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On the equations of bioconvective flow
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Yukio KAN-ON, Kimiaki NARUKAWA
and Yoshiaki TERAMOTO

1. Introduction

The purpose of this paper is to study some mathematical questions related to
the equations of bioconvective flow. Here “bioconvection” is a convection caused
by the concentration of upward swiming microorganisms in culture fluid. To
describe this phenomena, a fluid dynamical model was presented by Levandowsky
et al. [5] and Moribe [9] independently. The model consists of the equations
for the motion of the culture fluid assumed to be viscous and incompressible and
for the concentration of microorganisms. Both papers [5, 9] discuss underlying
biological and physical idea leading to the equations, and give some qualitative
descriptions based on intuitive arguments. To the best of our knowledge, formal
mathematical analysis has never been carried out. So we treat this model in this
paper and give some results.

After a brief description of the fluid dynamical model in Section 2, we show in
Section 3 that, for an arbitrarily given a > 0, there is a solution of the stationary
problem with total concentration equal to «. Section 4 deals with the pointwise
positivity of the concentration obtained in Section 3. The following sections (5 to
7) treat the nonstationary problem. We formulate in Section 5 the decay problem
for the equations governing the disturbances from the stationary solution whose
total concentration is equal to that of the initial data, and define a global weak
solution for this problem. Then we show that, if the stationary solution is small
enough, there is a global weak soluiton. In Section 6 we prove that the above
weak solution becomes regular after some instant, by transforming the equations
into an evolution equation in some Hilbert space. The solvability of this
evolution equation is proved by the method developed in [2]. Using the results
in Section 6, we show in Section 7 the uniform decay of the weak solution obtained
in Section 5. The arguments employed in Section 5-7 are similar to those in
[7]. In the final Appendix we show the self-adjointness of the operator
introduced in Section 6.
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136 Equations of bioconvective flow

2. Fluid dynamical model

Let Q be a bounded domain in R*® with smooth boundary Q2. Let c(x, 1)
denote the concentration of microorganisms at point x = (x,, x,, x3)€£ at time
t >0, and let u = {u;(x, 1)}}_, and p = p(x, t) denote the velocity and pressure of
the culture fluid at xeQ at t. u,p and ¢ are governed by a system of the
equations:

du
2.1 a—vAu+(u,V)u+Vp=—g(1+yc)x+f, xeQ, t>0,
(2.2) divu =0, xeR, t>0,
0 0
(2.3) L bde+ Ve + U =0,  xeQ, t>0.
ot 0x5

0o o0 0 d \? . .
Here V = <6—x1’0_x2’$;> and 4 =Z}=1<a—xj> . f={fi®}}=, is the given
external force. For simplicity f is assumed to be independent of t. g is the

accelation of gravity, y is the unit vector in the vertical direction, i.e., y =
‘(0, 0, 1). v is the kinematic viscosity of the culture fluid, and the constant 8 is the
diffusion rate of microorganisms. The positive constant U denotes the mean
speed of upward swimming of microorganisms. The positive constant y is given
by
o Po
pm

where p, and p,, are the density of an individual organism and the culture fluid
respectively. For the derivation of (2.1)-(2.3), see [5] and [9].

Put ¢ = x(gy)"'m where x >0 is a constant specified later, and put p =
q — gx3. Then, (2.1)~(2.3) become

0
2.4) a—L;—vAu+(u,V)u+Vq= —kmy+f,  xeQ,t>0,
2.5) divu = 0. xeQ,t>0,
(2.6) a—m—t‘)Am+(u,l7)m+Ua—m=0, xeQ, t>0.

ot O0x3

We supplement (2.4)—(2.6) with the following initial and boundary conditions:

2.7 u(x, 0) = uy(x, 0), m(x, 0) = my(x), xe,
(2.8) u(x,t)=0, xedQ, t >0,
(2.9) Ba—m— Un;(x)m = 0, xedQ, t > 0.

on
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Here n(x) = {n;(x)};-, is the unit outward normal at point xedQ, and a8 the

normal derivative on 0Q.

Remark. (2.3) is the conservation equation

<%>c+divJ=O, xeR,t>0,

where % = % + (u, V) is the derivative along the fluid particle, and J is the flux of

microorganisms given by J = — V¢ + Ucy. (2.9) states the no-flux condition at
each point x€dQ.

