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On the equations of bioconvective flow
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Yukio KAN-ON, Kimiaki NARUKAWA
and Yoshiaki TERAMOTO

1. Introduction

The purpose of this paper is to study some mathematical questions related to
the equations of bioconvective flow. Here "bioconvection" is a convection caused
b y  the concentration of upward swiming microorganisms in  cu ltu re  flu id . To
describe this phenomena, a  fluid dynamical model was presented by Levandowsky
et al. [ 5 ]  and M oribe [9] independently. The model consists of the equations
for the motion of the culture fluid assumed to be viscous and incompressible and
for the concentration of microorganisms. Both papers [5, 9] discuss underlying
biological and physical idea leading to the equations, and  give some qualitative
descriptions based on intuitive arguments. To the best of our knowledge, formal
mathematical analysis has never been carried o u t .  So we treat this model in  this
paper and give some results.

After a  brief description of the fluid dynamical model in Section 2, we show in
Section 3 that, for an arbitrarily given a >  0, there is a solution of the stationary
problem with total concentration equal to a. S e c tio n  4  deals with the pointwise
positivity of the concentration obtained in Section 3. The following sections (5 to
7) treat the nonstationary problem. W e formulate in Section 5 the decay problem
for the equations governing the disturbances from the stationary solution whose
total concentration is equal to  that of the initial data, and define a global weak
solution for this problem . Then w e show that, if the stationary solution is small
enough, there is a global w eak soluiton. In Section 6 we prove that the above
weak solution becomes regular after some instant, by transforming the equations
in to  a n  evolution equation i n  som e H ilbert sp a c e . T h e  solvability o f  this
evolution equation is proved by the method developed i n  [ 2 ] .  Using the results
in Section 6, we show in Section 7 the uniform decay of the weak solution obtained
in  Section 5 . The argum ents employed in  Section 5-7 are sim ilar to those in
[ 7 ] .  I n  t h e  f i n a l  A ppendix  w e show  the  se lf-ad jo in tness o f the  operator
introduced in Section 6.
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136 Equations of bioconvective flow

2. Fluid dynamical model

Let Q  be a  bounded domain in  R 3 w ith  sm ooth boundary Q .  L e t  c(x , t)
denote the concentration of microorganisms at point x = (x 1 , x 2 , x 3 )ES2 at time
t > 0, and let u = t ) } ] = ,  and p = p(x, t) denote the velocity and pressure of
the culture f lu id  a t x ES-2  a t  t. u ,  p  a n d  c  a re  governed by a  system of the
equations:

Ou
(2.1) -  vdu + (u, V )u + V  p = - g(1 + yc)z + f x e S 2 ,  t > 0,

(2.2) div u=0, x eQ , t >0 ,

Oc Oc
(2.3) —

O t  
-  Odc + (u, V)c + U = 0, x  Q , t > 0.Ox3

2

H ere V = a a a
  )  a n d  A = . f =  I fi ( x ) 4 , ,  i s  th e  given

ax2 a x 3

external fo rc e . F o r  simplicity f  is assum ed to be independent o f  t. g  i s  the
accelation o f gravity, z  i s  th e  u n it vector in the vertical direction, i. e. , z  =
t(0, 0, 1). v  is the kinematic viscosity of the culture fluid, and the constant 0 is the
diffusion ra te  o f  microorganisms. The positive constant U  denotes th e  mean
speed of upward swimming of microorganisms. The positive constant y is given
by

y  =  —
Po 

- 1
Pm

where po a n d  pm a re  the  density of an individual organism and the culture fluid
respectively. For the  derivation of (2.1)-(2.3), see [5 ]  and  [9].

P u t c = K(gy) -
1 m  where K  > 0  is  a  constant specified la te r, and  pu t p =

q -  gx 3 . Then, (2.1)-(2.3) become

Ou
(2.4) vdu + (u, V )u + V.? = -  K M X  + f, xeS2, t > 0,

(2.5) div u= O. x e Q , t > 0,

Om
(2.6)

a t  
-  Odm +(u, 17)m + U  am

O x 3
= 0, x e Q , t > 0.

We supplement (2.4)-(2.6) with the following initial and boundary conditions:

(2.7) u(x, 0) = u o (x, 0), m (x, 0) = m o (x), x eQ,

(2.8) u(x, t) = 0, x e ag2, t > 0,

(2.9) 0 -
0 m  

-  Un3 (x)m = 0, x E aQ , t> 0.
On
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0
Here n(x) = {n i (x )}= , is  the unit outward normal a t point xe0g2, and —

an 
is the

normal derivative on 3Q .

Remark. (2.3) is the conservation equation

)c  +  divJ = 0, x e Q , t > 0,
dt

d 0
where —

d t  
= —

O t  
+ (u, V) is the derivative along the fluid particle, and J is the flux of

microorganisms given by J = — OV c + Ucx. (2.9) states the no-flux condition at
each point x e  Q .

