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Twistor spaces of even dimensional
Riemannian manifolds

By

Yoshinari INOUE

Introduction

The twistor space of a four-dimensional oriented Riemannian manifold X is
a total space of a certain P'-bundle over X with an almost complex structure,
and the integrability condition of the almost complex structure is equivalent to
anti-self-duality of the underlying manifold X ([A.H.S]). Relations between
certain field equations on the manifold X and cohomology groups of certain
holomorphic line bundles over the twistor space are studied by Hitchin in [H].

The notion of twistor spaces of four-dimensional manifolds was generalized
to higher dimensional oriented Riemannian manifolds by O’Brian and Rawnsley
([O.R]). Their definition of the twistor space Z(X) of a 2n-dimensional oriented
Riemannian manifold X is Z(X):=SO(X)/U(n), where SO(X) is the oriented
orthonormal frame bundle of X with right SO(2n)-action and U(n) is considered
to be a subgroup of SO(2n). Murray ([M]) studied relations between certain
field equations on the underlying manifold and cohomology groups of
holomorphic line bundles over the twistor space, under the condition of the
integrability of the almost complex structure of the twistor space.

In this paper, we shall give another definition of the twistor space Z(X) of a
2n-dimensional spin manifold X, and the hyperplane bundle H over it. More
precisely, if we denote by 4*(X) a positive spin bundle over X, Z(X) is defined
as a submanifold of P(4* (X)), and H is the pull-back of the hyperplane bundle
over P(4*(X)). Hence Z(X) and H? are defined even if X has no spin structure,
but H can be defined if and only if X is a spin manifold. This is a generalization
of the original definition by using the twistor operator ([A.H.S]), and gives an
immediate correspondence between solutions of the twistor equation and
holomorphic sections of the hyperplane bundle (see Theorem 9.2 below). This
is a generalization of a result in the four-dimensional case given by Hitchin in
[H]. The correspondence will be proved without assuming the integrability of
the almost complex structure of the twistor space.

To show the equivalence of two definitions of twistor spaces, we shall prove
that there is an embedding of the twistor space in the sense of [O.R] to the
projectivized spinor bundle P(4*(X)) which is induced by the canonical
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embedding of SO(2n)/U(n) into P(4%) equivariant under the action of
SO(2n). The image is the twistor space in our sense and two definitions of
almost complex structures coincide. Especially, the embedding is surjective if
n < 3. Hence the twistor space of a six-dimensional Riemannian manifold can
be defined to be a projectivized spinor bundle as in [W]. Another advantage
of our definition is that the conformal invariance of the twistor space, proved in
[O.R] and [M], can be reduced immediately from the conformal invariance of
the twistor operator ([F]).

Using the geometric definition of twistor spaces in [O.R], we shall also show
that twistor spaces enjoy similar properties as those in four-dimensional case
described in [A.H.S]. Let X be a 2n dimensional oriented Riemannian
manifold. Z(X) and H? denote the twistor space and the square of the
hyperplane bundle, respectively. The canonical bundle of the twistor space has
a form:

—2n
Kzxy~H

where the canonical bundle of an m-dimensional almost complex manifold is
defined to be a complex line bundle consisting of (m, 0)-forms. This isomorphism
is holomorphic, if the almost complex structure is integrable. The conformal
structure of X can be recovered from the almost complex structure of Z(X) (see
Theorem 5.2 below). Furthermore, if the almost complex structure of Z(X) is
integrable and n> 1, we shall define a 2n-dimensional holomorphic complex
conformal manifold X¢ as a family of certain submanifolds of Z(X) (see Theorem
5.3). Hence we have a double fibration, which is used to define the Penrose
transform,

where

Y:= {(z, x)€ Z(X) x X¢|zethe submanifold corresponding to x}

and p, (resp. p,) is the projection to the first (resp. second) factor. Although
X is defined in [M], the natural complex conformal structure of X¢ is not
mentioned there. The manifold X can be naturally considered as a submanifold
of Xc. Furthermore, there is an anti-holomorphic involution 7 on X, whose
fixed locus is X and the conformal structure of X is recovered by restricting the
complex conformal structure of X¢ (see Theorem 52 and Theorem 7.3
below). Thus, even if we forget the fibration over X, from the twistor space
Z(X), we can recover information of the conformal manifold X to a certain extent.
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In the following we shall study two examples, namely spheres and tori.

The twistor space of S2" is SO(2n + 2)/U(n + 1) with the holomorphic
structure as a Hermitian symmetric space, and the complexification S&" is a
2n-dimensional non-singular complex hyperquadric Q,,, The hyperquadric Q,, is
expressed as a homogeneous space: SO(2n + 2)/U(1) x SO(2n). Hence, in this
case, the fibration has the form:

SO(2n + 2)/U(1) x U(n)

/Ny

SO@2n +2)/U(n + 1) SO(2n + 2)/U(1) x SO(2n)

where all spaces have natural holomorphic structures as Hermitian symmetric
spaces and two projections are holomorphic mappings. The complex conformal
structure of Q,, is a natural one. This is a generalization of the so called the
Penrose fibration in case n = 2,

F1.2:4
F/ \’.2
p3 Giya

For general conformally flat manifold X, let X be the universal covering
space of X with conformally flat structure induced by X. There is a conformal
map called the developing map:

@: X —> S
which induces a group homomorphism:
@: 71, (X) —> SOg(1, 2n + 1).

Here, SO(1, 2n + 1) is considered to be the conformal transformation group of
S?". Since twistor spaces are conformally invariant, the problem of studying
twistor spaces of certain conformally flat manifolds is reduced to the study of
discrete subgroups of SOy(1, 2n + 1).

Following the above method, for a lattice I” of R?" with n> 1, we shall
show that the complexification of R*"/I" is (R*"® C)/I" with natural complex
conformal structure.

Let us explain briefly the contents of this paper.

In §1, we recall a general method to define a distribution by a first order
differential operators. In §2, to fix notation, we give an explicit description of
the spinor group SPIN(2n) and the spin module 4% in terms of the Clifford
algebra. In §3, we define twistor spaces of even dimensional conformal manifolds



104 Yoshinari Inoue

and show the equivalence to the definition given in [O.R]. In §4, we study the
canonical bundle of the twistor space. In §5, we define the complexification X
of X when the almost complex structure of the twistor space Z(X) is integrable,
and define a real structure of X¢ in case $dim X is even. In §6, we study the
generalized Penrose fibration, by considering the complexification of even
dimensional spheres. In §7, we define the real structure of X, when 1dim X is
odd. In §8, for a lattice I" of R?", we study the complexification of R?"/I". In
§9, we give an explicit correspondence between the solutions of the twistor
equation over X and the holomorphic sections of H over the twistor space Z(X).

I would like to thank Prof. K. Ueno and Dr. W. M. Oxbury for their
encouragement and valuable suggestions.

Notation

R: the real number field

C: the complex number field with the imaginary unit /— 1
C” : the set of non-zero complex numbers
so(m): the Lie algebra of SO(m)

0 —1,
J:= <I 0 ) a natural complex structure of R*"

U(n):= {AeSO(2n)|AJ = JA}
u(n): the Lie algebra of U(n)
Z,:=SO(2n)/U(n) with the Hermitian symmetric structure
Q,,: the 2n-dimensional complex hyperquadric

Let E be a real vector bundle (or a real vector space)
E ® C: the complexification of E

Let E be a complex vector bundle (or a complex vector space)
E*: the dual of E
E ™ : the set of non-zero vectors of E
P(E): the set of one-dimensional subspaces of E
[v]: the image of ve E™ by the projection map E — P(E)
O(1): the hyperplane bundle over P(E)
O(— 1): the dual bundle of (1)
I'(E): the set of sections of E
s¥: the function on E* defined by a section seI'(E)
JL(E): the bundle consisting of one-jets of sections of E
TM, T*M : the real tangent and cotangent bundle of a smooth manifold M
SPIN (2n): the spinor group
4: the spin module
A*: the positive or negative spin module
{6,, 1 < {1,...,n}}: the orthonormal basis of 4 defined in §2
cl: R*"® 4 — 4 the Clifford multiplication map
K . : the cokernel of c/*: (47 )* - (47)* ® (R*)*
V(D): the distribution defined by D
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Let X be a oriented Riemannian manifold (or a spin manifold)

A%(X): the positive or negative spin bundle

K. (X): the K, bundle

D: the twistor operator

SO(X): the oriented orthonormal frame bundle

SPIN(X): the spinor frame bundle

Z(X): the twistor space

H: the hyperplane bundle over Z(X)

Xc: the complexification of X

SO,(1, m): the identity component of SO(1, m), or the conformal transforma-
tion group of $™7 !, for m > 3

§1. The distribution defined by a first order linear differential operator

In this section, we recall how to define the distribution by a first order linear
differential operator. Let E be a complex vector bundle over a smooth manifold
M. By the canonical pairing of E and its dual bundle E*, the section s of E
defines a complex function s¥ on the total space of E*. Let p: E* > M be the
projection, and J, (E) denotes the one-jet bundle of E. We define a linear map

V:p*J,(E) — T*EH® C

by V(p*j,(s)) = ds" for all sections s of E, where jl(s)e‘F(Jl(E)) is the one-jet
of s. Let F be another vector bundle over M. For a first order linear differential
operator D: I'(E) —» I'(F), we have a linear map

L(D): J,(E) — F.

