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Adams operation and y-filtration in K-theory

By

Tsunekazu KAMBE

1. Introduction

In  [3 ], M . F . A tiyah  related operations in K-theory to  the Steenrod power
operations in cohomology for CW-complexes without to rs io n . W e take the y-
filtration in stead of the ordinary filtration in Theorem 6.5 in [3] and show  that
th e  sam e relations h o ld  fo r  arbitrary CW -com plexes. T h e  methods proving
Theorem  1 are  sim ple  and based o n  th e  splitting principle o f  complex vector
bundles. W e also consider the relation between the y-filtration and the ordinary
filtration. Theorem 2 states the best possible general result for coincidence of two
filtrations in p-primary com ponent. In  applying theorem 2 for (2p + 1)-skeleton
of classifying spaces B ,  of finite groups, we obtain Theorem 3 which states the
relation of y-filtration R (G ) and the topological filtration R 2  (G) for n  p .

2. Relation between Adams operation and y-operation

Let Vect (X ) be the semi-ring of isomorghism classes of complex vector bundle
over a CW-complex X .  A t : Vect (X) —> 1 + K ( X ) [t ] is defined by A, ( E) =
E Ai (E)t i . H ere 1 + K ( X ) [t ] denotes th e  group of pow er series o f  t  with

coefficients in K (X ) and the leading term 1, and » ( E )  denotes the i-th exterior of
a  vector bundle E .  Since 21 (E 1 + E 2 ) = 2,(E 1 )•A t ( E 2 ), At defines uniquely the
group homomorphism K (X ) - 1  + K ( X ) [t ].  This homomorphism is written
by the same notation 2 .  For an element xeK(X),.1.,(x) = E  (x)t i defines the

i O

i- th  exterior pow er operation over K ( X ) .  T h e  i- th  y-operations denoted
yi : K (X ) —> K(X ) defined by the  requirement that y,(x) = Ato -t (x) where y,(x)
= E yi (x)t i . y, satisfies also the relation y,(x + y) = y(x)y(x) and so y" (x + y)

i o
=  E  yi ( x ) •y i( y ) . For a  line bundle L , we see y,(L— 1) = 1 + (L — 1 ) t .  For

i +j=K

n line bundles L i , L2 , ,  ,  w e  p u t  x i =  L i —  1, then y,(x, + x 2 + ••• + x„) = 1
+ o- , t + o 2  t2 + • • • + o.„ tn w here  ai =  ( x 1 , x 2 , , x „ )  is t h e  i - t h  elementary
symmetric function of x, , x 2 , x „ . T h is  implies y l (x, +  x 2 + ••• + x„) = ai for
1 i n ,=  0  fo r i > n .  Using the splitting principle and the naturality of y i -
operation, we see yi ( E — n ) = 0  i > n  for a n-dimensional vector bundle E .  It
follows yi ( E — n )eK 2 1 (X ) = Ker( K ( X )  K ( X 2 1 _ 1 )). y-filtration of K (X )  is
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defined by th e  subgroups K 2 (X )  generated by all m onom ials y1 ' (x 1 ) yi2(x 2 )

• • • yik(xk ) w ith  E n  and x i e i? (X) = K 2  ( )  .  The fact stated above implies

1 0 ( X )  K2 n (X ) because { K 2 ,(X )} m akes K (X )  the  filtered ring. L e t  0 1 (x)
= E o k ( x ) t k  be given by the relation t/i_(x) = —  t((d 1 dt) ).t (x))//1„(x)). t i i k is

Ic?-0

called the A dam s operation. It is w ell-know n that O k (x) = Q„k (.11 (x) , ) 2 (x) ,
, (x)) fo r n k  w h e re  x  +  A +  • • •  +  x n

k  =  Q n
k  (0- i , , a„). W e p u t Qk

=n  k. W e wish to expless Adams operation in terms of yLoperations as in
case of Ai -o p e ra tio n . Let

••• >an) = E {(x i + ok - 1}.
i = 1

k  ( k )
Clearly we have L k  =  En

Proposition ( 2 .1 )  For an element x E R (X ), w e have a relation

k (x ) =  L I (7 1 ( X ), y2  (x), ...,yn(x)), n k.