3. Stationary problem

We first introduce some function spaces used in  this p a p e r . Hm(g2) denotes
the Sobolev space of real valued functions on Q  which are in L 2 (0 )  together with
their weak derivatives of order less than or equal to m .  By CL (Q) we denote the
space of all smooth solenoidal vector fields with compact support in Q .  L e t V
and H be the completion o f q°(Q ) in  (11'(g2)) 3  and (L2  (0)) 3 respectively. Let X
denote the  closed subspace of L 2 (0 )  consisting o f functions orthogonal to  the
constants, and set B = 11 1 (g 2 )n x . For y e V and 4) e B  we have

(3.1) v C,2I V v

(3.2) 14)1c a l  v01,
where 1.1 denotes the usual L 2 (g2) norm and C i2 is independent of y and 4). ((3.1)
is P oincaré  inequality . (3 .2) is d u e  to  [1 0 , T h .3 .6 .5 ] .)  F o r  (y, 4)), (w, tfr) e
V x  (g2) we set

(3.3) [(y, d)), (w, 0)] = v(Vv, Vw) + O(V4), VO)

where (•,•) is the usual L 2 (Q) inner p ro d u c t. Thanks to (3.1)—(3.2), this bilinear
form is actually a  scalar product on  V x  B .  The norm on  V x B corresponding to
(3.3) is denoted by I I .  In  what follows we write

Ovkbo (u, y, w) = ((u, V)v, w)= u i ( — )w k dx,
J Q Oxi

00b,(u, 0,0) = ((u, V )0, =  f  u i ( 0 0 d x ,
uXi

where u,y and w e  V , a n d  0 ,0  e l -P (Q) .  Here a n d  hereafter we use summation
convention, i. e., sum  over repeated ind ices. By the  Holder inequality and the
Sobolev imbedding theorem, the tri-linear form 1) 0 makes sense and is estimated as

(3.4) 1b004,v,w/I 114 1L41r7 v wlv. ColFu fr-v
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See [12, Chap.II, Sect. 1]. S im ilarly , b, can be defined for u e V and 04/ e H  (Q).
Further, if B , then by (3.2) b , can be estimated as

(3.5) lb1 (u, 0, 01 lulL4117 01101L4 1[71.4110111701.

(W e may assume that C o  = C'0 by choosing larger one if necessary.) N ote that,
since div u = 0 in  Q and u = 0 on aQ if ue V, integration by parts gives

(3.6) bo (u, v, w) = —  bo (u, w, v), b1 (u,4),0) -=

The problem we consider in  this section is the following: F or an  arbitrarily
given a > 0, find (u, m) such that

(3.7) mdx = a,
fn

(3.8) —  vdu + (u, + V  q = — KMX + f i n  Q,

(3.9) div u= 0 in  Q,

Om
(3.10) —Odm +(u, F)m + U = 0 in  Q,

Ox3

(3.11) u = 0 o n  0‘2,

am
(3.12) 0 - -on — Un,m = 0 on Q .

In  what follows we set K =  

/ \ 2

In
)

. Throughout this paper we assume
Cn

3

(3.13) 0 
<  ( 2 C , ) - 1 .

The m ain result of this section is  the following theorem.

Theorem 3 . 1 .  L e t  U  and 0  b e  as abov e. Let f e H .  Then, there are
uŒe(H 2 (f2))3 n V, mcc e H 2 (0 ) and pa eH 1 (Q) satisfying (3.7)—(3.12).

We prove this in several steps. We seek m t h e  form m a = Piz + E, where E(x)
U

= COE exp ( — x3 ) .  The constant CŒ is  chosen  so  tha t E(x)dx = a . A  d ire c t
0 n

calculation shows

OE
(3.14) —  04E + U 

a x 3

=  0 in  Q, e 
a

a

x

E

3 
Un

3  

E = 0 o n  00.

Hence, the problem for u, q  and becomes

(3.15) —  vdu + (u, nu  + + K O U  E ) = — Kifix +f i n  Q,

(3.16) divu = 0 in  Q,
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(3.17) —  OLIth + (u,17 )(f il + E)+ U 
a r i l  

= 0i n  Q,
aX3

(3.18) u = 0 o n  00,

arh
(3.19)

an
= 0 o n  ao,

(3.20) Liii(x)dx = 0.

Definition 3 .2 .  For fe  H, we call an element (u, iii)e V x B a weak solution of
(3.15)—(3.20), if and only if the following identity is satisfied:

(3.21) [(u, (v, — bo (u,v,u)— b i (u, 4t,rh + E)

a o 
+U  t h ,

a x 3 ) +
 Koh, z • =  0

for any (i), 4 )e V  x B .  (x •v  is  the third component y3 o f  y e )

Proposition 3 .3 .  For each f e H , there is a weak solution (u, th) of (3.15)— (3.20).

P ro o f .  Let (w, iii)e V x B .  By (3.1 - 2), (3.4- 5) and Schwarz's inequality, we
have

04)
lbo(w,v,w)+ b1(w,(6,0 + E) — — U(tP Ic()P,X•01X3 1

c 0 lvw121vo + w + CIwVq5 + ultfr I T  +
covw12 + livw1 + 1w1 + 10010, 011

for any (1), e  V  x  B .  Hence, by Riesz's theorem, there exists an element A(w, 1/i)
in  V  x B such that

[A(w, 0), (y,

= b o (w,v,w) + b 1 (w,4),0 + E)—  U
'

) ic( , x • v)
a

54)

x3
o

for any (t), e  V  x  B .  Since we can regard f  as  th e  linear form  (1), (k)e V x B
—r( f ,v ) ,  b y  Riesz' theorem  w e can  choose  a n  element F e V x  B  such that
[F, (y , 0 )] = (f , v ). Employing the nonlinear operator A  and the element F, we
can rewrite (3.21) as

[(u, — A(u, 6 ) — F, 44] = 0 for any (y, 4)).

