Adams operation and γ -filtration in K-theory

By

Tsunekazu KAMBE

1. Introduction

In [3], M. F. Atiyah related operations in K-theory to the Steenrod power operations in cohomology for CW-complexes without torsion. We take the γ filtration in stead of the ordinary filtration in Theorem 6.5 in [3] and show that the same relations hold for arbitrary CW-complexes. The methods proving Theorem 1 are simple and based on the splitting principle of complex vector bundles. We also consider the relation between the γ -filtration and the ordinary filtration. Theorem 2 states the best possible general result for coincidence of two filtrations in *p*-primary component. In applying theorem 2 for (2p + 1)-skeleton of classifying spaces B_G of finite groups, we obtain Theorem 3 which states the relation of γ -filtration $R_{2n}^2(G)$ and the topological filtration $R_{2n}(G)$ for $n \leq p$.

2. Relation between Adams operation and y-operation

Let Vect(X) be the semi-ring of isomorphism classes of complex vector bundle. over a CW-complex X. $\lambda_t: \operatorname{Vect}(X) \to 1 + K(X)[t]$ is defined by $\lambda_t(E) =$ $\sum_{i\geq 0} \lambda^i(E)t^i$. Here 1 + K(X)[t] denotes the group of power series of t with coefficients in K(X) and the leading term 1, and $\lambda^i(E)$ denotes the *i*-th exterior of a vector bundle E. Since $\lambda_t(E_1 + E_2) = \lambda_t(E_1) \cdot \lambda_t(E_2)$, λ_t defines uniquely the group homomorphism $K(X) \rightarrow 1 + K(X)[t]$. This homomorphism is written by the same notation λ_t . For an element $x \in K(X)$, $\lambda_t(x) = \sum_{i \ge 0} \lambda^i(x) t^i$ defines the *i*-th exterior power operation λ^i over K(X). The *i*-th γ -operations denoted $\gamma^i: K(X) \to K(X)$ defined by the requirement that $\gamma_t(x) = \lambda_{t/1-t}(x)$ where $\gamma_t(x)$ $= \sum_{i \ge 0} \gamma^i(x) t^i. \quad \gamma_t \text{ satisfies also the relation } \gamma_t(x+y) = \gamma_t(x) \gamma_t(x) \text{ and so } \gamma^k(x+y)$ $=\sum_{i+j=K}^{\infty} \gamma^{i}(x) \cdot \gamma^{j}(y).$ For a line bundle L, we see $\gamma_{t}(L-1) = 1 + (L-1)t$. For n line bundles L_1, L_2, \ldots, L_n , we put $x_i = L_i - 1$, then $\gamma_i(x_1 + x_2 + \cdots + x_n) = 1$ $+\sigma_1 t + \sigma_2 t^2 + \dots + \sigma_n t^n$ where $\sigma_i = \sigma_i(x_1, x_2, \dots, x_n)$ is the *i*-th elementary symmetric function of $x_1, x_2, ..., x_n$. This implies $\gamma^i (x_1 + x_2 + \cdots + x_n) = \sigma_i$ for $1 \le i \le n, = 0$ for i > n. Using the splitting principle and the naturality of γ^i . operation, we see $\gamma^i(E-n) = 0$ i > n for a *n*-dimensional vector bundle E. It follows $\gamma^i(E-n) \in K_{2i}(X) = \text{Ker}(K(X) \to K(X_{2i-1}))$. γ -filtration of K(X) is