Proof. W e  c a n  p u t  Mx) = 1 + y l  (x)t + ••• + y'1 (x )t" = (1 + y 1 t)(1 + y 2 t)
+  yn t ) fo r a  sufficient large n .  S in c e

Yto +t = At , we can compute as follows ;

0 - ,(x )=  —  t—
d

(log( 1 (x)) = t
d  

log((1 + y1 t11 + t)••• (1 + yn t/1 + ( ))
dt dt

= — t ((y, + 1)11 + (y, + 1)t — 111 + t)
i = 1

= — t ((y, + 1 — 1) — ((y — 1)2 — 1)t + ((y + 1) 3 — 1)t 2 +  •  )
i = 1

=E( -  Ok tk
( ( ( y 1 + 1)k 1 )).

i = 1

It follows tp k (x ) =  E ((y i + 1)k — 1)) and  so  the proposition is proved.
i=

Notation (2.2) W e p u t  Qyk (x) = Q;,` (y 1 (x), y 2 (x ),...,y " (x )) n k  f o r an
element x e (x)
L et x  =  x 1 + x 2 + ••• + x n b e  s u m  of stable classes of line bundles. Then w e
have Qy k (x) = + x 2̀̀  + ••• + .4 , .  Since Qy l  (x) = x,(2.1) implies (te —  k )(x )

= E Q y t (x ) .  We generalize this situation.
i > 2  I

Lemma (2 .3 )  L et x e ( x ) .  Then we have
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(tlik — km)Qys(x)= E at Qys+ i (x) f o r the case m = s,

= E bi Qys+ i (x) f o r the  cases m 4  s.

where a, and bi are certain integers and b, = ks — km .

p ro o f .  P ut x i =  L i — 1 for line bundles L , i = 1 ,...,n . Then Qys(x, + x 2

+ ••• + x n ) =  x  +  x s2  +  • • •  +  x s  a n d  so  w e  se e  (1// k  — km )(QYs (x )) = ( (1-x1 + 1)k

— 1)s — kmxs,)+ ••• + (((x n +  1 ) k — — km4).

Then (2.3) holds for x  =  x , +  •••  +  x ,„  and for general stable bundles it is seen
from the splitting principle.

Proposition (2 .4 )  L et X  be a f inite CW-complex and x e R (X ), then

Hoe - ki ) (x )=  0

11 (/ik - ki ) ( x )=  E aiQYm + i (x).
i m

In  the second equation, ai i s  a certain integer which does not depend on x.

p ro o f .  This is  an  easy consequence of (2.3) and its proof.

The first equation in (2.4) implies that le as a linear transformation on  R(X)c) Q
has eigenvalues powers of k .  Since an orthogonal decomposition of the identity is

E 11 ofrk - km )I(k i — km), the second equation implies that the eigenspace of ikk

i 1 i m

corresponding to km is  as follows,

{r( E ai Qym+ i (x )Ir eQ , xeR (X )}.
i o

Notice that there is the  next relation from the Newton formula.

(2 .5 )  Qyn(x) — Qyn - 1 (x) • y i  (x) + ••• +(—  t ) i Q y l (x) • yn - 1 (x)
+ ( — 1)nnyn(x)= 0.

3. Adams operation and Steenrod operation

Throughout this section w e suppose tha t p is  a  p r im e . First we compute
te (y " (x ) )  for x e lZ (X ).