Therefore, our problem is reduced to find

(3.22) (u, rh) — A (u, rh) — F = 0.

W e can prove in ju st the  same way a s  in  [4 ,  page 9 7 ] th a t the mapping



140 Equations of bioconvective flow

(v,43.)eVx B–> A(v,(b)+ F eV x B

is completely continuous in  V x B .  We next show that the norms of all possible
solution (V , me)e V x B of the equation

(3.23)( u s ,  ms) –  a I/4(V , ms) + = 0 for 0 < o G  1

are uniformly bounded. This can be done as follows: Taking the scalar product in
V x B of (3.23) with (us, ms + E – oc)e V x B, we obtain

(3.24) Rue, me), (u, me)] + O(V Ins , V E)

(
0(ms + E ) )

= ms K(ms , r u 0u) + (f,
I.
} .' ex 3

Here we have used the  fact that

bo (u, v, v) = 0, b i  (u, 4), 0) = 0 for u, v e V and  0 e B,

which follows from (3.6). By (3.1-2) and the fact that 0 < a- <  1, one can deduce
from (3.24) that

v1V us 12 +  0 1Fm°12

< U Cn IV ma 12 + (U CD  + 0)11 E 11r7  ma  I

+ KC:(22 1VW 11 V Irc  +  C Q fV u6 I

P u t K =
2v U 2

C 2  )
in  this inequality. By Schwarz's inequality, we can deduce

Vif1 2 + (0 – 2UC0)1f7 m6 122

(U C +  Off E 17 ma I +  C a lf II Fu c k

Noting (3.13), from this inequality we can obtain the uniform boundedness of the
norms of (us, ma)(0 < a < 1) in  V x B .  The proof of Proposition 3.3 is completed
if we apply the  Leray-Schauder principle (see [4 , Chap. 1, Sect. 3]).

Proof o f  Theorem 3.1. L e t (u, » I)  b e  th e  w eak  so lu tion  o f (3.15)–(3.20)
obtained in Proposition 3 .3 .  Set u Œ = u and mc, = rh + E, where E is the function
introduced before Definition 2 .2 .  Putting 0 -= 0 in (3.21), we see that u„ satisfies

v(Vua , Vv) + b o (uŒ,u„,v) –  ic(m„, x • v) = 0 f o r  any v a  V

H ere w e have used (3.6) a n d  th e  fac t tha t (E, x • v) = —
u  

E, v). Then, b y  the

regularity result given in [4, Chap. 5, Sect. 5], we see that uci e(H 2 (Q))3 . We next
pu t v 0  in  (3.21). Then,

O(VmŒ, (b) + b i (u„, m„, +  
U ( 0 x 3

a m e , , 4)) –  U f m a cim3 dS = 0
aa
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for any 0 e II-
1 (Q), which states that ma is a generalized solution of (3.10) with (3.12)

where u  is  rep laced  by  u„. Applying th e  regularity theorem i n  [8, Chap. 3,
Sect. 12], we can show that m a e H 2 (Q) and satisfies (3.12). For the existence of
p e (S2) such that

V pa = v du a — (Ida , — Kmax  +f ,

see [12, Chap.I] o r  [4, Chap.2].

4. Positivity of concentration

In  this section we prove

Theorem 4.1. Let (uœ, ma ) be the solution of  (3.7)— (3.12) given in  Theorem
3.1. Then, m a(x )>0  f o r any  x e Q.

To prove this we need to consider a n  auxiliary linear problem:

(4.1)
Oh

Orth + (ua , V )h + U
Oh

O x 3

= 0, (x, x  (0, co),
Ot

Oh
(4.2) 0 —  Un 3h = 0, (x, t)e at2 x  (0, oo),

on

(4.3) h(x, 0) = E (x), x e

where E = C „exp (-
19

x
3
)  with E clx = a. F o r  th e  e x is te n c e  o f  he C 1 ((0 , oo);

L2 (0)) n C([0, Go); H 2 (Q)) satisfying (4.1)—(4.3), see [1 , P art 2 ]  o r  [8 , Chap. 5].

Lemma 4 .2 .  For an y  t> 0, h(x, t)dx =
Ja

P ro o f .  Differentiating f  h(x , t)dx  in  t ,  and making use of (4.1), we have
11

( 1 ) L h ( x ,  t)dx = ( 0 , 6 1 h  U  x
h

 3)dx  —  In (ua , V)hdx.

By the divergence theorem and (4.2), it holds that the first term in the right hand
side vanishes. Since div  u = 0 and u, = 0 on as2, integration by parts implies that
the second term  also vanishes. Hence the conclusion holds.

Lemma 4 .3 .  For any  (x , t)e Q x  [0, ox), h(x , t)> 0.

