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Graded CM modules over graded
normal CM domains
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Yuji YosHINO

1. Introduction

Remarkable progress has been made in recent years for the classification of
maximal Cohen-Macaulay modules (abbr. CM modules) over Henselian Cohen-
Macaulay local rings, and the computation using Auslander-Reiten quivers is
known to be the steadiest way to do this. For the detail, we recommend the
reader to refer to [6] where most of these topics are briefly summarized.

In the present paper we are interested in graded CM modules. Although
it may be possible to determine them for several examples by the same method
as in Henselian cases, it would require some hard computation. We shall propose,
in this paper, a new method to classify graded CM modules over a graded normal
CM domain, particularly of dimension two.

Our starting point is that the graded ring R has the Demazure’s description,
that is,

R =3 HX, Ox(nD))t",
n>0
where X = Proj(R) and D is a Q-Weil divisor on X such that #D is an ample
Cartier divisor for some ¢ > 0. A theorem of Demazure [2] says that every
graded normal domain has such a description. The next section is occupied by
some auxiliary results concerning this description that will be used repeatedly in
this paper.
Taking an integer ¢ as above, we can define an Oy-order A4 as

Ox Ox(D) - Ox((¢ = 1)D)
| =D 0x - ox-2D)
Ox(=(¢ = 1)D) = Oy

Some of the properties of A will be shown in §§4 and 5. Furthermore we can
show in (4.7) that, for n > 2, the category of graded n-th syzygy modules over
R is equivalent to that of right A-modules which are n-th syzygies. The proof
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of this fact is main part of §§3 and 4.

Let bdi(A) be the category of locally free Oy-modules with right A-module
structure. It will be seen in §6 that bdl(A) is equivalent to the category of d-th
syzygy modules over A, where d =dim(X). Combining this with the above
result, we will show in (6.8) that, if X is a curve, the category of graded CM
modules over R is equivalent to bd/(4). Thus in the case X is a curve, all the
graded CM R-modules are obtained as vector bundles over X with 4-module
structure. And analysing the order A, we will be able to see into the latter
modules in detail as we will develop in §7. Roughly speaking, one of our main
theorems (cf. Theorem (7.6)) says that any CM module over R, when X is a
curve, is obtained as an ‘extension’ of a vector bundle over X by a representation
of a certain quiver determined by D.

2. Preliminary; Demazure’s description of graded normal domains

Throughout the paper R =Y, R, is assumed to be a graded normal domain
with R, = k an algebraically closed field and we adopt a non-essential assumption
that g.c.d.{n|R, # 0} = 1. We denote by K the graded quotient field of R, i.e.
the set of all the fractions with homogeneous denominators. Then the assumption
is equivalent to saying that there is a homogeneous element ¢ of degree one in
K. Letting K, be the degree 0 part in K, we know that

K = K,[t, t™'] (Laurent polynomial ring).

If we denote X = Proj(R), K, is the function field of the projective variety X. By
Demazure [2] it is known that there is a Weil divisor D on X with rational
coefficients, which is ample and Q-Cartier such that the graded ring R can be
written as follows:

Lemma (2.1) R = R(X,D)=Y,.oHX, Ox(nD))t".

Here, for a Q-divisor D = Zi(qi/pi)Di (pi» g:€ Z), we denote [D] = Zi[qi/pi] D;
with the convention:

[r] = max{neZln<r} for reQ,

and set Oy(D) = Ox([D]). In what follows we always denote the constant sheaf
whose stalks are K, by ", and we regard the sheaf Oy (D) as a subsheaf of #".

The main purpose of this paper is to show how we can describe the category
of graded CM modules by the datum (X, D). Therefore throughout the paper
(X, D) is the one given as above. That is, X = Proj(R), and D is a Q-Weil
divisor on X such that #D is an ample Cartier divisor for some integer
¢ > 0. Moreover we take the following notation:

(22) D =Y (q,/p.) [x].
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where x runs through all the points on X of codimension one. We assume that
p, is always taken to be a positive integer, and that if g, # 0, then p, and q,
are coprime, while p, = 1 if g, = 0. We often write r, = q,/p,. Note that r, =0
for almost all xe X, so that p, =1 for those x.

