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Graded CM modules over graded
normal CM domains

By

Yuji YOSHINO

I. Introduction

Remarkable progress has been made in recent years for the classification of
maximal Cohen-Macaulay modules (abbr. CM modules) over Henselian Cohen-
Macaulay loca l rings, and  the  computation using Auslander-Reiten quivers is
know n to  be the  steadiest way to d o  this. F o r the  detail, we recommend the
reader to refer to [6] where m ost of these topics are briefly summarized.

In  th e  present paper we a re  interested in  graded C M  m odu les. Although
it m ay be possible to determine them for several examples by the  same method
as in Henselian cases, it would require some hard com putation. We shall propose,
in this paper, a new method to classify graded CM modules over a  graded normal
CM domain, particularly of dimension two.

O ur starting point is that the graded ring R  has the Demazure's description,
that is,

R  =  E H
°

(X , (9 x (nD))tn,
n > 0

where X  = Proj (R ) and  D is  a Q-W eil divisor o n  X  such that eD is  an ample
Cartier divisor fo r  som e e > O. A  theorem of D em azure  [2] says that every
graded normal domain has such a description. The next section is occupied by
some auxiliary results concerning this description that will be used repeatedly in
this paper.

Taking an  integer e a s  above, we can define an (9 k -order A  as

 

ex
(Qx(

—
 D)

e x ( D )  • • •  e x ((e* — 1)D)

ex • • • e x ((e —  2)D)

• • •
A =

   

ex (
-

1e — 1)D) • • •  ex 1
Some of the properties of A  will be shown in  § § 4  a n d  5 . Furthermore we can
show in (4.7) that, fo r n >  2 , the  category of graded n-th syzygy modules over
R  is equivalent to that o f right A-modules which are n-th syzygies. The proof
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of this fact is m ain part of §§3 and 4.
Let bdI(A) be  the  category of locally free C x -modules with right A-module

struc tu re . It will be seen in  §6 that bd1(A) is equivalent to the category of d-th
syzygy modules over A , where d = dim (X ). C om bin ing  th is w ith  th e  above
result, we will show in (6.8) tha t, if X  is  a  curve, the  category o f graded CM
modules over R  is equivalent to bd1(A ). Thus in the case X  is a  curve, all the
graded CM  R-m odules are obtained a s  vector bundles over X  with A-module
structure . A nd analysing th e  order A , w e w ill be  ab le  to  se e  in to  the latter
modules in detail as we will develop in  § 7 .  Roughly speaking, one of our main
theorems (cf. Theorem (7.6)) says that any C M  m odule over R , when X  is  a
curve, is obtained as an 'extension' of a vector bundle over X  by a  representation
of a certain quiver determined by D.

2. Preliminary ; Demazure's description of graded normal domains

Throughout the paper R = > 0 R  is assumed to be a graded normal domain
with R o =  k an algebraically closed field and we adopt a  non-essential assumption
tha t g.c.d.{n1R„ 0 0}  =  1 . W e denote  by K  the  graded quotient field of R , i.e.
the set of all the fractions with homogeneous denominators. Then the assumption
is equivalent to saying that there is a  homogeneous element t  of degree one in
K .  Letting K 0  b e  the degree 0 part in  K , we know that

K = K o [t, ']  (Laurent polynomial ring).

If we denote X  = Proj (R), K o  is  the function field of the projective variety X .  By
D em azure [2] it is know n that there  is a  W eil divisor D  o n  X  with rational
coefficients, which is ample and Q-Cartier such that the  graded ring R  can be
written as follows:

Lem m a (2.1) R = R(X , D) = E„, 0 H° (X , e x (nD))tn.

Here, for a Q-divisor D = E i (gi lp i)Di (pi ,g i eZ ), we denote [D ] = E i [ q i lp i] Di

with the convention :

[r] =  max {vie Z l n  r } for r e Q,

and set e x (D) =  (.9,([D ]). In  what follows we always denote the constant sheaf
whose stalks are K , by Jr, and we regard the sh e a f  5 (D) as a subsheaf of Jr.

The main purpose of this paper is to show how we can describe the category
of graded CM modules b y  the datum  (X , D ). Therefore throughout the  paper
(X, D) is  the  one  given a s  a b o v e . T h a t is , X  = Proj (R ), a n d  D  is  a Q-Weil
divisor o n  X  s u c h  th a t  / D  i s  a n  a m p le  C a rtie r  d iv isor f o r  some integer

> O. M oreover w e  take  the following notation:

(2.2) D = Ecqx/px)[x],
) ,
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where x runs through all the points on X  of codimension o n e .  We assume that
px  is  a lw ays taken  to  be  a positive integer, and  tha t if  qx  0  0, then px  a n d  qx

are coprime, while px = 1 if qx = O. W e often  w rite  rx = q x lp x . Note that rx = 0
for almost all x e X , so  tha t px  = 1  for those x.

Recall the following fact (cf. Watanabe [5] ) :

Lemma (2.3) L et x  b e  a p o in t o f  X  o f  codimension one and le t p  b e  a
corresponding graded prim e ideal o f  R  o f  he igh t o n e . N o te  th at  the  graded
localization R ( ,) o f  R  at  p  is defined by

R ( ) = { b /ab eR , a e R — p, a  is homogeneous}.

I f  mx  i s  the m axim al ideal of  the local ring e then w e have the equality:

R (p ) = E m; t .
neZ

F or the  po in ts  whose codimensions a re  larger than  one, w e  a lso  have a
sim ilar result to the above.