P ro o f .  We first note tha t h(x, 0) > 0. Suppose this lemma is false. Then
there is a  y e (2 a n d  T> 0 such that h(y , T ) = 0  and h(x, t) > 0  fo r  (x, t)e S2 x
[0 , T ) .  Then, by the maximum principle [11, pp.174-175], y is on the boundary

Oh
OQ and Lh (y, T) < 0. T h i s  is impossible since t

y n
(y, T) = 0 by (4.2), which shows

On
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the lemma.

Proof  o f  Theorem 4 .1 .  N o te  that
Lemma 4.2 and satisfies

a(h — ma )(4.4)   04 (h — ma )at

h(x, t) — ma (x)e B n H 2 (0 ) fo r  t > 0  by

+  ( u a ,  V ) (h  —  m a )  +  U  

a(h — ma )=  0 in Q  x (0, co),
ax3

(4.5) 0 
—  m a )

Un3 (h — ma ) = 0 o n  00 x [0, cc).
On

Since bi (ua , h —  ma , h —  ma ) = 0  by (3.6), the  inner product of (4.4) with h —

becomes as follows

d \
m"12

 2(0,4(h — ma ), h — ma ) + 2 ( U  8(h 
3
m a) , h — ma )  = O.

ax

Integrating by parts and using (4.5), we obtain

d t) lh mal2 + 201F(h — m a)12 — 2U(h _  m  —  ma)( d
ox3 — 0.

Then, by Schwarz's inequality and (3.2),

(

—d  )1h — ma 12 +  C h  — ma 12 0 ,
dt

where C  2 C i?" 2 (0 — (./C0) > 0  b y  the assumption (3.13). From  this one easily
deduces that h —  ma t e n d s  t o  zero in
(x, t)e Q x (0, co) by Lemma 4.3, we see

= 0 for some y e a ,  then y  m ust be on

L2 (Q) a s  t cc. S in c e  h(x, t) > 0  for
that ma (x) 0  for x e Q .  Suppose ma (y)

OQ and ( œ)(y) < 0 by the maximum
an

p rin c ip le  [11, pp. 65- 6 6 ] .  O n  t h e  o t h e r  h a n d ,  f r o m  (3.12) ( am ") (y) =
an

n3 (y)ma (y) = 0 ,  w h ic h  le a d s  to  a

Theorem 4.1.

5. Reduction to decay problem

Let us consider the initial boundary value problem (2.4)—(2.9) with the initial

fvalue of concentration mo  satisfying mo dx = Œ(> 0). Let ua , pa a n d  ma b e  the
Q

solution of the stationary problem (3 7)—(3.12) obtained in  Theorem 3.1. By the
same argument as in Lemma 4.2, we can show that, if there is a smooth solution of

contradiction. T h u s  w e  h a v e  proved
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f(2.4)—(2.9), its concentration m satisfies m(x, t)dx = a for any t O. F ro m  th is
a

observation we are led to the following problem: Set v = u — ua an d  p = m — ma ,
then consider the equations governing the disturbances from (ua , ma ),

Ov
(5.1) —  vdv + (u OE, F)v + ( 417 )u„ + (v, 17 )v + F (q — pOE)

= — ' xi n  Q  x(0 , T),

(5.2) div v = 0 in  Q  x [0, T),

(5.3) —BAp + (ti 2 ,17)p + (v, nm a + (v, F7 )11 + u _ 0
Ox,

in  Q x (0, T),

(5.4)y  = 0 o n  as2 x (0, T),

Op
(5.5) 0 —

O n  
— Un 3 p = 0 o n  aQ x (0, T),

(5.6) v(x, 0) = a(x), y(x, 0) = b(x), x ES-2,

where (a, b)eH  x  X.

Definition 5.1. W e call (v, /2) a  weak solution of (5.1)—(5.6) if (v, f t) satisfies
the following conditions:

i) veL 2 (0, co; V ) n L ( 0 ,c o ;H ) ,  /4E0 0 ,  co ;B )nL '(0, co ;X),

ii) the identity

(5.7) — {(v(t), w'(t)) + (At), 4'(t))} dt + [(v(t), p (t)), (w(t), (0)] dt
Jo „ o

• b o (ucc , v(t), w(t)) + b o (v(r), u OE, w(T)) + b o (v(r), v(r), w(r))
o

+ MT), OW) + b 1(0 7 ), m., 40 ) +  b i(v (r ) , MT), OW)

+ k(p(r, x • w(r)) — U(p(r), a
a
ifk
)

(
c3

T ) ) } d t  = (W(0), a) + (0(0), b)

holds for any (w, 4)) e /2(0, co  V x B)n H 1 (0, co ; H x X),

iii) the energy inequality

(5.8) Iv(t)12 + 10)1 2 + 21  1(v(), tr(T))112 dr

+ 2ft tbo (v(r), uOE, v(r)) + b i(14T), m., 40) + K(11 (r), X' Or))
o
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— LI(p(T), 4 1 ( T )
) }d t . 1a12 + 1b12

ax3

holds for almost every t > O.

Theorem 5 . 2 .  Let (UŒ, mOE) be as abov e . If  In i a l and 'Fina l are so small that

(5.9) 1 17112.1 < 2
—  2UCil

2117u
2
l + lVm

Co

where Co is the constant in (3.4- 5), then, for an arbitrarily given (a, b)e H  x X , there
is a  weak solution (v, g) of  (5.1)—(5.6).

