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Twistor spaces of even dimensional
Riemannian manifolds

By

Yoshinori [NOUE

Introduction

The twistor space o f a  four-dimensional oriented Riemannian manifold X  is
a  to ta l space of a certain P 1 -bundle over X  with a n  almost complex structure,
and the integrability condition of the almost complex structure is equivalent to
anti-self-duality o f  th e  underlying manifold X  ( [A .H .S ]) . Relations between
certain field equations on the m anifold  X  and cohomology groups of certain
holomorphic line bundles over the twistor space are studied by Hitchin in [H] .

The notion of twistor spaces of four-dimensional manifolds was generalized
to higher dimensional oriented Riemannian manifolds by O 'Brian and Rawnsley
( [ 0 .R ] ) .  Their definition of the twistor space Z (X ) of a 2n-dimensional oriented
Riemannian manifold X  is  Z (X ):= SO (X )/U(n), w here SO (X ) is the  oriented
orthonormal frame bundle of X  with right SO(2n)-action and U(n) is considered
to  b e  a  subgroup of SO (2n). M urray  ([M ]) studied relations between certain
f ie ld  equa tions o n  t h e  underly ing m anifold  a n d  c o h o m o lo g y  g ro u p s  of
holomorphic line bundles over the tw istor space, under the condition of the
integrability of the almost complex structure of the twistor space.

In  this paper, we shall give another definition of the twistor space Z (X ) of a
2n-dimensional spin manifold X, and the hyperplane bundle H  over it. M o r e
precisely, if w e denote  by ±  (X ) a positive spin bundle over X, Z (X ) is defined
as a submanifold of P((I + (X )), and H is the pull-back of the hyperplane bundle
over P(A + (X ) ) .  Hence Z (X ) and H 2 a re  defined even if X  has no spin structure,
but H can be defined if and only if X is a spin m anifold. This is a  generalization
of the original definition by using the twistor operator ([A.H.S]), and gives an
im m ediate correspondence between s o lu t io n s  o f  th e  tw is to r  equa tion  and
holomorphic sections of the hyperplane bundle (see Theorem 9.2 below). This
is a  generalization o f  a  result in  the  four-dimensional case given by Hitchin in
[ H ] .  T h e  correspondence will be proved without assuming the  integrability of
the almost complex structure of the twistor space.

T o show the equivalence of two definitions of twistor spaces, we shall prove
tha t there  is  a n  embedding of the tw istor space in  th e  sense o f  [0 .R ]  to  the
projectivized spinor b u n d le  P(4 + (X ) )  w h ic h  is  in d u c e d  b y  t h e  canonical
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em bedding o f S O (2n )/U (n ) in to  P (4  ± )  e q u iv a r ia n t u n d e r  th e  a c t io n  o f
SO (2n). The im age is  the tw istor space in  our sense a n d  two definitions of
almost complex structures coincide. Especially, th e  em bedding is surjective if
n < 3. Hence the tw istor space o f  a  six-dimensional Riemannian manifold can
be defined to be a projectivized spinor bundle a s  in  [ W ] .  Another advantage
of our definition is that the conformal invariance of the twistor space, proved in
[O R ] a n d  [M ] , can be reduced immediately from the conformal invariance of
the twistor operator ([F]).

Using the geometric definition of twistor spaces in [O R], w e shall also show
that tw istor spaces enjoy sim ilar properties a s  those in  four-dimensional case
described in  [ A .H .S ] .  L e t  X  b e  a  2 n  dimensional oriented Riemannian
m anifold . Z (X )  a n d  H 2 d e n o te  th e  tw is to r  space  a n d  th e  sq u a re  o f  th e
hyperplane bundle, respectively. The canonical bundle of the tw istor space has
a  form:

Kz(x)-- H - 2 n

where th e  canonical bundle of an m-dimensional almost complex manifold is
defined to be a  complex line bundle consisting of (m, 0)-forms. This isomorphism
is holomorphic, if  th e  almost complex structure is  in tegrab le . T he  conformal
structure of X  can be recovered from the almost complex structure of Z (X ) (see
Theorem 5.2 below). Furthermore, if the  almost complex structure of Z (X ) is
integrable and n >  I ,  w e shall define a  2n-dimensional holomorphic complex
conformal manifold X , as a  family of certain submanifolds of Z (X ) (see Theorem
5.3). H e n c e  w e  have a double fibration, w hich is used to define th e  Penrose
transform,

Y
\ \ sr,\2\ s „

Z(X) X c

where

Y:= 1(z, x)e Z (X ) x  X zc the  subm an ifo ld  corresponding to x}

and p i  (resp. p 2 )  is  the projection to  the  first (resp. second) factor. Although
X , is  defined  in  [M ] , th e  natural complex conformal structure of X c  is  n o t
m entioned there. The manifold X  can be naturally considered as a submanifold
of X .  Furthermore, there is an anti-holom orphic involution f on X ,, whose
fixed locus is X  and the conformal structure of X  is recovered by restricting the
com plex conform al s tru c tu re  o f  X , ( s e e  T h e o re m  5 .2  a n d  Theorem 7.3
below ). Thus, even if  we forget the fibration over X , from  the tw istor space
Z (X ), we can recover information of the conformal manifold X  to a certain extent.
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In  the  following we shall study two examples, namely spheres and tori.
T he  tw isto r space o f  S 2 "  is SO (2n +  2)/U (n +  1) w ith the holomorphic

s tru c tu re  a s  a  Hermitian symmetric space, and the complexification S t i s  a
2n-dimensional non-singular complex hyperquadric Q2 „. The hyperquadric Q 2 „ is
expressed a s  a  homogeneous space: SO(2n + 2)/U(1) x SO(2n). Hence, in  this
case, the fibration has the form :

SO(2n + 2)/U(1) x U(n)

SO(2n + 2)/U(n + 1) SO(2n + 2)/U(1) x SO(2n)

where all spaces have natural holomorphic structures as Hermitian symmetric
spaces and two projections are holomorphic m appings. The complex conformal
structure of Q 2 ,, is a  natural o n e . T h is  is  a  generalization of the so called the
Penrose fibration in case n  = 2,

F1,2;4

\ 2

P 3 G2,4

F o r general conformally flat manifold X , let R  b e  th e  universal covering
space of X  with conformally flat structure induced by X. T h e r e  is  a  conformal
map called the developing map:

: s 2 n

which induces a  group homomorphism :

7/ 1 (X ) — > SO 0 (1 , 2n + 1).

Here, S0 0 (1, 2n + 1) is considered to be the conformal transformation group of
S2 '. Since twistor spaces are conform ally invariant, the problem  o f  studying
twistor spaces of certain conformally flat manifolds is reduced  to  the  study of
discrete subgroups of S0 0 (1, 2n + 1).

Following th e  above method, f o r  a  lattice F  of R 2 "  w ith  n  > 1 , we shall
show th a t the complexification of R 2 " /F  is (R 2 " ® C )IF  with natural complex
conformal structure.

Let us explain briefly the contents of this paper.
In  §1 , we recall a  general method to define a distribution by  a  first order

differential operators. In  §2 , to  fix  notation, we give a n  explicit description of
the spinor group SPIN(2n) and  the  sp in  m odule  4 ±  in  term s o f  th e  Clifford
a lg eb ra . In §3, we define twistor spaces of even dimensional conformal manifolds
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and show the equivalence to the definition given in [ 0 . R ] .  In §4, we study the
canonical bundle of the twistor sp a c e . In §5, we define the complexification X c

of X  when the almost complex structure of the twistor space Z (X ) is integrable,
and define a real structure of Xc in case I dim X  is  e v e n . In §6, we study the
generalized Penrose fibration, by considering the complexification o f  even
dimensional spheres. In §7, we define the real structure of X c  when Idim  X  is
o d d .  In §8, for a lattice F  of 1112 ", we study the complexification of 122 " / F .  In
§ 9 , w e g ive  an explicit correspondence between the solutions of the twistor
equation over X and the holomorphic sections of H over the twistor space Z(X).

I  w o u ld  lik e  to  th an k  P ro f. K . U eno and D r. W . M . Oxbury for their
encouragement and valuable suggestions.

Notation

R : the real number field
C : the complex number field with the imaginary unit \/—
C  :  the set of non-zero complex numbers
so(m): the Lie algebra of SO(m)

( 0 — I n )
J:= a natural complex structure of 122 "

I n 0
U(n):= 1/1 SO(2n)i AJ = JA I
u(n): the Lie algebra of U(n)
Z n := SO(2n)/U(n) with the Hermitian symmetric structure
122 n : the 2n-dimensional complex hyperquadric

Let E be a real vector bundle (or a real vector space)
E 0 C : the complexification of E

Let E  be a complex vector bundle (or a complex vector space)
E *: the dual of E

the set of non-zero vectors of E
P (E ): the set of one-dimensional subspaces of E
[0 :  the image of v e.E  by the projection map E —> P(E)
O W : the hyperplane bundle over P(E)
(4— 1): the dual bundle of 0(1)
F (E ): the set of sections of E
sv : the function on E * defined by a section seF(E)
J i (E ): the bundle consisting of one-jets of sections of E
TM, T*M : the real tangent and cotangent bundle of a smooth manifold M
SPIN (2n) : the spinor group

: the spin module
A± : the positive or negative spin module
10,, I  c  11,..., n11 : the orthonormal basis of A  defined in §2
cl:11 2 " 0A --■A  the Clifford multiplication map
K , :  the cokernel of cl* : (4 - )* -->(A + )* 0 (R 2 ")*
V(D): the distribution defined by D
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Let X  be a oriented Riemannian manifold (or a spin manifold)
A (X ): the positive or negative spin bundle
K ,(X ) : the K ,  bundle

the twistor operator
SO(X): the oriented orthonormal frame bundle
SPIN (X ): the spinor frame bundle
Z (X ): the twistor space
H : the hyperplane bundle over Z(X )
X c :  the complexification of X
S0 0 (1, m): the identity component of SO(1, m), or the conformal transforma-

tion group of S " ,  for m > 3

§1. The distribution defined by a first order linear differential operator

In this section, we recall how to define the distribution by a first order linear
differential operator. Let E be a complex vector bundle over a smooth manifold
M .  By the canonical pairing of E  and its dual bundle E *, the section s  of E
defines a com plex function s on the total space of E * .  Let p: E* M  be the
projection, and J 1 (E) denotes the one-jet bundle of E .  We define a linear map

V: p*J,(E) — * T *(E*)C)C

b y  V(p*j i (s)) =  d s  for a ll sections s  of E , where j,(s)e  F(J,(E )) is  the one-jet
of s. Let F be another vector bundle over M . For a first order linear differential
operator D: F(E)— > F(F), we have a linear map

L(D): J,(E) — > F.

