Adams operation and γ-filtration in K-theory

By

Tsunekazu Kambe

1. Introduction

In [3], M. F. Atiyah related operations in K-theory to the Steenrod power operations in cohomology for CW-complexes without torsion. We take the γ filtration in stead of the ordinary filtration in Theorem 6.5 in [3] and show that the same relations hold for arbitrary CW-complexes. The methods proving Theorem 1 are simple and based on the splitting principle of complex vector bundles. We also consider the relation between the γ-filtration and the ordinary filtration. Theorem 2 states the best possible general result for coincidence of two filtrations in p-primary component. In applying theorem 2 for $(2 p+1)$-skeleton of classifying spaces B_{G} of finite groups, we obtain Theorem 3 which states the relation of γ-filtration $R_{2 n}^{\gamma}(G)$ and the topological filtration $R_{2 n}(G)$ for $n \leqq p$.

2. Relation between Adams operation and $\boldsymbol{\gamma}$-operation

Let $\operatorname{Vect}(X)$ be the semi-ring of isomorghism classes of complex vector bundle . over a CW-complex $X . \quad \lambda_{t}: \operatorname{Vect}(X) \rightarrow 1+K(X)[t]$ is defined by $\lambda_{t}(E)=$ $\sum_{i \geq 0} \lambda^{i}(E) t^{i}$. Here $1+K(X)[t]$ denotes the group of power series of t with coefficients in $K(X)$ and the leading term 1 , and $\lambda^{i}(E)$ denotes the i-th exterior of a vector bundle E. Since $\lambda_{t}\left(E_{1}+E_{2}\right)=\lambda_{t}\left(E_{1}\right) \cdot \lambda_{t}\left(E_{2}\right), \lambda_{t}$ defines uniquely the group homomorphism $K(X) \rightarrow 1+K(X)[t]$. This homomorphism is written by the same notation λ_{t}. For an element $x \in K(X), \lambda_{t}(x)=\sum_{i \geqslant 0} \lambda^{i}(x) t^{i}$ defines the i-th exterior power operation λ^{i} over $K(X)$. The i-th γ-operations denoted $\gamma^{i}: K(X) \rightarrow K(X)$ defined by the requirement that $\gamma_{t}(x)=\lambda_{t / 1-t}(x)$ where $\gamma_{t}(x)$ $=\sum_{i \geqslant 0} \gamma^{i}(x) t^{i}$. $\quad \gamma_{t}$ satisfies also the relation $\gamma_{t}(x+y)=\gamma_{t}(x) \gamma_{t}(x)$ and so $\gamma^{k}(x+y)$ $=\sum_{i+j=K} \gamma^{i}(x) \cdot \gamma^{j}(y)$. For a line bundle L, we see $\gamma_{t}(L-1)=1+(L-1) t$. For n line bundles $L_{1}, L_{2}, \ldots, L_{n}$, we put $x_{i}=L_{i}-1$, then $\gamma_{t}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=1$ $+\sigma_{1} t+\sigma_{2} t^{2}+\cdots+\sigma_{n} t^{n}$ where $\sigma_{i}=\sigma_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the i-th elementary symmetric function of $x_{1}, x_{2}, \ldots, x_{n}$. This implies $\gamma^{i}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=\sigma_{i}$ for $1 \leqq i \leqq n,=0$ for $i>n$. Using the splitting principle and the naturality of γ^{i} operation, we see $\gamma^{i}(E-n)=0 i>n$ for a n-dimensional vector bundle E. It follows $\gamma^{i}(E-n) \in K_{2 i}(X)=\operatorname{Ker}\left(K(X) \rightarrow K\left(X_{2 i-1}\right)\right) . \quad \gamma$-filtration of $K(X)$ is
defined by the subgroups $K_{2 n}(X)$ generated by all monomials $\gamma^{i_{1}}\left(x_{1}\right) \gamma^{i_{2}}\left(x_{2}\right)$ $\cdots \gamma^{i_{k}}\left(x_{k}\right)$ with $\sum_{i=1}^{k} i_{j} \geqq n$ and $x_{i} \in \tilde{K}(X)=K_{2}(X)$. The fact stated above implies $K_{2 n}^{\gamma}(X) \subset K_{2 n}(X)$ because $\left\{K_{2 i}(X)\right\}$ makes $K(X)$ the filtered ring. Let $\psi_{t}(x)$ $=\sum_{k \geqslant 0} \psi^{k}(x) t^{k}$ be given by the relation $\left.\psi_{-t}(x)=-t\left((d / d t) \lambda_{t}(x)\right) / \lambda_{t}(x)\right) . \quad \psi^{k}$ is called the Adams operation. It is well-known that $\psi^{k}(x)=Q_{n}^{k}\left(\lambda^{1}(x), \lambda^{2}(x)\right.$, $\left.\ldots, \lambda^{n}(x)\right)$ for $n \geqq k$ where $x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}=Q_{n}^{k}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$. We put Q^{k} $=Q_{n}^{k}, n \geqq k$. We wish to expless Adams operation in terms of γ^{i}-operations as in case of λ^{i}-operation. Let