Recall the following fact (cf. Watanabe [5]):

Lemma (2.3) Let x be a point of X of codimension one and let p be a
corresponding graded prime ideal of R of height one. Note that the graded
localization R, of R at p is defined by

R, = {b/albeR, aeR — p, a is homogeneous}.
If my is the maximal ideal of the local ring Oy ., then we have the equality:
Ry = T st

For the points whose codimensions are larger than one, we also have a
similar result to the above.

Lemma (2.4) Let y be an irreducible point of X, and let q be the graded
prime ideal corresponding to y. Denote by Q(y) the set of all points of codimension
one that are generalizations of y. Then,

Ry=Y ( N mgmhe
neZ xef2(y)

Proof. Note that R, = NR, where p runs through all graded primes of
height one with p = q. Thus the lemma follows from (2.3).

Now we define an Oy-subalgebra o/ of H#°[t, t~!] by the following:
Definition (2.5)

o =Y OxmD)t" < A'[t, t™']

neZ

Notice that . is a graded @y-algebra, since [nD + mD] > [nD] + [mD].
Clearly we have the following result as a corollary of Lemma (2.4).

Lemma (2.6) With the same notation as in Lemma (2.4), we have
s, = Ry,. In particular, if R, is nonsingular, then there is an equality:

gl.dim (&/,) = codim(y, X),

where the left hand side means the global dimension of the category of graded
o -modules.

Proof. This is immediate from (2.4). In fact, since m;™ = Oy(m[x]), for
any xeX and meZ, we have Ox(nD), = Nrenp Ox (7 [X])x = Nyeay My ™ for
any neZ.
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Remark (2.7) In general we denote by M the quasi-coherent sheaf
corresponding to a graded R-module M. Then Lemma (2.6) can be stated as:

—~

R(n) = O4(nD) ",

for any neZ. In fact, the both sheaves are regarded as subsheaves of " and
their stalks coincide at any points by (2.6). Note also that a graded
R-homomorphism f: M - N of graded modules induces a morphism f:M->N
of quasi-coherent sheaves.

3. Graded .o/-modules

Definition (3.1) (3.1.1) We denote by Gr(R) the category of graded R-modules
with degree 0 homomorphisms, likewise by Gr(«/) the category of graded
o/-modules with degree 0 homomorphisms.

(3.1.2) Define the functor 4: Gr(R) —» Gr(%/) by:

() AM) =Y M),  4(f) =3 f(),

neZ neZ

for an object M in Gr(R) and a morphism f: M — N in Gr(R), where
f(n): M(n) > N(n) denotes the shift of degrees by n, hence f(n),, = f,+m-

It is easily checked that 4 is a well-defined functor.

Lemma (3.2) (3.2.1) 4(R) = «.
(3.2.2) A4 is an exact functor.

Proof. The first assertion follows from (2.7) and the second is straightforward.

Definition (3.3) We define the functor I': Gr(&/) —» Gr(R) as follows: For a
graded «/-module & =Y, , %, and for a graded homomorphism y: # — 4,

(*%) r&)= ) H'X, #,), I'Y)=HX, y): ['(F)—T(%).
neZ
Note the following obvious fact:

Lemma (3.4) I is a left exact functor.

Definition (3.5) For any integer n, we denote by gr"(R) the full subcategory
of Gr(R) whose objects are n-th syzygies. Here we say that an R-module M is
an n-th syzygy if there is an exact sequence in Gr(R):

0—M-—F, ,—F,_,— - —F —F,,

where each F; is a finite direct sum of the modules of the form R(a)
(aeZ). Similarly, gr*(«) is the full subcategory of Gr(%/) consisting of all n-th
syzygies. Here an ./-module & is an n-th syzygy if and only if there is an
exact sequence in Gr(</):
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0 F —8, , —Y, ,— - — G — Y,
where each ¥, is a finite direct sum of modules of the form /(a) (aeZ).