Definition 1.1. For a  differential operator D: F(E)— > F(F), let R  b e  the
kernel of the linear map L (D ) . A distribution V (p*R) on the total space of the
dual vector bundle E* of E is called the distribution of D, and denoted by V(D).

Now consider the case in which a differential operator D  has a form:

D: F(E) F(E C) T* M) F(F)

where V  is  a covariant derivative and a: EC)T*M  — >F i s  a  linear map. In
terms of jets, it is w ritten as:

L(D): J 1 (E) EC)T * M  — 46  F .

The linear map L(V ) defines a splitting of the exact sequence

0 — * E  T*M
L (V )

Hence there is a splitting
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J ,(E) E  ( E  T *  M ) ,

w here  E  is  iden tif ied  w ith  th e  kernel o f  L (V ), a n d  b y  u s in g  th e  splitting.
R := ker L(D) can be written as:

R EC'S , (1.1)

where S denotes the  kernel of a.
O n the  other hand, the connection defines a  splitting of the real cotangent

bundle of E*:

T *(E*) = Tv* (E*) 0 TPE *) (1.2)

w here th e  firs t com ponen t is  the  vertica l cotangent bundle  defined by the
connection of E, and the second component is the horizontal cotangent bundle.

L e t u s  study a  relationship between two splitttings (1.1) and (1.2), b y  the
m ap  V.

F irs t, w e  s tu d y  V (p* E). T h e  rea l vec tor bund le  T ( E * )  h a s  a  natural
complex structure, since E * is a  complex vector bundle. Hence the complexified
bundle Tv* (E * )()C  has two components, Tv*

(" ( E * )  a n d  Tv" :" ( E * ) ,  and the
subbundle Tv*

(" )(E*) is isomorphic to p * E . The restriction map V P E is nothing
but the inverse of this isom orphism . Hence we have

V (p*E)= Tv*
(" °) (E*).

N ext, w e restric t V  to  p*(E C) T* M ). T his is  ob ta ined  by  the  canonical
pairing of E  and E *  and identifying T * M  C  with the complexified horizontal
cotangent bundle. Therefore, we have

V (p* S) OE TIP (E*) C) C.

Proposition 1.2. For a differential operator D = a oV , where a: E C)T* M  F
is a linear map and V  is a covariant derivative, there is a splitting of  the distribution
V (D)= V (p* E)C)V (p*S) corresponding to the splitting (1.2) of  the cotangent bundle,
w here S  is the kernel o f  a .  Furthermore, we have

V (p* E) = Tv*
(" )(E*).

Example 1.3. I f  D  = V ,  th e n  S  = 0  a n d  V(V) =  V (p*E)= T v*" .°) (E*).
Hence we have

Tv*(E*) C  =  V(V) ,C) V(F).

This is a  way to define the vertical cotangent bundle (hence also the horizontal
tangent bundle) by a covariant derivative. W e give here a  basis of the bundle
V (V ). Let (e 1 , ,  e m ) be a local frame of E, and (e' , ,  ern) be the dual frame. W e
write the covariant derivative in  terms of this frame, Vei =  ei col. L et (r,,...,
b e  the  loca l coordinates o f  th e  fiber p a r t  o f  E *  corresponding to th e  frame
(e' ,...,em). Then V(V) is spanned by
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dr, — i = 1, ,  m .

§ 2 .  Spinor groups and spin modules

In  this setion, to fix notation, we give a description of SPIN (2n), 4± and
certain SPIN(2n)-equivariant m aps in  term s o f  th e  Clifford algebra CLIF (2n).
(See [G ] Chapter 3, for detail.)

L et E  be  a  2n-dimensional real vector space with a positive definite inner
p ro d u c t (  , ) . The Clifford algebra CLIF (E) is an algebra generated by E  subject
to  the relations

v * v + (y, v) = 0, for v e E. (2.1)

Since this relation is  of even degree in  the  tensor algebra C) V  with respect to
the canonical grading, we may regard CLIF (E) as a Z/2Z graded algebra,

CLIF ±  (E) — <v i * • • • *V2 k Ill V2kE E, k 0>

CLIF_ (E) = <v i  * • • • * V2k +  1 1 VI , V2k+1 e E , k  > 0>.

L et 4 ( E )  b e  the  exterior algebra o f E .  T he exterior multiplication b y  an
element of E  defines a  mapping ext : E E N D  (A (E ) ) .  Let interior multiplication
int (v) be  the dual endomorphism of ext (v). Now define

c : E — > END (A (E))

y ext (v) — int (v).

T hen  w e have c(v) 2 +  (v, O k i = 0. H e n c e ,  b y  th e  universality o f  th e  Clifford
algebra, there is a unique algebra homomorphism c ' which is an extension of c

c ': CLIF (E) END (A (E)).

Let (e 1 ,..., e 2 ) be an orthonormal basis of E .  F o r I  = 1 < i 2

< • • • < ik < 2n, let e l  b e  e i ,* e i ,* • • • * eik . Then we have c'(e 1)1 e i , A  e 2  A •-•
ei k . Hence the m ap  w  c '(w )1  induces an  isomorphism of vector spaces

CLIF (E) 4 ( E ) .

We define a positive definite inner product in CLIF (E) by pulling back that of
A ( E ) .  Then,

{1,...,2n}}

is an orthonormal basis of CLIF ( E ) .  The multiplication of e l  to  C LIF (E) from
left or right induces a permutation of the basis, hence it is isometric. This means
tha t the  left o r  right multiplication of any un it vector v o f E  is isom etric . In
particular, for any  un it vector v of E , the  map xi-+v *x* y is isometric, which
preserves the  subspace E  and  induces o n  i t  th e  reflection map with respect to
the hyperplane w ith  the  norm al v ec to r  v . W e  le t  SPIN (E ) b e  th e  se t o f  all



108 Y oshinori Moue

w e CLIF (E) expressible a s  a  product of an  even number of unit vectors of E,

SPIN (E) = {v 1 * • • • *v 2 k e CLIF , , : unit vectors in E}.

This forms a  group by the  Clifford m ultiplication. A n element w  of SPIN (E)
satisfies the  equation t w * w = 1, where 'w  denotes the transpose of w .  For an
element w  of SPIN (E), the  map

p(w): CLIF (E) CLIF (E)

Xw * x * t w

preserves E  a n d  induces o n  it a n  isom etric transformation preserving the
orien ta tion . Hence we get a  homomorphism of groups

: SPIN (E) ---* SO (E)

w

The kernel is in  the center of the CLIF (E), which consists of scalars, because E
is even dim ensional. W e have an exact sequence of groups :

1 — 4 { ±  1 } SPIN ( E )  1—L+ SO(E) 1

The group SPIN (E) is  the  universal covering group of SO (E), if n > 2.
Next, we define a  spin  m odule. Put

00 := (1 + 1 e, *e n +  ,)*(1 + 1 e,*e n + 2 )*•••*(1 + 1 en * e ) ,

and

01 e I * 0 0 ,I  c 11 ,...,

W e define a  sp in  m odu le  A  = A (E) a s  a  complex subspace o f  CLIF (E) C
spanned by 01 , / 1 1 , nl . W e have

i i

0 , = { ‘ ,/  —  1  e i * 01 , if i /
e + ,* 

since we have

{ (1 + — 1 ei en + i )* e„,,,
en + i *(1 + .N/ — 1 ei en +  =  

— 1 ei *(1 + — 1 e ; en +  ;),

(1 + — 1 e.,* en +  j )* e i = e i * (1 + — e„+i),

if i j

if i = j

ffi0j.

Hence the spin module A  is  invariant under the left action of CLIF (E).
Since SPIN (E) C L I F  (E), the positive spin module A + = Al + (E) (resp. the

negative spin module 4 "  = A -  (E)) defined as

(E):= A (E) n (C L IF  (E) C )

— 1—  1 ei * if i e /,
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(resp. (E) := .61(E) n (CLIF _ (E )0  C))

is invariant under the action of SPIN (E).
Now let us show  th a t  {01 }  is  a  basis of A .  F o r  simplicity, we extend the

notation of m ulti-indices. W e define a multi-index to  b e  a  finite sequence of
elements of { 1,..., n }  .  For a multi-index I  = (m 1 ,...,m k ), — I  and J are the
multi-indices defined as

— / := (— mi  , — mk ),

'I := (mk , m i ).

F or another multi-index J = (m 1,...,m ;), we define the addition I  + J to be

I  + J:=

For a multi-index I  = (vi), where E  = 1 a n d  1 < i < n, we define

e,:= E• ei ,

and  fo r a  general multi-index J ,  we define ej  inductively, such that e J 's satisfy
the following identities :

ej + j , =e j *e j ,, for a ll J  and J'.

W ith respect to other operations of multi-indices, we have

e_, = (—  1)111e
15

et, —

and

ei + j =  e ,  im p lie s  ej = e_ q + K .

P ut A := 11, ..., For a multi-index I ,  there is a  unique subset I '  of A  such
that el  = el ,. We define the length of I  as the number of elements of I ',  and
denote it by

I II := #1'.

W e regard  a  subset o f A  as a multi-index by  the  natural order such that two
definitions of el  coincide. D efine 0,:= el * 00  a s  before.

Proposition 2 .1 .  ( 1 )  T here is a bilinear form  (  , )  on A  equivariant under
the action of SPIN (E).
(2) A I /  c A I is a basis o f A.
(3) By the invariant bilinear form, there is an isomorphism between A  and A * . Let

{01 11 c A I be  the dual basis of A * .  The isomorphism is written as:

A — > d*
011____+  0-1+A ,
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w here w e u se  th e  sam e notation of  m ulti-indices f or the dual basis. Hence
(A i )* ( A i )  i f  n  is even, and (A i )* ( g )  i f  n  is odd, as  SPIN (E)-modules.