3. Stationary problem

We first introduce some function spaces used in this paper. H™(Q) denotes
the Sobolev space of real valued functions on Q which are in L?(2) together with
their weak derivatives of order less than or equal to m. By Cg,(£2) we denote the
space of all smooth solenoidal vector fields with compact support in 2. Let V
and H be the completion of Cg,(£2) in (H!(R2))* and (L?(R2))? respectively. Let X
denote the closed subspace of L?(2) consisting of functions orthogonal to the
constants, and set B= H'(Q)nX. For veV and ¢eB we have

(3.1 [v] < CglVvl,
(3.2) || < CgV ol

where |-| denotes the usual L? () norm and C,, is independent of v and ¢. ((3.1)
is Poincaré inequality. (3.2) is due to [10, Th.3.6.5].) For (v, @), (w,¥)e
Vx HY(Q2) we set

(3.3) (v, @), W, Y)] =v(Fv, Pw) + 6V ¢, V')

where (-,-) is the usual L?(2) inner product. Thanks to (3.1)-(3.2), this bilinear
form is actually a scalar product on ¥ x B. The norm on V x B corresponding to
(3.3) is denoted by |-|. In what follows we write

bo(u,v,w) = ((u, V)v, w) = J uj<%>wkdx,
2 "\ 0x;

butis ) = (0. 71001 = [ 22
Q Xj

where u,v and weV, and ¢,y e H!(Q2). Here and hereafter we use summation
convention, i.e., sum over repeated indices. By the Holder inequality and the
Sobolev imbedding theorem, the tri-linear form b, makes sense and is estimated as

(3-4) 1bo(u, v, W) < [ulLa|Pol|wLe < ColPulPo[Fwl.
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See [12, Chap.II, Sect. 1]. Similarly, b, can be defined for ue Vand ¢,y e H'(Q).
Further, if Yy e B, then by (3.2) b, can be estimated as

(3.5 by (u, &, W) < [ulpalP @ lIYILe < ColPull gV,

(We may assume that C, = C; by choosing larger one if necessary.) Note that
since div u =0 in  and u =0 on 0Q if ueV, integration by parts gives

(3.6) bo(u,v,w) = — bo(u,w,v), bl(u’ oY) = — bl(u’ '//a¢)

The problem we consider in this section is the following: For an arbitrarily
given a > 0, find (u, m) such that

)

3.7 f mdx = a,
2

(3.8) —vdu+ W, Vu+Vg=—xmy+f in Q,
(3.9 divu =0 in Q,

om .
(3.10) —04Am + (u, V)ym+ U—=0 in Q,

0x,
(3.11) u=0 on 09,

om

(3.12) 05;— Unym=0 on 0Q.

W=

U
In what follows we set k = (CL3_> . Throughout this paper we assume
2

(3.13) %< (2Cy) 7',

The main result of this section is the following theorem.

Theorem 3.1. Let U and 6 be as above. Let feH. Then, there are
u,e(H*(Q))*nV, m,e H*(R) and p,e H'(Q) satisfying (3.7)-(3.12).
We prove this in several steps. We seek m, in the form m, = m + E, where E(x)
= C,exp (%x:,). The constant C, is chosen so that J E(x)dx =a. A direct
2

calculation shows

E
(3.14) —0AE+U6—E=0 in Q, Ga——Un3E=O on 0.
0x5 0x5

Hence, the problem for u, g and i becomes
(3.15) —vAu+ w, Vu+V(q+x0U 'E)y= —xmy+f in Q,
(3.16) divu=20 in Q,
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o
(3.17) — 04 + (u, V)(M+E)+U£=O in Q,

3
(3.18) wu=0 on 0Q,

orm i
(3.19) 0% —Unym=0 on 04,
(3.20) J A(x)dx = 0.
2

Definition 3.2. For fe H, we call an element (u, m)e V x B a weak solution of
(3.15)-(3.20), if and only if the following identity is satisfied:

(3:21) [(u, @), (v, §)] — bo(u,v,u) — by (u, ¢, + E)

q 00 A ) =
+U(m,a—x3>+rc(m,x v)=0

for any (v, §)e V x B. (x-v is the third component vy of veV.)
Proposition 3.3. For each fe H, there is a weak solution (u, ) of (3.15)—(3.20).

Proof. Let (w, y)eV x B. By (3.1-2), (3.4-5) and Schwarz’s inequality, we
have

0
lbo(w,v,w) + by(w,¢,¥ + E) — U(W%) — kW, x|

< ColPwiP [Pl + ColPwIVo VY| + ClwlV | + Uy V| + k[ | v]
SCPwP + 1Py 7wl + wl+ D)@, ¢)

for any (v, §)e V x B. Hence, by Riesz’s theorem, there exists an element A(w, ¥)
in ¥V x B such that

[AWw, ¥), (v, ¢)]
0
= bO(W,U3W) + bl(w’¢9ll, + E) - U(wa£> - K(lﬁ,X'U)
3
for any (v, §)eV x B. Since we can regard f as the linear form (v, ¢)e V' x B
—(f,v), by Riesz’ theorem we can choose an element FeV x B such that

[F, (v, )] =(f, v). Employing the nonlinear operator A and the element F, we
can rewrite (3.21) as

[(u7 ﬁ;l) - A(u) Vﬁ) - F7 (U, ¢):I = O fOI' any (Ua ¢)
Therefore, our problem is reduced to find
(3.22) (u, m) — A (u, m) — F =0.