$$
L_{n}^{k}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{i=1}^{n}\left\{\left(x_{i}+1\right)^{k}-1\right\}
$$

Clearly we have $L_{n}^{k}=\sum_{i=1}^{k}\binom{k}{i} Q_{n}^{k}$.
Proposition (2.1) For an element $x \in \tilde{K}(X)$, we have a relation

$$
\psi^{k}(x)=L_{n}^{k}\left(\gamma^{1}(X), \gamma^{2}(x), \ldots, \gamma^{n}(x)\right), n \geqq k
$$

Proof. We can put $\gamma_{t}(x)=1+\gamma^{1}(x) t+\cdots+\gamma^{n}(x) t^{n}=\left(1+y_{1} t\right)\left(1+y_{2} t\right)$ $\cdots\left(1+y_{n} t\right)$ for a sufficient large n. Since
$\gamma_{t / 1+t}=\lambda_{t}$, we can compute as follows;

$$
\begin{aligned}
\psi_{-t}(x) & =-t \frac{d}{d t}\left(\log \left(\lambda_{t}(x)\right)=-t \frac{d}{d t} \log \left(\left(1+y_{1} t / 1+t\right) \cdots\left(1+y_{n} t / 1+t\right)\right)\right. \\
& =-t \sum_{i=1}^{n}\left(\left(y_{i}+1\right) / 1+\left(y_{i}+1\right) t-1 / 1+t\right) \\
& =-t \sum_{i=1}^{n}\left(\left(y_{i}+1-1\right)-\left(\left(y_{i}^{2}-1\right)^{2}-1\right) t+\left(\left(y_{i}+1\right)^{3}-1\right) t^{2}+\cdots\right) \\
& =\sum_{k}(-1)^{k} t^{k}\left(\sum_{i=1}^{n}\left(\left(y_{i}+1\right)^{k}-1\right)\right) .
\end{aligned}
$$

It follows $\left.\psi^{k}(x)=\sum_{i=1}^{n}\left(\left(y_{i}+1\right)^{k}-1\right)\right)$ and so the proposition is proved.
Notation (2.2) We put $Q \gamma^{k}(x)=Q_{n}^{k}\left(\gamma^{1}(x), \gamma^{2}(x), \ldots, \gamma^{n}(x)\right) n \geqq k$ for an element $x \in \tilde{K}(X)$.

Let $x=x_{1}+x_{2}+\cdots+x_{n}$ be sum of stable classes of line bundles. Then we have $\mathrm{Q} \gamma^{k}(x)=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$. Since $Q \gamma^{1}(x)=x$, (2.1) implies $\left(\psi^{k}-k\right)(x)$ $=\sum_{i \geqslant 2}\binom{k}{i} Q \gamma^{i}(x)$. We generalize this situation.

Lemma (2.3) Let $x \in \widetilde{K}(X)$. Then we have

$$
\begin{array}{rlr}
\left(\psi^{k}-k^{m}\right) Q \gamma^{s}(x) & =\sum_{i \geqslant 1} a_{i} Q \gamma^{s+i}(x) & \text { for the case } m=s, \\
& =\sum_{i \geqslant 0} b_{i} Q \gamma^{s+i}(x) & \text { for the cases } m \neq s .
\end{array}
$$

where a_{i} and b_{i} are certain integers and $b_{1}=k^{s}-k^{m}$.
proof. Put $x_{i}=L_{i}-1$ for line bundles $L_{i}, i=1, \ldots, n$. Then $Q \gamma^{s}\left(x_{1}+x_{2}\right.$ $\left.+\cdots+x_{n}\right)=x_{1}^{s}+x_{2}^{s}+\cdots+x_{n}^{s}$ and so we see $\left(\psi^{k}-k^{m}\right)\left(Q \gamma^{s}(x)\right)=\left(\left(\left(x_{1}+1\right)^{k}\right.\right.$ $\left.-1)^{s}-k^{m} x_{1}^{s}\right)+\cdots+\left(\left(\left(x_{n}+1\right)^{k}-1\right)^{s}-k^{m} x_{n}^{s}\right)$.