P ro o f . The bilinear map

x C  2 0 ,

(x, y) tx * y

is well-defined, since we have

i(1 + 1 ei*e n +i)*(1+ —  le i *e n + ,) = 0

'0 + — lei* en+J*ei*( 1 + 1 ei *e n + ) = 2e1 *(1 + 1 ei*en+i).

W e define a  b ilinear fo rm  ( , )  as the coefficients of T O , .  Since tw*w 1,
w e SPIN (E), we have

t(w *x)*(w *y)= ix*(tw *w )*y =  x*y.

Hence it is invariant under the action of SPIN (2n). Now let us compute (Os , O.,)
for I, J c A .

(01*(9j = f (e1 * Be)* (ej * 640)

= 1004, 1 e1 * ej * 00

j , i f I L I J =  A
0, otherwise.

Hence AI/ OE AI is linearly independent, that is , a  basis of A.
(3) is immediate by (2.2).

By multiplying vectors o f  E  fro m  le ft to  the  sp in  m odu le  A , w e  g e t a
SPIN (E)-equivariant map :

V 141 * W

called the Clifford m ultiplication m ap. Since c l is  surjective, the dual m ap cl*
is injective. By simple computation, we have an explicit description of this map.

Lemma 2.2. The SPIN (E)-equivariant map cl* is w ritten as:

cl* : zl* A* E*

____* 1 0 -1+1 o c i E 0 - i - f - / fli
lEI ti

where cz i := + —  le " ' and /3i : =  — 1e 1, f o r i= 1 ,...,n .

L et K  be  the cokernel of cl*. W e have an exact sequence of equivariant
maps:

(2.2)
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0 A * — 4`1* 4 *  0  E * K 0. (2.3)

Let K ± be  the image of (A ± )* 0 E by K , which are SPIN (E) - submodules of K.

Lem m a 2.3. (1) The SPIN (E)-modules K ± a r e  irreducible.
(2) cl*((41 + )*) is a maximal proper SPIN (E)-submodule of (A ± )* 0 E*.

P ro o f . B y  th e  representation theory o f com pact L ie  g roups, there  is  a
splitting of (2.3) as SPIN (E)-submodules :

(4 ± )* E *  =  K (A )*.

Hence it suffices to show th a t  K  ± are  irreducible. The dimension of K ± a re
equal to (2n — 1)2 71 - 1 . If n =  1, then it is equal to 1, hence the irreducibility is
obvious. Since SPIN (E ) is connected, it suffices to prove th e  irreducibility of
their differential representation. Since th e  L ie  algebra so (E )  o f S P IN (E ) is
semi-simple if n > 2 , w e  can  u se  th e  representation theory of semi-simple Lie
algebras. W e fix a  C artan  decomposition of the L ie algebra so (E) C . L e t  A
and  A ' be  th e  highest weight o f (E 0 C)* and  (4 ± )*, respectively. Then, there
is an  irreducible submodule of (A ± )* 0 E * with the h ighest w eigh t + A ', whose
dimension is (2n — 1)2 1 , which can be computed combinatorially by W eyl's
dimensionality fo rm u la . Since this is greater than the dimension of (4 + )*. namely
2' ,  this submodule m ust be  K ±.

§ 3. T w istor spaces

L e t X  b e  a n  oriented Riemannian m anifold of even dim ension 2n. For
simplicity, we assume th a t X  has a spin structure, and let SPIN (X )  or SO(X)
denote the spinor or oriented orthonormal frame bundle of X, respectively. The
Levi-Civita connection on SO (X ) induces a  connection o n  SPIN (X ).

B y the positive (resp. the negative) sp in  representation .41+  ( re sp . 4 - )  of
SPIN (2n), we define the positive (resp. the negative) spin bundle of X  and denote
it by  4 +  (X ) (resp. (X )),

A ± (X ) := SPIN(X) X  
S P I N ( 2 n )  

A ±

The dual vector bundle is written as :

4 ±  (X)* = SPIN (X ) X  
S P I N ( 2 n )  (A  ± ) * •

Similarly, we define

K ,(X ):= SPIN (X ) X  
S P I N ( 2 n ) K  +

where K ,  is a  SPIN (2n) - module defined by the exact sequence:

0 ( A  - ) * (A +)* (2 )  (R 2n)*  2 _ 4  K 0 . (3.1)

The SPIN (2n)-equivariant map K  induces a  linear map:
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K: 4 + (X ) *  T *  X

Definition 3 . 1 .  T h e  twistor operator /5 i s  a  first order linear differential
operator defined as

D: F(A + (X)*) r(A +(x )* T* X )  1- F(K ,(X )),

where 17  i s  the covariant derivative induced by the Levi-Civita connection.

N ow  le t us apply the  theory developed in  §1 to  the situation in which M
is a  Riemannian manifold X  and D  is the twistor operator /5 = K . V .  Then we
have a distribution V(D) on the total space of A + (X ) .  Since the kernel of lc i s
(A - )* by (3.1), by  Proposition 1.2, the distribution has two components,

V(D) = V (p* A + (X)*)C) V(p* ( X ) * )

where p: A  (X )--+ X  is the projection. Furthermore, V(p* (X )*) is a subbundle
o f  Tv*(61 + (X ))( :)C  consisting of (1 ,0)  covectors w ith  respect t o  th e  complex
structure of the fibers. H e n c e ,  for each point z  of A (X ), V (p*A + (X)*)z  i s  a
maximal isotropic subspace o f Tv*(A ± (X )) z C .

Let us consider the subset V(p*A - (X )*) of T (A + (X ) )  C .  By trivializing
the vector bundles locally, the composition of the mappings

p* /1 -  (X)* p*(A + (X)* T *  X) TH*(z1+ (X ))

is obtained by the composition of the mappings

1: h1 + x (41 - )* - -■l x c i * x ( ( A + )* 0  ( R 2 n ) * ) ( R 2 n ) *

b y  Proposition 1.2, where the second m ap is induced by the  canonical pairing
of A + a n d  (e ) * .

N ow  w e com pute th e  ra n k  o f  V(p*A - (X )*)„„ fo r  w e .(1+  (X ) .  L e t w  be
written as (A , z), where A e SPIN (X ) and ze Ar+ , then the rank o f V(p* (X )* )„,
is equal to  that of

-F,(z):= {1(z, tlf)itlie(4 - )*}.

N ote tha t E  is equivariant under the action of SPIN (2n);

27(A • z) = A • ZE(z), for a ll A e SPIN (2n). (3.2)

Since we have 17(z) = .E(c • z), for all c e C  ,  we define 1:7,[z ] as z-.7, (z) where z  is  a
representative o f [z] E P(A +).

Proposition 3 . 2 .  For an  elem ent [z]eP(A + ), w e have ran k  [z ] > n , and

Z  = Z := { [z ]e P ( 4 )  rank E[z ] = n1

is a  non-singular projectiv e v arie ty  o f  d im e n sio n  ln (n  —  I) . T h e re  is  an
SO(2n)-eguivariant diffeomorphism between Z and SO(2n)/U(n). Furthermore, for
a po in t [z ] o f  Z , E [z ] is  a m axim al isotropic subspace o f  (len)* 0 C.
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P ro o f . W e use the notation of Proposition 2.1. L et z  b e  a  p o in t o f  4 +

written as Z'0 1 . Then, by Lemma 2.2, we have

1(z, a') = <z, cl*(01)>

= I ai +
i J

w here  <  , >  deno tes t h e  p a ir in g  o f  4 +  a n d  (4 + )*. In  p a r t ic u la r , since
480 , Oi ) = a i ,  E[00] = =  1, n ) ,  w hich  is  regarded  a s  t h e  s e t  o f  (1, 0)
covectors with respect to  a  natural complex structure J  of R2 " defined as

(
J:=

1„ 0  )

Hence [00 ] is in  Z .  O n the  other hand, the SPIN (2n)-action of 4 +  induces an
SO (2n)-action of Z .  W ith respect to this action, by (3.2), the isotropic subgroup
at [Os ] is contained in

U(n) = {A e SO (2n)1 A • E[00 ] = S [0 0 ]} .

Hence Z  contains a manifold of real dimension at least n(n — 1).
Let z  satisfy Z° 0 0, then, for j = 1, ,  n, we have

i(z, r a j  — E Z' J3'.
i*i

T hese  covectors a r e  linearly independent, a n d  s p a n  a  m a x im a l isotropic
subspace. Therefore, the rank of E [z] is not less than n. Since the rank of 3,"
is invariant under the action of SPIN (2n), this is true for a ll [z ] in  P(4 +  ).

P u t U0 := { [z ]eP(.4)IZ 0  0 1 .  We deduce the condition of [4  e U0  when
the other covectors 1(z, 0), for 0 e(4 - )*, are in the subspace <1(z, j = 1,...,n>.

1(Z, 01 ) = Cil(Z, 61 i) <==> E z  " a l + E z - i+ifli = E ci (r  — E Z i j  13i)
iel j 1

Hence, by computing the coefficients of al, we have

Z '

[  ci  =  ifje/
Z 0

1 ci  = 0, if j I.

Substitute these for ci 's  in  th e  equation and  compute the coefficients of fi t
, for

i /. Then, we have

z-i+/= E (3.3)
; e l  Z °

S in ce  — i + I  > /1 for j e /, the variables Z ', /  >  2  can be expressed in
terms o f  Z 0, Z ij, 1 < i < j  < n, inductively. Therefore, the dim ension of Z n 1/0
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is  n o t g re a te r  th a n  n(n — 1)/2. Since Z n U0  c o n ta in s  a  re a l submanifold of
dimension at least n(n — 1) (namely the open piece of SO(2n)• [00 ]), the dimension
o f  Z n U0  i s  j u s t  n(n — 1)/2, a n d  it i s  d e f in e d  b y  (3.3). Hence Z n U0  i s
non-singular and  isomorphic to the  affine space C"("-

 1 )
12 . By multiplying e

to  z  from left, we conclude that Z  is a  non-singular variety defined by

z J z J + i + I  E z J + j+ I z J + i+ j

j e '
for a ll i, I, J ,  such that i /

Furthermore, since the isotropic subgroup at [On]  is  U(n), the  mapping

SO(2n) P(.4 +)

A A  [9e]

induces a n  SO(2n)-equivariant embedding

SO(2n)/U(n) Z.

