilde{G}_{j}(t, s)$ tends to the constant
$\frac{1}{2 \pi i} N_{j, k} \cdot N_{j, h}$ when $(t, s) \in \Omega^{*}$ tends to any $(T, S) \in \Omega-\Omega^{*}$ such that $S_{j}=0$.
Fix $U_{j, l}$ arbitrarily, and write $\phi_{p}\left(R_{t, s}\right) \circ z_{j, l^{-1}}$ as $a_{p}(t, s, z) d s$ on $D=\{1 / 2<|z|<1\}$ for every p and $(t, s) \in \Omega$. Then it is known ([3, Corollary 4]) that $a_{p}(t, s, z)$ is holomorphic on $\Omega \times D$. In particular, when (t, s) tends to (T, S) in $\Omega, a_{p}(t, s, z)$ converges to $a_{p}(T, S, z)$ locally uniformly on D. (Recall that the proof of [3, Corollary 4] uses a similar argument as that of Proposition does. So it is rather standard, and hence omitted.)

Hence for every point $(T, S) \in \Omega-\Omega^{*}$ with $S_{j}=0$, we can see that $\tilde{G}_{j}(t, s)$ converges to

$$
\begin{aligned}
I & =-\iint_{(3 / 5 S|2| S 4 / 5)} \frac{-1}{2 \cdot \log (4 / 3)}(z / \bar{z}) a_{k}(T, S, z) a_{h}(T, S, z) d \bar{z} \wedge d z \\
& =\int_{0}^{2 \pi} \int_{3 / 5}^{4 / 5} a_{k}\left(T, S, r e^{i \theta}\right) \cdot a_{h}\left(T, S, r e^{i \theta}\right) \frac{\left(e^{i \theta}\right)^{2} \cdot i r d r d \theta}{\log (4 / 3)}
\end{aligned}
$$

as $(t, s) \in \Omega^{*}$ tends to (T, S).
Since Laurent's expansion of $a_{p}(T, S, z)$ has such a form as $N_{j p} \cdot \frac{1}{2 \pi i \cdot z}+$ $\sum_{n=0}^{\infty} c_{n}(T, S) \cdot z^{n}$ for every p, we conclude that

$$
I=\int_{3 / 5}^{4 / 5} \frac{N_{j k} \cdot N_{j h}}{\log (4 / 3)} \cdot \frac{1}{r} \cdot \frac{d r}{2 \pi i}=N_{j k} \cdot N_{j h} / 2 \pi i .
$$

Thus we have proved Theorem.

3. Proofs of Proposition and Lemma 1

Fix k, h and $\left(t_{0}, s_{0}\right) \in \Omega^{*}$ arbitrarily. First we will recall the proof of [2, Lemma 7], which shows that (any continuous branch of) $\pi_{n k}$ is differentiable with respect to each t_{i} at (t_{0}, s_{0}). Let $g^{t}\left(=g^{t, s_{0}}\right)$ be the quasiconformal mapping of $R=R_{t_{0}, s_{0}}$ to $R(t)=R_{t, s_{0}}$, coincident with $f^{t} \circ f^{-1}$ on $R_{t_{0}, s_{0}}^{\prime \prime}$ (and hence conformal on $R-f\left(R_{0}-U_{j}\right)$), where and in the sequel, we set $f=f^{t_{0}}$. Then note that the complex dilatation $\nu(t)$ $\left(=\nu\left(t, s_{0}\right)\right)$ of g^{t} is equal to

$$
\left(\left(\mu(t)-\mu\left(t_{0}\right)\right)\left(1-\overline{\mu\left(t_{0}\right)} \mu(t)\right)^{-1}\left(f_{z}\right) /\left(\bar{f}_{z}\right)\right) \circ f^{-1}
$$

where we denote by z a generic local parameter on R. In particular, $\nu(t)$ depends holomorphically on t.