Then (2.3) holds for $x=x_{1}+\cdots+x_{n}$, and for general stable bundles it is seen from the splitting principle.

Proposition (2.4) Let X be a finite $C W$-complex and $x \in \tilde{K}(X)$, then

$$
\begin{aligned}
& \prod_{i}\left(\psi^{k}-k^{i}\right)(x)=0 \\
& \prod_{i \neq m}\left(\psi^{k}-k^{i}\right)(x)=\sum_{i \geqslant 0} a_{i} Q \gamma^{m+i}(x)
\end{aligned}
$$

In the second equation, a_{i} is a certain integer which does not depend on x.
proof. This is an easy consequence of (2.3) and its proof.
The first equation in (2.4) implies that ψ^{k} as a linear transformation on $\widetilde{K}(X) \otimes \mathbf{Q}$ has eigenvalues powers of k. Since an orthogonal decomposition of the identity is $\sum_{i \geqslant 1} \prod_{i \neq m}\left(\psi^{k}-k^{m}\right) /\left(k^{i}-k^{m}\right)$, the second equation implies that the eigenspace of ψ^{k} corresponding to k^{m} is as follows,

$$
\left\{r\left(\sum_{i \geqslant 0} a_{i} Q \gamma^{m+i}(x) \mid r \in \mathbf{Q}, x \in \tilde{K}(X)\right\} .\right.
$$

Notice that there is the next relation from the Newton formula.
(2.5) $Q \gamma^{n}(x)-Q \gamma^{n-1}(x) \cdot \gamma^{1}(x)+\cdots+(-1)^{n-1} Q \gamma^{1}(x) \cdot \gamma^{n-1}(x)$ $+(-1)^{n} n \gamma^{n}(x)=0$.

3. Adams operation and Steenrod operation

Throughout this section we suppose that p is a prime. First we compute $\psi^{p}\left(\gamma^{n}(x)\right)$ for $x \in \widetilde{K}(X)$.

Lemma (3.1) Let $x \in \tilde{K}(X)$. Then there exist elements $a_{i} \in K_{2 n+2 i(p+1)}(X)$ $(i=0,1, \ldots, n)$ such that $\psi^{p}\left(\gamma^{n}(x)\right)=\sum_{i=0}^{n} p^{n-1} a_{i}$. Moreover we can choose a_{0}, a_{n} satisfying $\left[a_{0}\right]=\left[\gamma^{n}(x)\right] \in K_{2 n}(x) / K_{2 n+2}(X), a_{n}=\left(\gamma^{n}(x)\right)^{p}$.
proof. Let's consider the case $x=x_{1}+\cdots+x_{n}$ where $x_{i}=L_{i}-1$ for line bundle L_{i}. Since $\gamma^{n}(x)=x_{1} x_{2} \cdots x_{n}$, we have

$$
\begin{aligned}
\psi^{p}\left(\gamma^{n}(x)\right) & =\left(\left(x_{1}+1\right)^{p}-1\right) \cdots\left(\left(x_{n}+1\right)^{p}-1\right) \\
& =\left(x_{1}^{p}+p y_{1}\right) \cdots\left(x_{n}^{p}+p y_{n}\right)
\end{aligned}
$$

where $y_{i}=1 / p\left(\binom{p}{1} x_{i}+\binom{p}{2} x_{i}^{2}+\cdots+\binom{p}{p-1} x_{i}^{p-1}\right)$. It follows

$$
\psi^{p}\left(\gamma^{n}(x)\right)=\sum_{i=0}^{n} p^{n-i}\left(\sum y_{1} \cdots y_{n-1} x_{n-i+1}^{p} \cdots x_{n}^{p}\right)
$$