The embedding is also surjective, since both sides are connected and compact.

Corollary 3.3. T he def ining equations of  Z  are

v v + i + / +  E v + i " v + i + i = o , f o r all i, 1, J, such that j J
j e t

I f  we identify Z  w ith  SO(2n)/U(n), E h a s  th e  following m eaning. The
homogeneous space SO(2n)/U(n) can  be  considered  to  be  th e  se t o f  complex
structures of R2 " preserving the metric and the orientation. Then, E is nothing
b u t a  correspondence between complex structures of R2 " and (1, 0) subspaces of
(R 2 1 *  C .  O n  th e  o ther h a n d , a  maximal isotropic subspace o f  (R2 ")* 0 C
defines a  complex structure of (R2 ")*, hence of R2 ", compatible with the metric,
by restricting the projection (R 2 1 *  c  (R 2 n s *) to  the isotropic subspace. Hence
the correspondence between the set of complex structures of R2 " compatible with
the metric and the set of maximal isotropic subspaces of R 2 " 0 C is bijective.

By considering orientations of corresponding complex structures, there are
two kinds of maximal isotropic subspaces.

Definition 3.4. A  maximal isotropic subspace o f  (R2 ")* C  is  ca lled  an
7-subspace if the corresponding complex structure of R2 " is compatible with the
orientation. Otherwise, it is called a  fl-subspace.

Hence E  i s  a  correspondence between Z n a n d  th e  s e t  o f  oc-subspaces of
(R 2 1 *  0  C .

E xam ple 3.5. Since dim z1+ = Z n  i s  the projective space P ( A )  if
n <  3 . If n = 4, dim Z 4  = 6  and dim PO +) = 7. Hence this is a  6-dimensional
non-singular hyperquadric defined by an  equation

z 0 z 1 2 3 4  z 1 2 z 3 4  z 1 3 z 2 4  z 1 4 z 2 3
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which is obtained by putting J =0 , i = 1, and I =  {2, 3, 4}.

n dim Z„ Z„ P(61+)

1 0 P° p0

2 1 p l p l

3 3 P3 P3

4 6 Q6 P '

•. . •.

n n (n —  1) SO(2n)/U(n) p2^- ' -1

B y Proposition 3.2, the distribution V(D) h a s  the m inim um  rank  on the
submanifold :

W:= {z e d + (X)Irank V(p*A - (X )* ),=  n1.

By pulling back V(D) t o  W, w e have a distribution which is a n  a-subspace at
each  p o in t .  H en ce  it d e fin e s  a n  alm ost com plex s tru c tu re  o n  W , b y  the
correspondence in Definition 3.4. If we regard W as a  fiber bundle over X , since
th e  almost complex structure i s  compatible w ith  the connection, w e  have a
complex structure  of the  vertica l and  the  horizonta l co tangent bundle . The
complex structure  of the horizontal cotangent bundle  is invariant under the
C x a c t i o n ,

 a n d  th e  complex structure of the vertical cotangent bundle is equal
to  the one induced by the  complex structure of the fibers. H e n c e  w e  have an
almost complex structure of

Z (X ):= P (W ) P (d  4- (X)),

by projecting the distribution on W to this space, which is a  Zn-bundle over X
b y  Proposition 3.2. W i s  a C '<-bundle over Z ( X ) .  W e define H *  to  b e  the
associated line bundle over Z (X ) .  I f  w e identify W w ith  (H*)x := H* \ {zero
vectors} , the almost complex structure of W can be extended to that of the total
space of H * .  W e have a commutative diagram :

H *  — > 0 ( — 1)

(3.4)

Z(X ) P(d + (X ))

where &(— 1) is  the tautological line bundle over P(A + (X ) ) .  Since &(— 1) has
a  connection induced by the connection and the Hermitian metric of /1+ (X ), H*
also has the induced connection by the diagram (3.4). We define H  as the dual
line bundle of H * over Z(X ).
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By definition, Z (X ) a n d  H 2  does no t depend  on the spin structure of X,
and they are well-defined even if X  has no spin  structure . B ut the line bundle
H  can be defined if and  only if X  has a spin structure.

Definition 3.6. L et X  be  a  2n-dimensional oriented Riemannian manifold.
The manifold Z (X ) with the almost complex structure is called the twistor space
o f  X .  I f  X  has a  sp in  structure , the  line bundle H  is called  the hyperplane
bundle of Z(X ).

The following theorem is a n  immediate consequence of the definition.

Theorem 3.7. For 2n - dimensional spin manifold X , we have a diagram:

H (.9(1)

Z (X ) - - - -P (4 +  (X )).

For a point x  of  X , the  f iber Z (X )„ is an  almost complex submanifold and the
alm ost com plex  struc ture  is e q u a l  t o  t h e  o n e  in d u c e d  b y  t h e  embedding
Z(X ) x — > P(A + (X),c).

R e m a rk s . 1 . B y  Proposition 3.2, Z (X ) is isomorphic to SO(X)/U(n). This
is  the original definition of a tw istor space o f  a  Riemannian manifold. ([0.R])

2. Even if  X  is  n o t  orientable, w e can still define its tw istor space. Let
be the double covering of X .  We define Z (X ):= Z (I)  as the  tw isto r space

of X .  Geometrically, this is nothing b u t  0 (X ) /U (n ) . In  th is case, H  can be
defined if and only if X  has a  pin structure.

3. The definition of Z (X ) only depends on  an  oriented conformal structure
o f  X ,  since  th e  tw is to r  operator is conform ally  in v a r ia n t  ( [F ]) . H ence a
conformal map f : X  —> Y between conformal manifolds induces a holomorphic map
J :  z (x ), Z ( Y ) . ("holomorphic" means the map preserves the almost complex
structures.)

4. If  n = 1 ,  Z (X )=  X .  This means that a  conformal structure determines
an  almost complex structure uniquely, which is always integrable. If n = 2, the
almost complex structure of Z (X ) is integrable if and only if X  is anti-self-dual
([A .H .S ]) . O n  the  other hand, if n > 3, the almost complex structure of Z(X )
is integrable if and only if X  is conformally flat, hence the integrability of Z(X )
is independent of the choice of the orientation of X  ([0 .R ]).

5. If Z (X ) is a  complex manifold, H  and H * are holomorphic line bundles
over Z(X ).

Now we study an im portant example of a tw istor space.

Example 3.8. Let S '"  be a  2n-dimensional sphere with the conformally flat
m etric . Then the twistor space Z (S 2 )  is  Z „ ,,.

This is show n a s  follows. Since the orthonorm al frame bundle o f  S '"  is
identified with SO(2n + 1), the twistor space Z (S 2 ) is isomorphic to SO(2n + 1)/
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U (n ) . The embedding SO(2n + 1) --÷ SO(2n + 2) induces a n  isomorphism

SO(2n + 1)/U(n) '=> SO(2n + 2)/U(n + 1)

Since the conformal transformation group on S 2 " is  S 0 0 (1, 2n + 1), the identity
component of SO(1, 2n + 1), the almost complex structure of Z(S 2 )  is invariant
under the action of S0 0 (1, 2n + 1). The action of S0 0 (1, 2n + 1) to Z(S 2 ) can
be complexified, a n d  th e  alm ost com plex structure i s  invarian t under this
PS0(2n + 2; C)-action. Hence the almost complex structure of Z(S 2 ) coincides
with the  one  as a  Hermitian symmetric space.

§ 4 .  Canonical bundles of twistor spaces

Let X  be a n  oriented Riemannian manifold, and Z (X ) be the twistor space
of X .  In  this section, we study the canonical bundle of Z(X ).

W e begin with a  useful lemma from the  representation theory.

Lemma 4 . 1 .  A ny one-dimensional representation of SU(n) is trivial.

It is convenient to use the geometric definition of Z(X ),

Z (X ) = SO(X)/U(n) = SPIN(X)/U'(n)

w here U '(n):=  ir'(U (n)) and 7r: SPIN(2n) S O ( 2 n )  is  the projection m ap. We
give a  geometric realization of the line bundle H 2 , defined in  [M ].

Lemma 4 . 2 .  I f  X  i s  a spin m anif old, the line bundle H *  ov er Z (X )  is
isom orphic to SPIN(X) x p . C ,  w here p  i s  a  representation o f  U'(n ) satisfying
p(co)2  =  det(7r(co)) f o r co ELP(n ). (Determinants o f  elements o f  U(n) are computed
by regarding them as complex linear endomorph isms of (1, 0) vectors.) Hence, for
a n  oriented R iem annian m anifold not necessarily  sp in , H 2  is  iso m o rp h ic  to
SO(X) X  d „  C.

P ro o f . As was shown in the proof of Proposition 3.2, U'(n) is the isotropic
subgroup at [0 0 ] e P(A + ) w ith respect to  the SPIN(2n)-action on P( 4+). H ence
U '(n )  a c ts  o n  t h e  one-dimensional subspace C•00  o f  A .  P u t  S U '( n )  =
n '(S U (n ) ) .  Then, by  L em m a 4 .1 , the SU'(n)-action is  loca lly  trivial. Since
— 1 e SU'(n) is not in  th e  isotropic subgroup at 0 0 , SU '(n) is not connected.
Hence the isotropic subgroup contains the identity component of SU'(n), which
is isomorphic to SU(n). Thus, if we denote it by SU(n), the U'(n)-action factors
through.

U'(n) U'(n)/SU(n) GL(C • 00 ) C  x .

S in c e  7( I (n )  : Ujn)/SU(n) -÷ U(n)/SU(n) is a  d o u b le  co v e rin g , w e  h a v e  a
representation p: U'(2n) —> C" satisfying t h e  re la tion : p(co)2  =  det(7r(w)). By
definition of p, U'(n) acts a s  pm o n  C • 00 f o r  some integer m .  Hence it suffices
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to  show that m = — 1, by computing the action of an element

co(a):= cos a + e ,*e„,, sin a = e,*( — e, cos a +
1

sin a) e 11' (n).