Lemma (3 .1 )  L et xek  (x ) .  Then there exist elements ai K 2 n +  2i (p+1)(X)
11

( i  =  0 ,  1 , . . . ) n )  such that O P(y"(x))=  E p n - i a i .  Moreover we can choose a0 , a„
i=o

satisfying [a,„] = [y" (x)] E K 2 (x)/K 2 . + 2  (X ), an =  (y" (x))".

p ro o f .  Let's consider the case x  =  x , +  ••• +  x „  where x i =  L i — 1 for line
bundle L .  Since 

y '
 (x) =  x , x 2  ••• x,,, we have
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IiIP (Tn (x ))=  ((x 1 +  1)P-  1)... ((x  + 1)P - 1)

= (xf + )••• (xf, + Ph)

where y i =  1 /p  ((
p

) x i ( P )x ?  +  •  +  (
p  —

p  

1

) 4 - 1 ) .  It follows
1 2

oPcyncx»= E
1=0

where E  implies the  symmetric sum over Yi '1 .• 2  5  •  •  •  yn , X 1  X 2  •  .. X n . W e put
ai=y 1 ••• = E x, • • xn _ i xr_ i +  , • • • xr, + higher terms. Then we
can easily see ai e "  and [ad = [yn(x)], an = (yn(x))P. Therefore we have
proved (3.1) for elements which are the sum of stable classes of line bundles. In
th e  above  no ta tion , le t a i (x, , ,x „ )  =  f i (u , , cr2 , ,  a„) w here a i i s  the  i-th
elementary symmetric function of x, , ,  x „ .  Then fo r  a n  arbitrary x e K (x),
using the splitting principle and the naturarity of y'-operation, we have te (y "(x ))

=  E  Pn - i fieY 1 (4  Y 2  (X ), • • • l Y n (x )) and f ie K 2 „+ i ( p _ 1 ) and [ f0] Eyn(x)] E K2n(X )/
i=0

K2 n +2 (X ), f. = (Y n (x)) P .

L e t H "" (  X; Z ) c  H * (X ; Z )  denote th e  subgroup o f  universal cycles in the
Atiyah-Hirzebruch spectral sequence a n d  yo: Hun' ( X ; Z) -+  G r(K *(X )) b e  the
natural epimorphism .

Lemma (3 .2 )  L e t x e R (X )  and te(yn(x)) =  E  pn - i a,,a 1 eK 2 ,,,,
( p

_ 1 ) T hen

there exist element h1 eH 2 n+ 2 1 ( P- 1 ) ( X ; Z ) such that cp(hi ) = [cti ]  and P i (h o ) = hi

w here 13 1  i s  the  S teenrod  pow er operation (P i =Sq 2 i  f o r  p = 2 )  an d  h i e
H 2

n( X ;Z I(p )) is the m od p reduction of h i .

p ro o f .  W e use the notations in the proof of (3.1). It is sufficient to prove
(3.2) for the case x = x, + • • • + x„ where x i =  L i — 1 fo r  line bundles L i . In
this case w e see  that [a i ]  =  [Ex, x 2 .• • x„_, x,P,_ 14. 1 • • • 4 ]  eGr 2 " +  2 i ( P —  1 )  ( K (X ))
=  K 2 n + 2 i (p -1 ) (X )/ K 2 n + 2 i (p -1 )+ 2 (X ) .  L e t c 1 ( 4 )  b e  th e  firs t C hern  c lass of
L i . T hen go(c i ( L i )) =  [x i ]  a s  is seen  i n  [ 4 ] .  W e p u t  hi = E c 1 (1, 1 )c 1 (L 2 )--•

c 1 (L a )". T h e n  cp(hi ) =  [a 1]  and from the Cartan formula
of the Steenrod power operation, we can see easily /01(h 0 ) =  hi .

W e are ready to prove the following theorem.