Next set

$$
\omega_{\iota}=\phi_{k}(R(t)) \circ g^{t}-\phi_{k}(R),
$$

for every $t \in \Delta^{m}$, where and in the sequel, $\phi \circ g$ is the pull-back of ϕ by g.
Then as in the proof of [2, Lemma 7], we have

$$
\pi_{k h}\left(t, s_{0}\right)-\pi_{k h}\left(t_{0}, s_{0}\right)=-\iint_{R} \omega_{t} \wedge \phi_{h}(R)
$$

A standard argument originally due to Ahlfors shows that, for every $i,\left(\partial \pi_{h k} / \partial t_{i}\right)\left(t_{0}, s_{0}\right)$ exists and equals to

$$
-\iint_{R} \frac{\partial \nu}{\partial t_{i}}\left(t_{0}\right) \phi_{k}(R) \wedge \phi_{h}(R) .
$$

Here, since

$$
\frac{\partial \nu}{\partial t_{i}}\left(t_{0}\right)=\left(\frac{\partial \mu}{\partial t_{i}}\left(t_{0}\right) \cdot\left(1--\left|\mu\left(t_{0}\right)\right|^{2}\right)^{-1}\left(f_{z}\right) /\left(\bar{f}_{\bar{z}}\right)\right) \cdot f^{-1},
$$

we also conclude the first assertion of Lemma 1.
Next to show the differentiablity with respect to each s_{j} at $\left(t_{0}, s_{0}\right)$, recall that the deformation represented by the parameter s can be considered, locally, as a quasiconformal deformation depending holomorphically on s ([3, Lemma 5]). More precisely, fix j and set $s_{0}(\zeta)=\left(\left(s_{0}\right)_{1}, \cdots,\left(s_{0}\right)_{j-1}, \zeta,\left(s_{0}\right)_{j+1}, \cdots,\left(s_{0}\right)_{n}\right)$. For every ζ with sufficiently small $\left|\zeta-\left(s_{0}\right)_{j}\right|$, define a quasiconformal mapping f^{ζ} of R to $R_{\zeta}=R_{t_{0}, s_{0}(\zeta)}$ by assuming that f^{5} is equal to the identity on $f\left(R_{0}-U_{j}\right)$, and by setting

$$
\begin{aligned}
& z_{j, 1} \circ f \zeta_{0} z_{j, 1}{ }^{-1}(z)=z \quad \text { on } \quad\left\{\frac{4}{5} \leqq|z|<1\right\}, \\
& \quad=z \cdot\left(\frac{4 / 5}{|z|}\right)^{\log \left(\zeta /\left(s_{0}\right)_{j}\right) / \log (4 / 3)} \quad \text { on } \quad\left\{\frac{3}{5}<|z|<\frac{4}{5}\right\}, \\
& \quad=\left(\zeta /\left(s_{0}\right)_{j}\right) \cdot z \quad \text { on } \quad\left\{\left|\left(s_{0}\right)_{j}\right|<|z| \leqq \frac{3}{5}\right\},
\end{aligned}
$$

where we consider $z_{j, 1}$ as a conformal mapping of $R-f\left(R_{0}-U_{j}\right)$ or $R_{\zeta}-f\left(R_{0}-U_{j}\right)$ onto $\left\{\left|\left(s_{0}\right)_{j}\right|<|z|<1\right\}$ or $\{|\zeta|<|z|<1\}$, respectively, and take the branch of log so that $\log 1=0$. Then f^{ζ} is well-defined for every ζ sufficiently near to $\left(s_{0}\right)_{j}$, and a simple computation shows that the complex dilatation $\mu(\zeta)$ of f^{ζ} depends holomorphically on ζ. Actually $(d \mu / d \zeta)\left(\left(s_{0}\right)_{j}\right)$ has the support in $R-f\left(R_{0}-U_{j}\right)$ and is equal to

$$
\lambda_{j, s_{0}}=\left(\frac{-1}{2\left(s_{0}\right)_{j} \cdot \log (4 / 3)} \chi(|z|)(z / \bar{z}) \frac{d \bar{z}}{d z}\right) \cdot z_{j, 1} .
$$

Now the same argument as before shows that $\left(\partial \pi_{h k} / \partial s_{j}\right)\left(t_{0}, s_{0}\right)$ exists and equal to

$$
-\iint_{R_{T, S}} \lambda_{j, s_{0}} \phi_{k}(R) \wedge \phi_{h}(R),
$$

which implies the second assertion of Lemma 1.
Since (t_{0}, s_{0}) is arbitrary, the assertion of Proposition follows by Hartogs' theorem.