P u t  c(a) = cos a + — 1 sin a. T h e n  p(co(oc)) is e q u a l  t o  c(a), because det
rt(co(a)) = c(a)2 . O n  th e  o th e r  hand , w e  have  w(a)00 = c(a) - 1 00 . Hence we
complete the proof.

Example 4 .3 . W e give here the  hyperplane bundle over the  twistor space
of a 2n-dimensional sphere. As was mentioned in Example 3.8, the twistor space
Z(S 2 )  is  SPIN(2n + 1)/U'(n). Hence, by the above lemma, we have

H =  SPIN (2n + 1) x C

where p is the representation of U '(n ). If we extend the group SPIN(2n + 1) to
SPIN(2n + 2) as  in  Example 3.8,

H =  SPIN (2n + 2) x C.

Here, SPIN(2n + 2) is considered to be a  U'(n + 1)-bundle over Z(S 2 "), a n d  p
is considered to be a  representation of U'(n + 1) in  this case . T h is  line bundle
is no th ing  b u t  th e  pull-back o f  th e  hyperplane bundle over th e  projectivized
positive spin module of R 2 "±  2. p(A+(R2n+ 2 ) )  by the canonical embedding defined
in Proposition 3.2.

Now we can express the canonical bundle K z (x ) in  terms of the hyperplane
bundle H .  F o r a n  almost complex manifold M  of dimension m, the  canonical
bundle K m i s  the complex line bundle A ""M .

Theorem 4 .4 .  L e t  X  b e  a n  oriented R iem annian m anifold of dimension
2n. Then the canonical bundle o f  Z (X ) is isom orphic to H - 2 ".

P ro o f . By the splitting of the cotangent bundle of Z (X ), the (1, 0) cotangent
bundle has two components, namely Ali ° Z (X ) a n d  AP°

 Z (X ), o f rank  n  and
n(n — 1)/2, respectively. Hence the canonical bundle can be written as:

K.z(x) = /PIP Z (X )  A 7 f (n  1
) / 2 , 0  

z (x ).

Therefore, it suffices to prove the following lemma.

Lemma 4 .5 .  ( 1 )  Ate Z (X )  is isomorphic to H - 2 .
( 2 )  Arpn — 1)/2,0 Z (X ) is isom orphic to H - 2 ( n -  1 ) .

P ro o f . T he both statem ents a re  proved in  a  similar w a y . First define a
form  o n  SO (X), w hich  spans a  subbundle invariant under th e  right U (n)

-action. By Lemma 4.1, the  U(n)-action only depends on the multiplication by
in-th power of determinants of elements of U(n), for some integer m .  By Lemma
4.2, this m eans that the  form determines a section of H -

2m 0  A (Z (X )). Hence
we need to consider the following.

•  There are forms o n  SO(X) which determine non-zero sections of H -
2 m 0
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A7i°  Z (X ) in  (1) and  1-1- 2 m  0  A V n  — 1 )/ 2 ,0
Z (X ) in  (2), fo r some integers m,

respectively.
•  The integer in i s  — 1 in  (1), a n d  — n + 1 in  (2), respectively.

(1) For a  po in t x  of X , the fiber SO(X)„ is the set of orthonormal frames
of Tx  X. H e n c e , for each point of  SO (X ), we define a n  n-form co as

to:= (e l  + — 1 en +  1) A  (e2 + 1 en+2) A A  (e" + 1 e2 ")

w h e re , a t  e a c h  p o in t, (e l  ,...,e 2 ) i s  t h e  d u a l f ra m e  o f  t h e  corresponding
fram e. This is  a  basis o f /1

°
(Tx*X 0 C) when we take a  complex structure J

in  T„*X with respect to  the frame (e l  ,...,e 2 )  defined as

( 0
J = (4.1)

/„ 0  )

Hence C • co /171 S0(X) is a  U(n) invariant subbundle. By a simple computation,
the integer m is  — 1 in  this c a s e . Hence co determines a non-zero global section
of H2 Z ( X )  over Z(X ).

(2) W e define a  connection o n  SO(2n) a s  a  U(n) principal bundle over
SO(2n)/U(n). Let y be  a  subspace of so(2n) defined as

= la e so(2n)I JaJ
-

1 =  — al .

where J  is  the complex structure of R2 " defined as (4.1). Since we have

u(n)= la E so (2n)1 JaJ
-

1 = al ,

we have a decomposition of so(2n)

so(2n) = u(n)

If we regard so(2n) as a set of left invariant vector fields, y determines a horizontal
tangent bundle over SO(2n) as a principal U(n)-bundle over SO(2n)/U(n), since
y  is invariant under the adjoint action of an element of u (n ) . The almost complex
structure of SO(2n)/U(n) is induced by a  complex structure of the vector space
y  w hich is invariant under the  ad jo in t ac tion  o f u (n ) . B y tak ing  a  basis of
(y* 0  C ) " ,  a n d  taking th e  exterior multiplication of its elements, we define a
horizontal n(n — 1)/2-form on  SO(2n) as a  fiber bundle over SO(2n)/U(n). Since
this form  is invariant under the  left action of SO(2n), by defining the vertical
form (as a  fiber bundle over X ) locally and  patched them together, we have a
global n(n — 1)/2 form o n  SO(X) which spans a  subbundle invariant under the
right U(n)-action. Hence if we shall show m  =  — n + 1, it gives a non-zero global
section of H 2 ( n-  1 )  0  

A V n  — 1 )/  2 ,0  
Z (X ) and we complete the proof.

The value of m is computed by the induction with respect to  n. By Example
3.8, fo r  a  p o in t x  o f X , th e  fiber Z(X) x can  be  conside red  to  be  the  twistor
space of a (2n — 2)-dimensional sphere s2. - 2. And by Example 4.3, the restriction
o f  H  to Z (X ) x  is  n o th in g  b u t  th e  hyperplane bundle  a s  t h e  twistor space
z ( s 2.-2 ). Hence m i s  — n + 1.
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Remark. I f  X  is conformally flat, th en  th e  theo rem  is  a lso  true  in the
holomorphic category.

§5. Complexification of some conformal manifolds

The twistor space Z (X ) o f  a  2n-dimensional oriented Riemannian manifold
X  is considered to be a  fiber bundle over X  with fiber Z  SO(2n)/U(n). First,
we study the fiber Z (X ) x fo r each point x of X .  From now on, we assume that
n  is grater than o n e .  There is a  splitting of the (1, 0) tangent bundle o f Z(X )
corresponding to the  splitting of the tangent bundle a s  a  fiber bundle over X.

‘ )T ( " ) Z (X) 
7-, ,o

 Z (X) CI Z (X )

Furthermore, by th e  definition o f the  almost complex structure, 7',5" ) Z (X ) is
the set of complex tangent vectors of holomorphic directions of  Z (X )„ considered
a s  a  complex manifold by Theorem 3.7, and

7' 1'°) Z ( X )  SO(X) x p i  C"

where p i  i s  a  natural representation of U(n) to  C " . H e n c e  the norm al bundle
N x of Z(X )x is isomorphic to SO(X) x  x  p i  C " . Hence N x is a homogeneous vector
bundle over Z (X )„. Since the argument is independent o f the  choice o f x e X,
we omit the suffix for a  while and denote Z(X ) x , N x and T X  b y  Z , N  and R 2",
respectively. For each vector y of R 2 " 0 C, we define a section s(v) of N  over Z  by

s(v): Z N
(g 7t(1 0)(g 1 . v))

where 2r(l'o) R a. 0  c  ( R 2. (:) c ) (1 ,o) is the projection to  the (1, 0) subspace with
respect to  the complex structure of R 2 '  defining the  embedding U(n) SO(2n),
a n d  g  is  one of the inverse im age of 0 . b y  the  p ro jec tion  S O (2n) Z .  This
correspondence is well-defined, since 2r(1 0 ) is U (n)-equivariant. This is  the  way
to  c o n stru c t a ll h o lo m o rp h ic  se c tio n s  o f  N  o v e r  Z  b y  t h e  theorem  of
Borel-Weil. Moreover, if we apply the theorem of Bott-Borel-Weil-Kostant ([B]),
we have the following lemma.

Lem m a 5.1. L et N  be the holomorphic vector bundle over Z  as above. Then
the cohomology groups are

{R2. 0  c ,_  0
H U ,  (N)) =

0, i f  i > O.

A explicit description of holomorphic sections is obtained by the map s defined above.

Now, let us consider the fiber Z (X )„ over x E X .  By the definition of s, the
set of holomorphic sections of the normal bundle N x which vanish at some points
corresponds precisely to the set of all null vectors of T X  C  w i t h  the canonical
complex conformal structure induced by th e  Riemannian metric o f  X .  Hence
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we have proved the next theorem.

Theorem  5.2. The conformal structure of  X  can be recovered from the almost
complex structure of  Z (X ).