This theorem is proved by the usual Galerkin approxim ation. We give only
a n  outline of the proof:

(i) T ake a  complete orthonormal basis {(wp i n  H  x  X  such that
00.

C ( 1 2 )  a n d  Oi e C" (0) n x satisfying 0 
 a n

' U n 3 0 ; = 0  on 1S2, j = 1, 2, ....

(F o r  th e  e x is te n c e  o f  su c h  a  b a s is , se e  A p p e n d ix .)  W e  ta k e  a s  a n  1-th
approximation the solution (y 1 , = E;=, hi l (t)(wp  4 )  for the system of ordinary
differential equations

d \
){(vt , Iv ) + Gib 4)i)}

=  —  [ (y1, it,), (w» (I); )] — b o (u,,,vi ,wi ) — bo (vi ,u,, N )

—bo (v,,v,,v v i ) — b i (tia , it,, 4) — b 1 (v,, m„, 4 ) — b ,(v,, 1, C)

00;
- K(.11, X' W i) ±  U( p i

)
, a x 3 j  =  1 ,  . . . 1 ,

with initial conditions

hi ,(0) = (a,wi) + (b, j =  1,...,1.

Multiplying (5.10) by h i (t) and summing in j ,  we obtain

( Tt
d +  4 1112 } + 217117 v/12 +  2 0 1171,1112

< 2 { _  b o (vb  u„, v i)  — 1,11) — k011, X • v1) + (Pt, 0
4
 xi }

2{C o lfvuo,11Vv1 l2 + C o ir7 mŒ1117 viditil + KCLIV itillr7 1)11 + UCD117  P12 }

by (3.4-5), Schwarz's inequality and (3.1-2). By the definition of K , (3.13) and (5.9),
one easily deduces

d
2 +111,12 1 + C11 (1)1, P1)1120 ,

—dtt1v11 

(5.10)
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1
where C = min 11

C
0 (2117 ua,  +  I Vinc,1), 2 - -

e
(4UCn + C o lVina,l) >  0. Integrating

this yields

(5.11) ui(t)I2 + 4111012 +  C I ' II (vi(s), tit(s))11 2 ds +b2,
0

as long as (y,(t), t,(t)) is defined. From this, we see that each (vi (t), u t (t)) is defined
fo r  a ll  t > O a n d  be longs to  L2 (0, co ; V x B) n (0 , oo ; H x  X ) .  Furthermore,
{(y1, p i)1 = ,  forms a  bounded sequence in  L2 (0, co ; V x B )n L '(0 , cc ;H  x  X).

(ii) Applying th e  a rg u m en t in  [1 2 , Chap. III, Sect.3], w e can  choose  a
subsequence {(yih , p,h)},T=1 a n d  a n  element (y, p)E (0, ;  V  x  B )ni.,"(0, oo; H
x  X ) such that, fo r an  arbitrarily fixed T > 0,

(y1h , ji g,,) -+ (y, in  the  weak topology of L2 (0, T; V  x B) and
in  the  weak-star topology of L"(0, T ;H  x  X );

p) in  L2 (0, T; H x X).

Also, by the argument in [12, Chap. III, Sect. 3, Remark 3.2], it follows that (y,
satisfies the  energy inequality (5.8). Finally, by letting oo in  (5.11) w ith  1
replaced by 1,,, w e see  tha t (y, p)e L2 (0,00; V  x  B ). T his element (y, p) is our
desired weak solution.

6. Regularity of weak solutions of decay problem

In this section we transform (5.1)-(5.6) into an abstract initial value problem in
H  x X .  Let P , denote the orthogonal projection: (L2 (Q))3 -> H .  Let P , denote
the orthogonal projection : L2 (Q) X .  A ,  P0 ( -  IA  denotes the Stokes operator
with D(A 0 ) =(H 2 (2)) 3 n V (see [2, 4, 7]). A , is  the F ried r ich s  extension of the

04)
symmetric operator P1 ( - 0 4 ) defined fo r  o e x n .t / 2 (Q) satisfying 0 —

O n  
-  U n ,d )= 0

on Q .  A s  shown in Appendix, A , is the positive self-adjoint operator with D(A 1)

={ 0 e X n H 2 (S2);0 "  - U n 34) = 0  on  Of2} . F ro m  th e  definition o f  A 1 ,  it
On

follows that D (A i)= B  and

(6.1) (0  -2U C D )21Vul A? ul < (0 + 2UCf2 )2 I VW f o r  ueB .

For u, ye V and 4) e B  we put

(6.2) Bo(u, y) =  - P o (u, Bi(u, = P111i, 17 /0.

Applying P c, and P ,  to  (5.1) and (5.3) respectively, we obtain

du(6.3) —

d t  
+ A o y  - B 0(u,„ y) - B o (y, 140 - 130(v, y) + KP,,ux = 0, t > 0,
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dp
(6.4) —

d t  

+ A l p - B 1(140„ f t ) -  Bi(v, ni )  -  Bi(v, P) UP1a3ti = 0,t > 0,

0
where 03  = .

In  view of the spectral representation for A , and A 1 , we have

Lemma 6.1. L et a e (0 ,e ). Then

(6.5) f o r  t>0,

(6.6) Ifge - " 0 1‹ t - 2 f o r  t > O.