Lemma (2.4) L e t y  be an  irreducible po in t o f  X , and  le t q be  the graded
prime ideal corresponding to y. Denote by S2(y) the set of  all points of  codimension
one that are generalizations o f  y . T hen,

Roo =  y ( n riGE--i)tn
n e Z  x e f2 (y )

P ro o f . N ote th a t  R ( g ) = n R p runs through all graded primes of
height one with p c  q. Thus the lemma follows from (2.3).

Now we define a n  e x -subalgebra Jr/ of X . Et, t -  1  by the following :

Definition (2.5)

= x(nD)tn [t,
neZ

N otice th a t  s i  i s  a  graded e x -algebra, since [nD + m D] [nD] + [m D].
Clearly we have the following result a s  a  corollary of Lemma (2.4).

Lem m a (2.6) W ith  t h e  sam e  n o ta t io n  as  in  L em m a (2.4), w e  have
S ly  =  R ( q ) . In particular, if  R nonsingular, then there is an  equality:

gl. dim (d y) = codim (y, X ),

where the lef t hand side m eans the global dim ension of  the category  o f  graded
d y -modules.

P ro o f . This is immediate from (2.4). In  fact, since m;'n = e x (m [x] )x  fo r
any x e X  and  m e Z, w e have e x (nD)y = nx c n ( y ) e x (nrx [x ]), = n„c f 2 (y ) m ), [ nr- ]  fo r
any n e Z.
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Remark (2.7) I n  g e n e ra l w e  d e n o te  b y  M-  t h e  quasi-coherent sheaf
corresponding to a  graded R-module M .  Then Lemma (2.6) can be stated as :

R(n) = e x (nD)0,

for any n e Z .  In  fact, the both sheaves a re  regarded as subsheaves of „Xi-  and
th e ir  s ta lk s  c o in c id e  a t  a n y  p o in ts  b y  ( 2 .6 ) .  N o te  a l s o  t h a t  a  graded
R-homomorphism f :  M  N  of graded modules induces a morphism : 11-4
of quasi-coherent sheaves.

3. Graded si - modules

Definition (3.1) (3.1.1) We denote by Gr(R) the category of graded R-modules
with degree 0 hom om orphism s, likewise by  G r ( d )  t h e  category o f  graded
d-m odules with degree 0 homomorphisms.
(3.1.2) Define the functor 4: Gr(R ) - * Gr(d) by :

(* )
(M ) = E M (n), d ( f )  = E f (n),

neZ neZ

f o r  a n  ob jec t M  i n  G r(R ) a n d  a  m o rp h ism  f :  M  N  i n  G r(R ), where
f (n): M (n) N  ( n )  denotes the shift of degrees by n, hence f (n),n = fn

It is easily checked that 4 is a  well-defined functor.

Lemma (3.2) (3.2.1) d(R ) =
(3.2.2) 4  is an exact functor.

P ro o f  The first assertion follows from (2.7) and the second is straightforward.

Definition (3.3) We define the functor F: Gr(sz l) - > Gr(R) as follows : For a
graded d-module S  = 217n and for a  graded homomorphism t/i : ,97  --0

(**) F ( F )  = E Enx, g-n ), F(4i) = 0): F(F).--- F(W ).
neZ

N ote the following obvious fact :

Lemma (3.4) F  is  a  lef t exact functor.

Definition (3.5) For any integer n, we denote by g r(R )  the full subcategory
of Gr(R) whose objects are n-th syzygies. Here we say that an R-module M  is
an n-th syzygy if there is an exact sequence in  Gr(R):

0 --3•M — +F _ 2 - >  - >  F 1F 0 ,

w here  each  F  is a  f in ite  d irec t s u m  o f  th e  m o d u le s  o f  th e  fo rm  R(a)
(a e Z ) .  Similarly, g r (d )  is  the full subcategory o f G r(d )  consisting of all n-th
syzygies. Here an d-m odule  is  an  n-th  syzygy if and only if  there  is an
exact sequence in  G r(d):
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Sr' .-1 n - 2 .(S)>

where each is  a  finite direct sum of modules of the form si(a) (a e Z).

The following lemma is easily shown from the  exactness o f the  functor A
and the left-exactness of F.

Lem m a (3.6) (3.6.1) For any  integer n, A  induces the functor:

An : gr"(R) --* gr"(s1).

(3.6.2) r induces the f unctor F 2 : gr2 (2 1 )-g r 2 (R).

Of m ost importance is  the following proposition.

Proposition ( 3 .7 )  I f  n  i s  an integer > 2 , then An : grn(R)->gr"(91) i s  an
equivalence of categories.

P ro o f .  First of all assume n = 2. In this case we show that A2 has F2  as an
inverse. N ote  that, for any integers a, b,

(3.7.1) HomGr(a)(21(a), .21(b))= H ° (X, .szlb _a) = H ° (X ,  x ((b - a)D))t" - °

= R n _a = H om G ,.( R ) (R (a), R (b)).

By definition any object "" e gr 2 (.4 )  has a  presentation:

O - + - 4  E i d(ci i) Ei,szi(bi),

where f i e Ro j _ a o  by the above. Applying the functor F to this, we have the exact
sequence:

0 F (.f.) — +E iR (a i)(i)> E iR (b i)

The sequence is still exact when applying the functor A:

0 A (I' (F)) E, sl (a i)  4  d ( b 1)

A s  a  consequnce w e obta in  that A (F (F ) ) .  Similarly M  F (A (M )) for
M  egr2 ( R ) .  Therefore A2 yields a bijective correspondence between the objects of
gr2 (R) and gr2 (91).

It rem ains to show tha t A 2  is fully faithfull. Equivalently we have to  show
that, for any M, N egr 2 (R ), the following map induced by A 2  is  bijective:

(3.7.2) Hom,,,,(R)(M, N ) --÷ H orn g ,.2(„ ) (A (M), A (N)).