Definition 1.1. For a differential operator D: I'(E) — I'(F), let R be the
kernel of the linear map L(D). A distribution V(p*R) on the total space of the
dual vector bundle E* of E is called the distribution of D, and denoted by V(D).

Now consider the case in which a differential operator D has a form:
D: I'(E) — I'(E® T*M) —= I'(F)

where V' is a covariant derivative and ¢: E®Q T*M — F is a linear map. In
terms of jets, it is written as:

LD): J(E) 2 E®@T*M - F.

The linear map L(F) defines a splitting of the exact sequence

0—E®T*M —J,(E) — E—0.

L(V)

Hence there is a splitting
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JIE)Y~E®(E®T*M),

where E is identified with the kernel of L(F), and by using the splitting,
R:= ker L(D) can be written as:

R~E®S. (1.1)

where S denotes the kernel of o.
On the other hand, the connection defines a splitting of the real cotangent
bundle of E*:

T*(E*) = THE*) @ T} (E¥) (1.2)

where the first component is the vertical cotangent bundle defined by the
connection of E, and the second component is the horizontal cotangent bundle.

Let us study a relationship between two splitttings (1.1) and (1.2), by the
map V.

First, we study V(p*E). The real vector bundle T*(E*) has a natural
complex structure, since E* is a complex vector bundle. Hence the complexified
bundle T*(E*)® C has two components, T**V(E*) and T*°'(E*). and the
subbundle T*""9(E*) is isomorphic to p*E. The restriction map V|, is nothing
but the inverse of this isomorphism. Hence we have

V(p*E) = T O(E*).

Next, we restrict V to p*(E® T*M). This is obtained by the canonical
pairing of E and E* and identifying T*M ® C with the complexified horizontal
cotangent bundle. Therefore, we have

Vp*S) = THEN)®C.

Proposition 1.2.  For a differential operator D = gV, where 6: EQ T*M — F
is a linear map and V is a covariant derivative, there is a splitting of the distribution
V(D) = V(p*E) ® V(p*S) corresponding to the splitting (1.2) of the cotangent bundle,
where S is the kernel of o. Furthermore, we have

V(p* E) - TV*“‘O’(E*).

Example 1.3. If D=V, then S=0 and V()= V(p*E)= T}*""(E*).
Hence we have

THEHN®C=VFaVPF).

This is a way to define the vertical cotangent bundle (hence also the horizontal
tangent bundle) by a covariant derivative. We give here a basis of the bundle
V(F). Let (ey,....e,) be a local frame of E, and (e',...,e") be the dual frame. We
write the covariant derivative in terms of this frame, Ve, = e;w!. Let (1,,....1,,
be the local coordinates of the fiber part of E* corresponding to the frame
(e!,...,e™. Then V(F) is spanned by
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J P =
dr; — 10}, i=1,...,m

§2. Spinor groups and spin modules

In this setion, to fix notation, we give a description of SPIN(2n), 4* and
certain SPIN (2n)-equivariant maps in terms of the Clifford algebra CLIF (2n).
(See [G] Chapter 3, for detail.)

Let E be a 2n-dimensional real vector space with a positive definite inner
product ( , ). The Clifford algebra CLIF (E) is an algebra generated by E subject
to the relations

v*v + (v, v) =0, for veE. 2.1)

Since this relation is of even degree in the tensor algebra & V with respect to
the canonical grading, we may regard CLIF(E) as a Z/2Z graded algebra,

CLIF, (E) = vy %+ * vy |vq,..., 05, €E, k> 0)
CLIF _(E) = vy * -+ %034 1| V1,00, U+ 1 EE, K 2 0).

Let A(E) be the exterior algebra of E. The exterior multiplication by an
element of E defines a mapping ext: E - END(A(E)). Let interior multiplication
int (v) be the dual endomorphism of ext(v). Now define

¢: E— END(A(E))
v— ext (v) — int(v).

Then we have c(v)> + (v, v)id = 0. Hence, by the universality of the Clifford
algebra, there is a unique algebra homomorphism ¢’ which is an extension of ¢

¢': CLIF (E) —> END (A(E)).

Let (ey,...,e;,) be an orthonormal basis of E. For I = {i, iy,...,i}, | <i; <i,
< <i,<2n, let e be e; xe;,*---xe;, . Then we have c'(e))1 =¢;, Ae, A+ A
e;. Hence the map wrc'(w)1 induces an isomorphism of vector spaces

CLIF (E) ~ A(E).

We define a positive definite inner product in CLIF (E) by pulling back that of
A(E). Then,

{e,II = {1,...,2n}}

is an orthonormal basis of CLIF (E). The multiplication of e; to CLIF (E) from
left or right induces a permutation of the basis, hence it is isometric. This means
that the left or right multiplication of any unit vector v of E is isometric. In
particular, for any unit vector v of E, the map x+—v#*x#*v is isometric, which
preserves the subspace E and induces on it the reflection map with respect to
the hyperplane with the normal vector v. We let SPIN(E) be the set of all
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weCLIF (E) expressible as a product of an even number of unit vectors of E,
SPIN(E) = {v; *---*v0,, € CLIF (E)|v,,..., 05 unit vectors in E}.

This forms a group by the Clifford multiplication. An element w of SPIN(E)
satisfies the equation ‘wxw = 1, where ‘w denotes the transpose of w. For an
element w of SPIN(E), the map

p(w): CLIF (E) — CLIF(E)
X—— wxXxx'w

preserves E and induces on it an isometric transformation preserving the
orientation. Hence we get a homomorphism of groups

n: SPIN(E) — SO(E)
W p(W)|E.
The kernel is in the center of the CLIF(E), which consists of scalars, because E
is even dimensional. We have an exact sequence of groups:
1 — {& 1} —> SPIN(E) — SO(E) — 1

The group SPIN(E) is the universal covering group of SO(E), if n > 2.
Next, we define a spin module. Put

Oo:=(1+/ —legxe,py)x(1+/—leyxe,p)*x(1 +/—le,xey,),
and
0,=¢exb, Ic{l,..,n}.

We define a spin module 4 = 4(E) as a complex subspace of CLIF(E)® C
spanned by 6, I = {1,...,n}. We have

{\/— le;x6,, ifigl

ens+i* 0 =
- —lex6,, ifiel,

since we have

1+ —1lee,.)*e, s ifi#j
e,,+i*(1+\/—1eje,,+j)={( s s

\/—le;*(]+\/—leje,,+j), 1fi=_]
(14+/—lejxe, )res=ex(1+/—lejxe,, ), if i##]j.

Hence the spin module 4 is invariant under the left action of CLIF (E).
Since SPIN(E) = CLIF, (E), the positive spin module AY = A*(E) (resp. the
negative spin module 4~ = 47 (E)) defined as

A4*(E):= A(E)n(CLIF . (E) ® C)



Twistor spaces 109
(resp. 47 (E):= A(E)n(CLIF _(E)® C))

is invariant under the action of SPIN(E).

Now let us show that {6} is a basis of 4. For simplicity, we extend the
notation of multi-indices. We define a multi-index to be a finite sequence of
elements of {£ 1,..., + n}. For a multi-index I = (m,,...,m,), — I and 'I are the
multi-indices defined as

—I:=(—myq,..., — my),
= (my,...,my).
For another multi-index J = (m{,...,m;), we define the addition I + J to be
I+ J:=(my,....m, mi,....m)).
For a multi-index I = (gi), where e = £ 1 and 1 <i < n, we define
e :=¢-e,

and for a general multi-index J, we define e, inductively, such that e;’s satisfy
the following identities:

ey =e€5%ey, for all J and J'.
With respect to other operations of multi-indices, we have
e_;=(— l)meb
e ='ey,
and
eryy =ex implies e, =e_g k.

Put A:={1,...,n}. For a multi-index I, there is a unique subset I’ of 4 such
that e, = + e;,. We define the length of I as the number of elements of I', and
denote it by |I].

[I:=#1'.

We regard a subset of A as a multi-index by the natural order such that two
definitions of e, coincide. Define 6,:= ¢;* 0, as before.