The following lemma is easily shown from the exactness of the functor 4
and the left-exactness of I

Lemma (3.6) (3.6.1) For any integer n, 4 induces the functor:
4,: gr'(R) — gr' ().
(3.6.2) I' induces the functor I'y: gr*(sf)— gr*(R).
Of most importance is the following proposition.

Proposition (3.7) If n is an integer > 2, then A,: gr"(R)— gr'(sf) is an
equivalence of categories.

Proof. First of all assume n = 2. In this case we show that 4, has I', as an
inverse. Note that, for any integers a, b,

(3.7.1) Homg,s)((a), #(b)) = H(X, #,_,) = H*(X, Ox((b — a)D))"~*
= R, -, = Homg, &, (R(a), R(b)).
By definition any object & egr?(sf) has a presentation:

0—F — Y. da) L5y, 4(b),

where f;;€ Ry, _,, by the above. Applying the functor I” to this, we have the exact
sequence :
0 — I(F) — YiR(@) L5 YR (b)

The sequence is still exact when applying the functor 4:

0 — A(N(F)) — Yot (@) L5 Y, (b))

As a consequnce we obtain that # ~ A(I'(¥)). Similarly M ~ I'(4(M)) for
Megr*(R). Therefore 4, yields a bijective correspondence between the objects of
gr*(R) and gr*(«).

It remains to show that 4, is fully faithfull. Equivalently we have to show
that, for any M, N egr?(R), the following map induced by 4, is bijective:

(3.7.2) Hom,,:g)(M, N) — Hom,,a.,(4(M), 4(N)).

To do this, notice that any M in gr’(R) are reflexive modules. For a
morphism f: M — N in gr*(R), take a free resolution of M* = Homg(M, R) (resp.
N* = Homg(N, R)) as follows:

F, %5 Fy—s M* —0.  (tesp. G, —— Gy —> N* —0)
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Then f*: N* > M* induces a commutative diagram:

F,-5 Fg—s M* —0

SEEE
G, — Gy —> N* — 0.

Hence the following diagram is also commutative with exact rows:

0—M—Ft 25 F*

fl hal htl

0— N — Gt 2 G*,

where ¢*, y* h§ and h}f can be regarded as matrices whose entries are
homogeneous elements in R. Then a similar argument using (3.7.1) shows that

TA(@p*) = @*, TAW*) = y*, T'A(h¥) = h§ and T'A(h¥) = h¥.

Hence we conclude that I"'4(f) = f and that the map in (3.7.2) is a monomorphism.
To show that this is also an epimorphism, it is enough to show that the map
induced by I';

Homy,2 4 (4(M), 4(N)) — Hom,, (M, N)

is a monomorphism. Let §: 4(M)— A(N) be g\glorpll\iim in gr(</) and assume
that I'(6) =0. Write § =) ,.,0,, where 6,: M(n)> N(n). Taking a system of
homogeneous parameters {ry, r,,...,r,} in R, =) ,.oR,, we consider a covering
{D(r) = Spec(R,)oli =1, 2,...,v} of X. Then 6 is a collection of the maps;

69: M, — N, on D(r) (i=1,2,...,v)

with 69|50 pey) = 09 lpeynpey. By definition I'(6) = 0 implies that each map
induced by 69

is trivial. Hence, for any x = y/r'e(M,), (y€ My, 4, d; = deg(r;)), we see that
0=069,.,(0) =r"0?(x), and thus 6P (x) =0. Therefore it is concluded that
09 =0 for any i =1, 2,...,v. Consequently § =0, and the map in (3.7.2) is an
isomorphism.