If the almost complex structure of Z (X ) is integrable, we can go further by
deformation theory of complex m anifo lds ([K ]). By Lemma 5.1, the set

X ':= { W c Z(X )I Z  with the normal bundle N w  isom orphic to N I

inherits a  2n-dimensional holomorphic structure, and a t each  point W , there is
an  isomorphism :

To.o) Ho(w w)). (5.1)

The fibers Z(X ) x ,  for x e X , are  points of X ' .  W e define the complexification
X ,  of X  as  th e  components o f X ' containing fibers Z (X ) x  f o r  a ll x e X .  The
points of X  c  X , are called real points of X .  A s  mentioned above, the set of
holomorphic tangent vectors corresponding, by (5.1), to the set of sections which
vanish at some points determines a holomorphic complex conformal structure on
X ,,  which is an extension of the conformal structure of X .  Furthermore, if  n
is e v e n ,  th e  sy m p le c tic  s tru c tu re  o f  (.61+ )* (i.e. t h e  SPIN (2n)-equivariant
isomorphism t: A  — >(4 + )* defined in Proposition 2.1) induces a  fixed-point free
anti-holomorphic involution on Z .  If we regard Z  as a set of compatible complex
structure of R 2 " ,  it  is  n o th in g  b u t  a  m ap sending a  complex structure J '  to
— J'.  Since it is SPIN (2n)-equivariant, it extends to an involution on Z(X )

:  Z(X ) Z(X ),

which is anti-holomorphic and preserves the fibration over X .  Hence T  induces
an anti-holomorphic involution o n  X e , an d  X  is  the fixed locus of

Theorem 5.3. L e t X  be a  2n-dimensional oriented conformal manifold with
n >  1 .  A ssume that the alm ost com plex  structure of  the tw istor space Z (X ) is
integrable. Then, there is a  2n-dimensional complex manifold X , w ith  a  complex
conformal structure. T h e  m an if o ld  X  is considered to be a  real subm anifold of
X , and the conformal structure of  X  is a restriction of  that of  X . Furtherm ore ,
i f  n  is ev en, there is an anti-holom orphic inv olution t o n  Z ( X )  an d  o n  X , ,
respectively , such that X  is the f ixed-point set of

§6 . Even dimensional spheres and generalized Penrose fibrations

For twistor spaces of conformal manifolds of dimension greater than or equal
t o  six , the  integrability o f  th e  almost complex structure is  equ iva len t to  the
conformally flatness of the underlying manifolds. For a conformally flat manifold
X  of dimension m grater than two, there is a  conformal map called a  developing
map
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0: Sm

w here  I is  the universal covering space of X  with a  conformal structure induced
f ro m  X .  Furtherm ore, 0  is un ique  u p  to  c o n fo rm a l transformations of
Sm. Hence, for a  conformal transformation a  of I , th e re  is  a  un ique  conformal
transformation b o n  Sm such that the following diagram commutes:

sm

al bi
Sm

Hence we have a group homomorphism :

'- :7.ci (X )-- .>  S0 0 (1, m + 1).

where S0 0 (1, m + 1) is  the  conformal transformation group of Sm. These facts
are easily deduced from a theorem of Liouville (see, for example, [D.F.N] Theorem
15.2).

In  the  following, we consider the following problems.
• Determine th e  complexification o f  a  2n-dimensional sphere 5 2 • I t  i s  a

2n-dimensional non-singuar complex hyperquadric Q2 n .

• Determine the action of S0 0 (1, 2n + 1) to the twistor space Z(S 2 ) and Q2 n .

First, we recall the case n = 2, in  which we have the Penrose fibration :

F1,2;4

P3G 2 , 4

where P3 is the twistor space of 5 4 and G2 , 4 is a Grassmannian manifold identified
with a four-dimensional complex hyperquadric Q4 by the Plücker embedding. By
definition, G2 , 4  parametrizes all the  lines in  P 3 . The norm al bundle o f  a  line
P' in P3 is isomorphic to H C) H, where H is the hyperplane bundle of 13 1 . Hence
the complexification of 5 4  i s  G2 , 4  =  Q 4 .  The flag manifold F1 , 2; 4  is considered
a s  a  submanifold of P3 X  G2 , 4  defined by

F1,2;4 {(2 , X) e P3 x  G2 ,4 1z e the line corresponding to x.}.

To generalize the situation to higher dimensional cases, we neglect the holomorphy
fo r a  while and write them as quotient spaces of SO(6) instead of SU(4),

F1 , 2; 4 =  SO(6)/U(1) x U(2),

P3 SO (6)/U (3),

Q4 '="' SO(6)/U(1) x SO(4).
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Then the  maps p i a n d  p 2  o f  th e  Penrose fibration are  given by the  canonical
projections:

P i :  SO(6)/U(1) x  U(2) --o SO(6)/U(3)

P 2 : SO(6)/U(1) x  U(2) —0 SO(6)/U(1) x  SO(4).

Furthermore, we have U(1) x  U(2) = U(3) n (U(1) x  SO (4)).
I n  another p o in t o f  view, P 3 determ ines a  family o f  submanifolds o f  Q,

isomorphic to P 2 ,  since we have

P 2 U(3)/U(1) x U(2)

Above consideration can be generalized i n  higher dimensional cases, by
considering the fibration:

Yn

\ P : (6.1)

z n +i Q2n

Y„:= SO(2n + 2)/U(1) x  U(n),

Z n + 1 := SO(2n + 2)/U(n + 1),

122 , :=  SO(2n + 2)/U(1) x SO(2n).

Then, w e have also U(1) x U(n) = U(n + 1)n(U(1) x  SO(2n)). N ote  th a t 4 4 1

is the twistor space of S2 " and Q2„ is identified with a  2n-dimensional non-singular
complex hyperquadric. The identification is obtained a s  follows.

L e t (e ...,e 2 „+  2 )  b e  th e  orthonormal basis of R 2 " + 2 . F o r  simplicity, we
take a  complex structure of R2 "+ 2  defined by

0— 1

1 0
(6.2)

0— I  
I n0

Let us consider a  map

2 )
p(R2n

+
_ 9. + 2 0 c)

S O (2 n
(6.3)

A l— + A  [e, —  —  1 e2 ],

where, for v E R 2 n+  2  C ) C , [y] denotes the im age of the projection m a p  to  the
projective sp a c e . Then, b y  th e  definition o f  th e  complex structure of R 2 " ,  it
induces an injection

SO(2n + 2)/U(1) x SO(2n) p(R2n+ 2 0 , (6.4)
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and the im age is  th e  se t o f  null vectors w ith respect t o  th e  bilinear form on
R 2 2  0  

hence  it is  isom orph ic  to  a  2n-dimensional non-singular complex
hyperquadric Q 2 „.

By the generalized Penrose fibration, Q 2 „ parametrizes submanifolds of Z n +,
isomorphic to Z n ' U(1) x SO(2n)/U(1) x U(n). Since the fibration are SO(2n + 2)-
equivariant, the subm anifolds of Z n + , corresponding to  a  p o in t  o f  Q 2 „ is
analytically isomorphic to Z„ with the norm al bundle isomorphic to N .  Since
the dimension of Q 2 „ is 2n, the complexification of S 2 " is identified with Q 2 „ by
the fibration (6.1).

Theorem 6.1. T he com plex if ication of  the 2n-dim ensional sphere w ith a
conformally f lat  structure is  a  2n-dimensional non-singular complex hyper quadric
Q 2 n .  Put

{(z, x)e Z n + , x  Q 2 n lz  E the submanifold corresponding to x} .

Then, the projections give a  generalization o f  the  Penrose f ibration (6.1).

Remark. In case of n = 2 , Y 2 , Z 2  and  Q4  a r e  all flag m anifolds. (W e use
the notation 'a  f lag  manifold' to  b e  a  se t o f  flags in  C m .) T he reason is that
SPIN(6) is isomorphic to SU(4) by a positive spin representation.

Since twistor spaces are conformally invariant, a conformal transformation
on S 2 " induces a holomorphic transformation on Hence we have a group
homomorphism

S00(1, 2n + 1) —> Aut(Z n + i ).

Since the automorphism group of Z n + 1  is P S0(2n  +  2 ; C), the above homomor-
p h is m  is  n o th in g  bu t the  com plex ifica tion  m a p  o f  t h e  r e a l  L ie  group
SO,(1, 2n + 1).

O n  the  other hand, Z n + ,  parametrizes submanifolds of Q 2 ,, isomorphic to

P" U(n + 1)/U(l) x U(n),

w hich a r e  identified with projectivized a-subspaces in  P (R 2 "+ 2  C )  b y  the
injection (6.4) induced  by  (6 .3 ). T h is  gives a  geometric description of the
correspondence 7-2  in §3.

N ow , we describe th e  rea l structure  of the generalized Penrose fibration,
w h e n  n  is  e v e n . W e  rega rd  S O (2n  +  1 ) and  S O (2n ) a s  the  subgroups of
SO(2n + 2) by

SO(2n + 1) = {A e SO(2n + =  e i l ,

SO(2n) = {A e SO(2n + 1 )IAe2 = e2}.

R2n + 1 and R 2 " are  regarded as the  subspaces of R 2 " 4 2  spanned by e 2 ,...,e 2 „4 2

and e 3 , ,  e 2 ,, + 2 ,  respectively. They are  defined to be a  natural representation
spaces of SO (2n + 1) and SO (2n), respectively, by restricting the SO(2n + 2)-
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a c tio n . Furthermore, the 2n-dimensional sphere S 2 " is considered to be the unit
sphere of R2

"
+  1

,  which is identified with SO(2n + 1)/SO(2n) by  the map:

SO (2n + s2n

Ae2

(6.5)

By Example 3.8, the  twistor space of S 2 " is  a  Hermitian symmetric space:

SO(2n + 1)/U(n) SO(2n + 2)/U(n + 1)

where U(n + 1) is considered to  be a  subgroup o f  SO(2n + 2) defined by the
complex structure (6.2) o f R2 "+ 2 ,  and  U(n) is considered to be the intersection
of U(n + 1) and SO (2n). The projection p of the twistor space to the sphere as
a  fiber bundle is written as:

p: SO(2n + 1)/U(n) SO(2n + 1)/S0(2n).

Now, under the above notation, we describe the embedding
Q2n

Q 2 n  
p (R 2 n + 2  0 0 .

T h e  submanifold o f  SO(2n + 2)/U(n + 1) corresponding to th e  p o in t i-2n+2e
SO(2n + 2)/U(1) x SO(2n) is  SO(2n)/U(n). By (6.5), th is is the fiber over

SO(2n + 1)/SO(2n) i 2 n ± i  =  e2 E S '.

Hence /2„ + 2  is a  real point corresponding to [e, — \ / - 1e2]e P (R 2 n+ 2  0  C ), by
(6.3). Since i is equivariant under the conformal transformation group, especially
the isometry group SO(2n + 1), we have

s2n pfR 2n + 2 0 0
(6.6)

X [ei — I x]

where, a s  (6.5), S 2 "  is now considered a s  a  u n it  sphere o f  R 2 " + 1  spanned by
e2 , ••• , e 2 n + 2 .  Hence, i f  n  is  even , th e  anti-holomorphic involution o n  122n

defined in  Theorem 5.3 is  the  one  induced by th e  anti-linear transformation a
o f  R2n + 2 

C  defined by :

This is deduced from the following proposition.

Proposition 6 .2 .  A  holomorphic transformation o f  Q2„ f ix ing the real points
is identity.