Proposition 2.1. (1) There is a bilinear form (, ) on A equivariant under
the action of SPIN(E).
(2) {6,/ = A} is a basis of A.
(3) By the invariant bilinear form, there is an isomorphism between A and A*. Let
{0"|1 = A} be the dual basis of A*. The isomorphism is written as:

4 — A4*

01,__>0—I+A’
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where we use the same notation of multi-indices for the dual basis. Hence
(A%)* ~(4%) if n is even, and (A*)* ~ (A7) if n is odd, as SPIN(E)-modules.

Proof. The bilinear map
4dx4—C-2"0,
(x, y)—'x*y

is well-defined, since we have

M+ —lexe, )x(1+/—lexe,)=0
M+ —lexe)rex(1+/—lexe, ) =2ex(1+/—lexe,,).

We define a bilinear form (, ) as the coefficients of 2"6,. Since 'w*w = 1,
weSPIN(E), we have

wex)x(wry) ="xx(wrw)xy="x*y.

Hence it is invariant under the action of SPIN(2n). Now let us compute (6;, 6,)
for I, J c A.

Oy %0, = (e * Oo) * (e % Oo)
="'Gpx'e;xe;x Oy

—{2"011+J, ifIHJ=A
B 0, otherwise.

(2.2)

Hence {6,|I = A} is linearly independent, that is, a basis of 4.
(3) is immediate by (2.2).

By multiplying vectors of E from left to the spin module 4, we get a
SPIN (E)-equivariant map:

c:E®A4— 4
VR W UxW

called the Clifford multiplication map. Since ¢/ is surjective, the dual map c/*
is injective. By simple computation, we have an explicit description of this map.

Lemma 2.2. The SPIN (E)-equivariant map cl* is written as:

cl*: 4¥* — A* R E*

6’&——>29-i+'®ai + 20—i+l®ﬂi
iel i¢l

where of:=¢ + . /—1e"t and pli=e —/— 1", for i=1,...,n.

Let K be the cokernel of c/*. We have an exact sequence of equivariant
maps:
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00— 4* “HA* @ E* 5 K — 0. 2.3)
Let K, be the image of (4%)* ® E by k, which are SPIN (E)-submodules of K.

Lemma 2.3. (1) The SPIN(E)-modules K. are irreducible.
(2) c*((4¥)*) is a maximal proper SPIN (E)-submodule of (4%)* ® E*.

Proof. By the representation theory of compact Lie groups, there is a
splitting of (2.3) as SPIN (E)-submodules:

(Ai)*®E* — K:t @(A¢)*.

Hence it suffices to show that K, are irreducible. The dimension of K, are
equal to 2n — 1)2""%, If n =1, then it is equal to 1, hence the irreducibility is
obvious. Since SPIN(E) is connected, it suffices to prove the irreducibility of
their differential representation. Since the Lie algebra so(E) of SPIN(E) is
semi-simple if n> 2, we can use the representation theory of semi-simple Lie
algebras. We fix a Cartan decomposition of the Lie algebra so(E)® C. Let A
and A’ be the highest weight of (E® C)* and (4%)*, respectively. Then, there
is an irreducible submodule of (4*)* ® E* with the highest weight A + A’, whose
dimension is (2n — 1)2"!, which can be computed combinatorially by Weyl’s
dimensionality formula. Since this is greater than the dimension of (4¥)*, namely
2"~ !, this submodule must be K.

§3. Twistor spaces

Let X be an oriented Riemannian manifold of even dimension 2n. For
simplicity, we assume that X has a spin structure, and let SPIN(X) or SO(X)
denote the spinor or oriented orthonormal frame bundle of X, respectively. The
Levi-Civita connection on SO(X) induces a connection on SPIN(X).

By the positive (resp. the negative) spin representation 4% (resp. 47) of
SPIN (2n), we define the positive (resp. the negative) spin bundle of X and denote
it by 47 (X) (resp. 4 (X)),

A%(X):= SPIN(X) X gpniam 4+
The dual vector bundle is written as:
A*(X)* = SPIN(X) X gpynanm (45)*.
Similarly, we define
K, (X):= SPIN(X) X gpiniam K +

where K, is a SPIN(2n)-module defined by the exact sequence:

00— (4 * S (U @R¥M)*F 5K, —s 0. (3.1)

The SPIN (2n)-equivariant map « induces a linear map:
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K: AT (X T*X — K. (X).

Definition 3.1. The twistor operator D is a first order linear differential
operator defined as

D: I(4* (X)) — I (4*(X)* ® T*X) > I'(K (X)),
where V is the covariant derivative induced by the Levi-Civita connection.

Now let us apply the theory developed in §1 to the situation in which M
is a Riemannian manifold X and D is the twistor operator D = koF. Then we
have a distribution V(D) on the total space of 4% (X). Since the kernel of x is
(47)* by (3.1), by Proposition 1.2, the distribution has two components,

V(D) = V(p*4* (X)) @ V(p*4™(X)*)
where p: A% (X) — X is the projection. Furthermore, V(p*4™*(X)*) is a subbundle
of T¥(4*(X))® C consisting of (1, 0) covectors with respect to the complex
structure of the fibers. Hence, for each point z of 4% (X), V(p*4*(X)*), is a
maximal isotropic subspace of T,;*(4% (X)), ® C.

Let us consider the subset V(p*4~ (X)*) of TF(4*(X))® C. By trivializing
the vector bundles locally, the composition of the mappings

p*A (X — p*(A4T(X)* @ T*X) — T (4™ (X))
is obtained by the composition of the mappings
l:A* x (47)* LAt x (4)* ® (R*™)*) — (R2")* ® C

by Proposition 1.2, where the second map is induced by the canonical pairing
of 4% and (4*)*

Now we compute the rank of V(p*4~(X)*),, for wed*(X). Let w be
written as (4, z), where AeSPIN(X) and zed4*, then the rank of V(p*4~(X)*),
is equal to that of

E(z):= {l(z, Y)Y e(47)*}.
Note that £ is equivariant under the action of SPIN(2n);
E(A-z)=A-E(2), for all AeSPIN(2n). (3.2)

Since we have Z(z) = Z(c-z), for all ceC*, we define E[z] as Z(z) where z is a
representative of [z]e P(4%).

Proposition 3.2. For an element [z]eP(4"), we have rank Z[z] > n, and
Z =2Z,={[z]eP(4%)|rank E[z] = n}

is a non-singular projective variety of dimension %n(n—1). There is an
SO(2n)-equivariant diffeomorphism between Z and SO(2n)/U(n). Furthermore, for
a point [z] of Z, E[z] is a maximal isotropic subspace of (R*")* ® C.
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Proof. We use the notation of Proposition 2.1. Let z be a point of 4
written as Z'6,. Then, by Lemma 2.2, we have

I(z, 0" = {z, cI*(0"))

— Zz—i+1ai + Zz—i-f-lﬂt“

iel i¢l
where ( , > denotes the pairing of 4* and (4%)* In particular, since

[(0o, 0" = o, Z[0,] = <&'|i =1,...,n), which is regarded as the set of (1, 0)
covectors with respect to a natural complex structure J of R?" defined as

<0 —I,,)
J:= .
I, O

Hence [6,] is in Z. On the other hand, the SPIN (2n)-action of 4" induces an
SO (2n)-action of Z. With respect to this action, by (3.2), the isotropic subgroup
at [6,] is contained in

U(n) = {AeSOQ2n)| A- Z[6,] = Z[0.]}.

Hence Z contains a manifold of real dimension at least n(n — 1).
Let z satisfy Z° # 0, then, for j=1,...,n, we have

I(z, 0%) = 2°¢) — ¥ ZIip1,
i#j

These covectors are linearly independent, and span a maximal isotropic
subspace. Therefore, the rank of EZ[z] is not less than n. Since the rank of =
is invariant under the action of SPIN(2n), this is true for all [z] in P(47).
Put Uy:= {[z]1€P(47)|Zy, #0}. We deduce the condition of [z]€ U, when
the other covectors I(z, ¢), for ¢ €(47)*, are in the subspace {I(z, #)|j = 1,...,n).