Hence we showed that I'y-4, ~ 1., and 4, -, ~ 1,24,

Now consider the case n > 2. Since the functor I', is exact, its restriction
onto the subcategory gr"(s/) is also an exact functor. In particular, it induces
the functor I',: gr"(«/) — gr"(R). Since I, is the inverse of 4,, I, is the inverse
of 4,.
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Remark (3.8) When n < 1, notice that 4,: gr*(R) — gr"(<) is not necessarily
an equivalence of categories.

4. The Oy-order A

Notation (4.1) In the following we fix a positive integer £ with the property
that #D is an integral Cartier divisor on X. Moreover we write E = /D.

Remark (4.2) Notice that Oy(— E)t™ ¢ and Oy(E)t* appear in &/ as graded
pieces. Therefore for an object # =), %, in gr(), we have equalities of
Ox-modules:

'90_"+l =,97" ®0x(0X(E)s
for any neZ. Actually, since & is an &/-module, we have
F, @ Ox(E)t* =F A, = Fpiys 'g;n+¢®(ox(_E)t_e =Fnr A, c Z,.

Noting that Ox(E) is an invertible sheaf, we show the above equality.

Definitions (4.3) (4.3.1) We define an Oy-order A in the full matrix algebra
M, (AX) over A by

A=(Ox((j— D)1 <i,j<,

Ox O0x(D) -+ Ox((£ = 1)D)
_ Ox(— D) Ox - Ox((£ —2)D)

Furthermore we denote by mod(A) the category of coherent right A-modules and
A-homomorphisms.
(4.3.2) The functor @: gr'(ef) = mod(A) is defined as follows:

For # =), %,t", we define:

D(F)=(Fo, F1s... Fy )= K"
And for a morphism ¢ =Y, ,¥,: F > %, define d(Y): P(F) > B(%) by:
D) (X, X150 Xy 1) = (Yolxo), Y1(x1)s.sth g —1(x,1))-

It is an easy exercise to see that ®(&) is a right A-module and @(Y) is a
A-homomorphism.
(4.3.3) The functor ¥: mod(A) — Gr(s/) is defined as follows:

For any .# e mod(A) and any neZ, let %, be the Oy-module Ox(aE) ®,, He,,
where n=af + b, a, beZ,0 < b < ¢ and ¢, is an idempotent matrix in 4 whose
entries are 1 in (b + 1, b + 1)-position and 0 otherwise. Then define:

(M) =Y Foi".

neZ
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Similarly, for a A-homomorphism ¢, define ¥Y(¢) to be Oy(aE)®,,¢ €, on
&,. Note that, for any integer m, there is a natural map:

37" ®0x (QX(mD) — '97n+m>
for each meZ. In fact, f m=a/+ b (a,beZ, 0 <b </), then

Ox(@E) ®q, ey A,y ifb+b <t

Oy(mD) =
x(mD) {(Ox((a’+ 1)E)®oy epAeysy—, ifb+b >7

Thus if b + b < ¢, then
Fu®ox Ox(mD) = Ox((a + d)E) Qg Mey-e,Aey
< Ox((a + a)E)QpyMeyry = Fpim-
Likewise we have the same natural inclusion when b + b’ > /. Therefore ¥(.#)
is a graded «/-module and ¥(¢) is an «/-homomorphism.

(4.3.4) For an integer n > 1, a right A-module .# is called an n-th syzygy if there
is an exact sequence of right A-modules:

0—)'/”—*971—1 —"@n—Z_'"'_')gO’

where each 2, is a finite direct sum of A-modules of the form Oyx(— aE) ®g,
e, A0<b</?, aeZ). We denote by mod"(A) the full subcategory of mod(A)
whose objects are n-th syzygies.

The following lemma is almost clear from the definition.

Lemma (4.4) (4.4.1) @ is an exact functor and @ (s (—n))~0Ox(—aE)®,, e, 1,
where n=af + b,a, beZ, 0 <b </.
(4.4.2) ¥ is an exact functor and there are equalities:

Y(Ox(— aE) ® eyA) = o (—(af + b)) (aeZ, 0<b < ).