where \sum implies the symmetric sum over $y_{1}, y_{2}, \ldots, y_{n}, x_{1}, x_{2}, \ldots, x_{n}$. We put $a_{i}=\sum y_{1} \cdots y_{n-1} x_{n-i+1}^{p} \cdots x_{n}^{p}=\sum x_{1} \cdots x_{n-i} x_{n-i+1}^{p} \cdots x_{n}^{p}+$ higher terms. Then we can easily see $a_{i} \in K_{2 n+2 i(p-1)}$ and $\left[a_{0}\right]=\left[\gamma^{n}(x)\right], a_{n}=\left(\gamma^{n}(x)\right)^{p}$. Therefore we have proved (3.1) for elements which are the sum of stable classes of line bundles. In the above notation, let $a_{i}\left(x_{1}, \ldots, x_{n}\right)=f_{i}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ where σ_{i} is the i-th elementary symmetric function of x_{1}, \ldots, x_{n}. Then for an arbitrary $x \in \widetilde{K}(X)$, using the splitting principle and the naturarity of γ^{i}-operation, we have $\psi^{p}\left(\gamma^{n}(x)\right)$
$=\sum_{i=0}^{n} p^{n-i} f_{i}\left(\gamma^{1}(x), \gamma^{2}(x), \ldots, \gamma^{n}(x)\right)$ and $f_{i} \in K_{2 n+i(p-1)}$ and $\left[f_{0}\right]=\left[\gamma^{n}(x)\right] \in K_{2 n}(X) /$ $K_{2 n+2}(X), f_{n}=\left(\gamma^{n}(x)\right)^{p}$.

Let $H^{\text {univ }}(X ; Z) \subset H^{*}(X ; Z)$ denote the subgroup of universal cycles in the Atiyah-Hirzebruch spectral sequence and $\varphi: H^{\text {univ }}(X ; Z) \rightarrow \operatorname{Gr}\left(K^{*}(X)\right)$ be the natural epimorphism.

Lemma (3.2) Let $x \in \tilde{K}(X)$ and $\psi^{p}\left(\gamma^{n}(x)\right)=\sum_{i=0}^{n} p^{n-i} a_{i}, a_{i} \in K_{2 n+i(p-1)}$ Then there exist element $h_{i} \in H^{2 n+2 i(p-1)}(X ; \mathbf{Z})$ such that $\varphi\left(h_{i}\right)=\left[a_{i}\right]$ and $P^{i}\left(\bar{h}_{0}\right)=\bar{h}_{i}$ where P^{i} is the Steenrod power operation $\left(P^{i}=S q^{2 i}\right.$ for $\left.p=2\right)$ and $\bar{h}_{i} \in$ $H^{2 n}(X ; \mathbf{Z} /(p))$ is the mod p reduction of h_{i}.
proof. We use the notations in the proof of (3.1). It is sufficient to prove (3.2) for the case $x=x_{1}+\cdots+x_{n}$ where $x_{i}=L_{i}-1$ for line bundles L_{i}. In this case we see that $\left[a_{i}\right]=\left[\sum x_{1} x_{2} \cdots x_{n-1} x_{n-i+1}^{p} \cdots x_{n}^{p}\right] \in \operatorname{Gr}^{2 n+2 i(p-1)}(K(X))$ $=K_{2 n+2 i(p-1)}(X) / K_{2 n+2 i(p-1)+2}(X)$. Let $c_{1}\left(L_{i}\right)$ be the first Chern class of L_{i}. Then $\varphi\left(c_{1}\left(L_{i}\right)\right)=\left[x_{i}\right]$ as is seen in [4]. We put $h_{i}=\sum c_{1}\left(L_{1}\right) c_{1}\left(L_{2}\right) \cdots$ $c_{1}\left(L_{n-i}\right) c_{1}\left(L_{n-i+1}\right)^{p} \cdots c_{1}\left(L_{n}\right)^{p}$. Then $\varphi\left(h_{i}\right)=\left[a_{i}\right]$ and from the Cartan formula of the Steenrod power operation, we can see easily $p^{i}\left(\bar{h}_{0}\right)=\bar{h}_{i}$.

We are ready to prove the following theorem.
Theorem (1) Let $x \in K_{2 n}^{\gamma}(X)$. Then there exist elements $a_{i} \in K_{2 n+2 i(p-1)}(X)$ and $h_{i} \in H^{2 n+2 i(p-1)}(X ; Z), i=0,1, \ldots, n$ such that $\psi^{p}(x)=\sum_{i=0}^{n} p^{n-i} a_{i},\left[a_{0}\right]$ $=[x], \varphi\left(h_{i}\right)=\left[a_{i}\right]$ and $p^{i}\left(\bar{h}_{0}\right)=\bar{h}_{i}$.
proof. Since ψ^{p} and P^{i} are additive homomorphisms, we can suppose without loss of generality that $x=\gamma^{i_{1}}\left(x_{1}\right) \cdot \gamma^{i_{2}}\left(x_{2}\right) \cdots \cdots \gamma^{i_{k}}\left(x_{k}\right), i_{1}+i_{2}+\cdots+i_{k}$ $=m, m \geqq n$. Assume $n=m$, then from (3.1) and (3.2), Theorem (1) holds for
elements $\gamma^{i_{j}}\left(x_{j}\right), j=1,2, \ldots, k$. Now Theorem (1) holds for x is an easy consequence from the facts that ψ^{p} is a ring homomorphism and P^{i} satisfies the Cartan formula. For the case $m>n$, we see $\left[a_{i}\right]=0$ and we can put $h_{i}=0$.
We note that Theorem (1) derives the integrality theorem of Chern character from the augument in 7 in [3].