Theorem ( 1 )  Let xEKY2 „ ( X ) .  Then there exist elements ai EK 2 n + 2 1 ( p _ 1 ) (X )

a n d  hi e H ' 2 1 ( P- 1 ) ( X ; Z), i = 0 , 1 ,  . . . , n  su c h  th a t O P (x )  =  E  p 'a i , [a o ]
=  [x ] ,  ço(h i ) =  [a i ]  and p1(h0 ) = 1=0

p ro o f  S in c e  te  a n d  P i are additive hom om orphism s, w e  c a n  suppose
w ithout loss o f  generality that x = Y i1 (x1)•T i2 (x2)•••• •T ik(xk), +  i2  +  • • •  +  ik
=  m ,  m  n. Assume n = m, then from (3.1) and (3.2), Theorem (1) holds for
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elements y li(x j ), j  = 1, 2, ...,k . N ow  T heorem  (1 ) h o ld s  f o r  x  i s  a n  easy
consequence from the facts that OP is a ring homomorphism and P i satisfies the
C artan  form ula. For the case m > n, we see [a i ] = 0 and  we can pu t h, = O.

We note that Theorem (1) derives the integrality theorem of Chern character from
the augument in  7 in  [3].

Corollary (3 .3) L e t  x e K  Y2 n (x) and m(q) = p[0, - 1)]. Then m(q)
p:prim e

Chn + Œ (x ) is integral where C h(x ) =EC h i (x), (x; Q)9 Ch i (x)

4. Filtrations in K-theory and Atiyah's conjecture.

We introduce the new filtration Which is useful for the decomposition of K-
theory localized at p  in to  (p — 1)-factors.

Definition (4.1) KY,7, (X ) is a  subgroup generated by elements Qym(x), m n,
x ek  (X ).

We have 102
2„(X)c KY2 ,,(X )c  K 2 „(X ).

J. F . A dam s defined th e  a d d itiv e  operation e„: K (X ) K  ( X )  0  Q  a s  e„ =
C h '  Ch where 11„: H* ( X ; Q )  H 2 "( X ; Q )  is  the natural projection. He
proved that EŒ = E e ,  aeZI (p — 1) is  the  operation K (X ) —> K (X )  Z i p ,  and

aan
obtained th e  decomposition o f  K (X )0  Z i p ,  i n t o  (p — 1)-factors. F ro m  the
equation C h(e(x )) =  E k "C h(x ), en i s  the projection operator corresponding

ri 2,- 0

to  eigenspace of eigenvalue k " .  In  the  next proposition, the second equation is
well-known.

Proposition (4 .2) K (22„' (X) 0 Q = Kv2 „ (X) C) Q = K 2 „ (X) 0 Q.

P ro o f .  Since en i s  a  sca lar m u lt ip le  o f  1-1(tfr k — 1(1), from  (2, 4) e (x )
i*n

= E ai Qyn± i (x ) fo r some ai E Q .  L et x e l( 2 „(X )() Q, then eo (x )= e ,(x )= •-•
i O

= e_ 1 (x) = O. T here fo re  x = E ei (x) = ei (x ) = E b i Qn + (x )  for some bi Q

and we have K 2 „( X )  c  KY„7 ( X) 0 Q.

Lemma (4.3) Let E  be a complex vector bundle over X  and x = E — dim (E).
Then we have

Ch(yi(x)) c i (E ) + higher terms

Ch(Qy i (x ))= i! Ch i ( E ) + higher terms.

P ro o f .  I t  is  suffisient to  prove it for E  = L , + L 2  ±  • • • L„, L i being line
b u n d le s . Put x i = L i - 1, then x = x, + x 2 + ••• + x„. We compute as follows;
Ch(y 1 (x ))= C h(0 1 (x 1 ,x 2 , . . . ,x „) )= c i ( C h (x ,) ,...,C h (x „))= a i (c ,(L i )  + higher
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terms , ,  c i  ( L„) + higher terms) = o- , (c i  ( L ) , , c i (L)) + higher term s = ci ( E )
+ h igher te rm s. Ch(Qy i (x ))=  C h (Q y i (x i  +  x 2  +  ••• +  x„)) =  Ch(x i

i  +  +  • • -
+ 4) = ((exP(c1(1 , 1)) i — 1 ) + •• • + ((exP(ci(L.)) i — 1) = c 1 ( L 1  + +  c 1 ( L )
+ higher terms = i! Ch i (x )+  higher terms.