Proof. (4.4.1): The exactness of @ is obvious from the definition. The
isomorphism follows from the fact that, for each ¢ (0 <c <¢),

(A (— ).~ Ox(—(n — ¢)D) = Ox(— aE) ® g, Ox(—(b — c)D) = (Ox(— aE) ® e, A)e..

(4.4.2): To show that ¥ is an exact functor, let 0 > 4" —> M — M" — 0 be
an exact sequence of right A-modules. Then 0 — #'e, - Me, — M"e, — 0 is an
exact sequence of Oy-modules for any b (0 < b < ¢), hence the following is also
an exact sequence of Oy-modules for any aeZ:

0 — Oy(aE) ® M'e, —> Ox(aE) ® Me, —> Ox(aE) ® M"e, — .

Summing up this, we thus see that 0 —» ¥(A') > V(M) —> ¥P(M")—> 0 is an exact:
sequnce of o/-modules. The last equality follows from a direct computation as
follows:
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Y(Ox(— aE) ®q, €y 1) = Z {(Ox((al — a)E) ®,, ebAeb’} t

neZ,n=a’¢ +b’

2 {0x((@' — A)E) ®q, Ox((b' — b)D)} t"

=Y Ox((n — af — b)D)1t"

=/ (—(af + b)).

It is deduced from this lemma that the functors & and ¥ preserve n-th
syzygies. Hence we get the following:

Corollary (4.5) For an integer n > 1, ® and ¥ induce the following functors:
gr'(«f) — mod"(A),
mod"(A) — gr'().
In fact these functors give rise to an equivalence of the categories.

Proposition (4.6) For an integer n > 1, @ and ¥ induce an equivalence of
categories :

gr'(f) ~ mod"(A).

Proof. 1t is evident that we have only to prove the proposition in the case
n=1. Note from the definition that for .# e mod'(A), there is an equality

OP(M) ~ (Mey, Me,,...,Me,_\)= M

On the other hand, for & egr!(s),

YO (F)

Y (Ox(aE) ®g, Fp)t"

neZ,n=a¢ +b

Forspt" = F.
neZ,n=a¢ +b
(See (4.2) for the second equality.) Thus they induce a bijection between the sets
of objects in gr!(«/) and mod*(A).

To complete the proof, let #, ¥egr'(«f) and let M = ®(F), N/ = D(¥). We
want to show that the map Hom (%, ¥) - Hom,(#, #") induced by @ is an
isomorphism. Let y =) ¢, be a morphism from # to ¢ and assume that
@(Y) =0. Then, by definition, ¢, =0(0 < n <¢). On the other hand, we know
by (4.2) that ¢,,, =y, ® Ox(E). Hence y,=0 for all neZ, showing the
injectivity. To show the surjectivity, let f be an arbitrary element in
Hom, (4, #7). Then it is easily checked that Y =Y, 7 ._.,+» Ox(aE) ®q, f, is
an &/-homomorphism from & = ¥Y(#) to ¥ = ¥Y(A") and that &(Y) = f.

Combining Proposition (3.7) with (4.6) we obtain the theorem:
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Theorem (4.7) If n is an integer > 2, then the category gr"(R) is equivalent
with mod"(A).

Remark (4.8) Let yeX be an irreducible point and let q be the graded
prime ideal of R corresponding to y. With the notation in Lemma (2.4), set

I,= N m;™l  (neZ).

xef2(y)
Then, the stalk of A4 at y is

Ay = (Ij—i)Osi,j<¢~
And similarly,

Ay =Y I,t"
neZ

Since I_, = Ox(— E), = Ox(E); ' =1;', we note that ./, contains I,t' and
I;'t™ " as graded pieces. Now define the functor:

D,: gr'(of,) —> mod'(4); Y Mit'— (Mg, M,...,M,_,).