Here and hereafter we use 1.1 to denote the operator norm in H  and X .  For the
proof of this lemma, see [2, Section 2,111].

Lemma 6.2. For ye V and ckeB, we have

i) 1B0 (u,„ MilAô v1, 1B0 (v, tta)1 1)1 1121 ,i v1;

v1, 113,(v, ma)1 M il4v1;

1UP1a301 M1lAf01;

where M 1 is independent o f  v and

These estimates can be easily proved by using the Sobolev imbedding theorem
and (3.1-2). So we om it the proof.

Lemma 6.3. W e have
1 3

i) 1130 (u, v)1 < M 21A ull 4 1)1
I i i

for u e D (A ) and v e D (V ,
i

ii) 14 4 Bo (u, v)1 M21AZullAôvl for u,vED(A6),

iii) 1131(u, 0)1 . 1 A 4  21A u 11 A i 01

1 1

for tteD (A b and OED(4),

iv) 1/11
- 4 B1 (u, 0)1 M 2 1,46u11,4i(/) for ueD(A6) and OeD(Ai),

where M 2  is independent of  u, v and 4).

P ro o f .  i) and ii) are well known ([2, 3]) while iii) and iv) can be proved by
the same arguments of those of [3, Lemmas 2.1-2.2] where we replace the Stokes
operator by the positive operator A 1 .

The m ain result of this section is the following theorem.

Theorem 6.4. Let the assumptions in Theorem 5.2 hold . L e t (v, p) be a weak
solution of  (5.1)-(5.6) obtained in  Theorem 5.2. Then, there is a  t, > 0 such that
(v, p) belongs to C1 ((t 0 , 00);H X  x)nc((to, 0 0 ) ;  D ( A 0 )  X  (A 1) ) and satisfies (6.3)-
(6.4) for t> to .
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Since the method in  proving this theorem is essentially due to  [7, Sections
2, 3], we only review an outline of the proof. W e first rewrite (6.3)-(6.4) into the
integral form

(6.7) v(t + to) = e tA,, v (t o ) e- 0- sm o {B0(14Œ 5 v(s + to )) + B o (v(s + to), "0

- KPo,u(s + t o )x + Bo (v(s + to), v(s + t0 ))1cls,

(6.8) 11 (t + to) = e - t A l it(to) + i
t
 6,-0 -s)Ai P i (tiOE , Ms ±  to)) ± Bi (V(S + to), M OE)

0

— UPI331i(S ±  to) + Bi (V(S ± t0) ,  ti(S  +  t a  ds,

then consider the  iteration scheme:

vo (t + to) = e - "°v (t o ), p i o (t + to ) = 11(to),

v 4. i (t + to ) = v o (t + to )

+  f r e - ( `- ' )A ° 1130 (ua , vi (s + to )) + B o (vi (s + to ), u,t)

— K13 0/1(s +  0 )x + B o (ti j ( s  + 0 ), v ,(s + t ds

lij+t(t + to) = Po(t + to)

+ 0 - s)A 1f e - {. I:3 1 (1),,, 1.1 i(S + t0)) + B 1 (V i(s + t 0), Mc()
0

— U P la 31.1i(S + to) +  B,(v i (s + to ), O s + t0 ))1 ds,

j = 0,1,2, ....
i 1

Let T > 0 be a constant specified later. P u t  ko =  max {1246 v(t0 )1,1Ai kt(to)11, and

(
1 3

define the sequences {Ky .i lr, 0 ,  y = -
2  ' )  

inductivelynductively by

K ,o = ky

3
Ky , 4 . 1  =  K y , 0  ±  3(1 - K21,i + TB ( 1  -  y, -4  M 2 K1 J K1 j ,

j  = 0, 1, 2, ... ,

where B(p, q) is  the beta  function. Then, using Lemmas 6.1-3, we can estimate
each step of the above scheme as

lAY0 vi (t + t o )I < K Y , A # ( t 0)1 < K Y

1 3

If we set K .; = max {K1 K 2 1 }  ( j  =  1, 2, ...), then we have
4 '

f o r  0 < t < T, j = 0, 1, 2, ,
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k i+i< K o + 12M, T 2 ki  + T4 fiM 2 k.; (j = 0, 1, 2, ...),

where
1 3

fl = —
4

). Take T > 0 so  th a t 12M1 T 2  < 1, and assume that

(6.9) Ko max 11A6 v(t0 )1, it(t0 )11 < K*

where K* -=- (1 — 12M T 2 )2 (4 T4W4 2 ) - 1 . Employing the argum ent in  [2 ] or
[7, Sect. 3], we can show that {(vi , fti )IT= 1 converges to a solution of (6.7)—(6.8) on
4 0 ,4 ) + T ] ,  w hich satisfies (6.3)-(6.4) th e re . T h en , applying t h e  uniqueness
theorem in  [4, Chap. 6, Sect. 2] to  ou r case with some modification, we obtain

Proposition 6.5. L et T and K * be as abov e . L et (v, ,u) be a  weak solution
given in Theorem 5.2. If  there is a t o > 0 such that (v(t o ), kt(to ))eV  x B and satisfies
(6.9), t h e n  (v, ,u) b e lo n g s  to  C l  ((to , To  + T ];H  x  x)n cot° , to + T]; D(A 0 )
x D(A i )) and satisfies (6.3)-(6.4) on  (to , t o +  T].