4. Proof of Lemma 2

To show Lemma 2, fix p and a point $(T, S) \in \Omega$ arbitrary. Then for every $s \in\left(\Delta^{*}\right)^{n},(T, s) \in \Omega^{*}$. Fix such an s. Then by a standard argument due to Ahlfors, we have (cf. [2, Theorems 2-5])

$$
\begin{gathered}
E_{p}(t, s)=\left\|\phi_{p}\left(R_{t, s}\right)\right\|_{X_{t, s}} \leqq\left\|\phi_{p}\left(R_{t, s}\right) \circ g^{t}\right\|_{X_{T, s}} \\
\leqq\left\|\boldsymbol{\phi}_{p}\left(R_{t, s}\right) \circ g^{t}-\dot{\phi}_{p}\left(R_{T, s}\right)\right\|_{x_{t, s}}+\left\|\boldsymbol{\phi}_{p}\left(R_{T, s}\right)\right\|_{X_{T, s}}
\end{gathered}
$$

$$
\leqq K_{t}\left\|\phi_{p}\left(R_{T, s}\right)\right\|_{x_{T, s}},
$$

for every t, where g^{t} is as in $\S 3$ with $\left(t_{0}, s_{0}\right)=(T, s)$ and K_{t} is the maximal dilatation of g^{t}, which is independent of s.

Since $\lim _{t-T} K_{t}=1$, the following lemma implies that there is an open ball V with the center (T, S) such that $E_{p}(t, s)$ is bounded on $V \cap \Omega^{*}$. Since (T, S) is arbitrary, we can conclude the assertion of Lemma 2.

Lemma 3. Set $\phi_{s}=\phi_{p}\left(R_{T, s}\right)$ and consider ϕ_{s} as a holomorphic differential on $X_{T, S}$ for everys. Then we have

$$
\lim _{s \rightarrow s}\left\|\phi_{s}-\phi_{s}\right\|_{x_{T, S}}=0
$$

Proof. Set $\phi_{s}=\phi_{s}-\phi_{s}$. Then ψ_{s} is holomorphic (hence in particular ${ }^{*} \psi_{s}=-i \cdot \phi_{s}$) on $X_{T, S}$ and $\int_{\Lambda_{p}} \psi_{s}=0$ for every A_{p} (considered as a curve on $X_{T, S}$). So by the same argument as in the proof of the bilinear relation (cf. the proof of [2, Lemma 1]), we have

$$
\left\|\boldsymbol{\psi}_{s}\right\|_{X_{T, S}}^{2}=\int_{\partial X_{T, S}} \Psi_{s} \cdot{ }^{*} \bar{\psi}_{s}
$$

where $\partial X_{T, S}$ is the relative boundary of $X_{T, S}$ in $R_{T, S}$ and Ψ_{s} is a single-valued branch of the abelian integral of ψ_{s} on $\partial X_{T, s}$. (Note that, by the condition (\#), $\int_{C} \psi_{s}=0$ for every s and every component C of $\partial X_{T, s}$, which also implies that the choice of integral constants of Ψ_{s} does not affect the value of the above integral.)

Now since ψ_{s} converges to ϕ_{s} uniformly on $\partial X_{T . S}$ as s tends to S by [3, Corollary 4] (cf. Proof of Theorem), we have the assertion.
q.e.d.

Department of Mathematics Kyoto University

References

[1] J. Fay, Theta functions on Riemann surface, Lecture Notes in Math. 352, Springer-Verlag, 1973.
[2] Y. Kusunoki and F. Maitani, Variations of abelian differentials under quasiconformal deformations, Math. Z., 181 (1982), 435-450.
[3] M. Taniguchi, Abelian differentials with normal behavior and complex pinching deformation, J. Math. Kyoto Univ., 29 (1989), 45-56.
[4] M. Taniguchi, Pinching deformation of arbitrary Riemann surface and variational formulas for abelian differentials, in "Analytic function theory of one complex variable", Longman Sci. \& Techn., (1989) 330-345.
[5] A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980), 114-143.