Communicated by Prof. H. Toda, July 23, 1990

defined by the subgroups $K_{2n}(X)$ generated by all monomials $\gamma^{i_1}(x_1) \gamma^{i_2}(x_2) \cdots \gamma^{i_k}(x_k)$ with $\sum_{i=1}^k i_j \ge n$ and $x_i \in \tilde{K}(X) = K_2(X)$. The fact stated above implies $K_{2n}^{\gamma}(X) \subset K_{2n}(X)$ because $\{K_{2i}(X)\}$ makes K(X) the filtered ring. Let $\psi_t(x) = \sum_{k\ge 0} \psi^k(x)t^k$ be given by the relation $\psi_{-t}(x) = -t((d/dt) \lambda_t(x))/\lambda_t(x))$. ψ^k is called the Adams operation. It is well-known that $\psi^k(x) = Q_n^k(\lambda^1(x), \lambda^2(x), \ldots, \lambda^n(x))$ for $n \ge k$ where $x_1^k + x_2^k + \cdots + x_n^k = Q_n^k(\sigma_1, \sigma_2, \ldots, \sigma_n)$. We put $Q^k = Q_n^k, n \ge k$. We wish to expless Adams operation in terms of γ^i -operations as in case of λ^i -operation. Let

$$L_n^k(\sigma_1, \sigma_2, \ldots, \sigma_n) = \sum_{i=1}^n \{ (x_i + 1)^k - 1 \}.$$

Clearly we have $L_n^k = \sum_{i=1}^k \binom{k}{i} Q_n^k$.

Proposition (2.1) For an element $x \in \tilde{K}(X)$, we have a relation

$$\psi^{k}(x) = L_{n}^{k}(\gamma^{1}(X), \gamma^{2}(x), \dots, \gamma^{n}(x)), n \geq k.$$

Proof. We can put $\gamma_t(x) = 1 + \gamma^1(x)t + \dots + \gamma^n(x)t^n = (1 + y_1t)(1 + y_2t)$ $\dots (1 + y_nt)$ for a sufficient large *n*. Since

 $\gamma_{t/1+t} = \lambda_t$, we can compute as follows;

$$\begin{split} \psi_{-t}(x) &= -t \frac{d}{dt} (\log (\lambda_t(x)) = -t \frac{d}{dt} \log ((1+y_1 t/1+t) \cdots (1+y_n t/1+t))) \\ &= -t \sum_{i=1}^n ((y_i+1)/1 + (y_i+1)t - 1/1+t) \\ &= -t \sum_{i=1}^n ((y_i+1-1) - ((y_i^2-1)^2 - 1)t + ((y_i+1)^3 - 1)t^2 + \cdots)) \\ &= \sum_k (-1)^k t^k (\sum_{i=1}^n ((y_i+1)^k - 1)). \end{split}$$

It follows $\psi^k(x) = \sum_{i=1}^n ((y_i + 1)^k - 1))$ and so the proposition is proved.

Notation (2.2) We put $Q\gamma^k(x) = Q_n^k(\gamma^1(x), \gamma^2(x), \dots, \gamma^n(x))$ $n \ge k$ for an element $x \in \tilde{K}(X)$.

Let $x = x_1 + x_2 + \dots + x_n$ be sum of stable classes of line bundles. Then we have $Q\gamma^k(x) = x_1^k + x_2^k + \dots + x_n^k$. Since $Q\gamma^1(x) = x, (2.1)$ implies $(\psi^k - k)(x) = \sum_{i \ge 2} \binom{k}{i} Q\gamma^i(x)$. We generalize this situation.

Lemma (2.3) Let $x \in \tilde{K}(X)$. Then we have

Adams operation

$$\begin{aligned} (\psi^{k} - k^{m})Q\gamma^{s}(x) &= \sum_{i \ge 1} a_{i}Q\gamma^{s+i}(x) & \text{for the case } m = s, \\ &= \sum_{i \ge 0} b_{i}Q\gamma^{s+i}(x) & \text{for the cases } m \ne s. \end{aligned}$$

where a_i and b_i are certain integers and $b_1 = k^s - k^m$.

proof. Put $x_i = L_i - 1$ for line bundles L_i , i = 1, ..., n. Then $Q\gamma^s(x_1 + x_2 + \dots + x_n) = x_1^s + x_2^s + \dots + x_n^s$ and so we see $(\psi^k - k^m)(Q\gamma^s(x)) = (((x_1 + 1)^k - 1)^s - k^m x_1^s) + \dots + (((x_n + 1)^k - 1)^s - k^m x_n^s).$

Then (2.3) holds for $x = x_1 + \cdots + x_n$, and for general stable bundles it is seen from the splitting principle.