T o  d o  th is, notice th a t  a n y  M  in  gr2 (R ) a re  reflexive m odu les . F o r a
morphism f : M --+ N in gr2 (R), take a free resolution of M * H o m ,(M , R) (resp.
N * =H om R (N , R )) as follows:

F ,  '-2 -*F o — ■ M * — >  O. (resp. G, * / >G0 ---■N* —> O.)
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Then f*: N* –> M * induces a commutative diagram :

F Fo M*
h l ï ho f *

G Go N* — > 0.

Hence the following diagram is also commutative with exact rows:

0 M Fl`

V,

N ,

w here  (p*, ht, a n d  h f  c a n  b e  re g a rd e d  a s  m a tr ic e s  w hose  en tries are
homogeneous elements in  R .  Then a  similar argument using (3.7.1) shows that

FA(cp*) = F A ( )  = 0*, FA(h'01 ) = h'4' and FA(ht) = hr.

Hence we conclude that FA ( f ) = f  and that the map in (3.7.2) is a monomorphism.
To show that this is also an epimorphism, it is enough to show that the map

induced by 1';

Homn,.2( d ) (A(M), A (N )) — >Hom„, ( R ) (M, N)

is a m onom orphism . Let 0: A (M) –> A (N ) be a morphism in  g r (d ) and assume
th a t F(0) = 0. W r i t e  0 = E„„e„, where 0: M (n) –> N (n). Taking a  system of
homogeneous parameters fr 1 , r 2 ,..., r 0} in  R +  = ,...a n > 0  R n , we consider a  covering
ID(r i) = Spec(R,), I i = 1, 2,...,1 , 1 of X .  Then 0 is  a collection of the maps;

O°: M r . D ( r i) (i =1, 2, ... , v)
w i t h  Ow 

D(r,)n D(r ., )  =  e ( f ) 1D(r,)n D(r.d•
induced by 0W:

= n N  –  n N  ri
i = 1i = 1

is trivial. H e n c e , for any x =  yIrT e(M ,,)„ (v M- -  d ,m +n , di =  deg (0), we see that
0 = 0(

a?„,,,,(y) = r71 0(„i ) (x ),  a n d  thus 0;! ) (x) =  0 . Therefore  it is concluded that
0( 0  =  0  for any i = 1, 2, ..., v. C onsequently  0 = 0, and  the  m ap in (3.7.2) is  an
isomorphism.

Hence we showed that F 2 •  / 1 2  =  1 g r 2( , ) a n d  /1 2 •  F2  =-

Now consider the case n > 2. Since the functor F 2  is  exact, its restriction
onto  the  subcategory g r (d )  is also an exact functor. In particular, it induces
the functor grn(d)–> grn(R). Since F 2  is the inverse of  A 2 , F n i s  the inverse
of A .

By definition F(0) = 0 im plies that each m ap
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Remark (3 .8 )  When n < 1, notice that A n : grn(R)—> gr" (d )  is not necessarily
an  equivalence of categories.

4. The a x-order A

Notation (4 .1 )  In the following we fix a positive integer e with the property
that eD is a n  integral Cartier divisor o n  X .  Moreover we write E = 11).

Remark (4 .2 )  Notice that (9 x( — E )ta n d  x ( E )  t  appear in  d  a s  graded
pieces. Therefore fo r  a n  object . " =  n Z n  in  g r(s1 ), w e have equalities of
e x -modules:

'Fri+ 3i-rn 
0

 01(
6  X (E),

for any n E Z. A ctually, since ,F  is  an  d-m odule, we have

.F„ (9 x (E ) t' = , 1 d Y.° n + g .n +  C ) O x ( —  E)t -  =  Yin +  , .91

N oting that (9 (E) i s  a n  invertible sheaf, we show the above equality.

Definitions (4 .3 )  (4.3.1) We define an (Px -order A  in the full matrix algebra
11 4 ,(i() o v e r 1 - by

A  = (ex (U —  OD))1

x O(D) • • • ( 9 ( ( (  —  1)D) \

ex ( —  D) ex • • • x ((e —  2)D) \

(
9x( — (e — 1)D) (9x

Furthermore we denote by m od(A ) the category of coherent right A-modules and
A-homomorphisms.
(4.3.2) The functor 0 : gr.' (d )  m o d ( A )  is defined a s  follows:

F or ..97  = we define:c_,neZ g 7n t n

°07 ) = 07 05 '97¢ –1 ) O E -V  •

A nd for a  morphism = E n E z

0 (0)(x0, x1 , ... , -1 )  = (00(x0), 01(x1),...,0e -10ce -

I t  i s  a n  easy  exerc ise  to  see  that 0 (F )  i s  a  right A-m odule a n d  0 (0 ) i s  a
A-homomorphism.
(4.3.3) The functor mod (A) G r(s1) is defined a s  follows :

For any .R  e mod (A) and any ne Z, let .a,„ be the e x -m o d u le  x (aE) 0 , x  e b ,
where n = at + b, a, b e Z, 0 < b < e and eb i s  an idempotent matrix in  A  whose
entries a re  1 in  (b  + 1, b  + 1)-position and 0 otherwise. Then define:

V (//t) = E
neZ

define 0 (0 ): 0 07 ) 0 (W )  by:
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Similarly, for a A -hom om orphism  9 ,  define T (9 )  t o  b e  (9 x (aE )0 ,,,9 . e b o n
g „ .  N o te  that, for any integer m, there is a  natural map:

6̀;47n ex (9 X (MD) 3i7n+

for each m  e Z . In fact, if m = +  b' (a', b' EZ, O <  b' < e), then

(9x (d E )0 e b A e b ,„ ,

Cx(mD) =
ex ((a' + 1)E) 00 x  ebAeb+b— g

Thus if b + h' < C, then

if b + b' < e,
if ,b + b' > e.