I(Z, 01) — le(Z, Bj)@ZZ_H'Iai + Zz—i+lﬂi — Z cj(zﬂaj _ Z Zijﬁi)
iel i¢l j=1 i#j
Hence, by computing the coefficients of o/, we have
Z—j+l
J = Z@
c;=0, ifj¢l

, ifjel

Substitute these for ¢;’s in the equation and compute the coefficients of ', for
i¢l. Then, we have

—j+I
Z—i+I - _ ZZ

o z° z" -3

Since | — i+ I|>|—j+ I| for jel, the variables Z’, |I| > 2 can be expressed in
terms of Z° ZY, 1 <i < j<n, inductively. Therefore, the dimension of ZnU,
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is not greater than n(n — 1)/2. Since ZnU, contains a real submanifold of
dimension at least n(n — 1) (namely the open piece of SO(2n)-[6,]), the dimension
of ZnUp is just n(n—1)/2, and it is defined by (3.3). Hence ZnU, is
non-singular and isomorphic to the affine space C*"~'/2, By multiplying e_.,
to z from left, we conclude that Z is a non-singular variety defined by

VAVAREE YW ARV AR E 1) for all i, I, J, such that i¢l

jel
Furthermore, since the isotropic subgroup at [6,] is U(n), the mapping
SO(2n) — P(4™)
Ar— A-[6s]
induces an SO(2n)-equivariant embedding
SO(2n)/U(n) — Z.
The embedding is also surjective, since both sides are connected and compact.

Corollary 3.3. The defining equations of Z are

ZIZIri N ZIHit ZIYiv =0, for all i1, J, such that i¢l
Jjel

If we identify Z with SO(2n)/U(n), = has the following meaning. The
homogeneous space SO(2n)/U(n) can be considered to be the set of complex
structures of R?" preserving the metric and the orientation. Then, = is nothing
but a correspondence between complex structures of R?" and (1, 0) subspaces of
(R**® C. On the other hand, a maximal isotropic subspace of (R?")*® C
defines a complex structure of (R2"*, hence of R?", compatible with the metric,
by restricting the projection (R*")* ® C — (R?")* to the isotropic subspace. Hence
the correspondence between the set of complex structures of R*” compatible with
the metric and the set of maximal isotropic subspaces of R*"® C is bijective.

By considering orientations of corresponding complex structures, there are
two kinds of maximal isotropic subspaces.

Definition 3.4. A maximal isotropic subspace of (R*")*® C is called an
x-subspace if the corresponding complex structure of R?" is compatible with the
orientation. Otherwise, it is called a S-subspace.

Hence £ is a correspondence between Z, and the set of a-subspaces of
(R>"* ® C.

Example 3.5. Since dim4* =2""! Z, is the projective space P(4%) if
n<3 Ifn=4,dimZ, =6 and dimP(4*)=7. Hence this is a 6-dimensional
non-singular hyperquadric defined by an equation

Zﬂ21234 _ 212234 + 213224 _ 214223 — O,
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which is obtained by putting J =@, i =1, and I = {2, 3, 4}.

n dim Z, A P4*)
1 0 PO P°
2 1 P! p!
3 3 p3 p?
4 6 0, p’
n nn-1 SO(2n)/U(n) | S

By Proposition 3.2, the distribution V(D) has the minimum rank on the
submanifold :

W:= {zed*(X)|rank V(p*4~ (X)*), = n}.

By pulling back V(D) to W, we have a distribution which is an a-subspace at
each point. Hence it defines an almost complex structure on W, by the
correspondence in Definition 3.4. If we regard W as a fiber bundle over X, since
the almost complex structure is compatible with the connection, we have a
complex structure of the vertical and the horizontal cotangent bundle. The
complex structure of the horizontal cotangent bundle is invariant under the
C*-action, and the complex structure of the vertical cotangent bundle is equal
to the one induced by the complex structure of the fibers. Hence we have an
almost complex structure of

Z(X):= P(W) < P(4* (X)),

by projecting the distribution on W to this space, which is a Z,-bundle over X
by Proposition 3.2. Wis a C*-bundle over Z(X). We define H* to be the
associated line bundle over Z(X). If we identify W with (H*):= H*\{zero
vectors}, the almost complex structure of W can be extended to that of the total
space of H*. We have a commutative diagram:

H* — O(— 1)
| | (3.4)
Z(X)— P(4* (X))

where ¢(— 1) is the tautological line bundle over P(4*(X)). Since O(— 1) has
a connection induced by the connection and the Hermitian metric of 4*(X), H*
also has the induced connection by the diagram (3.4). We define H as the dual
line bundle of H* over Z(X).
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By definition, Z(X) and H? does not depend on the spin structure of X,
and they are well-defined even if X has no spin structure. But the line bundle
H can be defined if and only if X has a spin structure.

Definition 3.6. Let X be a 2n-dimensional oriented Riemannian manifold.
The manifold Z(X) with the almost complex structure is called the twistor space
of X. If X has a spin structure, the line bundle H is called the hyperplane
bundle of Z(X).

The following theorem is an immediate consequence of the definition.

Theorem 3.7. For 2n-dimensional spin manifold X, we have a diagram:

H — o)
l |
Z(X) — P(4* (X)).

For a point x of X, the fiber Z(X), is an almost complex submanifold and the

almost complex structure is equal to the one induced by the embedding
Z(X), > P(4™ (X))

Remarks. 1. By Proposition 3.2, Z(X) is isomorphic to SO(X)/U(n). This
is the original definition of a twistor space of a Riemannian manifold. ([O.R])

2. Even if X is not orientable, we can still define its twistor space. Let
X be the double covering of X. We define Z(X):= Z(X) as the twistor space
of X. Geometrically, this is nothing but O(X)/U(n). In this case, H can be
defined if and only if X has a pin structure.

3. The definition of Z(X) only depends on an oriented conformal structure
of X, since the twistor operator is conformally invariant ([F]). Hence a
conformal map f: X — Y between conformal manifolds induces a holomorphic map
f:Z(X)>Z(Y). (“holomorphic” means the map preserves the almost complex
structures.)

4. If n=1, Z(X)= X. This means that a conformal structure determines
an almost complex structure uniquely, which is always integrable. If n =2, the
almost complex structure of Z(X) is integrable if and only if X is anti-self-dual
([A.H.S]). On the other hand, if n > 3, the almost complex structure of Z(X)
is integrable if and only if X is conformally flat, hence the integrability of Z(X)
is independent of the choice of the orientation of X ([O.R]).

5. If Z(X) is a complex manifold, H and H* are holomorphic line bundles
over Z(X).

Now we study an important example of a twistor space.

Example 3.8. Let S?" be a 2n-dimensional sphere with the conformally flat
metric. Then the twistor space Z(S?") is Z, ;.

This is shown as follows. Since the orthonormal frame bundle of S$*" is
identified with SO(2n + 1), the twistor space Z(S2") is isomorphic to SO(2n + 1)/
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U(n). The embedding SO(2n + 1) - SO(2n + 2) induces an isomorphism

SO@2n + 1)/U(n)—=> SOQ2n + 2)/U(n + 1)

Since the conformal transformation group on S2" is SOy(1, 2n + 1), the identity
component of SO(1, 2n + 1), the almost complex structure of Z(S*") is invariant
under the action of SOy(1, 2n + 1). The action of SOy(1, 2n + 1) to Z(S>") can
be complexified, and the almost complex structure is invariant under this
PSO(2n + 2; C)-action. Hence the almost complex structure of Z(S>") coincides
with the one as a Hermitian symmetric space.

§4. Canonical bundles of twistor spaces

Let X be an oriented Riemannian manifold, and Z(X) be the twistor space
of X. In this section, we study the canonical bundle of Z(X).
We begin with a useful lemma from the representation theory.

Lemma 4.1. Any one-dimensional representation of SU(n) is trivial.
It is convenient to use the geometric definition of Z(X),
Z(X)=S0(X)/U(n) = SPIN(X)/U’(n)

where U’(n):= n~*(U(n)) and =n: SPIN(2n) - SO(2n) is the projection map. We
give a geometric realization of the line bundle H?, defined in [M].

Lemma 4.2. If X is a spin manifold, the line bundle H* over Z(X) is
isomorphic to SPIN(X) x ,.C, where p is a representation of U'(n) satisfying
p(w)? = det(n(w)) for weU’(n). (Determinants of elements of U(n) are computed
by regarding them as complex linear endomorphisms of (1, 0) vectors.) Hence, for

an oriented Riemannian manifold not necessarily spin, H? is isomorphic to
SO(X) x 4o C.

Proof. As was shown in the proof of Proposition 3.2, U’(n) is the isotropic
subgroup at [6,]eP(4*) with respect to the SPIN(2n)-action on P(4*). Hence
U'(n) acts on the one-dimensional subspace C-6, of A4*. Put SU'(n) =
n~1(SU(n)). Then, by Lemma 4.1, the SU’(n)-action is locally trivial. Since
—1eSU’(n) is not in the isotropic subgroup at 6, SU’(n) is not connected.
Hence the isotropic subgroup contains the identity component of SU’(n), which

is isomorphic to SU(n). Thus, if we denote it by SU(n), the U’(n)-action factors
through.