Proposition (2.4) Let X be a finite CW-complex and $x \in \tilde{K}(X)$, then

$$\prod_{i} (\psi^{k} - k^{i})(x) = 0$$
$$\prod_{i \neq m} (\psi^{k} - k^{i})(x) = \sum_{i \geq 0} a_{i} Q \gamma^{m+i}(x)$$

In the second equation, a_i is a certain integer which does not depend on x.

proof. This is an easy consequence of (2.3) and its proof.

The first equation in (2.4) implies that ψ^k as a linear transformation on $\tilde{K}(X) \otimes \mathbf{Q}$ has eigenvalues powers of k. Since an orthogonal decomposition of the identity is $\sum_{i \ge 1} \prod_{i \ne m} (\psi^k - k^m)/(k^i - k^m)$, the second equation implies that the eigenspace of ψ^k corresponding to k^m is as follows,

$$\left\{r\left(\sum_{i\geq 0}a_iQ\gamma^{m+i}(x)\,|\,r\in\mathbf{Q}\,,\,x\in\widetilde{K}\left(X\right)\right\}.$$

Notice that there is the next relation from the Newton formula.

(2.5) $Q\gamma^{n}(x) - Q\gamma^{n-1}(x) \cdot \gamma^{1}(x) + \dots + (-1)^{n-1}Q\gamma^{1}(x) \cdot \gamma^{n-1}(x) + (-1)^{n}n\gamma^{n}(x) = 0.$

3. Adams operation and Steenrod operation

Throughout this section we suppose that p is a prime. First we compute $\psi^{p}(\gamma^{n}(x))$ for $x \in \tilde{K}(X)$.

Lemma (3.1) Let $x \in \tilde{K}(X)$. Then there exist elements $a_i \in K_{2n+2i(p+1)}(X)$ (i = 0, 1, ..., n) such that $\psi^p(\gamma^n(x)) = \sum_{i=0}^n p^{n-1} a_i$. Moreover we can choose a_0, a_n satisfying $[a_0] = [\gamma^n(x)] \in K_{2n}(x)/K_{2n+2}(X), a_n = (\gamma^n(x))^p$.

proof. Let's consider the case $x = x_1 + \dots + x_n$ where $x_i = L_i - 1$ for line bundle L_i . Since $\gamma^n(x) = x_1 x_2 \dots x_n$, we have

Tsunekazu Kambe

$$\psi^{p}(\gamma^{n}(x)) = ((x_{1}+1)^{p}-1)\cdots((x_{n}+1)^{p}-1)$$
$$= (x_{1}^{p}+py_{1})\cdots(x_{n}^{p}+py_{n})$$
where $y_{i} = 1/p\left(\binom{p}{1}x_{i} + \binom{p}{2}x_{i}^{2} + \cdots + \binom{p}{p-1}x_{i}^{p-1}\right)$. It follows
$$\psi^{p}(\gamma^{n}(x)) = \sum_{i=0}^{n} p^{n-i}(\sum y_{1}\cdots y_{n-1}x_{n-i+1}^{p}\cdots x_{n}^{p})$$