L-F n 0 0 x 6 X (m D )=  e x ((a + a')E) 0, x  e b • eb Aeb + b ,

OE (9 x ((a + a')E )0 , x .ile b + b , =

Likewise we have the same natural inclusion when b + b' > C. T h e r e f o r e  n i t )
is  a  graded d-m odule and W (T) is an d-homomorphism.
(4.3.4) For an integer n > 1, a  right A-module di is called an n-th syzygy if there
is  an exact sequence of right A-modules :

13- - - - - >  ' 9 n— 1 2

where each g ,  is  a  finite direct sum  o f A-modules o f  th e  form  e x ( — aE )Q , x

ebA  (0 < b < e, a e  Z ) . W e  d e n o te  b y  mod" (A) th e  fu ll subcategory o f  mod(A)
whose objects are n-th syzygies.

The following lemma is almost clear from the definition.

Lemma (4.4) (4.4.1) 0  is an exact functor and O w  (— e x (—  aE)0 0 x eb A,
w here n = a ( + b, a, b e Z , 0 < b < C.
(4.4.2) is  an ex act functor and th ere are equalities:

Vf (0 .7c(—  a E )  e x ebA) = d ( — (a( + b)) Z , 0 b < e).
P r o o f .  (4.4.1): T h e  exactness o f  0  is  obv ious from  th e  definition. The

isomorphism follows from the fact that, for each c  (0 < c < e),

( n ) ) , x( — (n — O M =  x (— aE) Oax  x ( — (b O M =  x( —  aE) 0 e b A)e,.

(4.4.2): T o  show th a t  P  is  an exact functor, let 0 —> ./k" —> .1/ —> dl"  0  b e
an exact sequence of right A-modules. Then 0 —>  e, — >  . 4 1 e ,  0  is  an
exact sequence of O x -modules for any b  (0 < b < e), hence the following is also
an exact sequence of e x -modules for any ae Z :

0 9  ( 9 (aE) 0 95(aE ) 0  Jle  —  (9 x (aE) 0 ./N"e b0 .

Summing up this, we thus see that 0 —> T(A') —> W(J1) —> n i l " )  —> 0 is an exact •
sequnce o f d -m odu les . T he  last equality follows from a direct computation as
follows :
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1/ (6  x( —  aE) D x  eb A) = E Icx ((a' — a)E)(D e x  eb Aeb .} t"
neZ,n=a'¢ +b'

= E lex((d — a)E)(D e x e x ((b' — b)D)} t"

= E ex ((n — a( — b)D)tn

= .W(—(at + b)).

It is deduced  from  th is lem m a that th e  functors 0  a n d  V' preserve n-th
syzygies. Hence we get the following:

Corollary (4.5) For an integer n> 1 ,0  a n d  induce the following functors:

gr"( ) - 4  mod"(A),

mod"(A) —> gr (d ) .

In  fact these functors give rise to an  equivalence of the categories.

Proposition (4.6) Fo r an  integer n >  1 , 0  an d  Vf induce an  equivalence of
categories:

gr"(.91)- mod"(A).

P ro o f .  It is evident that we have only to prove the proposition in the case
n = 1. N ote from the  definition that for emod i (A ), there is a n  equality

0  "(di) ( f i e  0 , _ i ) =

O n the other hand, for .Y7  e gr i  (.21),

wo(F) = E ((x(aE)00„ 3 7b) t n

neZ,n=cie +b

= 'F a g  + b t n = F •
nEZ,n=ae+b

(See (4.2) for the second equality.) Thus they induce a bijection between the sets
of objects in  gr i (d )  and mod l (A).

To complete the proof, let e gr i (s1) and let Al = = 0 (W ). We
w ant to  show tha t the  map H o m , ( , Hom,(di, )  induced by 0  is  an
isomorphism. Let çli = E n t/in b e  a  morphism from  .9"; to and assum e that
0(0 ) =  0 . Then, by definition, O n = 0(0 < n < i). O n the other hand, we know
b y  (4.2) tha t O n +  =  0  Ox (E ) .  Hence / i  0  f o r  a l l  n e Z, showing the
injectivity. T o  s h o w  th e  surjectivity, l e t  f  b e  a n  a rb itra ry  e lem en t in
Horn,(di, ) .  Then it is easily checked that  = u n e Z ,n = a g  + b e x (a E )0 o x f b  is
an  si-homomorphism from .57; = g-1 (.1‘) to =  T ( i / . ) and  th a t 0(0) = f

Combining Proposition (3.7) with (4.6) we obtain the  theorem :
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Theorem ( 4 .7 )  I f  n  is an  integer > 2, then the category  g r(R ) is equivalent
with mod"(A).

Remark ( 4 .8 )  L et y e X  b e  a n  irreducible po in t and  le t q  b e  the  graded
prime ideal of R  corresponding to y. W ith the notation in Lemma (2.4), set

i n  =  n  m».-] (n e Z).
xef2(y)

Then, the stalk of A  a t  y  is

Ay =
 ( ij— i)0 < i, j<  e •

And similarly,

= E I n t "

neZ

Since I _  = e x (— E)y = e x (E); w e  n o te  th a t  s ly  c o n ta in s  11 t 1 a n d
e a s  graded pieces. Now define the functor :

y  gr l  ( C4  y ) mod' (A y) ; m1,...,m 1 _ i ).

Then completely the  same argum ent as in the proof of Proposition (4.6) shows
that J i y  yields an  equivalence of categories. Thus the next lemma follows from
Corollary (2.6).

Lemma (4.9) Under the same assumption as the above, if  R (, ) is nonsingular,
then there is an  equality:

gl.dim (A y )  =  codim (y, X ).