We can prove in just the same way as in [4, page 97] that the mapping
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(v, p)eVx B—> A(v, §)+ FeV x B

is completely continuous in ¥ x B. We next show that the norms of all possible
solution (u°, m°)eV x B of the equation

(3.23) W, m’)—o{AW’, m°)+ F} =0 for 0<o<1

are uniformly bounded. This can be done as follows: Taking the scalar product in
V x B of (3.23) with (u’, m° + E — a)e V x B, we obtain

(3.24) [(@?, m%), (u’, m°)] + 0(¥m°, VE)
= a{U(m", @;;i) — k(m?, x-u°) + (f, u”)}.

Here we have used the fact that
bo(u,v,0) =0, b, (u,¢,9)=0 for u,veV and ¢€B,

which follows from (3.6). By (3.1-2) and the fact that 0 < ¢ < 1, one can deduce
from (3.24) that

vIPue|?2 + 0|V me°|?
< UC,IPm* |2+ (UCqy+ 0)|VE |[7m|
+ kCEIVm®||[Vu’| + Cql f IV u|

2vU\? . .. . . .
Put k = (%) in this inequality. By Schwarz’s inequality, we can deduce
Q

%IVu"IZ (0 —2UCy)|Vm 2

S (UCqp+ OIVE |Fm?| + Cq| f1IVu°].

Noting (3.13), from this inequality we can obtain the uniform boundedness of the
norms of (u?, m°)(0 < g < 1)in Vx B. The proof of Proposition 3.3 is completed
if we apply the Leray-Schauder principle (see [4, Chap.1, Sect.3]).

Proof of Theorem 3.1. Let (u, m) be the weak solution of (3.15)—(3.20)
obtained in Proposition 3.3. Set u, = u and m, = m + E, where E is the function
introduced before Definition 2.2. Putting ¢ = 0 in (3.21), we see that u, satisfies

v(Vuy, Vv) + bo(uy, uy, v) — k(my, x-v) =0 for any veV.

0
Here we have used (3.6) and the fact that (E,yx-v) =U(V E,v). Then, by the

regularity result given in [4, Chap.5, Sect. 5], we see that u,e(H?*(2))>. We next
put v =0 in (3.21). Then,

om,

O(Vma’ V¢) + bl(uaama7 )+ U( ) ¢> - UJ ma¢n3dS = 0
0x3 a



Yukio Kan-on, Kimiaki Narukawa and Yoshiaki Teramoto 141

for any ¢ € H'(), which states that m, is a generalized solution of (3.10) with (3.12)
where u is replaced by u,. Applying the regularity theorem in [8, Chap.3,
Sect. 12], we can show that m,e H?(Q) and satisfies (3.12). For the existence of
p.€ H'(2) such that

Vpa = VAua - (ua’ V)ua — Kkmy) +f;
see [12, Chap.I] or [4, Chap.2].

4. Positivity of concentration
In this section we prove

Theorem 4.1. Let (u,, m,) be the solution of (3.7)—(3.12) given in Theorem
3.1. Then, m(x) >0 for any xeQ.

To prove this we need to consider an auxiliary linear problem:

oh oh

4.1) — — 64h + (uy,, Vh + U— =0, (x, 1)eQ x (0, o0),
ot 0x4
oh
4.2) 0% — Unzh =0, (x, t)edQ x (0, 00),
4.3) h(x, 0) = E(x), xeQ,

U . .
where E = Caexp<6x3> with Jde =oa. For the existence of he C*((0, o0);
Q

L*(2))nC([0, 0); H?(£)) satisfying (4.1)—(4.3), see [1, Part 2] or [8, Chap.5].

Lemma 4.2. For any t >0, J h(x, t)dx = a.
0

Proof. Differentiating Jh(x, t)dx in t, and making use of (4.1), we have

o]

<i>f h(x, t)dx = j <9Ah — Ua—h>dx — J (ty, V)hdx.
dt | Jo o 03 o

By the divergence theorem and (4.2), it holds that the first term in the right hand
side vanishes. Since divu, = 0 and u, = 0 on 092, integration by parts implies that
the second term also vanishes. Hence the conclusion holds.