where \sum implies the symmetric sum over $y_1, y_2, \dots, y_n, x_1, x_2, \dots, x_n$. We put $a_i = \sum y_1 \cdots y_{n-1} x_{n-i+1}^p \cdots x_n^p = \sum x_1 \cdots x_{n-i} x_{n-i+1}^p \cdots x_n^p$ + higher terms. Then we can easily see $a_i \in K_{2n+2i(p-1)}$ and $[a_0] = [\gamma^n(x)], a_n = (\gamma^n(x))^p$. Therefore we have proved (3.1) for elements which are the sum of stable classes of line bundles. In the above notation, let $a_i(x_1, \dots, x_n) = f_i(\sigma_1, \sigma_2, \dots, \sigma_n)$ where σ_i is the *i*-th elementary symmetric function of x_1, \dots, x_n . Then for an arbitrary $x \in \tilde{K}(X)$, using the splitting principle and the naturarity of γ^i -operation, we have $\psi^p(\gamma^n(x)) = \sum_{i=0}^n p^{n-i} f_i(\gamma^1(x), \gamma^2(x), \dots, \gamma^n(x))$ and $f_i \in K_{2n+i(p-1)}$ and $[f_0] = [\gamma^n(x)] \in K_{2n}(X)/K_{2n+2}(X), f_n = (\gamma^n(x))^p$.

Let $H^{\text{univ}}(X; Z) \subset H^*(X; Z)$ denote the subgroup of universal cycles in the Atiyah-Hirzebruch spectral sequence and $\varphi: H^{\text{univ}}(X; Z) \to Gr(K^*(X))$ be the natural epimorphism.

Lemma (3.2) Let $x \in \tilde{K}(X)$ and $\psi^p(\gamma^n(x)) = \sum_{i=0}^n p^{n-i}a_i, a_i \in K_{2n+i(p-1)}$ Then there exist element $h_i \in H^{2n+2i(p-1)}(X; \mathbb{Z})$ such that $\varphi(h_i) = [a_i]$ and $P^i(\bar{h}_0) = \bar{h}_i$ where P^i is the Steenrod power operation $(P^i = Sq^{2i} \text{ for } p = 2)$ and $\bar{h}_i \in H^{2n}(X; \mathbb{Z}/(p))$ is the mod p reduction of h_i .

proof. We use the notations in the proof of (3.1). It is sufficient to prove (3.2) for the case $x = x_1 + \cdots + x_n$ where $x_i = L_i - 1$ for line bundles L_i . In this case we see that $[a_i] = [\sum x_1 x_2 \cdots x_{n-1} x_{n-i+1}^p \cdots x_n^p] \in Gr^{2n+2i(p-1)}(K(X))$ $= K_{2n+2i(p-1)}(X)/K_{2n+2i(p-1)+2}(X)$. Let $c_1(L_i)$ be the first Chern class of L_i . Then $\varphi(c_1(L_i)) = [x_i]$ as is seen in [4]. We put $h_i = \sum c_1(L_1)c_1(L_2)\cdots c_1(L_{n-i})c_1(L_{n-i+1})^p \cdots c_1(L_n)^p$. Then $\varphi(h_i) = [a_i]$ and from the Cartan formula of the Steenrod power operation, we can see easily $p^i(\bar{h}_0) = \bar{h}_i$.

We are ready to prove the following theorem.

Theorem (1) Let $x \in K_{2n}^{\gamma}(X)$. Then there exist elements $a_i \in K_{2n+2i(p-1)}(X)$ and $h_i \in H^{2n+2i(p-1)}(X; Z)$, i = 0, 1, ..., n such that $\psi^p(x) = \sum_{i=0}^n p^{n-i}a_i$, $[a_0] = [x]$, $\varphi(h_i) = [a_i]$ and $p^i(\bar{h}_0) = \bar{h}_i$.

proof. Since ψ^p and P^i are additive homomorphisms, we can suppose without loss of generality that $x = \gamma^{i_1}(x_1) \cdot \gamma^{i_2}(x_2) \cdots \gamma^{i_k}(x_k)$, $i_1 + i_2 + \cdots + i_k = m$, $m \ge n$. Assume n = m, then from (3.1) and (3.2), Theorem (1) holds for

elements $\gamma^{i_j}(x_j)$, j = 1, 2, ..., k. Now Theorem (1) holds for x is an easy consequence from the facts that ψ^p is a ring homomorphism and P^i satisfies the Cartan formula. For the case m > n, we see $[a_i] = 0$ and we can put $h_i = 0$.