U'(n) — U’(n)/SU((n) —> GL(C-6,) ~ C*.
Since 7|y, : U'(n)/SU(M) - U(m)/SU(n) is a double covering, we have a

representation p: U’(2n) > C™ satisfying the relation: p(w)? = det(n(w)). By
definition of p, U’(n) acts as p™ on C-8, for some integer m. Hence it suffices
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to show that m = — 1, by computing the action of an element
w(a):=cosa + e, xe,, sinau = e, *(— e;cosa + e, , sina)e U’'(n).

Put c(a) =cosa + ./ — 1sina. Then p(w(x)) is equal to c(x), because det
n(w(®)) = c(@)?. On the other hand, we have w(x)0 = c(x)"'6,. Hence we
complete the proof.

Example 4.3. We give here the hyperplane bundle over the twistor space
of a 2n-dimensional sphere. As was mentioned in Example 3.8, the twistor space
Z(S?") is SPIN(2n + 1)/U’(n). Hence, by the above lemma, we have

H=SPINQn+1)x,C

where p is the representation of U’(n). If we extend the group SPIN(2n + 1) to
SPIN(2n + 2) as in Example 3.8,

H =SPIN(2n +2) x ,C.

Here, SPIN(2n + 2) is considered to be a U’(n + 1)-bundle over Z(5%"), and p
is considered to be a representation of U’(n + 1) in this case. This line bundle
is nothing but the pull-back of the hyperplane bundle over the projectivized
positive spin module of R2"*2,  P(4*(R?"*?)) by the canonical embedding defined
in Proposition 3.2.

Now we can express the canonical bundle Ky, in terms of the hyperplane
bundle H. For an almost complex manifold M of dimension m, the canonical
bundle K, is the complex line bundle A™° M.

Theorem 4.4. Let X be an oriented Riemannian manifold of dimension
2n. Then the canonical bundle of Z(X) is isomorphic to H ™"

Proof. By the splitting of the cotangent bundle of Z(X), the (1, 0) cotangent
bundle has two components, namely A4°Z(X) and A,°Z(X), of rank n and
n(n — 1)/2, respectively. Hence the canonical bundle can be written as:

Kz ~ AR Z(X) @ A}~ V120 Z(X).
Therefore, it suffices to prove the following lemma.

Lemma 4.5. (1) A%°Z(X) is isomorphic to H™2.
(2) AYn—VI2.0Z(X) is isomorphic to H™ 2"~ 1),

Proof. The both statements are proved in a similar way. First define a
form on SO(X), which spans a subbundle invariant under the right U(n)-
action. By Lemma 4.1, the U(n)-action only depends on the multiplication by
m-th power of determinants of elements of U(n), for some integer m. By Lemma
4.2, this means that the form determines a section of H 2" ® A(Z(X)). Hence
we need to consider the following.

e There are forms on SO(X) which determine non-zero sections of H " ®
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A%°Z(X) in (1) and H 2" ® A"~ V/20Z(X) in (2), for some integers m,
respectively.
o The integer m is — 1 in (1), and —n + 1 in (2), respectively.
(1) For a point x of X, the fiber SO(X), is the set of orthonormal frames
of T.X. Hence, for each point of SO(X),, we define an n-form w as

wi=(' + /=1 YA+ /—1e"" YA Ale"+/— 1)

where, at each point, (e',...,e?") is the dual frame of the corresponding
frame. This is a basis of A™°(T*X ® C) when we take a complex structure J
in T*X with respect to the frame (e',...,e*") defined as

J—<O —’"> @.1)
\I5, o /) '

Hence C-w < A% SO(X) is a U(n) invariant subbundle. By a simple computation,
the integer m is — 1 in this case. Hence w determines a non-zero global section
of H2® A%°Z(X) over Z(X).

(2) We define a connection on SO(2n) as a U(n) principal bundle over
SO(2n)/U(n). Let v be a subspace of so(2n) defined as

v={aeso2n)|JaJ ! = — a}.
where J is the complex structure of R?" defined as (4.1). Since we have
u(n) = {aeso(2n)|JaJ ~! = a},
we have a decomposition of so(2n)
so(2n) = v @ u(n)

If we regard so(2n) as a set of left invariant vector fields, v determines a horizontal
tangent bundle over SO(2n) as a principal U(n)-bundle over SO(2n)/U(n), since
v is invariant under the adjoint action of an element of u(n). The almost complex
structure of SO(2n)/U(n) is induced by a complex structure of the vector space
v which is invariant under the adjoint action of u(n). By taking a basis of
(v* ® O)*°, and taking the exterior multiplication of its elements, we define a
horizontal n(n — 1)/2-form on SO(2n) as a fiber bundle over SO(2n)/U(n). Since
this form is invariant under the left action of SO(2n), by defining the vertical
form (as a fiber bundle over X) locally and patched them together, we have a
global n(n — 1)/2 form on SO(X) which spans a subbundle invariant under the
right U(n)-action. Hence if we shall show m = — n + 1, it gives a non-zero global
section of H2" D ® Ax»~1/2.0 7(X) and we complete the proof.

The value of m is computed by the induction with respect to n. By Example
3.8, for a point x of X, the fiber Z(X), can be considered to be the twistor
space of a (2n — 2)-dimensional sphere S?"~2. And by Example 4.3, the restriction
of H to Z(X), is nothing but the hyperplane bundle as the twistor space
Z(S*"~%). Hence mis —n+ 1.
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Remark. If X is conformally flat, then the theorem is also true in the
holomorphic category.

§5. Complexification of some conformal manifolds

The twistor space Z(X) of a 2n-dimensional oriented Riemannian manifold
X is considered to be a fiber bundle over X with fiber Z ~ SO(2n)/U(n). First,
we study the fiber Z(X), for each point x of X. From now on, we assume that
n is grater than one. There is a splitting of the (1, 0) tangent bundle of Z(X)
corresponding to the splitting of the tangent bundle as a fiber bundle over X.

THOZ(X) ~ T Z(X) @ T{-0 Z(X)

Furthermore, by the definition of the almost complex structure, T Z(X) is
the set of complex tangent vectors of holomorphic directions of Z(X), considered
as a complex manifold by Theorem 3.7, and

Ti"Y Z(X) ~ SO(X) x, C"

where p, is a natural representation of U(n) to C". Hence the normal bundle
N, of Z(X), is isomorphic to SO(X), x, C". Hence N, is a homogeneous vector
bundle over Z(X),. Since the argument is independent of the choice of xe X,
we omit the suffix for a while and denote Z(X),, N, and T,X by Z, N and R?",
respectively. For each vector v of R*" ® C, we define a section s(v) of N over Z by

s(v): Z—> N
g— (9. 1" -v))

where 71'9: R2"® C - (R*" ® C)*'? is the projection to the (1, 0) subspace with
respect to the complex structure of R?" defining the embedding U(n) = SO(2n),
and g is one of the inverse image of § by the projection SO(2n)—> Z. This
correspondence is well-defined, since nt"*® is U(n)-equivariant. This is the way
to construct all holomorphic sections of N over Z by the theorem of
Borel-Weil. Moreover, if we apply the theorem of Bott-Borel-Weil-Kostant ([B]),
we have the following lemma.

Lemma 5.1. Let N be the holomorphic vector bundle over Z as above. Then
the cohomology groups are

R ® C, ifi=0

H(Z, (9(N))={0 ifi>0

A explicit description of holomorphic sections is obtained by the map s defined above.

Now, let us consider the fiber Z(X), over xe X. By the definition of s, the
set of holomorphic sections of the normal bundle N, which vanish at some points
corresponds precisely to the set of all null vectors of T,X ® C with the canonical
complex conformal structure induced by the Riemannian metric of X. Hence
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we have proved the next theorem.

Theorem 5.2. The conformal structure of X can be recovered from the almost
complex structure of Z(X).

If the almost complex structure of Z(X) is integrable, we can go further by
deformation theory of complex manifolds ([K]). By Lemma 5.1, the set

X':={Wc Z(X)|W=~ Z with the normal bundle Ny isomorphic to N}

inherits a 2n-dimensional holomorphic structure, and at each point W, there is
an isomorphism:

T8O X' ~ HO(W, O(Ny)). (5.1)

The fibers Z(X),, for xe X, are points of X'. We define the complexification
X¢ of X as the components of X’ containing fibers Z(X), for all xeX. The
points of X = X are called real points of X.. As mentioned above, the set of
holomorphic tangent vectors corresponding, by (5.1), to the set of sections which
vanish at some points determines a holomorphic complex conformal structure on
X, which is an extension of the conformal structure of X. Furthermore, if n
is even, the symplectic structure of (4*)* (i.e. the SPIN(2n)-equivariant
isomorphism i: 4% — (4™)* defined in Proposition 2.1) induces a fixed-point free
anti-holomorphic involution on Z. If we regard Z as a set of compatible complex
structure of R?", it is nothing but a map sending a complex structure J' to
— J'. Since it is SPIN(2n)-equivariant, it extends to an involution on Z(X)

1 Z(X) — Z(X),

which is anti-holomorphic and preserves the fibration over X. Hence 7 induces
an anti-holomorphic involution ¥ on X, and X is the fixed locus of 7.