In particular, if  xe X  is a point of  codimension one, then A x  is a hereditary order.

5. The ramification index of A

I n  L em m a (4.9) w e  h a v e  sh o w n  th a t A  is  he red ita ry  i n  codimension
o n e . M o re  precisely one can determine the ramification indices of A  at those
points of codimension one.

Theorem ( 5 .1 )  L e t  x e  X  b e  a  p o i n t  o f  codimension o n e .  T h e n  the
ramification index o f  Ax  as  an  0 - o rd e r is equal to px . (See (2.2) for the precise
definition of pi .)

P ro o f . F o r  sim plicity w e w rite ni i n i c  A =  x , ,
r p = p x  a n d  q q x .

Then notice tha t one can write A x  A ? ,  where
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A m -r/PI • • • 1 1 1 -  [ ( P - \

I tt l q1P1A • • • m - [ ( P - 2 ) q1
P
1 1

A? =
• • •

\ [(p - 1)ql 13]

A in
-

(' • • • m -  '" IP

mq A ••• 111 -
 (  

g - P ) q / P

A

=

ql p A

Since Al is isomorphic to the matrix algebra M o p (A), the ramification index of
A x  is  e q u a l to  th a t  of A .  A n d  th is  is  equa l to  the  num ber o f  isomorphism
c la s se s  o f  indecomposable projective r ig h t  /1?-modules, s in c e  A°

 i s  a l s o
hereditary. See Reiner [ 4 ] .  N ow  le t te 0 ,e 1 ,...,e p _ 1 l  be a  complete system of
orthogonal idempotents in  A .  It is sufficient to prove that if  i j ,  then 0 °

is not isomorphic to ei A ° a s  a  il -module. S u p p o se  tha t e i A
° e i A ° fo r  some

i < j. Then there is a n  integer s  (0 < s  <  1) satisfying

(5.1.1) W O ? = e i A?.

N ote that

ei A? = (ittuq1P1 ,..., m -

[(P- i)q1P]),

in which each in" appears p, / ,(k)-times where pq / p  is defined in the next lem m a. It
is then easy to  see that the  equality in  (5.1.1) contradicts the  following fact (cf.
Yoshino-Osa [7, Lemma 4]).

Lem m a (5 .2 )  L e t  r = q lp  (p , q e Z )  b e  a  rational num ber w ith p , q
coprim e. W e define the function p r : Z  N  as follows:

= # Iv eZ l[v r] = n}

Then 1(11 is the minimum period of  the function p r .

Pro o f . W e may assume that both p  and q  are  positive . It is obvious that
if s = q, then p r (i + s)= M O for any i Z .  Let s be the minimal positive integer
w ith  th is  p ro p e r ty . T h e n  c le a r ly  s  d iv ides q. W e  h a v e  t o  s h o w  that
s  = q .  Letting r' = ql(p  + q), w e  c a n  se e  th a t M O  = +  1  fo r  a n y  i E Z.
Hence we may assume tha t 0 < p  < q .  Then p r takes either 1  or 0 , hence

q -1

Pr(i) = # ti E < q , P =  1 1
1=0

= #010 <1)1 = P•

O n the other hand the leftmost of this equation is equal to (q 1 s) E71,1 p JO , since
s  is  the period of pr . Therefore q ls  divides p  and thus q = s.
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6. Vector bundles with A-module structure

Notation ( 6 .1 )  In  th e  rest o f this paper w e denote d = dim (X ) (> 1), so
that dim (R) = d + 1. A n d  deno te  by  bd1(A) th e  fu ll subcategory o f  mod(A)
consisting of all right A-modules that are locally free as e x -modules. Therefore
the objects of bd1(A) are vector bundles on X  with structure of right A-modules.

First we note the following fact:

Lemma (6 .2 )  Suppose that R  has only  an  isolated singularity and that X  is
nonsingular. T hen an  object di emod(A) belongs to bd1(A) i f  and only  if  M x  is
a projective A x -module f o r any  x e X.

P ro o f . Since A x  is  a free e x ,„-module, the 'if ' part is trivial. To prove the
'only if ' pa rt, le t i t  b e  a  right A-module that is locally free  as an  e x -module
a n d  le t x e X .  Since A x  i s  a n  0 -  order w hose global dimension equals the
Krull dimension of e x ,x ; see (4.9), we may apply [1 ; Theorem IV. 1.9] to conclude
tha t J t x  i s  a projective Ai -module.

This lemma proves the following:

Theorem (6 .3 )  Suppose that R  has only  an  isolated singularity  and that X
is nonsingular. T hen bd1(A)c mod(A) for any  integer t > 1.

P ro o f . N ote  f irs t  th a t th e  se t  o f  left A-modules {Ae i 0 , x  x (nE)1n, i eZ,
0 < i < el generates the category of coherent left A-modules. To prove this, let
X  be  a  coherent left A-module. Since E  is  an am ple divisor o n  X , for any  i
(0 < i < I ) ,  there is an  epimorphism of (9g -modules:

eST) e  i X  0 , x  ( x (nE) = o m  A (Ae i , 0 0 x  x (nE),

w ith som e integers m  a n d  n. T h is  induces th e  epimorphism (9,( — nE) ( m) - 0
om,(Ae,, X )  and hence the A- homomorphism (Ae 0 , x  ( x ( — nE)) ( m) —0 X .