P ro o f .  This is because any holomorphic transformation of Q2 „ is induced
by a  linear transformation of R2 " C  preserving the  bilinear form, and the set
of real points i(S 2 ") spans the  whole space R2 " (:), C.

a(e.)=
f e , , 1;

— e» j  >  1.
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Note that o- also defines an anti-holomorphic involution on Q 2 „ even if n  is
o d d .  In  a ll cases, the set of fixed points coincides with the  se t o f real points
i(S 2 "), and this characterizes the anti-holomorphic involution on Q 2 „.

For a point x of Q 2 ,„ Z „ denotes the corresponding submanifold p i (p 1- (x))
of Z (S 2 )  b y  the  fibra tion  (6 .1). T h e re  is  a  useful criterion when two such
submanifolds intersect.

Proposition 6 .3 .  L et x  and  y  be two points of  Q 2 „. T h e  two submanifold
Z x  and Z y  intersect if  and only if the projective line pathing both x  and y  lies in Q 2 „.

P ro o f .  W e identify Q 2 ,, w i t h  the  se t o f p ro jec tiv ized  null vectors (i.e.
one-dimensional isotropic subspaces) in P(R 2 2  0  C) a s  a b o v e . Then, for two
poin ts x  and  y  in  Q 2 „ , the  line joining x and y lies in  Q 2 „  if  and  only if the
subspace spanned by x and  y  is isotropic.

T he  tw isto r space Z (S 2 )  is identified with SO(2n + 2)/U(n + 1), which
parametrizes the set of complex structures of R 2 2 com patible with the  metric
and  the  orien ta tion , o r equivalently th e  se t o f  a-subspaces of R 2 2  0  C .  L z

demotes th e  a-subspace corresponding to z eZ (S 2 "). T hen , fo r z EZ(S 2 ")  and
X EQ2„,

z e Z x <=>x c  L z , ( 6 . 7 )

where x is considered to be a  one-dimensional subspace o f R 2 n + 2  C .  Hence,
for a point x of Q 2 „, Z x  i s  the set of a-subspaces containing X.

First, if Z x  n Z y  0  0 ,  its elements are  identified with a-subspaces containing
both x a n d  y . Hence, as mentioned above, x and y can be joined by a line in Q 2 „.

O n the other hand, if x and y can be joined by a  line in Q 2 „, the subspace
spanned by x and  y  is  a 2-dimensional isotropic subspace of R 2 "+ 2  0  C .  Since
we assume n > 1, there is an a-subspace of R 2 2  0  C containing x a n d  y . Hence
there is a  po in t z  of Z(S 2 )  such that L z  con ta ins bo th  x  a n d  y .  This means
that z  is contained in  both Z x  a n d  Z y by (6.7).

Remark. If  x  a n d  y  satisfy the above condition, the intersection Z x  n Z y  is
always analytically isomorphic to SO(2n — 2)/U(n — 1), which is identified with
the set of a-subspaces of R 2 " + 2  C  containing both x and y.

§ 7 .  Definition of real structures when n is odd

In  th is section, w e  w an t to  use the anti-holomorphic involution  o n  Q 2 ,,
defined in  the  previous section to define an anti-holomorphic involution on the
complexification of 2n-dimensional conformally flat manifolds such that the set
of fixed points are the set of real points, in case n is  odd  and  n > 1.

A s  i n  t h e  p rev ious section , Z x  d e n o t e s  the  subm an ifo ld  o f Z (S 2 )
corresponding to a  po in t x  of Q2 n . Let p: Z(S 2 ") — S2 " be the projection. The
subset p ( Z )  is e ither a  p o in t, nam ely x, i f  x  is  a  rea l p o in t, o r  otherwise a
submanifold isomorphic to S 2 " 2 w hich is cut ou t by two hyperplanes.
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(7.1)

<=> x 1 +  (3X, y ) = 0, (9IX, y) = 0
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Proposition 7.1. I f  x  Q 2 „  is  n o t  a  real point, i.e. i(x ) x ,  t h e  subset
p ( Z )  S2 n is isomorphic to S 2 ' 2  and  obtained by cutting out by two hyperplanes
of  R 2 '.  Conv ersely , f o r any  such subm anifold, there are precisely  two points
of  Q2„ corresponding to the subrnanifold, and they are conjugate to each other by .

P ro o f . Let x be a  point of Q2„. Then, for a point y e S ',  y e p ( Z )  if and
only if the submanifolds Z x  a n d  Z y  in te rse c t. Hence, by Proposition 6.3,

p (Z ) = {y E S 2 n
 

Q,„1 x and y  are joined by a  line in  Q2,,}

W e com pute th e  right-hand condition explicitly. F o r  a  p o in t  y  o f  S2 ", the
corresponding projectivized null vector is [e l  — —  1 y] b y  (6.6), where S2 " is
considered as the unit sphere of R 2 " 1 R " 1  0 C with the basis (e 2  , ,  e  2 „, 2 ).
Let X be a  representative of x written as :

= )( l e i  + X,

where x' > 0 and X e R2 " + 1  ® C .  The condition for y is written as :

w here 93X a n d  3X deno te  t h e  re a l a n d  im aginary p a r t  o f  t h e  vector X,
respectively. Since X is  a  null vector,

)z) _ (x 1)2, 19u 12 _ 1 /  1 ou, 3.)0  0 ,

hence, we have

(91X, aX) = 0,

3X 0 0.

Furthermore, if TIX = 0, then x is a  real point and p ( Z )  is a point. I f  9IX 0 0,
p (Z )  is the (2n — 2)-dimensional sphere cut out by tw o hyperplanes (7.1). Note
that they are independent because 9IX and 3X are perpendicular.

O n the other hand, let us given a  (2n — 2)-dimensional sphere of S2 " cut out
by tw o hyperplanes defined by

h + (v, y) = 0

(w, y) = 0

where h is a  real number with 0 < h  <1  and y and w are unit vectors of R 2 " ±
such that (y, w) = O. Then, it is written as p ( Z )  fo r  a  non-real point x of Q2„
of the form :

x  = [he, + — h2  w + 1 v].

If h  is non-zero, h  and y are unique and w is unique u p  to  sign. I f  we change
the  sigh o f  w, w e have the  conjugate poin t b y  1 .  I f  h  is  zero, y a n d  w are
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unique up  to  0 (2 ). C hang ing  by  the action of an elements of S 0(2) gives the
same poin t of 122 n , a n d  b y  the  ac tion  of an  elements of 0 (2 )\S 0(2 ) g ives the
conjugate point by  f.

Now we can give a  definition o f a  real structure for the complexification of
a conformally flat manifold. Let X  be a 2n-dimensional conformally flat manifold
and Z(X) and X c  be  the twistor space and the complexification of X , respectively,
where we assum e n  >  1 . L et p: Z (X ) —> X  be the projection.

Definition 7.2. For a point x  of Xe \X, there is a unique point x' x  such
that p(Z x ,) = p(Z x). For a point x of X , we pu t x ' =  x . T hen , we define a  map
f  by

: X c X e

X'

W e call this m ap f the  real structure of X .

Theorem 7.3. L et X , X c  and  f  be as abov e. T hen f  is an anti-holomorphic
involution on X , ,  and i(x ) =  x  i f  and only  if  x  is a  real point, that is, x EX .

P ro o f . This is immediate by considering the  developing map 0 : s 2 n

w h e re  je  is  th e  universal covering space with the conformally flat structure
induced from X.

§8. Complexification of tori

In  this section, w e show tha t the com plexification of R '/F  for a  lattice
is (R 2 " C ) / F .  T h e  conformal struc tu re  on  i t  i s  a complexification of the
(conformally) flat structure of R 2 "/F.

First, we prove the complexification of R 2 " with flat metric is R 2 " ® C,
and the complex conformal structure is the complex linear extension of the metric
of R 2 ". Since R 2 " can be conformally embedded to S 2 " , K " is  ob ta ined  as a
submanifold of Q 2 ,,. A s  above, consider Q 2„ as a submanifold of P(R 2 "+ 2 C ) ,
and S 2 " as the unit sphere of R

2 n  + 1  ,  
which is spanned by e 2 ,...,e 2 „, 2 in  R 2 2 .

The embedding i  of 5 2 "  to  Q 2 „ as the set of real points is written as:

s2n p(R 2n + 2 0  0

[ei — 1 y]

The image i(S 2 ") is  the set of fixed-points of the anti-holomorphic involution f
on Q 2 ,, induced by the anti-linear transformation cr of R 2 "+ 2 C :

2n + 2
Cr( /T i e ) =  Y i e ,—  E Y e .( 8 . 2 )

j= 2

W e tak e  a  conformal embedding of R 2 "  to  S i "  su c h  th a t e 2 i s  a  p o in t  at

(8.1)
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infinity. L e t  y  b e  a  p o in t  o f  Q 2 ,, w ith  a  representative Y i ei , Z , ,  b e  the
corresponding submanifold of Z (S 2 ") a n d  p: Z(S 2 ") — > S 2 " b e  the projection
m a p . Then y  is  a  p o in t o f  R P  if  an d  only if  p(Z y )  does not contain  e2 ,  by
Proposition 6.3 and (8.1), which is equivalent to the  condition :

y l 1 y2 o O.

O n the other hand, if we change the homogeneous coordinates,

X 1 = — 1 Y2 ,

X 2 =  Y 1 + 1 Y2 ,

X i = — 1 Yi, j  = 2n + 2,

the quadratic equation defining Q 2

2n +2x 1 x 2 E  ( x - i ) 2

j= 3

and by (8.2) the anti-linear map cr of R 2 " 2 0  C is written as:

Furthermore, by (8.3), the open subset RP of Q 2 ,, is defined by

Hence, by (8.4) we take

xi:=  X i/X 1 , j  = 3,...,2n + 2

as coordinates of Re. The point
x 2 n +  2

)  is a  real point if and only if all
coordinates are  real numbers by (8.5). Furthermore, this system of coordinates
is  a  s tandard  one  o f R2 ". Hence we have an identification betw een RP and
R2n 0 c

By conformal invariance of twistor spaces, a  translation of R 2 "  induces a
holomorphic transformation of the twistor space Z(R 2 "), which also induces a
holomorphic transformation of R P  =  K  0  C . T h is  is nothing but a translation
of R2 " () C , which can be easily proved by using Proposition 6.2.