We note that Theorem (1) derives the integrality theorem of Chern character from the augument in 7 in [3].

Corollary (3.3) Let $x \in K_{2n}^{\gamma}(x)$ and $m(q) = \prod_{p:prime} p^{[q/(p-1)]}$. Then m(q) $Ch_{n+q}(x)$ is integral where $Ch(x) = \sum_{i} Ch_{i}(x), H^{2i}(x; \mathbf{Q}) \ni Ch_{i}(x)$.

4. Filtrations in K-theory and Atiyah's conjecture.

We introduce the new filtration Which is useful for the decomposition of K-theory localized at p into (p-1)-factors.

Definition (4.1) $K_{2n}^{Q\gamma}(X)$ is a subgroup generated by elements $Q\gamma^m(x), m \ge n$, $x \in \tilde{K}(X)$.

We have $K_{2n}^{Q}(X) \subset K_{2n}^{\gamma}(X) \subset K_{2n}(X)$.

J. F. Adams defined the additive operation $e_n: K(X) \to K(X) \otimes \mathbf{Q}$ as $e_n = Ch^{-1} \circ \prod_n \circ Ch$ where $\prod_n: H^*(X; \mathbf{Q}) \to H^{2n}(X; \mathbf{Q})$ is the natural projection. He proved that $E_{\alpha} = \sum_{\alpha \ni n} e_n, \alpha \in \mathbb{Z}/(p-1)$ is the operation $K(X) \to K(X) \otimes \mathbf{Z}_{(p)}$ and obtained the decomposition of $K(X) \otimes \mathbf{Z}_{(p)}$ into (p-1)-factors. From the equation $Ch(\psi^k(x)) = \sum_{n \ge 0} k^n Ch_n(x), e_n$ is the projection operator corresponding to eigenspace of eigenvalue k^n . In the next proposition, the second equation is well-known.

Proposition (4.2)
$$K_{2n}^{Q\gamma}(X) \otimes \mathbf{Q} = K_{2n}^{\gamma}(X) \otimes \mathbf{Q} = K_{2n}(X) \otimes \mathbf{Q}.$$

Proof. Since e_n is a scalar multiple of $\prod_{i \neq n} (\psi^k - k^i)$, from (2, 4) $e_n(x)$ = $\sum_{i \ge 0} a_i Q \gamma^{n+i}(x)$ for some $a_i \in \mathbf{Q}$. Let $x \in K_{2n}(X) \otimes \mathbf{Q}$, then $e_0(x) = e_1(x) = \cdots$ = $e_{n-1}(x) = 0$. Therefore $x = \sum_{i \ge 0} e_i(x) = \sum_{i \ge n} e_i(x) = \sum_{i \ge 0} b_i Q^{n+i}(x)$ for some $b_i \in \mathbf{Q}$ and we have $K_{2n}(X) \otimes \subset K_{2n}^{Qn}(X) \otimes \mathbf{Q}$.

Lemma (4.3) Let E be a complex vector bundle over X and $x = E - \dim(E)$. Then we have

$$Ch(\gamma^{i}(x)) = c_{i}(E) + \text{higher terms}$$

$$Ch(Q\gamma^{i}(x)) = i! Ch_{i}(E) + higher terms.$$

Proof. It is suffisient to prove it for $E = L_1 + L_2 + \dots + L_n$, L_i being line bundles. Put $x_i = L_i - 1$, then $x = x_1 + x_2 + \dots + x_n$. We compute as follows; $Ch(\gamma^i(x)) = Ch(\sigma_i(x_1, x_2, \dots, x_n)) = \sigma_i(Ch(x_1), \dots, Ch(x_n)) = \sigma_i(c_1(L_1) + \text{higher})$

terms, ..., $c_1(L_n)$ + higher terms) = $\sigma_i(c_1(L_1), ..., c_1(L_n))$ + higher terms = $c_i(E)$ + higher terms. $Ch(Q\gamma^i(x)) = Ch(Q\gamma^i(x_1 + x_2 + \dots + x_n)) = Ch(x_1^i + \frac{i}{2} + \dots + x_n^i) = ((\exp(c_1(L_1))^i - 1) + \dots + ((\exp(c_1(L_n))^i - 1) = c_1(L_1)^i + \dots + c_1(L_n)^i + higher terms = i! Ch_i(x)$ + higher terms.