Then completely the same argument as in the proof of Proposition (4.6) shows
that @, yields an equivalence of categories. Thus the next lemma follows from
Corollary (2.6).

Lemma (4.9) Under the same assumption as the above, if R, is nonsingular,
then there is an equality:

gl.dim (4,) = codim (y, X).

In particular, if xe X is a point of codimension one, then A, is a hereditary order.

5. The ramification index of A

In Lemma (49) we have shown that A is hereditary in codimension
one. More precisely one can determine the ramification indices of 4 at those
points of codimension one.

Theorem (5.1) Let xeX be a point of codimension one. Then the
ramification index of A, as an Ox ,-order is equal to p,. (See (2.2) for the precise
definition of p,.)

Proof. For simplicity we writt m=m,c A=0x,, p=p, and q=q,.

Then notice that one can write 4, = A2 ® A, where
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A m”la/rl .. T lp=Dalp]
mla/pl A voo m " Up—2)a/p]
Ag = >
mlp=a/pl A
A m? .. mTr
ma A eee m_e-Palp
A=
medr Lo L A

Since A} is isomorphic to the matrix algebra M ,,(A), the ramification index of
A, is equal to that of A2. And this is equal to the number of isomorphism
classes of indecomposable projective right A%-modules, since A% is also
hereditary. See Reiner [4]. Now let {e;. e,...,e,_;} be a complete system of
orthogonal idempotents in A2. It is sufficient to prove that if i # j, then e, A4°
is not isomorphic to e;42 as a A2-module. Suppose that e;42 ~ ¢;42 for some
i <j. Then there is an integer s (0 < |s| < |q|) satisfying

(5.1.1) mse; A% = e,-/lg.
Note that

o . e
eij — (qu/p],m,m [(p J)‘I/P]),

in which each m* appears p,,(k)-times where p,, is defined in the next lemma. It
is then easy to see that the equality in (5.1.1) contradicts the following fact (cf.
Yoshino-Osa [7, Lemma 4]).

Lemma (5.2) Let r=gq/p (p.qeZ) be a rational number with p, q
coprime. We define the function p,. Z - N as follows:

p.(n) = #{veZ|[v] = n}
Then |q| is the minimum period of the function p,.

Proof. We may assume that both p and g are positive. It is obvious that
if s =g, then p,(i + s) = p,(i) for any ieZ. Let s be the minimal positive integer
with this property. Then clearly s divides q. We have to show that
s=gq. Letting r =gq/(p+q), we can see that p, (i) =p,(i) + 1 for any ieZ.
Hence we may assume that O < p <q. Then p, takes either 1 or 0, hence

q—1
Y p(i) = #{ieZ|0<i<q, p,(i) =1}
i=0

=#{jl0<j<p}=p

On the other hand the leftmost of this equation is equal to (q/s)Y {24 p,(i), since
s is the period of p,. Therefore q/s divides p and thus g = s.
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6. Vector bundles with A-module structure

Notation (6.1) In the rest of this paper we denote d = dim(X) (> 1), so
that dim(R) =d + 1. And denote by bdl(A) the full subcategory of mod(A)
consisting of all right 4-modules that are locally free as Oy-modules. Therefore
the objects of bdl(A) are vector bundles on X with structure of right A-modules.

First we note the following fact:

Lemma (6.2) Suppose that R has only an isolated singularity and that X is
nonsingular. Then an object M € mod(A) belongs to bdl(A) if and only if M, is
a projective A -module for any xeX.

Proof. Since A, is a free Oy -module, the ‘if’ part is trivial. To prove the
‘only if’ part, let # be a right 4-module that is locally free as an Oy-module
and let xeX. Since A, is an Oy ,order whose global dimension equals the
Krull dimension of 0y ,; see (4.9), we may apply [1; Theorem IV.1.9] to conclude
that ., is a projective A ,-module.

This lemma proves the following:

Theorem (6.3) Suppose that R has only an isolated singularity and that X
is nonsingular. Then bdl(A) = mod'(A) for any integer t > 1.