Theorem 8 . 1 .  L et F be a lattice of  R 2 ". Then the complexification of  R 2 "IF
is (R 2 " C)/F.

P ro o f . It is enough to verify that a submanifold
Z T x  w h en  x  is  a  po in t o f RP a n d  T  is  a non-trivial
be the point with coordinates (x3,..., 

x 2 n  +  2

)  and T be
(y 3,y 2 n  + ) The point Tx is written as (x 3  +  y 3 ,...
t h e  t w o  p o i n t s  x  a n d  T x  a r e  w ritten  in  th e
(x l , . . . , x2 n + 2 ) a s  :

Zx does not intersect with
translation of R2 ". Let x
the translation by a  vector

x 2n + 2 ± y 2n+2‘ .) By (8.4),
homogeneous coordinates

(8.3)

(8.4)

(8.5)
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x = (1, (x, x), x),

Tx = (1, (x  + y, x  + y), x  + y),

and the  bilinear product of these two vectors is :

1 1 1
—(x  + y , x  + y) + 

2
—(x, —  (x ,  X +  Y) = 

2
-13'12 0 0.2

Hence, by Proposition 6.3, Z x  a n d  Z ,„  are disjoint.

§ 9 . Solutions of the twistor equation

In  th is section, we study relationship between holomorphic sections of the
hyperplane bundle H  over Z (X ) and solutions of the twistor equations o n  X.

L et E  be  a  complex vector bundle over a manifold M  and  s  be a section
of E .  As in §1, we have a function sy  on the total space of E* (the dual bundle
of E ) by the canonical pairing.

Conversely, let f : E *  —>C  b e  a  complex function such that the restriction
map f 5 : Ex*

 
C is complex linear for all x e M .  Then, for each point x  of M,

there is a  po in t s(x)e.E x  such that

f ( )  = <(p, s(x)>, for a ll cp e

tha t is, s y  = f ,  where <  , >  denotes the canonical pairing of E *  and E.

Lemma 9.1. There is a one to one correspondence between the set of sections
of  E and the set of complex functions o f  E *  which are linear on E x* for all x e M.
W hen M is an almost complex manifold and E has a connection, s is a holomorphic
section if  and only  i f  s '  is a holomorphic f unc tion . (T he word "holomorphic" is
explained in the proof.)

P ro o f . We need to prove the last p a r t .  First we define an  almost complex
structure of E *  by a  connection of E .  A  connection of E  induces a  connection
of E*, which defines a  splitting of the exact sequence

0  --+  Tv (E*) T (E *) p* T (M) 0

where p: E* M  is  the projection.

T (E*) = Tv (E*) T H (E*)

TH (E*) p *  T (M )

The vertical part Tv (E*) has a  complex structure, since E *  is  a  complex vector
b u n d le . O n the other hand, the horizontal part TH (E*) has a  complex structure
induced by the complex structure of T (M )(M  is assumed to be an almost complex
m anifold). Hence T (E*) has a  complex structure and E *  is  an  almost complex
m anifold. N ote tha t the  almost complex structure of the hyperplane bundle H
over the twistor space Z (X ) is same as the one induced from the almost complex
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structure of Z (X ) and the  connection of H.
Now we define a  holomorphic section of E  as a  solution of the 0 operator

F(E) — >v  F(E  0  /1 1 M) 11- -(Q 1 ) F(E 0 A Q 1 M)

where m( ° ' 11 : M  —> A ° ' 1 M  i s  th e  projection. A  holomorphic function on  an
almost complex manifold is simply a  holomorphic section of a trivial line bundle
with a trivial connection.

We use the notation in Example 1.3. If we take a section s of E  and write
it locally s = ei si , then the function s '  o n  E *  is written a s  sy  =  i S i . Now we
give a condition when the  function sy is  holomorphic.

Os v =- aerist)

 t s= n o , i ) ( d t i Ti col + Ti col)si

= T iOsi + Ti n (° ' 1) (uy1)si( b y  E x a m p l e  1.3)
7 0,1) (w i

Hence sy is  holomorphic if and only if

s i + n (0,i) ( w ii ) s ; = 0 , i = m.

This is precisely the condition jrs = 0.

Let X  be a  2n-dimensional spin m anifold. Then the twistor operator is the
following operator defined in  Definition 3.1.

1: F(A + (X)*) F(.4+ (X )* 0 T* X ) F(K + (X )).

Let Z (X ) and H  denote the twistor space and the hyperplane bundle. W e define
the notion of holomorphic section of H  as in  the  proof of Lemma 9.1.

Theorem 9.2. There is a one to one correspondence between the solutions of
the tw istor equation and the holom orphic sections of  H over Z(X ).

P ro o f . F irs t, let s  e  F(A + (X )* ) b e  a  s o lu t io n  o f  th e  twistor equation:
Ds = O. Let R  be the kernel of L(D), where L(D) denotes th e  linear map defining
D .  Then, we have

dsv L =  v(P*ii (S ))2  G  V(P*  R)z V  (D )z for all z e d + (X )

by the definition of the m ap  V  Hence, by the definition of the almost complex
structure of the total space of (H*) x , we have on (H*)x

ãsv = 0.

Thus, sy  is  a  holomorphic function on  H * .  It is easy to  show that the function
s v li p  is  linear o n  H :,  for each z e Z ( X ) .  Hence, by Lemma 9.1, w e obtain a
holomorphic section f  of H  over Z (X ) such that
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J =  sy  IH -

Conversely, let f  b e  a  holomorphic section of H  over Z (X ). By Theorem
3.7, if we restrict H  to  the fiber Z(X) x , x e X , this is a  line bundle obtained by
pulling back the hyperplane bundle of P O  (X) x ) by the embedding,

Z (X ) x P ( A  ± (X) x ).

Thus we obtain holomorphic sections by  the pull-back :

i* : F(P(A +  (X ) x ), 0(1)) F (Z fix)

By the theorem of Borel - Weil, we have the following lemma.

Lemma 9.3. The pull-back map i* is an isom orphism . Hence the holomorphic
sections of  H x  ov er Z (X ) x  are  param etrized by  the space o f  the  linear form s of

(X ) x , that is, A +  (X ) x*.

Therefore, for each point x of X , there is a unique point s(x)e,A + (X ) x*  such
that

f lz ( x)
 = i* s(x),

or

f  I =  s O c r

Thus, we obtain a section s of A-1- (X)* over X .  Since, by Lemma 9.1, sy  IH * is
a  holomorphic function, for z e (H * )', we have

dsv G V(D) . (9.1)

Now, let us describe this condition by using the splitting of the distribution
V(15.). If we take a local frame (e 1 , , e  m ) of A + (X)* , where m = dim (A  )* = 2' - 1
s can be expressed locally as s = es t . Let ..... Tm ) b e  a  system of coordinates
of the fiber direction of A + (X ) , then sy = r 1si and,

dsv = (ch i — ri cabsi +  t i (dsi +

w here di  i s  the connection form of A + (X )* . By Example 1.3, for a  point z of
A +  (X ) x , V(p* A + (X )*) z  can be expressed explicitly as

V(p* ± (X )4 )z = <d-r1 — tfO L Ii = 1,...,m>.

Hence (9.1) is equivalent to

Ti (dsi + E V(p* z1 -  (X ) * )z

or

<z, (Vs)  p'(z)> e <z,
 c l *  (A  (X ) * )oz)>, (9.2)

where p': H* X  is  the projection and < , > denotes the  canonical pairing of
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,61+ (X ) and z1±(X)*.
Hence, to prove that the section s constructed from the holomorphic section

f  of H  is  a  solution of the tw istor equation, w e need to show  tha t s satisfies
the condition (9.2), for all z e 4 + (X) x . Since s satisfies (9.2), for a point z e(H*) x ,
the next lemma completes the proof of the theorem.

Lemma 9.4. T he submodule cl*((zr )*) o f  
( 4 + ) *

 0 (R 2")*  is  e q u al to  the
following subspace.

e(A + )* 0 (R 2 )1 <z, a> e <z, cl* ((z 1 - )*)> , f o r all z e +  such that [z] e Z}

where < , > denotes the canonical pairing of  A + and (A +)* , and Z is the submanifold
defined in Proposition 3.2.

Pro o f . T h e  above subspace  is invariant under th e  a c t io n  o f  SPIN (2n)
containing cl*((d - )*). By letting a  be  8°  0 e 1 a n d  z b e  00, one can see easily
that it is a proper subspace of (A +)* (0  R 20* .) Hence, by Lemma 2.3, we complete
the proof.

Example 9.5. (1) B y  E x am p le  4 .3 , the hyperplane bundle of the twistor
space Z(S 2 ) = Z n + ,  o f  th e  sphere S 2 "  is  isom orph ic  to  th e  pull-back of the
hyperplane bundle over the projectivized positive spin module of R 2 n + 2 . Hence,
by Lemma 9.3, the solution space of the twistor equation on S 2 " is 2"-dimensional.

(2) By the conformal invariance of the twistor equation, we have solutions
on R 2 " by the conformal embedding R2" c  s 2 n .  If n>  1 , since  the codimension
of Z(S 2 ") \ Z(R 2 ") is  g rea te r than  2 , the re  a re  n o  o ther so lu tions. Hence the
dimension of the solution space  is  a lso  2" . I f  n = 1, a solution of the tw istor
equation is identified with a holomorphic function o n  C .  Hence there are infinite
dimensional solutions.

(3) L e t F  b e  a non-trivial lattice o f  R2". Since R 2 " / / '  i s  flat, the spin
bundle A + (R'/F) is  trivial. Solutions of the tw istor equation on (R2 "/F) is
identified with solutions on R 2 " invariant under the action of F .  If n  >  1, it is
e a s y  to  sh o w  th a t  th e re  a re  no  non-constan t so lu tions invarian t u n d e r  a
non-trivial translation. Hence the solution space  is  2" '-d im ensiona l. If n = 1
and  r is generated by c  e C ' the solutions are holomorphic functions with a
period c. Hence the solution space is infinite dimensional. If the  rank of F is
two, the solution space is one-dimensional consisting of constant functions, since
R2 " /F  is  compact.
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