Theorem 5.3. Let X be a 2n-dimensional oriented conformal manifold with
n> 1. Assume that the almost complex structure of the twistor space Z(X) is
integrable. Then, there is a 2n-dimensional complex manifold X with a complex
conformal structure. The manifold X is considered to be a real submanifold of
X¢ and the conformal structure of X is a restriction of that of X¢. Furthermore,
if n is even, there is an anti-holomorphic involution © on Z(X) and T on Xc,
respectively, such that X is the fixed-point set of %.

§6. Even dimensional spheres and generalized Penrose fibrations

For twistor spaces of conformal manifolds of dimension greater than or equal
to six, the integrability of the almost complex structure is equivalent to the
conformally flatness of the underlying manifolds. For a conformally flat manifold
X of dimension m grater than two, there is a conformal map called a developing
map



122 Yoshinari Inoue
¢ X — 8™

where X is the universal covering space of X with a conformal structure induced
from X. Furthermore, @ is unique up to conformal transformations of
S™. Hence, for a conformal transformation a of X, there is a unique conformal
transformation b on S™ such that the following diagram commutes:

X -Zsm
!
x-Zsm
Hence we have a group homomorphism:
®: 7,(X) —> SO, (1, m + 1).

where SO, (1, m + 1) is the conformal transformation group of S™. These facts
are easily deduced from a theorem of Liouville (see, for example, [D.F.N] Theorem
15.2).
In the following, we consider the following problems.
e Determine the complexification of a 2n-dimensional sphere S2". It is a
2n-dimensional non-singuar complex hyperquadric Q,,.
e Determine the action of SOy (1, 2n + 1) to the twistor space Z(S2") and Q,,.

First, we recall the case n = 2, in which we have the Penrose fibration:

F1,2;4

7N

Gi4

where P? is the twistor space of S* and G, , is a Grassmannian manifold identified
with a four-dimensional complex hyperquadric Q, by the Pliicker embedding. By
definition, G, , parametrizes all the lines in P3. The normal bundle of a line
P! in P3 is isomorphic to H @ H, where H is the hyperplane bundle of P'. Hence
the complexification of S* is G, 4 ~ Q,. The flag manifold F, , , is considered
as a submanifold of P3 x G, , defined by

Fi,4a~{( x)eP? x G, 4|zethe line corresponding to x.}.

To generalize the situation to higher dimensional cases, we neglect the holomorphy
for a while and write them as quotient spaces of SO(6) instead of SU(4),

Fi 2.4 =80(6)/U(1) x U(2),
P ~ SO(6)/U(3),
Q, ~SO(6)/U(1) x SO4).
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Then the maps p, and p, of the Penrose fibration are given by the canonical
projections :

p1: SO(6)/U(1) x U(2) — SO(6)/U(3)
p>: SO(6)/U(1) x U(2) —> SO(6)/U(1) x SO(4).

Furthermore, we have U(1) x U(2) = U(3)n(U(1) x SO(4)).
In another point of view, P? determines a family of submanifolds of Q,
isomorphic to P2, since we have

P2 ~ U(3)/U(1) x U(2)

Above consideration can be generalized in higher dimensional cases, by

considering the fibration:
Y,
‘/ X (6.1)

Zn+1 an

Y,:= SO(@2n + 2)/U(1) x U(n),
Z,.:=S0Qn +2)/Un + 1),
0,,:= SO(2n + 2)/U(1) x SO(2n).

Then, we have also U(1) x U(n) = U(n + 1)n(U(1) x SO(2n)). Note that Z,,,
is the twistor space of S2" and Q,, is identified with a 2n-dimensional non-singular
complex hyperquadric. The identification is obtained as follows.

Let (ey,...,€5,4,) be the orthonormal basis of R*"*2. For simplicity, we
take a complex structure of R>"*? defined by

0 -1
1 0 6o
0 _1I (6.2)
I, O
Let us consider a map
SO(2n +2) — PR*"*?2® C)
(6.3)

A— A-[e; — / — le,],

where, for veR?>"*2® C, [v] denotes the image of the projection map to the
projective space. Then, by the definition of the complex structure of R?*", it
induces an injection

SO(2n + 2)/U(1) x SO(2n) — P(R*"*2 ® C), (6.4)



124 Yoshinari Inoue

and the image is the set of null vectors with respect to the bilinear form on
R*"*2® C, hence it is isomorphic to a 2n-dimensional non-singular complex
hyperquadric Q,,.

By the generalized Penrose fibration, Q,, parametrizes submanifolds of Z,, ,
isomorphic to Z,~U(1) x SO(2n)/U(1) x U(n). Since the fibration are SO(2n+ 2)-
equivariant, the submanifolds of Z,,, corresponding to a point of Q,, is
analytically isomorphic to Z, with the normal bundle isomorphic to N. Since
the dimension of Q,, is 2n, the complexification of S2" is identified with Q,, by
the fibration (6.1).

Theorem 6.1. The complexification of the 2n-dimensional sphere with a
conformally flat structure is a 2n-dimensional non-singular complex hyperquadric

Q,,. Put
Y,:={(z, X)€Z,,, X Q,,|z€ the submanifold corresponding to x}.
Then, the projections give a generalization of the Penrose fibration (6.1).

Remark. In case of n =2, Y,, Z, and Q, are all flag manifolds. (We use
the notation ‘a flag manifold’ to be a set of flags in C™) The reason is that
SPIN(6) is isomorphic to SU(4) by a positive spin representation.

Since twistor spaces are conformally invariant, a conformal transformation
on S2" induces a holomorphic transformation on Z,,,. Hence we have a group
homomorphism

SO, (1, 2n + 1) —> Aut(Z, ).

Since the automorphism group of Z, ., is PSO(2n + 2; C), the above homomor-
phism is nothing but the complexification map of the real Lie group
SOy(1, 2n + 1).

On the other hand, Z,,, parametrizes submanifolds of Q,, isomorphic to

P"~ U(n + 1)/U(1) x U(n),

which are identified with projectivized a-subspaces in P(R*"*2® C) by the
injection (6.4) induced by (6.3). This gives a geometric description of the
correspondence = in §3.

Now, we describe the real structure of the generalized Penrose fibration,
when n is even. We regard SO(2n + 1) and SO(2n) as the subgroups of

SO(2n + 2) by
SO(2n + 1) = {4eSO(2n + 2)|Ae, = e,},
SO(2n) = {A€eSO2n + 1)|Ae, = e,}.
R?"*1 and R?" are regarded as the subspaces of R?"*2 spanned by e,,...,e5,+5

and es,...,e;,+,, respectively. They are defined to be a natural representation
spaces of SO(2n + 1) and SO(2n), respectively, by restricting the SO(2n + 2)-
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action. Furthermore, the 2n-dimensional sphere S2" is considered to be the unit
sphere of R?"*!, which is identified with SO(2n + 1)/SO(2n) by the map:

SO@2n + 1) — 52"
(6.5)

A P Aez
By Example 3.8, the twistor space of S2" is a Hermitian symmetric space:
SO@2n + 1)/U(n) ~ SOR2n + 2)/U(n + 1)

where U(n + 1) is considered to be a subgroup of SO(2n + 2) defined by the
complex structure (6.2) of R2"*2 and U(n) is considered to be the intersection
of U(n + 1) and SO(2n). The projection p of the twistor space to the sphere as
a fiber bundle is written as:

p: SO(2n + 1)/U(n) — SO(2n + 1)/SO(2n).
Now, under the above notation, we describe the embedding
i: 8" —Q,,c P(R*"*2® ().

The submanifold of SO(2n + 2)/U(n + 1) corresponding to the point I,,,,€
SO(2n + 2)/U(1) x SO(2n) is SO(2n)/U(n). By (6.5), this is the fiber over

SO(2n + 1)/SOQ2n)31,,,, = e, €S*".

Hence I,, ., is a real point corresponding to [e; —/— le,]eP(R*"*2® C), by
(6.3). Since i is equivariant under the conformal transformation group, especially
the isometry group SO(2n + 1), we have

it S2n N P(R2n+2 ® C)

x—[e; —/— 1x]

where, as (6.5), S*" is now considered as a unit sphere of R?"*! spanned by
€,...,€3,4+,. Hence, if n is even, the anti-holomorphic involution 7 on Q,,
defined in Theorem 5.3 is the one induced by the anti-linear transformation ¢
of R"*2® C defined by:

(6.6)

ey, j=1;
a(ej)={l J

— e, j>1
This is deduced from the following proposition.