Lemma 4.3. For any (x, t)eQ x [0, o), h(x, t) > 0.

Proof. We first note that h(x, 0) > 0. Suppose this lemma is false. Then
there is a yeQ and T> 0 such that h(y, T) =0 and h(x, t) > 0 for (x, t)eQ x
[0, T). Then, by the maximum principle [ 11, pp. 174-175], y is on the boundary

Oh h
02 and %(y, T) < 0. This is impossible since %(y, T) = 0 by (4.2), which shows
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the lemma.

Proof of Theorem 4.1. Note that h(x, t) — m,(x)e BNH?(2) for t >0 by
Lemma 4.2 and satisfies

d(h —my)
(4.4) ~a 04(h — m,)
i h—my+ =™ o i 9% 0. w),
0x5
@.5) ow — Uny(h—m)=0  on 08 x [0, ).

Since b,(u,, h — m,, h — m,) =0 by (3.6), the inner product of (4.4) with h —m,
becomes as follows

4 |h —m,|? —2(04(h — m,), h —m,) + 2 UM,h—ma =0.
dt 0x4

Integrating by parts and using (4.5), we obtain

<£>Ih — mg|? + 26|V (h —m,)|* — 2U<h — m,, M) =0.
dt 0x,

Then, by Schwarz’s inequality and (3.2),
4 |h —my|> + Clh —m,|* <0
dt * N
where C = 2C52%(6 — UCp) > 0 by the assumption (3.13). From this one easily

deduces that h —m, tends to zero in I?(2) as t— oo. Since h(x, ) >0 for
(x, 1)eQ x (0, o0) by Lemma 4.3, we see that m,(x) >0 for xe Q. Suppose m,(y)

=0 for some yeQ, then y must be on 02 and <6(;:l1">(y) < 0 by the maximum
principle [11, pp.65-66]. On the other hand, from (3.12) (a‘;:’>(y) =

<%>n3(y)ma(y)=0, which leads to a contradiction. Thus we have proved

Theorem 4.1.

5. Reduction to decay problem

Let us consider the initial boundary value problem (2.4)-(2.9) with the initial
value of concentration m, satisfying J mydx = a(>0). Let u,, p, and m, be the
n

solution of the stationary problem (3.7)—(3.12) obtained in Theorem 3.1. By the
same argument as in Lemma 4.2, we can show that, if there is a smooth solution of
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(2.4)-(2.9), its concentration m satisfies J‘ m(x, t)dx = a for any t > 0. From this
2

observation we are led to the following problem: Set v =u —u, and y=m — m,,
then consider the equations governing the disturbances from (u,, m,),

8
(5.1) a—’t’ — A + (1, VYo + (0, V), + (0, VYo + V(g — po)

= — Kuy in 2 x (0, T),

(5.2) divv=0 in Q x [0, T),

au u
(5.3) — —04u + (u,, Vu+ (0, V)imy + (0, V) p+ U=— =0

ot O0x5

in Q x (0, T,
(5.4) v=20 on 02 x (0, T),
ou

(5.5) 95 —Unyu=0 on 02 x (0, T),
(5.6) u(x, 0) = a(x), u(x,0)=b(x), xeQ,

where (a, b)eH x X.

Definition 5.1. We call (v, u) a weak solution of (5.1)—(5.6) if (v, p) satisfies
the following conditions:

i) veL*, oo;V)nL®(0,00;H), pelL*0, co;B)nL>(0, c0;X),
ii) the identity

5.7 - r {WO), w®) + (u(0), ¢’ ()} dr + ﬁ[(v(t), (1), (W), ¢(1))]de

+ r{bo(ua’ v(1), w(1)) + bo(v(1), Uy, W(T)) + bo(v(1), v(7), W(1))
0
+ bl(uaa H(T)! ¢(T)) + bl(v(r)’ maw d’(t)) + bl(v(T)9 lu’(t)’ ¢(I))
% )}dr — W(0), @) + ($(0), b)
X3
holds for any (w, ¢)e L?(0, o ;V x B)nH'(0, o0; H X X),

iii) the energy inequality

+ Kk(u(z, x-w(t)) — U<u(r),

(5.8) (@)1 + (@) + 2 L I(0(2), u(2)1?dr

+ 2J {bo(v(‘f)7 Uy, 0(1)) + by (v(1), Mg, (7)) + K(u(x), x - v(7))

0o
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- U(u(t), a""’)}dz <la? + |bP,

0x4

holds for almost every ¢ > 0.