To complete the  proof of Theorem 6.4, we need

L em m a 6.6. L et 2 > 0. L et (w, ifr) belong to L2 (0, oo ; H  x  X ) .  Then

A ti " A°)w(s)dsl < 2

(J 
o lw(s)12  ds) 2

1
A l e

- (1 - s)(.1+ A 1) (* S I  < 1 ( (SW dS
o

I

f o r any  t 0.

For the  proof, see [7, Lemma 4].

P ro o f  o f  T heorem  6.4. L e t  T  a n d  K *  b e  a s  a b o v e . P u t  ii. =

(
1) ) 4

4M 2 F  -4 K *  .  W e proceed a s  in  [7, Lemma 19]. Since (v, ,u)e L2 (0, co ; V

x  B ) there is a  to > 0 such that
1 K* 1 K*

(6.10) IA; v(to)I < 4  ,  I Ai ti(to)I < 4  ,

f

tO

o 1 f o  1

(6.11) I /16 v(s)I 2 ds < C*, p(s)I2ds < C*,
to

where C *  min {K* 2 /(322), K* 2 /72M }. Let 6* be the least upper bound of 6
su ch  th a t (v(t), p,(t)) be longs to  C1 ((t o , to +  6); H  x X) n c((t o , to + 6; D(A 0 ) x
D(A 1)) and satisfies

1
(6.12) v(t)1 < K *, Ai kt(t)1 < K*

o n  [t o , to + 6). B y Proposition 6.5, 6* is  positive. S u p p o s e  th a t .5* is finite.



Yukio Kan-on, K imiaki Narukawa and  Yoshiaki Teramoto 149

From (6.3) one can deduce

v(t + to ) = e - t( A + A °) v(t o )f± e — ( t  — s)(A. + A o )  {Av(s + to ) + B o (u,„ v(s + to )) + B o (v(s + to ), uoe)
Jo

— ICP0R(S to))( B0(1.4 ,3 to), V(S to))} dS

1
for t e(t o , to + 6*). Applying A both sides, we estimate 1A6v(t + WI by using
Lemmas 6.1-3 a n d  6.6. Then, b y  (6.10-12) and  the  definitions of a n d  C*,

we h a v e  /11). v (t 0 + S*)1 < K * . S im ila rly , w e  have it (to + 6*)I < K * . T h e n ,
Proposition 6.5 implies that there is a 6' > 6* such that (v(t), tt(t))e ((t 0 , t 0 + 6 );
H  x  X)) n C((t o , to +  6'); D(A O) x  D (A ,)) a n d  (6.12) holds o n  [t o , to +  5 '). This
contradicts to the definition of 6 * .  Hence, 6* = oo, and the assertion of Theorem
6.4 follows from Proposition 6.5.

R em ark 6.7. I n  proving Theorem 6.4, w e easily  see that ( iro v(t), ALtt(t))

(y = ! are  uniformly bounded and H older continuous o n  [t o  + 1, cc) with
2' 4

v a lu e s  in  H x  X , a n d  t h a t  (Bo (v(t), v(t)), B 1 (v (t),p(t)) a r e  uniformly Holder
continuous o n  [t o + 1, co )  with values in H  x  X.

7. Decay of weak solutions

Finally, under the  same assumptions as in  Theorem 5.2, we prove

Theorem  7.1. Let (v , It) be the weak solution given in  Theorem 5.2. Then,
supxehlv(x, t)1 and sup„e i, I /./(x, t)I tend to z ero as t co.

First we have

Proposition 7.2. 1,46 v(t)1 and lA itt(t)1 tend to z ero as t co.

F or the  proof, see [7 , Lemma 22].
Since Ao and A1 are positive and self-adjoint in H and X  respectively, we have

L em m a 7 .3 . There is a constant co > 0 such that

Aso  -  tA o l  <  t -  le  - COt ,I A  - tA i  I < t - C O t f o r  t > 0.

Proof of Theorem 7 .1 .  Let to  be  as in Theorem 6.4. Set C(s) e - ( `- "°v (s).
Using (6.3), we can deduce

(7.1)u  ( 0 _  e — (t — s)Ao v (s ) f Cr (T)cit

I (T0 - 0,401 4 s ) +  t_  e - e- 0 - smo T., o t  ,
Js

f o r  t s to + 1,
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where

W(s) -- Bo (u„, v(s)) + B o (v(s), uOE) -  KPo it(s)x + Bo (v(s), v(s)) (s > to ).

As noted in  Remark 6.7, W(s) is uniformly bounded and  there is a  y e (0,1) such
that

(7.2) 1 W(t) - W(s)I CI t -  s r f o r  t,s > to + 1.