Proof. Note first that the set of left A-modules {Ae; ®,, Ox(nE)|n, ieZ,
0 <i < ¢} generates the category of coherent left 4-modules. To prove this, let
A" be a coherent left A-module. Since E is an ample divisor on X, for any i
(0 <i< ), there is an epimorphism of Ox-modules:

O — e, ®q, Ox(nE) = H oms(Ae;, /) ®q, Ox(nE),

with some integers m and n. This induces the epimorphism Oy(— nE)™ —
Homy(Ae;, #°) and hence the A-homomorphism f;: (de; ®,, Ox(— nE))™ — 4.
Then it is easy to see that the sum of the f; gives rise to an epimorphism:
-1
Y (Ae; ®g, Ox(— nE))™ — A
i=0
Hence {Ae; ®,, Ox(nE)} generates the category of left 4-modules.
Now we prove the theorem. Let .# be an object in bd/(A). Then, by the
above, there is an exact sequence of left 4-modules:

¢—1 -1 -1

Z Ae;®o, Ppj — - —> z Ae;®o, Py — Z Ae;®gy Po ;i

i=0 i=0 i=0

—— Homs(M, 1) —> 0,

where P; ; are direct sums of @x-modules of the form Oy(nE) (neZ). Note that
for any xe X, the natural map:
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M, — Hom, (Hom, (A,, 4,), 4,)
is an isomorphism, since .# is A,-projective. Hence the natural map of sheaves
M —— Homs(Homy(M, A), A)

is also an isomorphism. Therefore applying the functor # o ,( , A) to the above
exact sequence, we have the following complex of right A-modules:
¢—1 ¢—1

6.3.1) 00— M — Z Py ®p, 064 —> - —> Z P/_, i ®g el

i=0 i=0
¢—1

— z P, ®o,e:1

i=0

where P; = #omy, (P;, Oy). Note from the same argument as in (6.2) that
Homus(M, A), is a projective left 4 .-module for any xe X. Thus the homologies
Ext\(Homp(M, A), A) (1 <i<t) of the above complex vanish, and hence the
sequence (6.3.1) is exact. Therefore .# is a t-th syzygy as a right 4-module.

Corollary (6.4) Under the same assumption as in (6.3) there is an equality:
mod®(A) = bdl(A).

Proof. Let M emod®(A). Then for any xe X, we see that ., is a d-th
syzygy as an A,-module. Since A, is a free Ox ,-module, #, is a d-th syzygy
as an Oy ,-module, hence it must be Oy ,-free, for Oy , is a regular local ring of
dimension not more than d. Therefore . €bdi(A).

This, together with (6.3) and (4.7), shows the following:
Corollary (6.5) (6.5.1) If d = 1, then bdl(A) = mod*(A) ~ gr*(R).

(6.5.2) Suppose that R has only an isolated singularity and that X is nonsingular. If
d > 2, then bdl(A) = mod*(A) ~ gri(R).

Proof. Since mod*(A) = mod*(A), the first equality in (6.5.1) follows from
(6.3) and (6.4).

Next we note the relationship of syzygy modules with CM modules. For
this we settle the notation.

Notation (6.6) We denote by gr€(R) the full subcategory of Gr(R) whose
objects are graded CM modules.

It is known that grE(R) is equal to the category of syzygies under a suitable
assumption.

Lemma (6.7) If R is a CM ring that is an isolated singularity, then there
is an equality:

gt (R) = gr'*!(R).
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This lemma is well-known, but we include here a brief proof of this for the
convenience of the reader.

Proof. If Megri*!(R), then depth(M)=d + 1, since R is a CM ring.
Hence M egr@(R). To show the converse, we prove the stronger statement:

(6.7.1) Let R be a graded CM ring and let ¢t be an integer with 1 <t <d + 1. If
M is a finitely generated R-module with depthg(M) >t such that M, is R, -free
for any relevant homogeneous prime ideal p of R, then M egr'(R).