Theorem 5.2. Let (u,, m,) be as above. If |Vu,| and |Vm,| are so small that

0-2UC
I Py + P, < —,
0 CO

(59) Pm,| <2

where C, is the constant in (3.4-5), then, for an arbitrarily given (a, b)e H x X, there
is a weak solution (v, ) of (5.1)—(5.6).

This theorem is proved by the usual Galerkin approximation. We give only
an outline of the proof:
() Take a complete orthonormal basis {(w;, $)}2, in H x X such that

— 0
w;€Cg,(2) and ¢;eC*(2)nX satisfying 0_6% —Unyp;=0o0n 0Q,j=1,2,...

(For the existence of such a basis, see Appendix.) We take as an [-th

approximation the solution (v, ) = Y5, h;(t1)(w;, ¢,) for the system of ordinary
differential equations

d
(5.10) <E> {0, w)) + (11, @)}
= - [(U,, lu’l)’ (sz d’])] - bO(ua’vlij) - bO(vl’umwj)

- bo(l’nvz’wj) - bl(ua,ﬂud’j) - bl(vummd’j) - b1(01a#h¢j)

0¢; .
— K, xwj) + U<uu5’>, j=1..1
3

with initial conditions

hjl(o)z(a»wj)+(bs¢j)’ j=1,...,L

Multiplying (5.10) by hj(t) and summing in j, we obtain

d
<E>{'0rlz + 1l + 2070 + 207

ou
< 2{_ bO(vlsuasvl) - bl(vl’ma,ul) - K(#hX'Ul) + U<'ula a_’>}

X3

< 2{ColVu Vo> + ColVm, Vo, | | + kCHIV | Vv, + UCqlV |}

by (3.4-5), Schwarz’s inequality and (3.1-2). By the definition of x, (3.13) and (5.9),
one easily deduces

d
S llml + ) + Cll e w12 <0,
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C 1
where C = min{l — 70(2“7““' + |Vm,]), 2 — 5(4UCn + Colea|)} > 0. Integrating

this yields

(5.11) O + w1 + Cj 1(wi(s), m(NI1? ds < lal* +|b]?,
0

1=1,2,3,...,

as long as (v,(t), u,(t)) is defined. From this, we see that each (v,(t), u,(t)) is defined
for all t >0 and belongs to L?*(0, co;V x B)nL®(0,00;H x X). Furthermore,
{(v), )}, forms a bounded sequence in L*(0,00;V x B)nL®(0, oo; H x X).

(i) Applying the argument in [12, Chap.IIl, Sect.3], we can choose a
subsequence {(v,,, ,)}i-, and an element (v, y)e L% (0, co; ¥V x B)nL*(0, co; H
x X)) such that, for an arbitrarily fixed T > 0,

(v, 1) = (v, ) in the weak topology of L*(0, T;V x B) and
in the weak-star topology of L*(0, T;H x X);
(0,0 ) = (0, ) in L2(0, T;H x X).

Also, by the argument in [ 12, Chap.Ill, Sect. 3, Remark 3.2], it follows that (v, p)
satisfies the energy inequality (5.8). Finally, by letting h — oo in (5.11) with [
replaced by I,, we see that (v, )€ L?(0,00;V x B). This element (v, y) is our
desired weak solution.

6. Regularity of weak solutions of decay problem

In this section we transform (5.1)—(5.6) into an abstract initial value problem in

H x X. Let P, denote the orthogonal projection: (L*(2))®> - H. Let P, denote

the orthogonal projection: [*(Q) > X. A, = P,(—v4) denotes the Stokes operator

with D(Ao) = (H?(2))*nV (see [2,4,7]). A, is the Friedrichs extension of the

. e 0
symmetric operator P,(—64) defined for ¢ € X n H2(£2) satisfying 06_¢ —Uny¢p =0
n

on 02. As shown in Appendix, A, is the positive self-adjoint operator with D(4,)
0

= {d)eXnHz(Q); 0—¢

on

1
follows that D(A?)= B and

— Uny¢p =0 on 69}. From the definition of A4,, it

6.1) (0—2UCQ)%|VuI < IA%ul s(0+2UCg)%|Vu| for ueB.
For u,veV and ¢eB we put

(6.2) By(u, v) = — Py(u, Vv, By(u, ¢) = — P,(u, V).
Applying P, and P, to (5.1) and (5.3) respectively, we obtain

dv

6.3) o

+ AoV — Bo(uy, 0) — Bo(v, 4y) — Bo(v, v) + kPoux =0,  1>0,
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dp

(6.4) ar + Aip — By(u,, p) — By(v, m;) — By(v, p) + UP, 031 =0, t>0,

here 0, = —.
where 0, ox
In view of the spectral representation for A, and A,, we have
Lemma 6.1. Let ae€(0,e). Then
(6.5) |Aje | <t7® for t>0,

(6.6) |A%e Mo| <7 for t>0.