Proposition 6.2. A holomorphic transformation of Q,, fixing the real points
is identity.

Proof. This is because any holomorphic transformation of Q,, is induced
by a linear transformation of R?*"® C preserving the bilinear form, and the set
of real points i(S*") spans the whole space R?" ® C.
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Note that ¢ also defines an anti-holomorphic involution on Q,, even if n is
odd. In all cases, the set of fixed points coincides with the set of real points
i(S*"), and this characterizes the anti-holomorphic involution on Q,,.

For a point x of Q,,, Z, denotes the corresponding submanifold p,(p; !(x))
of Z(S*") by the fibration (6.1). There is a useful criterion when two such
submanifolds intersect.

Proposition 6.3. Let x and y be two points of Q,,. The two submanifold
Z, and Z intersect if and only if the projective line pathing both x and y lies in Q,,.

Proof. We identify Q,, with the set of projectivized null vectors (i.e.
one-dimensional isotropic subspaces) in P(R?"*2 ® C) as above. Then, for two
points x and y in Q,,, the line joining x and y lies in Q,, if and only if the
subspace spanned by x and y is isotropic.

The twistor space Z(S2") is identified with SO(2n + 2)/U(n + 1), which
parametrizes the set of complex structures of R?"*? compatible with the metric
and the orientation, or equivalently the set of a-subspaces of R*"*2®C. L,
demotes the a-subspace corresponding to zeZ(S%"). Then, for zeZ(S?") and

erZm
zeZ <—>xclL,, (6.7)

where x is considered to be a one-dimensional subspace of R"*2® C. Hence,
for a point x of Q,,, Z, is the set of a-subspaces containing Xx.

First, if Z,nZ, # O, its elements are identified with a-subspaces containing
both x and y. Hence, as mentioned above, x and y can be joined by a line in Q,,.

On the other hand, if x and y can be joined by a line in Q,,, the subspace
spanned by x and y is a 2-dimensional isotropic subspace of R*"*2® C. Since
we assume n > 1, there is an a-subspace of R*"*2 ® C containing x and y. Hence
there is a point z of Z(S?") such that L, contains both x and y. This means
that z is contained in both Z, and Z, by (6.7).

Remark. If x and y satisfy the above condition, the intersection Z,NZ, is
always analytically isomorphic to SO(2n — 2)/U(n — 1), which is identified with
the set of a-subspaces of R?"*2 ® C containing both x and y.

§7. Definition of real structures when n is odd

In this section, we want to use the anti-holomorphic involution 7 on Q,,
defined in the previous section to define an anti-holomorphic involution on the
complexification of 2n-dimensional conformally flat manifolds such that the set
of fixed points are the set of real points, in case n is odd and n > 1.

As in the previous section, Z, denotes the submanifold of Z(S*")
corresponding to a point x of Q,,. Let p: Z(S?") > §?" be the projection. The
subset p(Z,) is either a point, namely x, if x is a real point, or otherwise a
submanifold isomorphic to §2"~2 which is cut out by two hyperplanes.
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Proposition 7.1. If xeQ,, is not a real point, ie. T(x)# x, the subset
p(Z,) = 82" is isomorphic to S*"~? and obtained by cutting out by two hyperplanes
of R**1. Conversely, for any such submanifold, there are precisely two points
of Q,, corresponding to the submanifold, and they are conjugate to each other by .

Proof. Let x be a point of Q,,. Then, for a point yeS*", yep(Z,) if and
only if the submanifolds Z, and Z, intersect. Hence, by Proposition 6.3,

p(Z,) = {yeS"‘ < Q,,1x and y are joined by a line in Q,,}

We compute the right-hand condition explicitly. For a point y of $?", the

corresponding projectivized null vector is [e; —/— 1y] by (6.6), where S*" is
considered as the unit sphere of R?"*! « R*"*! ® C with the basis (e,,...,€5,+2).
Let * be a representative of x written as:
.Q = xlel + .*,
where x! >0 and xeR?"*!® C. The condition for y is written as:
e —/ =1y =0=x'—/—1(x,))=0 a1
= x! +(3%,y) =0, (R%, ) =0 '

where Mx and 3x denote the real and imaginary part of the vector X,

A

respectively. Since X is a null vector,
(®, %) = (x")? + [RE]> — |3%2 + 2./ — 1(%, F%) =0,
hence, we have
(Rx, 3Ix) =0,
3x # 0.

Furthermore, if Rx = 0, then x is a real point and p(Z,) is a point. If Rx # 0,
p(Z,) is the (2n — 2)-dimensional sphere cut out by two hyperplanes (7.1). Note
that they are independent because Rx and JIx are perpendicular.

On the other hand, let us given a (2n — 2)-dimensional sphere of $2" cut out
by two hyperplanes defined by

h+ (@, y)=0
(va):()

where h is a real number with 0 < h <1 and v and w are unit vectors of R?"*!

such that (v, w) =0. Then, it is written as p(Z,) for a non-real point x of Q,,
of the form:

x = [he; + /1 —h*w+ . /—10].

If h is non-zero, h and v are unique and w is unique up to sign. If we change
the sigh of w, we have the conjugate point by . If h is zero, v and w are
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unique up to O(2). Changing by the action of an elements of SO(2) gives the
same point of Q,,, and by the action of an elements of O(2)\SO(2) gives the
conjugate point by 7.

Now we can give a definition of a real structure for the complexification of
a conformally flat manifold. Let X be a 2n-dimensional conformally flat manifold
and Z(X) and X be the twistor space and the complexification of X, respectively,
where we assume n> 1. Let p: Z(X)— X be the projection.

Definition 7.2. For a point x of X\ X, there is a unique point x’ # x such
that p(Z,)) = p(Z,). For a point x of X, we put x' = x. Then, we define a map
7 by

T: Xe— X¢

'

We call this map % the real structure of Xe.

Theorem 7.3. Let X, X and T be as above. Then T is an anti-holomorphic
involution on X, and T(x) = x if and only if x is a real point, that is, xe X.

Proof. This is immediate by considering the developing map &: X — §2",
where X is the universal covering space with the conformally flat structure
induced from X.

§8. Complexification of tori

In this section, we show that the complexification of R*"/I" for a lattice I’
is (R*® C)/I. The conformal structure on it is a complexification of the
(conformally) flat structure of R?"/T.

First, we prove the complexification RZ" of R?" with flat metric is R*" ® C,
and the complex conformal structure is the complex linear extension of the metric
of R?". Since R?*" can be conformally embedded to S?", R" is obtained as a
submanifold of Q,,. As above, consider Q,, as a submanifold of P(R*"*? ® C),
and S2" as the unit sphere of R?"*!, which is spanned by e,,...,e,,4, in R*"*2,
The embedding i of S%" to Q,, as the set of real points is written as:

SZn SN P(R2n+2 ® C)

y—[e; —/—1y].

The image i(S?") is the set of fixed-points of the anti-holomorphic involution ¥
on Q,, induced by the anti-linear transformation ¢ of R*"*2® C:

(8.1)

2n+2 _

o(Yle)=Y'e, — Y Yle, (8.2)
j=2

We take a conformal embedding of R?" to S?" such that e, is a point at
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infinity. Let y be a point of Q,, with a representative Yie, Z, be the
corresponding submanifold of Z(S?") and p: Z(S*")—>S?" be the projection
map. Then y is a point of RZ" if and only if p(Z,) does not contain e,, by
Proposition 6.3 and (8.1), which is equivalent to the condition:

Yyt —/—1v2 %0 (8.3)
On the other hand, if we change the homogeneous coordinates,
Xt=y'—/-1Y72
X2=Y'+/-1Y2

Xi=—-/—-1Y] j=3,...2n+2,

the quadratic equation defining Q,, becomes

2n+2 .
X'x2— ¥ (x)=o, (8.4)

j=3
and by (8.2) the anti-linear map ¢ of R*"*2® C is written as:
o(X'.. XM = (X!, X, (8.5)
Furthermore, by (8.3), the open subset RZ" of Q,, is defined by
X'#0.
Hence, by (8.4) we take

xhi=XI/XY,  j=3,..2n+2

as coordinates of RZ". The point (x*,...,x*"*2) is a real point if and only if all
coordinates are real numbers by (8.5). Furthermore, this system of coordinates
is a standard one of R?". Hence we have an identification between RZ" and
R ® C.

By conformal invariance of twistor spaces, a translation of R?" induces a
holomorphic transformation of the twistor space Z(R2"), which also induces a
holomorphic transformation of R3" = R*"® C. This is nothing but a translation
of R*"® C, which can be easily proved by using Proposition 6.2.