Corollary (3.3) Let $x \in K_{2 n}^{\gamma}(x)$ and $m(q)=\prod_{p: \text { prime }} p^{[q /(p-1)]}$. Then $m(q)$ $C h_{n+q}(x)$ is integral where $C h(x)=\sum_{i} C h_{i}(x), H^{2 i}(x ; \mathbf{Q}) \ni C h_{i}(x)$.

4. Filtrations in \boldsymbol{K}-theory and Atiyah's conjecture.

We introduce the new filtration Which is useful for the decomposition of K theory localized at p into $(p-1)$-factors.

Definition (4.1) $K_{2 n}^{Q_{n}^{\gamma}}(X)$ is a subgroup generated by elements $Q \gamma^{m}(x), m \geqq n$, $x \in \widetilde{K}(X)$.
We have $K_{2 n}^{O}(X) \subset K_{2 n}^{\gamma}(X) \subset K_{2 n}(X)$.
J. F. Adams defined the additive operation $e_{n}: K(X) \rightarrow K(X) \otimes \mathbf{Q}$ as $e_{n}=$ $C h^{-1} \circ \Pi_{n} \circ$ Ch where $\Pi_{n}: H^{*}(X ; \mathbf{Q}) \rightarrow H^{2 n}(X ; \mathbf{Q})$ is the natural projection. He proved that $E_{\alpha}=\sum_{\alpha \geqslant n} e_{n}, \alpha \in Z /(p-1)$ is the operation $K(X) \rightarrow K(X) \otimes \mathbf{Z}_{(p)}$ and obtained the decomposition of $K(X) \otimes \mathbf{Z}_{(p)}$ into $(p-1)$-factors. From the equation $C h\left(\psi^{k}(x)\right)=\sum_{n \geqslant 0} k^{n} C h_{n}(x), e_{n}$ is the projection operator corresponding to eigenspace of eigenvalue k^{n}. In the next proposition, the second equation is well-known.

Proposition (4.2) $\quad K_{2 n}^{Q^{\gamma}}(X) \otimes \mathbf{Q}=K_{2 n}^{\gamma}(X) \otimes \mathbf{Q}=K_{2 n}(X) \otimes \mathbf{Q}$.
Proof. Since e_{n} is a scalar multiple of $\prod_{i \neq n}\left(\psi^{k}-k^{i}\right)$, from $(2,4) e_{n}(x)$ $=\sum_{i \geqslant 0} a_{i} Q \gamma^{n+i}(x)$ for some $a_{i} \in \mathbf{Q}$. Let $x \in K_{2 n}(X) \otimes \mathbf{Q}$, then $e_{0}(x)=e_{1}(x)=\cdots$ $=e_{n-1}(x)=0$. Therefore $x=\sum_{i \geqslant 0} e_{i}(x)=\sum_{i \geqslant n} e_{i}(x)=\sum_{i \geqslant 0} b_{i} Q^{n+i}(x)$ for some $b_{i} \in \mathbf{Q}$ and we have $K_{2 n}(X) \otimes \subset K_{2 n}^{Q \gamma}(X) \otimes \mathbf{Q}$.

Lemma (4.3) Let E be a complex vector bundle over X and $x=E-\operatorname{dim}(E)$. Then we have

$$
\begin{aligned}
C h\left(\gamma^{i}(x)\right) & =c_{i}(E)+\text { higher terms } \\
C h\left(Q \gamma^{i}(x)\right) & =i!C h_{i}(E)+\text { higher terms }
\end{aligned}
$$