Here and hereafter we use |-| to denote the operator norm in H and X.

proof of this lemma, see [2, Section 2,IIT].
Lemma 6.2. For veV and ¢e B, we have

1 1
) |Bolug v)| < My 430l |Bov. u)] < M, | A30l;
1 1
i) Byl $) < M, [AT0l, [By(v, mp)| < M| A3ul;

1 1
iii) |kPody| < M, |AZ¢|, |UP,0;¢0| < M,|A2¢];

where M| is independent of v and ¢.

For the

These estimates can be easily proved by using the Sobolev imbedding theorem

and (3.1-2). So we omit the proof.
Lemma 6.3. We have

1 3 1 3
i) |Bo(u, v)| < M,|AZull A¢v| for ueD(A2) and ve D(A}),
1 1 1 1
i) |Ag*Bglu, v)| < M,|AZul AZ v for u,veD(A2),
1 3 1 3
iiiy  |By(u, )| < M,|AZull At $| for ueD(A2) and ¢peD(A?}),

1 1 1 1
i) |AT¥By(u, §)| < M,|AZul AT¢]  for ueD(A3) and $peD(A?),

where M, is independent of u, v and ¢.

Proof. i) and ii) are well known ([2, 3]) while iii) and iv) can be proved by
the same arguments of those of [3, Lemmas 2.1-2.27] where we replace the Stokes

operator by the positive operator A,.

The main result of this section is the following theorem.

Theorem 6.4. Let the assumptions in Theorem 5.2 hold. Let (v, u) be a weak
solution of (5.1)—(5.6) obtained in Theorem 5.2. Then, there is a ty, > 0 such that
(v, p) belongs to C'((ty, 00):H x X)NC((to, 00); D(Ay) x (A,)) and satisfies (6.3)—

(6.4) for t > t,.
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Since the method in proving this theorem is essentially due to [7, Sections
2, 3], we only review an outline of the proof. We first rewrite (6.3)—(6.4) into the
integral form

t

(6.7) vt + to) = e (1) + j e~ TIUB (u,, v(s + 1)) + Bo(v(s + to), uy)
0

— Kk Pop(s + to)x + Bo(v(s + to), v(s + to))}ds,

t

(6.8) Bt + to) = e “ipu(ty) + J. e ¢TI B, (uy, u(s + to)) + By (v(s + to), my)
0

— UP,05u(s + to) + B, (v(s + to), p(s + to))}ds,

then consider the iteration scheme:
volt + to) = €7 u(ty), po(t + to) = e u(ty),
Vi1 (t 4 to) = vo(t + to)

t
+ J e—(r—s)Ao{Bo(ua, vj(S + to)) + Bo(Uj(S + to), ua)
0

— kPouj(s + to)x + Bo(u;(s + to), v;(s + to))}ds,
i+ 1 (8 + to) = po(t + to)

t
n J o= (=94 {By (g, (s + to)) + By (v(s + to),m,)
0

— UP,03u(s + to) + By (vj(s + to), (s + to))}ds,
j=0,1,2,....

1 1
Let T> 0 be a constant specified later. Put k, = max{|AZv(to)l,|A? u(to)l}, and

1 3) . .
define the sequences {Ky'j}}io,(y =3 Z) inductively by
K}’,O = ko,
K -1 'é' % 3
pier = Kpo #3010=9) 7'M T2KL; + TSB( 1 — . 7 | M KL K2,
j=0,1,2,...,

where B(p, q) is the beta function. Then, using Lemmas 6.1-3, we can estimate
each step of the above scheme as
1_ 1_
|AY vyt + t) < K, ;277 [ ATpyt + to)l < K, 1277,
for 0<t<T j=0,1,2 _13
_ b ]_ sy ly &y iy y—2,4

If we set K; = max{K, ;, K3;} (j=1,2,...), then we have
2 4
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kivr < Ko + 12M, T2k, + TSEM K3 (j=0,1.2,...),
where ff = B<%, %) Take T> 0 so that 12M1T% < 1, and assume that
(6.9) Ko = max{| A3 v(to)l, |42 u(to)l} < K*

where K* = (1 — 12M1T%)2(4 T%BMZ)’I. Employing the argument in [2] or
[7, Sect.3], we can show that {(v;, u;)};>, converges to a solution of (6.7)—(6.8) on
(to,to + T, which satisfies (6.3)-(6.4) there. Then, applying the uniqueness
theorem in [4, Chap.6, Sect.2] to our case with some modification, we obtain

Proposition 6.5. Let T and K* be as above. Let (v, y) be a weak solution
given in Theorem 5.2. If there is a 1, > 0 such that (v(t,), 1(tog)) € V x B and satisfies
(6.9), then (v, n) belongs to C'((ty, Ty + T1;H x X)NC((to, to + T]; D(Ay)
x D(A,)) and satisfies (6.3)-(6.4) on (to, to + T1.