A lso  n o te  t h a t  1W(t)1-> 0 a s  t --> c o  b y  Proposition 7 .2  a n d  R em ark 6.7.
Differentiate (7.1) in  t ,  then, after some calculation, we obtain

dv(t)
- 410 e - ( t - s ) A 0

v(s) + e - ( t - s ) A 0  W ( t )

- fi A o e - ( `- ' ) A °(W(r) - W(t))cit .
s

From  the boundedness o f W (t) (t to +  1) and (7.2), it holds that

I Tf (t) - Vf (T) I = (1 W(0 - V(0 / )2C ( s ) I  t  -  t il ( t ,  T __ S to + 1)
Where C(s) = o(1) as s - > c o .  Using this and  Lemma 7.3, we have

240 e- ( ` - " 0 (V (T ) -  V(t))d-c < C(s) J' e - ( t  -  t ) 1 qd-c
s

C i (s) f o r  t > s > to + 1

where C(s) = o(1) as s -  c o .  By Lemma 7.3 and the fact that 11'(t) 1 -40 as t - > o o,
we see that, for fixed s > to + 1,

1-  i l o e - ( -̀ "°v (s) + e - ( `- 5 ) 4 0 W(t)1 -+ 0a s  t -, cc.

dv(t)

dv(t)
A o v(t) = + W(t),

dt

and since the right hand side of this tends to zero as stated above, I il o v(t)I tends to
zero as t - ) cc. I n  t h e  same way as above, we can show that IA, MO -40 a s  t
- 9. C O . The uniform decay of (v(t), a(t)) now follows from the Sobolev imbedding
theorem : D(A 0 ) x  D(A 1 ) c (1-1 2 (Q))3 x 1-12 (Q) c (C(Q)) 4  with continuous injection.

8. Appendix : Self-adjointness of P,( -  BA)

Let 4) e D (A 1) = {tii e 1-1 2 (Q) n x : 0 -Z — Un3 111 = 0 on Of2}. By the divergence

theorem and the boundary condition of 4) o n  00,

dt

f

Collecting these gives that
dt

- 90 a s  t -› cc. S in c e  (v(t), ti(t)) satisfies
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(A 1 4), 0) = 0117  012 — U f n 3 (x)0(x)2 dS
J 012

0(1)
= 0117  012 -  2 U 4 )(x )( )(x)dx —2UC,)117012.

Ja Ox3

From this, (3.2) and (3.13), the  positivity of A, follows.
We next show tha't D(At) = D(A i ). Let 0 eD(AT). By the definition of At,

there is an  element fe X  such that

(8.1)( A 1 4 ) , =  ( 0 ,  f ) f o r  any (Pe D(A ,).

Then, in the sense of distribution, it holds that

<d), — 00> = (0,f) f o r  any 4) e (Q) n x.

P ut [0 ]=  f O dx  for 4)E M 0 )  and take 0 0 e q °  so  that [0 0 ]  =  1 .  Since 
—

[CIP0 e C  (Q ) n
<4)— [ ONO , — > (0 — [ 0]00 , f

From this we obtain

(8.2) < 4), — Odt// — f > = <0 0 , — 0/10 — f> 0 d x f o r  a n y  eC O (Q).
JQ

(8.2) m eans that — 040 — f  = <00, —  °AO — f>  1  in  th e  sense of distribution.
Since fE L2 (Q) and the right hand side of this equality is a constant function, — zfifr
belongs to L2 ( 0 ) .  Hence, < tfro, — 0,40 > can be rewritten as

<0 0 , — 0/10 —f> = (0 0 , — 0,40 —f).

In  this expression, approximate in  L2 (Q) the constant function

Is21-1.( r
)

by tfro eC,T (S2) with j .d x  =  1 .  Then, we obtain
1)

- OAO f = (1°1 - 1 , - — f) = —101 - 1  0.40dx in  L2 (Q).

Note that fe X .  Thus, regarding the right hand side as a constant function, we
have

(8.3) — OAt/i = f — f 0.40dx i n  L2 (f2).

Taking the inner product of (8.3) with 4)eD(A 1 ), we obtain

(8.4) ( — 040 , 0) (  f ,  0)
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since 0E X .  Using Green's formula ([6, Chap.2, Sect. 6]), we can rewrite the left
hand side as

00 00(8.5) (-  0 4 ,  = -  0 4 0) -  0 -

0 n  
0 ) +  (0 ,  0 -

0 n
)

3 3
where the first bracket < • , • > denotes the duality between H ( Q) and H2(8Q),
and the second denotes the duality between H - 2 (0Q) and 1-11(a2). On the other
hand, since tp e D (fif) c X  and 0 ED(A i ),

(0 ,- aid)) = (P10, - 6,0 ) - (0 ,  A M = (f, 0)

by (8.1). Also, using the boundary condition of 0, we obtain from (8.4-5)

( 0
n

4  U n 3 tfr, = O.
O

For an arbitrary C(OQ), we can easily construct eD(A I ) such that 01, Q =
00

Therefore, 0—
O n  

- = 0  on Q .  F r o m  t h i s  and (8.3), using the  regularity

result in  [6 , C h a p .2 ] , w e  se e  th a t 061-12 (Q)n X  a n d  satisfies th e  boundary
condition, which states that 0 e D(A 1).

Finally we give a  remark for the basis {(w i , 0;)}T= 1 em ployed in Section 5.
Since A 1 is  self-adjoint, its eigenvectors form a  complete orthonormal sytem in X .
Making use of this system and the eigenvectors of the Stokes operator A0 , we can
construct the desired basis.
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