From  the Newton formula (2.5) and (4.3), we obtain the following facts.

( 4 . 4 )  L et xeK 2 i (X ),  then

[Qy i (x )] =  i! [x ] = ( — 1) i • i [y `(x )] in  K 2 ,(X )/K 2 , 4 . 2 (X ).

( 4 . 5 )  ei (x) = 1Ii! Qy i (x )+  higher terms.

Proposition ( 4 . 6 )  Suppose that a  CW-complex X has the dimension less than
2p — 1. T hen w e have K97 (X)C)Z ( p ) = K 7

2 i (X )0 Z ( p ) = K 2 i ( X )0  Z ( p ) .

p ro o f .  I n  th is case, ei i s  the  operation K(X)--+ K (X ) C) Z w . Hence the
demonstration is done in a similar way to (4.2). We wish to generalize (4.6) to the
space having the dimension as great as possible.

Theorem ( 2 )  Suppose that a  CW-complex X h as  the dim ension less than
2 p  + 1 . Then we have K 7

2 i (X )0 Z ( p ) = K 2i(X) Z .

p ro o f .  Let X . b e  the i-skelton of  X . C o n s id e r  the exact sequence K 2 (X )
- K(X)--+ K(X 2 p _ i ). L e t xe K 2 i (X ) ,  then res(x)e K 2 ,( X 2 p_ i  ) w here res is
the restriction homomorphism K (X )  K (X 2 p  _ 1 ) . From  (4, 6) and  its proof,
there exist a;  e Z ( p )  such  tha t res (x ) =  ai Qy'(res(x)) +  a1 + 1 Q7i + 1 (res (x )) + • • •
+ ap + 1 QTP -

1 ( r e s (x ) ) .  Therefore we have x —  a, Qyi (x) — ( x )  — • • •
—ap _ i  QyP - 1 (x)e IC2p (X ) 0  Z, p ) . Hence i f  w e  show  KY2 p (X ) 0 Z , p ) = K 2 (X )
0  Z , p ) , we complete the dem onstration. Let y eK 2 p (X ) , then from (4, 4) we see
Y = 1 /P! QYP (Y) = — OP AP — 1)! 1)P (Y) 1“ p (X ) Z (p )•

W e notice tha t for every prime p, the dimension 2p + 1 in Theorem (2) is best
possib le . That is, there exist CW-complexes of dimension 2p + 2 Which does not
satisfy the equation in the theorem. W e can take as such CW-complexes (2p + 2)-
skeleton of the classifying space of some finite groups. These are the sources of
the counter-examples for A tiyah 's conjecture . [4],[5],[6]
Let's apply Theorem (2) to (2p + 1)-skeleton /3 0 ,2 p 4 . ,  of a classifying space BG of a
finite group G. L e t  ai : R(G) K (BG,2i - 1 )  be  the  natural homomorphism and
R 2 (G) its kernel.

Lemma (4.7)

(1) am-■-i(K21(BG.2m+i))= R 2 (G )  f o r i m + 1.

(2) ap- _,,(K 12,(130 ,2 p + 1 ) 0  Z ( p ) ) =  ( RY2 ,(G )+ R 2 p + 2 (G ))0 Z ( p )  f o r  i p.

p ro o f .  (1) is trivial from definitions. Clealy, we have

K Y2i(B0 . 2,+ 1)) 0 Z ( )  D a p + 1( R Y2i( G) R2+ 2(G))® Z (p).
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Therefore it is sufficient to show that

Œp-F 1 ( KY2i( BG,2p + 1)) 0 Z (p) RY21(G) + R 2 p  2 (G )) C ) Z .