To complete the proof of Theorem 6.4, we need

Lemma 6.6. Let 1. >0. Let (w, ) belong to 12(0,00;H x X). Then

1

t t 2
o~ (= S)A+ o) () S_1_<J‘ |w(s)|2ds> ,
L (s)ds| 2\

1
2

foe-(x—s)(z+A.)¢(s)ds| < ﬁ(J\ON/(s)!st) >

[=1N1E

1A

|4

e

for any t > 0.

For the proof, see [7, Lemma 4].

Proof of Theorem 64. Let T and K* be as above. Put 1=
<4M21"<‘11>K*>4. We proceed as in [7, Lemma 19]. Since (v, u)eI?(0,00;V
x B) there is a t, > 0 such that

1 K* 1 *
(6.10) |AZv(to)| < a | A2 p(to)| < T
1
©.11) rm%u(snzds <C*, r|A§u(s)|2ds <C*,
to to

where C* = min{K*?/(322), K*?/72M}}. Let 6* be the least upper bound of &
such that (v(t), u(t)) belongs to C!'((to,to + 8);H x X)NC((tg, to + 0; D(Ag) X
D(A,)) and satisfies

1 1
(6.12) |A2v(1)] < K*, [A2u(@)] < K*

on [to,ty +6). By Proposition 6.5, 6* is positive. Suppose that 6* is finite.
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From (6.3) one can deduce

o(t + to) = e AT p(g,)

t
+ J e~ UTIAHANAp(s + 1o) + Boly, v(s + to)) + Bo(v(s + to), uy)
0

— KPou(s + to)x + Bo(v(s + to), v(s + to))}ds

1 1 .
for te(to,to + 6*). Applying A2 to both sides, we estimate |A3v(t + to)| by using
Lemmas 6.1-3 and 6.6. Then, by (6.10-12) and the definitions of A and C¥*,

we have IA%u(t0 + 0%)| < K*. Similarly, we have |A§u(t0 + 6*)| < K*. Then,
Proposition 6.5 implies that there is a &' > 6* such that (v(¢), u(t))e C*((to,to + 9');
H x X)nC((ty,tg + &); D(Ag) x D(A,)) and (6.12) holds on [ty,ty + 6). This
contradicts to the definition of §*. Hence, 6* = o0, and the assertion of Theorem
6.4 follows from Proposition 6.5.

Remark 6.7. In proving Theorem 6.4, we easily see that (A}v(z), AL u(t))
13
<y =3 Z) are uniformly bounded and Hoélder continuous on [t, + 1,00) with

values in H x X, and that (By(v(t),v(t)), B, (v(¢), u(t)) are uniformly Holder
continuous on [t, + 1,00) with values in H x X.

7. Decay of weak solutions

Finally, under the same assumptions as in Theorem 5.2, we prove

Theorem 7.1. Let (v, p) be the weak solution given in Theorem 5.2. Then,
SUp.enlv(x, t)| and sup,.plu(x, t)| tend to zero as t — o0.

First we have

1 1
Proposition 7.2. |A2v(t)| and |A} u(t)| tend to zero as t — co.

For the proof, see [7, Lemma 227].
Since 4, and A, are positive and self-adjoint in H and X respectively, we have

Lemma 7.3. There is a constant @ > 0 such that
|Age 0| <t te™, |Aje” | <t e for t>0.
Proof of Theorem 7.1. Let t, be as in Theorem 6.4. Set {(s) = e~ ~oyp(s).
Using (6.3), we can deduce

(7.1) v(t) = e U9Moy(s) + J' {'(v)dt

13
= e 7940y(s) 4 f e =Moo (r)dr, for t>s>1t,+1,

N
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where
¥(s) = Bo(ug, v(s) + Bo(v(s), uy) — kPou(s)x + Bo(v(s), v(s) (s> to).

As noted in Remark 6.7, ¥(s) is uniformly bounded and there is a ye(0,1) such
that

(7.2) [P(@) — P(s)| < Clt —s)? for t,s>ty+ 1.