Proof. It is suffisient to prove it for $E=L_{1}+L_{2}+\cdots+L_{n}, L_{i}$ being line bundles. Put $x_{i}=L_{i}-1$, then $x=x_{1}+x_{2}+\cdots+x_{n}$. We compute as follows; $\operatorname{Ch}\left(\gamma^{i}(x)\right)=\operatorname{Ch}\left(\sigma_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sigma_{i}\left(\operatorname{Ch}\left(x_{1}\right), \ldots, \operatorname{Ch}\left(x_{n}\right)\right)=\sigma_{i}\left(c_{1}\left(L_{1}\right)+\right.$ higher
terms $, \ldots, c_{1}\left(L_{n}\right)+$ higher terms $)=\sigma_{i}\left(c_{1}\left(L_{1}\right), \ldots, c_{1}\left(L_{n}\right)\right)+$ higher terms $=c_{i}(E)$ + higher terms. $\operatorname{Ch}\left(Q \gamma^{i}(x)\right)=\operatorname{Ch}\left(Q \gamma^{i}\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right)=\operatorname{Ch}\left(x_{1}^{i}+{ }_{2}^{i}+\cdots\right.$ $\left.+x_{n}^{i}\right)=\left(\left(\exp \left(c_{1}\left(L_{1}\right)\right)^{i}-1\right)+\cdots+\left(\left(\exp \left(c_{1}\left(L_{n}\right)\right)^{i}-1\right)=c_{1}\left(L_{1}\right)^{i}+\cdots+c_{1}\left(L_{n}\right)^{i}\right.\right.$ + higher terms $=i!C h_{i}(x)+$ higher terms.

From the Newton formula (2.5) and (4.3), we obtain the following facts.
(4.4) Let $x \in K_{2 i}(X)$, then

$$
\left[Q \gamma^{i}(x)\right]=i![x]=(-1)^{i} \cdot i\left[\gamma^{i}(x)\right] \text { in } K_{2 i}(X) / K_{2 i+2}(X)
$$

(4.5) $\quad e_{i}(x)=1 / i!Q \gamma^{i}(x)+$ higher terms.

Proposition (4.6) Suppose that a $C W$-complex X has the dimension less than $2 p-1$. Then we have $K_{2 i}^{Q \gamma}(X) \otimes \mathbf{Z}_{(p)}=K_{2 i}^{\gamma}(X) \otimes \mathbf{Z}_{(p)}=K_{2 i}(X) \otimes \mathbf{Z}_{(p)}$.
proof. In this case, e_{i} is the operation $K(X) \rightarrow K(X) \otimes \mathbf{Z}_{(p)}$. Hence the demonstration is done in a similar way to (4.2). We wish to generalize (4.6) to the space having the dimension as great as possible.

Theorem (2) Suppose that a CW-complex X has the dimension less than $2 p+1$. Then we have $K_{2 i}^{\gamma}(X) \otimes \mathbf{Z}_{(p)}=K_{2 i}(X) \otimes \mathbf{Z}_{(p)}$.
proof. Let X_{i} be the i-skelton of X. Consider the exact sequence $K_{2 p}(X)$ $\rightarrow K(X) \rightarrow K\left(X_{2 p-1}\right)$. Let $x \in K_{2 i}(X)$, then res $(x) \in K_{2 i}\left(X_{2 p-1}\right)$ where res is the restriction homomorphism $K(X) \rightarrow K\left(X_{2 p-1}\right)$. From $(4,6)$ and its proof, there exist $a_{j} \in \mathbf{Z}_{(p)}$ such that $\operatorname{res}(x)=a_{i} Q \gamma^{i}(\operatorname{res}(x))+a_{i+1} Q \gamma^{i+1}(\operatorname{res}(x))+\cdots$ $+a_{p+1} Q \gamma^{p-1}(\operatorname{res}(x))$. Therefore we have $x-a_{i} Q \gamma^{i}(x)-a_{i+1} Q \gamma^{i+1}(x)-\cdots$ $-a_{p-1} Q \gamma^{p-1}(x) \in K_{2 p}^{\gamma}(X) \otimes \mathbf{Z}_{(p)}$. Hence if we show $K_{2 p}^{\gamma}(X) \otimes \mathbf{Z}_{(p)}=K_{2 p}(X)$ $\otimes \mathbf{Z}_{(p)}$, we complete the demonstration. Let $y \in K_{2 p}(X)$, then from $(4,4)$ we see $y=1 / p!Q \gamma^{p}(\mathrm{y})=(-1)^{p} /(\mathrm{p}-1)!\gamma^{p}(\mathrm{y}) K_{2 p}^{\gamma}(X) \otimes \mathbf{Z}_{(p)}$.