From the Newton formula (2.5) and (4.3), we obtain the following facts.

(4.4) Let $x \in K_{2i}(X)$, then

$$[Q\gamma^{i}(x)] = i![x] = (-1)^{i} \cdot i[\gamma^{i}(x)] \text{ in } K_{2i}(X)/K_{2i+2}(X).$$

(4.5) $e_i(x) = 1/i! Q\gamma^i(x) + \text{higher terms.}$

Proposition (4.6) Suppose that a CW-complex X has the dimension less than 2p-1. Then we have $K_{2i}^{Q\gamma}(X) \otimes \mathbb{Z}_{(p)} = K_{2i}^{\gamma}(X) \otimes \mathbb{Z}_{(p)} = K_{2i}(X) \otimes \mathbb{Z}_{(p)}$.

proof. In this case, e_i is the operation $K(X) \to K(X) \otimes \mathbb{Z}_{(p)}$. Hence the demonstration is done in a similar way to (4.2). We wish to generalize (4.6) to the space having the dimension as great as possible.

Theorem (2) Suppose that a CW-complex X has the dimension less than 2p + 1. Then we have $K_{2i}^{\gamma}(X) \otimes \mathbb{Z}_{(p)} = K_{2i}(X) \otimes \mathbb{Z}_{(p)}$.

proof. Let X_i be the *i*-skelton of X. Consider the exact sequence $K_{2p}(X) \rightarrow K(X) \rightarrow K(X_{2p-1})$. Let $x \in K_{2i}(X)$, then $\operatorname{res}(x) \in K_{2i}(X_{2p-1})$ where res is the restriction homomorphism $K(X) \rightarrow K(X_{2p-1})$. From (4, 6) and its proof, there exist $a_j \in \mathbb{Z}_{(p)}$ such that $\operatorname{res}(x) = a_i Q \gamma^i (\operatorname{res}(x)) + a_{i+1} Q \gamma^{i+1} (\operatorname{res}(x)) + \cdots + a_{p+1} Q \gamma^{p-1} (\operatorname{res}(x))$. Therefore we have $x - a_i Q \gamma^i (x) - a_{i+1} Q \gamma^{i+1} (x) - \cdots - a_{p-1} Q \gamma^{p-1} (x) \in K_{2p}^{\gamma}(X) \otimes \mathbb{Z}_{(p)}$. Hence if we show $K_{2p}^{\gamma}(X) \otimes \mathbb{Z}_{(p)} = K_{2p}(X) \otimes \mathbb{Z}_{(p)}$, we complete the demonstration. Let $y \in K_{2p}(X)$, then from (4, 4) we see $y = 1/p! Q \gamma^p(y) = (-1)^p/(p-1)! \gamma^p(y) K_{2p}^{\gamma}(X) \otimes \mathbb{Z}_{(p)}$.

We notice that for every prime p, the dimension 2p + 1 in Theorem (2) is best possible. That is, there exist CW-complexes of dimension 2p + 2 Which does not satisfy the equation in the theorem. We can take as such CW-complexes (2p + 2)skeleton of the classifying space of some finite groups. These are the sources of the counter-examples for Atiyah's conjecture. [4],[5],[6]

Let's apply Theorem (2) to (2p + 1)-skeleton $B_{G,2p+1}$ of a classifying space B_G of a finite group G. Let $\alpha_i \colon R(G) \to K(B_{G,2i-1})$ be the natural homomorphism and $R_{2i}(G)$ its kernel.