Then it is easy to  see that the sum of the f i g ives rise to  an  epimorphism:
e -
E (Ae i 0 , x  x ( — nE)) ( m)

o

Hence {Ae i 0 , x  x (nE )} generates the category of left A-modules.
Now we prove the theo rem . Let ./.# be an  object in  bd1(A ). Then, by the

above, there is an exact sequence of left A-modules :
e - 1Q - 1 e  -  1
E Ae i 0 , x 13

i - 0 E E Ae 1 0 , x P o ,i
i=o =o i=o

.Y2 D4 '4 A (di, A )

where P i j  are direct sums of e x -modules of the form Ox (nE) (ne Z ) .  Note that
for any x e X , the natural map :
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x H o m A .( H o m n .( .A ' x, A i ), A )

is an isomorphism, since di x  is Ax -projective. Hence the natural map of sheaves

Y rom A (droyN A (.11, A), A)

is also an isomorphism. Therefore applying the functor ,Y(p.oz A  ( , A) to the above
exact sequence, we have the following complex of right A-modules :

e — e — 1
0 — 1. — 4  E

i=o i=o
Q-1E x e ,A
i=o

where Pi = Y rom , x (P i , e x ). N o te  from  th e  sam e a rg u m e n t a s  in  (6.2) that
f ro m ,(d i, A ) x  is  a projective left Ax -module for any x E X .  Thus the homologies
e x i ( . r . , ( iN ,  A ), A ) (1 i  <  t )  of the  above complex vanish, and  hence the
sequence (6.3.1) is  e x a c t . Therefore J I is a  t-th syzygy a s  a  right A-module.

Corollary (6.4) Under the same assumption as in  (6.3) there is an  equality:

modd (A )= bdl(A ).

P ro o f . L et di em od d ( A ) .  Then fo r any  x e X , w e see  tha t d i ) ,  i s  a d-th
syzygy a s  a n  Ax -module. Since A x  i s  a  free  (9,,x -module, .41x  i s  a  d -th  syzygy
as an  (9 -module, hence it must be e x ,x -free, for e x ,x i s  a  regular local ring of
dimension no t more than  d. Therefore d Ebdl(A ).

This, together with (6.3) and (4.7), shows the following:

Corollary ( 6 .5 )  (6.5.1) If  d  = 1 , then bdl(A )= m od 2 (A )-  g r 2 (R).
(6.5.2) Suppose that R  has only an isolated singularity and that X  is nonsingular. If
d > 2, then bdl(A )= mod' (A) gra (R).

P ro o f . Since mod 2  (A) c  mod' (A ), the  first equality in  (6.5.1) follows from
(6.3) and (6.4).

N ext w e no te  the  relationship o f syzygy modules w ith C M  m odules. For
this we settle the notation.

Notation ( 6 .6 )  W e denote by g r (R ) the full subcategory o f  Gr(R ) whose
objects are graded CM modules.

It is known that g r (R ) is equal to the category of syzygies under a  suitable
assumption.

Lemma ( 6 .7 )  I f  R  is  a C M  ring  that is  an  isolated singularity , then there
is an  equality:

grE(R) = grd  + 1 (R).

(6.3.1)
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This lemma is well-known, but we include here a  brief proof of this for the
convenience of the reader.

P ro o f . I f  M  g r d  + 1 (R ), then depth (M) = d  + 1 , since  R  i s  a  C M  ring .
H ence  M  e  g r(R ). T o  show the converse, we prove the  stronger statement :

(6.7.1) Let R  be a  graded CM ring and let t  be an integer with 1 t < d  + 1. I f
M  is a  finitely generated R-module with depth R (M )  t  such that M ( ) is R ( ) -free
for any relevant homogeneous prime ideal p of R , then M e gri(R).

I f  th is  is  true, then w e a re  through, since every C M  m odule over a n  isolated
singularity satisfies the assumption in (6.7.1) with t = d  + 1. We prove (6.7.1) by
induction  on  t. L e t  { f( 1  <  i < N I  b e  a  s e t  o f  homogeneous generators of
Hom R (M, R ) and consider the map f  = ( f 1 , f2 , . . . , fN ): M  R ( N ) . First of all we
assum e th a t  t  =  1 .  I t  i s  e n o u g h  t o  sh o w  th a t  K e r ( f )  =  O . Suppose that
K e r ( f )  0  and take a  homogeneous associated prime ideal p of Ker ( f ) .  Note
that p is not an  irrelevant prime ideal of R , since if so, then depth (M) = 0 which
contradicts the assumption. Therefore M ( ) is  a free Ro y -module, hence the map

( ): M ( ) M , ,N)
) is a  split monomorphism, since Hom, (, ) (M ( ) , R ( )) =  (f1 ,

R( ) . I n  particular K er(f) ( ) =  0  th a t  is  a ls o  a contradiction, s in c e  p  is  an
associated prime of Ker ( f ) .

Now suppose that t 2. As above we can show that f  is an injective map,
hence we may have an exact sequence of R-modules :

0 M R(N) L O.

For any relevant homogeneous prime ideal p of R, since M ( ) is  a free Ro y -module
and since Hom, (, ) (M (P ) , R ( ) ) =  ( f1 , f 2 , . . . , fN ) R (P) , the map f o )  is  a  split monomor-
phism, hence L ( ) i s  a l s o  a  free  R o r m o d u le . O n  th e  o th e r  hand , w e  have
depth (L) t  — 1, since depth (M ) > t  a n d  depth (R) = d  + 1  > t .  Thus w e can
apply the induction hypothesis to L to obtain that L is a  (t — 1)-th syzygy as an
R-module and tha t M  is  a t-th syzygy.

Combining this with Corollary (6.5) we obtain :

Theorem ( 6 .8 )  L et R  be a CM  norm al domain.
(6.8.1) If  d  = 1 , then g r (R ) bdI(A).
(6.8.2) Suppose that R  has only  an isolated singularity and that X  is nonsingular. If
d 2, then g r ( R )  can be embedded into bdl(A ) as a f u ll subcategory.

This shows tha t in  the  case tha t X  is  a  curve, the classification of graded
CM modules over R  can be reduced to the classification of objects in  bdI(A).