We notice that for every prime p, the dimension $2 p+1$ in Theorem (2) is best possible. That is, there exist $C W$-complexes of dimension $2 p+2$ Which does not satisfy the equation in the theorem. We can take as such $C W$-complexes ($2 p+2$)skeleton of the classifying space of some finite groups. These are the sources of the counter-examples for Atiyah's conjecture. [4], [5], [6]
Let's apply Theorem (2) to $(2 p+1)$-skeleton $B_{G, 2 p+1}$ of a classifying space B_{G} of a finite group G. Let $\alpha_{i}: R(G) \rightarrow K\left(B_{G, 2 i-1}\right)$ be the natural homomorphism and $R_{2 i}(G)$ its kernel.

Lemma (4.7)

(1) $\alpha_{m+1}^{-1}\left(K_{2 i}\left(B_{G, 2 m+1}\right)\right)=R_{2 i}(G)$ for $i \leqq m+1$.
(2) $\alpha_{p+1}^{-1}\left(K_{2 i}^{\nu}\left(B_{G, 2 p+1}\right) \otimes \mathbf{Z}_{(p)}\right)=\left(R_{2 i}^{\nu}(G)+R_{2 p+2}(G)\right) \otimes \mathbf{Z}_{(p)} \quad$ for $i \leqq p$.
proof. (1) is trivial from definitions. Clealy, we have

$$
\left.K_{2 i}^{\gamma}\left(B_{G, 2 p+1}\right)\right) \otimes \mathbf{Z}_{(p)} \supset \alpha_{p+1}\left(R_{2 i}^{\gamma}(G)+R_{2 p+2}(G)\right) \otimes \mathbf{Z}_{(p)}
$$

Therefore it is sufficient to show that

$$
\alpha_{p+1}^{-1}\left(K_{2 i}^{\nu}\left(B_{G, 2 p+1}\right)\right) \otimes \mathbf{Z}_{(p)} \subset\left(R_{2 i}^{\gamma}(G)+R_{2 p+2}(G)\right) \otimes \mathbf{Z}_{(p)} .
$$

At first, consider the case $i=p$. Let $x \in \alpha_{p+1}^{-1}\left(K_{2 p}\left(B_{G, 2 p+1}\right) \otimes \mathbf{Z}_{(p)}\right.$, then $\alpha_{p+1}(x)$ $\in K_{2 p}^{\nu}\left(B_{G, 2 p+1}\right) \otimes \mathbf{Z}_{(p)}=K_{2 p}\left(B_{G, 2 p+1}\right) \otimes \mathbf{Z}_{(p)}$ and so $\alpha_{p+1}(x)=1 /(p-1)!\gamma^{p}\left(\alpha_{p+1}(x)\right)$ $=\alpha_{p+1}\left(1 /(p-1)!\gamma^{p}(x)\right.$ as in the proof of Theorem (2). Therefore $x-1 /(p-1)$! $\gamma^{p}(x) \in R_{2 p+2}(G) \otimes \mathbf{Z}_{(p)}$ and $x \in\left(R_{2 p}^{\gamma}(G)+R_{2 p+2}(G)\right) \otimes \mathbf{Z}_{(p)}$. For a general i, let $x \in \alpha_{p+1}^{-1}\left(K_{2 i}^{\gamma}\left(B_{G, 2 p+1}\right)\right) \otimes \mathbf{Z}_{(p)}$, then there exist $a_{j} \in \mathbf{Z}_{(p)}$ such that $\alpha_{p+1}\left(x-a_{i} Q \gamma^{i}(x)\right.$ $\left.-a_{i+1} Q \gamma^{i+1}(x)-\cdots-a_{p-1} Q \gamma^{p-1}(x)\right) \in K_{2 p}\left(B_{G, 2 p+1}\right) \otimes \mathbf{Z}_{(p)}$. It follows easily that $x \in\left(R_{2 i}^{\nu}(G)+R_{2 p+2}(G)\right) \otimes \mathbf{Z}_{(p)}$.

Theorem (3)

$$
R_{2 i}(G) \otimes \mathbf{Z}_{(p)}=\left(R_{2 i}^{\gamma}(G)+R_{2 p+2}(G)\right) \otimes \mathbf{Z}_{(p)}, \quad \text { for } i \leqq p
$$

proof. This is an easy consequence from Theorem (2) and (4, 7). Let $C H^{*}(G)$ denote the subring of $H^{*}(G)$ generated by all Chern classes and $\mathrm{CH}^{2 i}(G)$ its $2 i$-th component. Let $H^{\text {univ }}(G)$ denote the subring of universal cycles in the Atiyah's spectral sequence $H^{*}(G) \Rightarrow \widehat{R(G)}$ and: $H^{\text {univ }}(G) \rightarrow G r(R(G))=\sum_{n} R_{2 n}(G)$ $/ R_{2 n+2}(G)$ the natural epimorphism. Then $C H^{*}(G) \subset H^{\text {univ }}(G)$ and the Atiyah's conjecture (i.e. $R_{2 n}(G)=R_{2 n}^{\gamma}(G)$ for all n and G) is equivalent to the following conjecture; $\varphi\left(C H^{*}(G)\right)=\operatorname{Gr}(R(G))$.