Lemma (4.7)

- (1) $\alpha_{m+1}^{-1}(K_{2i}(B_{G,2m+1})) = R_{2i}(G)$ for $i \leq m+1$.
- (2) $\alpha_{p+1}^{-1}(K_{2i}^{\gamma}(B_{G,2p+1})\otimes \mathbb{Z}_{(p)}) = (R_{2i}^{\gamma}(G) + R_{2p+2}(G))\otimes \mathbb{Z}_{(p)} \text{ for } i \leq p.$

proof. (1) is trivial from definitions. Clealy, we have

 $K_{2i}^{\gamma}(B_{G,2p+1})) \otimes \mathbb{Z}_{(p)} \supset \alpha_{p+1}(R_{2i}^{\gamma}(G) + R_{2p+2}(G)) \otimes \mathbb{Z}_{(p)}.$

Therefore it is sufficient to show that

$$\alpha_{p+1}^{-1}(K_{2i}^{\gamma}(B_{G,2p+1})) \otimes \mathbb{Z}_{(p)} \subset (R_{2i}^{\gamma}(G) + R_{2p+2}(G)) \otimes \mathbb{Z}_{(p)}$$

At first, consider the case i = p. Let $x \in \alpha_{p+1}^{-1}(K_{2p}(B_{G,2p+1}) \otimes \mathbb{Z}_{(p)})$, then $\alpha_{p+1}(x) \in K_{2p}^{\nu}(B_{G,2p+1}) \otimes \mathbb{Z}_{(p)} = K_{2p}(B_{G,2p+1}) \otimes \mathbb{Z}_{(p)}$ and so $\alpha_{p+1}(x) = 1/(p-1)! \gamma^{p}(\alpha_{p+1}(x)) = \alpha_{p+1}(1/(p-1)! \gamma^{p}(x) \text{ as in the proof of Theorem (2). Therefore <math>x - 1/(p-1)! \gamma^{p}(x) \in \mathbb{R}_{2p+2}(G) \otimes \mathbb{Z}_{(p)}$ and $x \in (\mathbb{R}_{2p}^{\nu}(G) + \mathbb{R}_{2p+2}(G)) \otimes \mathbb{Z}_{(p)}$. For a general *i*, let $x \in \alpha_{p+1}^{-1}(K_{2i}^{\nu}(B_{G,2p+1})) \otimes \mathbb{Z}_{(p)}$, then there exist $a_{j} \in \mathbb{Z}_{(p)}$ such that $\alpha_{p+1}(x - a_{i}Q\gamma^{i}(x) - a_{i+1}Q\gamma^{i+1}(x) - \cdots - a_{p-1}Q\gamma^{p-1}(x)) \in K_{2p}(B_{G,2p+1}) \otimes \mathbb{Z}_{(p)}$. It follows easily that $x \in (\mathbb{R}_{2i}^{\nu}(G) + \mathbb{R}_{2p+2}(G)) \otimes \mathbb{Z}_{(p)}$.

Theorem (3)

$$R_{2i}(G) \otimes \mathbf{Z}_{(p)} = (R_{2i}^{\gamma}(G) + R_{2p+2}(G)) \otimes \mathbf{Z}_{(p)}, \quad \text{for } i \leq p.$$

proof. This is an easy consequence from Theorem (2) and (4, 7). Let $CH^*(G)$ denote the subring of $H^*(G)$ generated by all Chern classes and $CH^{2i}(G)$ its 2*i*-th component. Let $H^{univ}(G)$ denote the subring of universal cycles in the Atiyah's spectral sequence $H^*(G) \Rightarrow \widehat{R(G)}$ and $H^{univ}(G) \to Gr(R(G)) = \sum_n R_{2n}(G) / R_{2n+2}(G)$ the natural epimorphism. Then $CH^*(G) \subset H^{univ}(G)$ and the Atiyah's conjecture (i.e. $R_{2n}(G) = R_{2n}^{v}(G)$ for all *n* and *G*) is equivalent to the following conjecture; $\varphi(CH^*(G)) = Gr(R(G))$.