At first, consider the case i  =  p . Let x e ( K2p(BG,2p+ 1) C) Z ( ) , then Œ + 1 (x)
e KY2 p  (BG ,2 p Z ( p )  =  K 2p (BG , 2p ±  1) C) Z ( p ) and so up +  1 (x) = 1/(p — 1) ! yP(ap +  1 (x))
=  otp+(l/(p — I)! yP(x) as in the proof of Theorem (2). Therefore x — 1/(p — 1)!
yP(x)e R 2 p +  2 (G) 0 Z ( p )  and x e(RY2 p (G) + R 2 p  + 2 (G)) C) Z .  F o r  a  general i ,  le t
X E0Cp

—_ i (K Y2i(BG , 2p +  1 )) 0  Z  (p )  , then there exist a;  e Z ( p ) such that Œ p + 1 (x — ai Qyi (x)
— ai +  1 Qy" - 1 (x) —  •  •  •  —  ap _ Q7P 1 (X )) E K 2p (B G

 2 p +
 1) Z  ( p )  It follows easily that

X E (RY2 i (G) + R2 p + 2 (G)) Z

Theorem (3)

R 2 (G ) 0  Z  =  ( IV 2 1 (G) + R 2 +  2 (G)) 0 Z ( p) , for i p.

p ro o f .  T h is  is  a n  easy consequence from  Theorem  (2) and  (4 , 7 ). L e t
CH *(G) denote the subring of H* (G) generated by all Chern classes and CH 2 i (G)
its 2i-th com ponent. Let Hu"' (G) denote the subring of universal cycles in the
Atiyah's spectral sequence H *  (G) R  (G )  and: Hu"' (G) —> Gr( R (G)) = E R 2 (G)

I R2n+ 2(G) the natural epim orphism . Then CH* (G) H u ( G )  and the Atiyah's
conjecture (i.e. R 2 (G) =  R ( G )  for a ll n  a n d  G) is equivalent to the  following
conjecture; 9 ( CH *(G)) =  Gr( R (G)) .

Corollary (4.8)

9 0 Z (p) : CH 2 i (G)Z R21(G)1 R2 i + 2 (G) 0 Z (p)

is surjective f o r i p

proof. F ro m  T h e o re m  (3 )  and  the  re la tions 1:02i(G) c  R 2 i(G ), R 2 +  2 (G) c
R21+ 2 (G) c R21(G), w e have R21(G) 0  Z  =  ( R Y2 i (G) + R 2 i  + 2 (G)) O  Z >, a n d  so
(R 2 (G )I R21+2 (G )) 0  Z  =  (( R Y2 i (G) +  R 2 1 2 (G))/R21+ 2 (G ) 0 Z  ( R  ( G ) I
RY2 i ( G) n R2i + 2 (G)) O Z  .  Since ço (CH 2 i (G )) =  R v

2 1 ( G) I RZ i (G ) R 2 i + 2  (G) ,
(4.8) is proved.

W e  n o tic e  t h a t  f o r  e v e ry  p r im e  p  th e re  e x is ts  a  g r o u p  G  such  tha t
9: CH 2 P  + 2  (G) 0 Z ip ) ( R 2 p +  2 (G)/R2 p +4(G)) O  Z  n o t  surjective. The next
corollary was proved algebraicly i n  [ 4 ] .  W e can give a  new proof.

Corollary ( 4 .9 )  Let G be a Artin-Tate group (with periodic cohomology), then
R (G ) =  R 2 (G) for all n.

p ro o f .  In this case, it is known that H*(G) = H e v e n (G ) =  H u n iv r .if) W e  s h a ll
show tha t CH* (G )  0  Z  =  H " l " (G) O  Z i p )  fo r  all prime p and hence CH * (G) =

(.7) Since H 2 1 (G) =  R 2 i (G)I R, i +  2 (G), we have from (4.8) CH 2 1 (G ) 0  Z  =
H 2 (G) 0 Z ( p ) f o r  i p. I t  is  p ro v e d  in  [4 ]  tha t H *(G )c) Z ( p ) h a s  a  period 2q
where g  i s  a  divisor o f  (p — 1) fo r  a n  o d d  p r im e  a n d  2  o r  4  fo r  p = 2. It
follows CH* (G) = Hun NG) and (4.9) is proved.
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