Corollary (4.8)

$$
\varphi \otimes \mathbf{Z}_{(p)}: C H^{2 i}(G) \mathbf{Z}_{(p)} \longrightarrow R_{2 i}(G) / R_{2 i+2}(G) \otimes \mathbf{Z}_{(p)}
$$

is surjective for $i \leqq p$.
proof. From Theorem (3) and the relations $R_{2 i}^{\gamma}(G) \subset R_{2 i}(G), R_{2 p+2}(G) \subset$ $R_{2 i+2}(G) \subset R_{2 i}(G)$, we have $R_{2 i}(G) \otimes \mathbf{Z}_{(p)}=\left(R_{2 i}^{\gamma}(G)+R_{2 i+2}(G)\right) \otimes \mathbf{Z}_{(p)}$, and so $\left(R_{2 i}(G) / R_{2 i+2}(G)\right) \otimes \mathbf{Z}_{(p)}=\left(\left(R_{2 i}^{\gamma}(G)+R_{2 i+2}(G)\right) / R_{2 i+2}(G) \otimes \mathbf{Z}_{(p)} \hat{=}\left(R_{2 i}^{\gamma}(G) /\right.\right.$ $\left.R_{2 i}^{\gamma}(G) \cap R_{2 i+2}(G)\right) \otimes \mathbf{Z}_{(p)}$. \quad Since $\quad \varphi\left(C H^{2 i}(G)\right)=R_{2 i}^{\gamma}(G) / R_{2 i}^{\gamma}(G) \cap R_{2 i+2}(G)$, (4.8) is proved.

We notice that for every prime p there exists a group G such that $\varphi: \mathrm{CH}^{2 p+2}(G) \otimes \mathbf{Z}_{(p)} \rightarrow\left(R_{2 p+2}(G) / R_{2 p+4}(G)\right) \otimes \mathbf{Z}_{(p)}$ is not surjective. The next corollary was proved algebraicly in [4]. We can give a new proof.

Corollary (4.9) Let G be a Artin-Tate group (with periodic cohomology), then $R_{2 n}^{\gamma}(G)=R_{2 n}(G)$ for all n.
proof. In this case, it is known that $H^{*}(G)=H^{\text {even }}(G)=H^{\text {univ }}(G)$. We shall show that $C H^{*}(G) \otimes \mathbf{Z}_{(p)}=H^{\text {univ }}(G) \otimes \mathbf{Z}_{(p)}$ for all prime p and hence $C H^{*}(G)=$ $H^{\text {univ }}(G)$. Since $H^{2 i}(G)=R_{2 i}(G) / R_{2 i+2}(G)$, we have from (4.8) $\mathrm{CH}^{2 i}(G) \otimes \mathbf{Z}_{(p)}=$ $H^{2 i}(G) \otimes \mathbf{Z}_{(p)}$ for $i \leqq p$. It is proved in [4] that $H^{*}(G) \otimes \mathbf{Z}_{(p)}$ has a period $2 q$ where q is a divisor of $(p-1)$ for an odd prime and 2 or 4 for $p=2$. It follows $C H^{*}(G)=H^{\text {univ }}(G)$ and (4.9) is proved.

Department of Mathematics, Nara Women's University

Reference

[1] J. F. Adams, Lectures on generalized cohomology, Lecture Notes in Mathematics 99, 1969, 1-138, Springer-Verlag.
[2] M. F. Atiyah, Caracters and cohomology of finite group, Pubul. Inst. des Hautes Etudes Sci. (Paris), 9, (1961), 23-64.
[3] M. F. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford (2), 17, (1966), 165-93.
[4] T. Kambe, K-ring of the orbit spaces of spheres by finite free actions, J. M. of kyoto Univ. Vol 31, No.1. 1991 89-97.
[5] Ian Leary and Nobuaki Yagita, Chern classes in cohomology of p-groups, (to appear)
[6] E. Weiss, Kohomologiering und darstellungsring endlicher gruppen, Bonner Math. Schriften, 36, 1969.