Corollary (4.8)

$$\rho \otimes \mathbf{Z}_{(p)} \colon CH^{2i}(G) \mathbf{Z}_{(p)} \longrightarrow R_{2i}(G)/R_{2i+2}(G) \otimes \mathbf{Z}_{(p)}$$

is surjective for $i \leq p$.

proof. From Theorem (3) and the relations $R_{2i}^{\gamma}(G) \subset R_{2i}(G), R_{2p+2}(G) \subset R_{2i+2}(G) \subset R_{2i}(G)$, we have $R_{2i}(G) \otimes \mathbb{Z}_{(p)} = (R_{2i}^{\gamma}(G) + R_{2i+2}(G)) \otimes \mathbb{Z}_{(p)}$, and so $(R_{2i}(G) / R_{2i+2}(G)) \otimes \mathbb{Z}_{(p)} = ((R_{2i}^{\gamma}(G) + R_{2i+2}(G)) / R_{2i+2}(G) \otimes \mathbb{Z}_{(p)}) = (R_{2i}^{\gamma}(G) / R_{2i+2}^{\gamma}(G)) \otimes \mathbb{Z}_{(p)}$. Since $\varphi(CH^{2i}(G)) = R_{2i}^{\gamma}(G) / R_{2i}^{\gamma}(G) \cap R_{2i+2}(G)$, (4.8) is proved.

We notice that for every prime p there exists a group G such that $\varphi: CH^{2p+2}(G) \otimes \mathbb{Z}_{(p)} \to (R_{2p+2}(G)/R_{2p+4}(G)) \otimes \mathbb{Z}_{(p)}$ is not surjective. The next corollary was proved algebraicly in [4]. We can give a new proof.

Corollary (4.9) Let G be a Artin-Tate group (with periodic cohomology), then $R_{2n}^{\gamma}(G) = R_{2n}(G)$ for all n.

proof. In this case, it is known that $H^*(G) = H^{\text{even}}(G) = H^{\text{univ}}(G)$. We shall show that $CH^*(G) \otimes \mathbb{Z}_{(p)} = H^{\text{univ}}(G) \otimes \mathbb{Z}_{(p)}$ for all prime p and hence $CH^*(G) =$ $H^{\text{univ}}(G)$. Since $H^{2i}(G) = R_{2i}(G)/R_{2i+2}(G)$, we have from (4.8) $CH^{2i}(G) \otimes \mathbb{Z}_{(p)} =$ $H^{2i}(G) \otimes \mathbb{Z}_{(p)}$ for $i \leq p$. It is proved in [4] that $H^*(G) \otimes \mathbb{Z}_{(p)}$ has a period 2qwhere q is a divisor of (p-1) for an odd prime and 2 or 4 for p = 2. It follows $CH^*(G) = H^{\text{univ}}(G)$ and (4.9) is proved.

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY

Reference

- [1] J. F. Adams, Lectures on generalized cohomology, Lecture Notes in Mathematics 99, 1969, 1–138, Springer-Verlag.
- [2] M. F. Atiyah, Caracters and cohomology of finite group, Pubul. Inst. des Hautes Etudes Sci. (Paris), 9, (1961), 23-64.
- [3] M. F. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford (2), 17, (1966), 165-93.
- [4] T. Kambe, K-ring of the orbit spaces of spheres by finite free actions, J. M. of kyoto Univ. Vol 31, No.1. 1991 89–97.
- [5] Ian Leary and Nobuaki Yagita, Chern classes in cohomology of p-groups, (to appear)
- [6] E. Weiss, Kohomologiering und darstellungsring endlicher gruppen, Bonner Math. Schriften, 36, 1969.