Remark ( 6 .9 )  Let A  be an  e x -order in  M  (X )  and let 5  b e  an  invertible
(fractional) ideal of e x . Assume that A  is divided into smaller orders as shown
in the following:
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A l l  A l 2

A 2 1  A 2 2 A 2 r

A r l  A r 2  ••• A rr

where each A i ;  is  a set consisting of Ai x Ai -matrices on dr with A — (Al ,  ;t2 ,•••  1
)
7)

a partition of e. Then we can define a  new order A ' as :
27-T - 1 a

A  r
g

-
r - 2 A 2 r

g -1
 _ r 1

A r 2

In  this case there is a  natural equivalence of the categories:

(6.9.1) bdI(A) bd1(A').

Actually the  equivalence is defined by sending the  object (F e , _ 1 )  in
bdI(A) to (5 0 , 5 1 ,...,5, _ 1), where Wi =  g ' ( ') ,Fi with u(i) = max {ji + • • • + Ai

0{0}.

B y (6.8) this equivalence can be applied to several exam ples to show an
equivalence o f  a  category g r  (R )  w ith  a n o th e r . F o r  th e  easiest example, let
X  = P 1 be  a projective line and consider two divisors; D I = — 1(0) + 1(1) + 1(oo),
D2 =1(0) + 1(1) + 1 (cc). W e  c a n  ta k e  2 as e in  either case, hence

ex(03 1 ex e x )
A, = (

ex1 — ( 1) 1 001 ex
, A 2  =  (

e. A — (0 ) (1 ) ( C ) ) )  
(9

X ) •

Thus bd1(A,) bd1(A 2 ) by (6.9.1). Then (6.8.1) implies that grE (R 1 ) is equivalent
t o  grE (R2 ). N ote  th a t  R 1 =  R(P i , D1 ) k[x, y, z]l(x 2y + y 3 + z 2)  is  a  hyper-
surface having D4 -singularity a t  the vertex of the cone, while R 2  =  R(P l , D 2 ) =
k[x, y, z, w]l(yw — x4 , x 4  + yz — x 2 z, x2 z + x 2 w — zw) is  n o t e v e n  a  Gorenstein
ring.

7. The case that X  is a curve

In  what follows we assume tha t X  has dimension one, hence it is a  curve
o r  equivalently R  h a s  Krull dimension tw o . W e  w o u ld  lik e  to  analyse the
category bdI(A ). Note that in this case A is hereditary at any closed p o in ts . (See
Lemma (4.9).)

Now take a maximal order F of M ,(1 .) that contains A .  Since the natural
map between the Brauer groups Br(6x ) —> Br(S) is a  monomorphism, the Brauer
class of F m ust be  trivial, hence F is M orita equivalent to (9x . That is, there
is an  equivalence of categories :

A

 

A
l l

 

A' =

 

A 2 2

   

Arr



88 Y uji Yoshino

bdl(F)- bd1((c,).

F o r a  vector bundle .9- ",  e bc/1((9,) (resp. a  morphism f  in  bd1(0,)), we denote by
' (resp. f ')  the object (resp. the morphism) in bdl(F) corresponding to „F(resp. f ) .

Definition (7.1) Define the functor Or : bd1(A)---* bd1(0,) by

COY =  OA .1 ",

for an object g  in bd1(A ). Since F is locally projective as a A-module, it follows
that 5 0 A  Fe bdl(F), hence that OF is a  well-defined functor. By the same reason
OF is an exact functor. F or a  vector bundle F e bd1((9x ), denote by (1)»(,) the
full subcategory of bd1(A) consisting of a ll the objects g  with (M g)

From  the fact that A x  i s  a  hereditary order over a  discrete valuation ring
((9x,x, mx) for any closed point x e X, we see that

mx f x  A x c  TX .

N otice from  L em m a (5.1) th a t  Ax = Fx  w h e n  px = 1. (R ecall that px  = 1 if
qx = O.) N ow  considering  the ideal sheaf g" = Cx (— E,,,[x]), we have

c  A  c F,

in M, (X ) .  This shows that for any object g  in Oi l- (F), the following condition
holds true :

(7.2) O A T = 34 7 ' .
Conversely, the object g' satisfying (7.2) belongs to 0,: 1 ( F ) .  Denote /7 = A lg - F
c t  = Flg- T .  And we define the category m od(A ,,F) as fo llo w s: The objects
a re  right A-submodules g of with = g--'1g - g7 '. A  morphism
from g ,  to  g 2  is  a  A-homomorphism yo such  tha t there  is  a n  endomorphism
f  of the vector bundle F  w ith the commutative diagram:

WI OA g i  =

(porl f'O rl

g2 O A  ' q 2 . *

Naturally there is a  functor

a: O r-  (F ) mod(A, .97 )

defined by a(g) = g/g - g "  for any g e O (" ) ;  s e e  (7.2). Now we can show :

Lemma (7.3) The functor a yields a bijective correspondence between the sets
o f  isomorphism classes of  objects in (1* - 1 (, )  and of  objects in mod(zi,

P ro o f . F o r  em od(A , F), we define a  A-module fl(.4) b y  t h e  pull-back
diagram:
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n i t

where 7r, and n2 are natural morphisms. Note tha t /3(g) is  a A-submodule of
and t h a t  i t  i s  a  locally free (Ox -module, a s  X  i s  a  curve. Furthermore

,e(W) 04  F  )6(g)• F = since f i(g) is  a projective A -m odule at any closed
point by (6.2). Hence ,6(g)e4o 1 (g ) .  Clearly ocfl(g) ,- , g .  And b y  the definition
of a, w e see that fla(W) for a n y  e ( g ) .  Thus the lemma follows.