Also note that |¥(f)] >0 as t—> o by Proposition 7.2 and Remark 6.7.
Differentiate (7.1) in ¢, then, after some calculation, we obtain
do(t
—Zi) = — Age” "T90p(s) + e~ TP (y)

— Jl Age” 794 (P(1) — P(1))dr.

s

From the boundedness of ¥(t) (t>1t,+ 1) and (7.2), it holds that
1
|P() — P() = (P(t) — P()?)* < Cls)|t — rl% t,t=zs=>t+ 1)

Where C(s) = o(1) as s - oo. Using this and Lemma 7.3, we have

j tAOe“"”A"('I’(r) — Y(t)dr

s

t
< C(s)f et — ‘t‘)_“";_d‘[

<Ci(s) for t=>s>ty+1

where C(s) = o(1) as s > 0. By Lemma 7.3 and the fact that | #(t)] -0 as t > o0,
we see that, for fixed s >t, + 1,

| — Age 079oy(s) + ¢~ 940P(1)| 50  as t— o0.

Collecting these gives that %’ 0 as t > 00. Since (v(t), u(t)) satisfies
A =~ 0 4w,

and since the right hand side of this tends to zero as stated above, | 4,v(f)| tends to
zero as t —» oo. In the same way as above, we can show that |4, u(t)] -0 as ¢
— 00. The uniform decay of (v(t), u(t)) now follows from the Sobolev imbedding
theorem: D(A4,) x D(A,) = (H%*(22))* x H*(Q) = (C(£2))* with continuous injection.

8. Appendix: Self-adjointness of P, ( — 04)
a4
on
theorem and the boundary condition of ¢ on 082,

Let peD(A4,) = {l//GHZ(Q)nX:B Unyy =0on 69}. By the divergence
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(416, #) = 017G — U j ()b (dS

=0|Vo|* — ZUJ ¢(x)<ﬁ)—>(x)dx > (6 — 2UCyp) |V o2
Q 0x3

From this, (3.2) and (3.13), the positivity of 4, follows.
We next show that D(4¥%) = D(4,). Let yeD(A¥). By the definition of A%,
there is an element fe X such that

8.1) (410, ¥)=(¢.f)  for any ¢eD(4,).

Then, in the sense of distribution, it holds that

(¢, =04y =(¢.f) for any ¢eCT(Q)nX.

Put [¢] =J ¢dx for peCF(Q) and take Yy, Cy so that [o,] =1. Since ¢ —
(7]
(1o CT (AN X,
K —[dIo, — 04y > = (¢ — [¢1¥o. /)

From this we obtain

(8.2) (o, =04y —f) = (o, — 04Y —f>L¢dx for any ¢eCq(€).

(8.2) means that — 04y — f = (Yo, — 04y — f> 1 in the sense of distribution.
Since fe L?(R2) and the right hand side of this equality is a constant function, — 4y
belongs to L*(22). Hence, {q, — 84y — ) can be rewritten as

(Yoo = 04y — ) = o, — 04Y — ).

In this expression, approximate in L?(£2) the constant function

or=([ )

by ¥o,eC¥ (2) with j Yodx = 1. Then, we obtain
0

—0AY —f=(Q|" L, — 04y —f) = — |Q|‘1J 0Aydx  in L(Q).
0

Note that fe X. Thus, regarding the right hand side as a constant function, we
have

8.3) — 04y =f— |Q|-1I 04ydx  in I2(Q).
Ko

Taking the inner product of (8.3) with ¢eD(A,), we obtain
(8.4) (— 04y, ¢)=(f, $)
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since ¢ X. Using Green’s formula ([6, Chap.2, Sect.6]), we can rewrite the left
hand side as

(8.5) (—0A¢,¢)=<w,—ad¢)—<0‘z,—f,¢> <w 9‘3"’>

3
where the first bracket {-,-) denotes the duallty between H (6!2) and H2(0Q),

and the second denotes the duality between H ~ 2(6.(2) and Hz(af.?) On the other
hand, since Yy e D(4F) = X and ¢peD(A,),

W, —04¢) =(Py, — 04¢) = (Y, 4,¢) = (f, §)
by (8.1). Also, using the boundary condition of ¢, we obtain from (8.4-5)

<9‘;"’ Unyy, ¢> =0

For an arbitrary {e C*(022), we can easily construct ¢ € D(4,) such that ¢|,,= (.
0
Therefore, 0% —Unyy =0 on 0Q2. From this and (8.3), using the regularity

result in [6, Chap.2], we see that yeH?*(Q2)n X and satisfies the boundary
condition, which states that yeD(4,).

Finally we give a remark for the basis {(w;, ¢;)}2, employed in Section 5.
Since A4, is self-adjoint, its eigenvectors form a complete orthonormal sytem in X.
Making use of this system and the eigenvectors of the Stokes operator 4,, we can
construct the desired basis.
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