Theorem 8.1. Let I be a lattice of R*". Then the complexification of R*"/I"
is (R*"® C)/T.

Proof. 1t is enough to verify that a submanifold Z, does not intersect with
Z;, when x is a point of RZ" and T is a non-trivial translation of R?". Let x
be the point with coordinates (x*,...,x*"*2) and T be the translation by a vector
(0*,...,y*"*?). The point Tx is written as (x> + y*,...,x>"*2 4+ y?"*2). By (8.4),
the two points x and Tx are written in the homogeneous coordinates
(X1,...,X2"*?) as:
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x = (L, (x, x), x),
x=(1,(x+yx+y),x+y),

and the bilinear product of these two vectors is:
1 1 1,
E(x+y,x+y)+5(x,x)—(x,x+y)=§|y| # 0.

Hence, by Proposition 6.3, Z, and Z;, are disjoint.

§9. Solutions of the twistor equation

In this section, we study relationship between holomorphic sections of the
hyperplane bundle H over Z(X) and solutions of the twistor equations on X.

Let E be a complex vector bundle over a manifold M and s be a section
of E. Asin §1, we have a function s¥ on the total space of E* (the dual bundle
of E) by the canonical pairing.

Conversely, let f: E* - C be a complex function such that the restriction
map f|g,: EX — C is complex linear for all xe M. Then, for each point x of M,
there is a point s(x)e E, such that

Slez(@) = <o, s(x)>,  for all peE¥
that is, s¥ = f, where ¢ , > denotes the canonical pairing of E* and E.

Lemma 9.1. There is a one to one correspondence between the set of sections
of E and the set of complex functions of E* which are linear on E¥* for all xe M.
When M is an almost complex manifold and E has a connection, s is a holomorphic
section if and only if sV is a holomorphic function. (The word “holomorphic” is
explained in the proof.)

Proof. We need to prove the last part. First we define an almost complex
structure of E* by a connection of E. A connection of E induces a connection
of E*, which defines a splitting of the exact sequence

0 — Ty(E*) — T(E*) — p*T(M) — 0

where p: E* > M is the projection.

T(E*) = T,(E*) @ Ty(E™)

Ty(E*) ~ p* T(M)
The vertical part T, (E*) has a complex structure, since E* is a complex vector
bundle. On the other hand, the horizontal part T,(E*) has a complex structure
induced by the complex structure of T(M) (M is assumed to be an almost complex
manifold). Hence T(E*) has a complex structure and E* is an almost complex

manifold. Note that the almost complex structure of the hyperplane bundle H
over the twistor space Z(X) is same as the one induced from the almost complex
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structure of Z(X) and the connection of H.
Now we define a holomorphic section of E as a solution of the d operator

3: [E) - NE® A'M) 5 [E ® 4% M)

where n%V: A'M - A%'M is the projection. A holomorphic function on an
almost complex manifold is simply a holomorphic section of a trivial line bundle
with a trivial connection.

We use the notation in Example 1.3. If we take a section s of E and write
it locally s = e;s', then the function sV on E* is written as s¥ = 7;,5. Now we
give a condition when the function s¥ is holomorphic.

ds¥ = 0(t;s)
= 1,05' + 1'%V (dr;, — t,0! + T,0)s’
=105 + 11 V(w))s’  (by Example 1.3)
= 7,(0s' + n*V(w})s))
Hence sV is holomorphic if and only if
os' + 1'%V (wh)s’ =0, i=1,..,m
This is precisely the condition ds = 0.

Let X be a 2n-dimensional spin manifold. Then the twistor operator is the
following operator defined in Definition 3.1.

D: F(4*(X)*) -5 I'4* (X)* ® T*X) —= 'K, (X)).

Let Z(X) and H denote the twistor space and the hyperplane bundle. We define
the notion of holomorphic section of H as in the proof of Lemma 9.1.

Theorem 9.2. There is a one to one correspondence between the solutions of
the twistor equation and the holomorphic sections of H over Z(X).

B Proof. First, let sel(4*(X l*) be a scllution of the twistor equation:
Ds =0. Let R be the kernel of L(D), where L(D) denotes the linear map defining
D. Then, we have

ds¥|, = V(p*j,(s)),€ V(p*R), = V(D),  for all ze A" (X)

by the definition of the map V. Hence, by the definition of the almost complex
structure of the total space of (H*)*, we have on (H*)*

ds¥ = 0.
Thus, sV is a holomorphic function on H*. It is easy to show that the function
sY |y is linear on H}*, for each zeZ(X). Hence, by Lemma 9.1, we obtain a
holomorphic section f of H over Z(X) such that
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fv =SV|Hu.

Conversely, let f be a holomorphic section of H over Z(X). By Theorem
3.7, if we restrict H to the fiber Z(X),, xe X, this is a line bundle obtained by
pulling back the hyperplane bundle of P(4*(X),) by the embedding,

i: Z(X), — P47 (X),)-
Thus we obtain holomorphic sections by the puli-back:
i*: T(P(4™(X),), 0(1)) — NZ(X),, H))
By the theorem of Borel-Weil, we have the following lemma.

Lemma 9.3. The pull-back map i* is an isomorphism. Hence the holomorphic
sections of H, over Z(X), are parametrized by the space of the linear forms of
A% (X),, that is, 4% (X)¥.

Therefore, for each point x of X, there is a unique point s(x)e4¥(X)¥ such
that

flzx,. = i*s(x),
or
fY |H; = s(x)" |H;-

Thus, we obtain a section s of 4*(X)* over X. Since, by Lemma 9.1, sV | is
a holomorphic function, for ze(H*)*, we have

ds¥|,e V(D),. 9.1
_Now, let us describe this condition by using the splitting of the distribution
V(D). If we take a local frame (e;,...,e,) of 47 (X)*, where m =dim(4*)*=2"""1,

s can be expressed locally as s = e;s'. Let (t4,...,7,) be a system of coordinates
of the fiber direction of 4% (X), then s¥ = 1,5 and,

ds¥ = (dr; — 1;0))s" + 1,(ds" + wis)).

where wj is the connection form of 4*(X)*. By Example 1.3, for a point z of
41 (X)*, V(p*4*(X)*), can be expressed explicitly as

V(p* 4™ (X)*). = dt; — 10]l.li = 1,...,m).
Hence (9.1) is equivalent to
T(ds' + wis))|, e V(p* 4~ (X)*),
or
2, 79)| o> €2, (47 (X)*) ey ©.2)

where p': H* - X is the projection and ¢ , ) denotes the canonical pairing of
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4%(X) and 4% (X)*.

Hence, to prove that the section s constructed from the holomorphic section
f of H is a solution of the twistor equation, we need to show that s satisfies
the condition (9.2), for all ze4*(X)*. Since s satisfies (9.2), for a point ze(H*)",
the next lemma completes the proof of the theorem.

Lemma 9.4. The submodule cl*((47)*) of (4%)* ® (R®™* is equal to the
following subspace.

{ae(d*)* ® R?™)| <z, a)elz, cI*((47)*)),  for all zeA* such that [z]eZ}

where { , > denotes the canonical pairing of A* and (A*)*, and Z is the submanifold
defined in Proposition 3.2.

Proof. The above subspace is invariant under the action of SPIN(2n)
containing cl/*((47)*). By letting « be °®e' and z be 6,, one can see easily
that it is a proper subspace of (4%)* ® (R*")*. Hence, by Lemma 2.3, we complete
the proof.

Example 9.5. (1) By Example 4.3, the hyperplane bundle of the twistor
space Z(S*")= Z,,, of the sphere S$?" is isomorphic to the pull-back of the
hyperplane bundle over the projectivized positive spin module of R?"*2. Hence,
by Lemma 9.3, the solution space of the twistor equation on S2" is 2"-dimensional.

(2) By the conformal invariance of the twistor equation, we have solutions
on R?" by the conformal embedding R?" = §2". If n> 1, since the codimension
of Z(S*")\Z(R?") is greater than 2, there are no other solutions. Hence the
dimension of the solution space is also 2". If n =1, a solution of the twistor
equation is identified with a holomorphic function on C. Hence there are infinite
dimensional solutions.

(3) Let I' be a non-trivial lattice of R*". Since R?"/I' is flat, the spin
bundle 4*(R?"/I) is trivial. Solutions of the twistor equation on 4% (R?"/I) is
identified with solutions on R?" invariant under the action of I. If n> 1, it is
easy to show that there are no non-constant solutions invariant under a
non-trivial translation. Hence the solution space is 2"~ !-dimensional. If n =1
and I' is generated by ceC™, the solutions are holomorphic functions with a
period c. Hence the solution space is infinite dimensional. If the rank of I is
two, the solution space is one-dimensional consisting of constant functions, since
R?"/I" is compact.
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