This lem m a reduces the classification of objects in  Oi 1 (g )  t o  t h a t  of
A-modules. We can describe the category m od(A , ,) in more visible way. For
this purpose we introduce the following notation.

Definition ( 7 .4 )  Let Y ., b e  a  vector bundle on X .  Define the category
rep( aj, D) as follows:

The objects of rep( 97 , D) are the sets of vector spaces:

e X , 0 < i < px 11 each V , is  a K(x)-vector space and

c vx,i- (O < P x ), and 0,„ K(x) =

For two objects { l } and morphisms between them are the endomorphisms
of g  satisfying:

(9 K ( x ) ) ( V )  c (x e X , 0 i < px ).

Note tha t rep( F, D) is determined by px  and by g ,  but independent of qx .

Lemma (7.5) T here is an  equivalence o f  categories:

mod(A, .9") f.-2 rep (F, D).

P ro o f . Note tha t (9,/,.% H P x* 1 K(x) a finite product of fields. Writing a
ring of upper triangular matrices of size px  x  p x  o v e r  K(x) as Tp x (K(x)), we see
from Theorem (5.1) th a t z7 is  Morita-eqivalent to  the ring  T = f l ,,T (K (x )).
Hence there is an equivalence of categories: m o d (A ) m o d (T ). Notice that any
T-module is  a set {Vx ,,1 x e X , 0 i < p x }  where each vx ,, is  a K(x)-vector space
and vx ,, <  i <p i ). T h e n  u n d e r  the above equivalence, the subcategory

F )  m aps onto rep(F, D).

Now we obtain the following theorem from (7.3) and (7.5).

Theorem ( 7 .6 )  T h e re  is  a b ijec tiv e  correspondence between th e  s e ts  of
isomorphism classes of  objects in 0,-- 1 (F )  and of  objects in  rep(„F, D).

W e say that the category grE(R) is  of finite representation type if there are
a finite number of graded CM modules M 1 , M 2 ,..., M  such that any graded
CM module over R  is isom orphic to a direct sum  of the modules of the form
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114 i (m) (i, inn Z , 1 i n). Notice tha t if th is is  the case, the category g r E (R)
has only  a countably m any classes of ob jec ts . A s  a  corollary of (7.6), in the
case th a t X  is  a  curve, we obtain a  necessary condition for R  to  b e  o f finite
representation type in terms of X  and D.

Corollary (7 .7 )  L et k  = C the field of com plex  num bers. Assume that rE (R )
is  o f  f inite representation type. T hen X  = P 1 ,  P = {x1Px 1} contains at m ost
three points and if  P consists of  three points then the following inequality holds:

xeP Px

P ro o f . First w e prove that under the  assumption, X  m ust be isomorphic
to  P 1 . For this, assume that X  has genus greater than o n e .  Then the category
bd1(e N ) of vector bundles has uncountably many isomorphism classes. Note that,
for an y  F  e bd1((X x ) , there is at least one object e  O E' (F )  b y  (7 .6 )  and tha t if
.97 1 * F 2  i n  bd1(9 x ) ,  then W 2  in  bd1(A ) for W, e 4 ( F )  ( i  = 1, 2). Thus
bd1(A ), hence grE (R ) , contains uncountably m any c la sse s  o f  ob jec ts. This
contrad ic ts tha t g r(R ) is of finite representation ty p e .  Therefore X  P 1 .

L e t  P = {x 1 , x 2 ,...,x N } a n d  le t  p i = p x , ( 1  i  N ) .  W e conside r the
branched quiver Q with N  branches, each of which has length pi (1 < i  <  N ) .  See
Figure (7.7.1).

n  3
2

0 2
0 12 0 3•  ' 0P2

0

P N

Then it is obvious that the condition concerning p i in (7.7) is equivalent to saying
tha t the undirected graph IQ I of Q is  one of the D ynkin diagrams.

N o w  assum e that g r E (R )  is o f  fin ite  representation t y p e  a n d  that
X  = P 1 . Let 347  =  e nx . Since End,„(,) =  M (C ) the com plete m atrix algebra
a n d  since ,97  K ( x )  C n ,  w e  c a n  s e e  t h a t  rep(F, D ) i s  t h e  category of
representations of the quiver Q with C" on the center of Q and with each arrow
representing a monomorphism of C-vector spaces. Hence if I QI is not a Dynkin
diagram, th e n , b y  a  theorem  of G abrie l, m od(F, D ) has uncountably many
objec ts. (F o r exam ple see [3; 8.5], w here, fo r  suitable n ,  uncountably many
representations o f  th is  k ind  a re  constructed very concretely.) This contradicts
th a t  r 1  (R) is  of finite representation type, hence  10  is a Dynkin diagram.
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Added in Proof:

In the last paragraph of the proof of Proposition (3.7), we claimed that F 2  is
an exact functor and hence that it induces the functor gr"(d)— *gr"(R ). But
this is not correct. The assertion of (3.7) should be changed into the following :

Propositon (3.7). A 2 : gr2 (R)—>gr2 (.21) is  a n  equiv alence of  categories. In
general, A n : gr"(R)— > gr(d) is a f u ll embedding, when n 3.

The second claim o f this is immediate form the bijectivity of the map in
(3.7.2). According to this change, the statements of (4.7) and (6.5.2) should be :

(4.7). There is an equivalence gr 2 (R) m o d 2 (A ) . A nd i f  n > 3 , then gr(R ) can
be fully  embedded in mod"(A ).
(6.5.2). Suppose that R  has an  isolated singularity and that X  is nonsingular. If
d 2, then bdl(A )= m od d (A ), in  which gra (R) can be fully embedded.

After these alteration, the  rest of the paper is valid as it  is.
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