If this is true, then we are through, since every CM module over an isolated
singularity satisfies the assumption in (6.7.1) with t =d + 1. We prove (6.7.1) by
induction on t. Let {f;]1 <i< N} be a set of homogeneous generators of
Hompg(M, R) and consider the map f = (f}, f3,....fy): M > R™. First of all we
assume that t=1. It is enough to show that Ker(f)=0. Suppose that
Ker(f) # 0 and take a homogeneous associated prime ideal p of Ker(f). Note
that p is not an irrelevant prime ideal of R, since if so, then depth(M) = 0 which
contradicts the assumption. Therefore M, is a free R,-module, hence the map
Jr: My = R() is a split monomorphism, since Homg,, (M), Re) = (f1, fare.os f)
Ry. In particular Ker(f),, =0 that is also a contradiction, since p is an
associated prime of Ker(f).

Now suppose that t > 2. As above we can show that f is an injective map,
hence we may have an exact sequence of R-modules:

0—M-LR™ 10

For any relevant homogeneous prime ideal p of R, since M, is a free R, -module
and since Homg , (M, R(,) = (f1, f2...../x) R, the map f) is a split monomor-
phism, hence L, is also a free R,-module. On the other hand, we have
depth(L) =t — 1, since depth(M) >t and depth(R)=d + 1>t. Thus we can
apply the induction hypothesis to L to obtain that L is a (t — 1)-th syzygy as an
R-module and that M is a t-th syzygy.

Combining this with Corollary (6.5) we obtain:

Theorem (6.8) Let R be a CM normal domain.
(6.8.1) If d =1, then gr€(R) ~ bdl(A).
(6.8.2) Suppose that R has only an isolated singularity and that X is nonsingular. If
d > 2, then qr@(R) can be embedded into bdl(A) as a full subcategory.

This shows that in the case that X is a curve, the classification of graded
CM modules over R can be reduced to the classification of objects in bdl(A).

Remark (6.9) Let 4 be an Oy-order in M,(X") and let  be an invertible
(fractional) ideal of Ox. Assume that A is divided into smaller orders as shown
in the following:
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Ay Ay o Ay,

Arl Ar2 Arr

where each A;; is a set consisting of 4; x 4;-matrices on )" with A=A, 425005 4)
a partition of /. Then we can define a new order A" as:

A11 9—/112 g-r_lAlr
A 3__1/121 Azz -7'_2/1»
‘71 _’Arl ,9-2_'/]’2 Arr

In this case there is a natural equivalence of the categories:
6.9.1) bdl(A) ~ bdl(A').

Actually the equivalence is defined by sending the object (%,, #,,...,#,-,) in
bdl(A) to (%, %,,....%, _,), where 4, = IO F, with u(i) =max {j|i, + -+ 4; < i}
u{0}.

By (6.8) this equivalence can be applied to several examples to show an
equivalence of a category gr€(R) with another. For the easiest example, let
X = P! be a projective line and consider two divisors; D; = — 5(0) + (1) + 3(0),
D, =3(0) + 1(1) + $(c0). We can take 2 as ¢ in either case, hence

A=< Ox @x(«»)) A=< O @X)
o —@) o )T N0~ ()~ () O

Thus bdl(A,) ~ bdl(A,) by (6.9.1). Then (6.8.1) implies that gr€(R,) is equivalent
to gt€(R,). Note that R, = R(P!, D,) ~ k[x, y, z]/(x?y + y* + z?) is a hyper-
surface having D,-singularity at the vertex of the cone, while R, = R(P!, D,) =
k[x, y, z, w]/(yw — x*, x* + yz — x?z, x*z + x?>w — zw) is not even a Gorenstein
ring.

7. The case that X is a curve

In what follows we assume that X has dimension one, hence it is a curve
or equivalently R has Krull dimension two. We would like to analyse the
category bdl(A). Note that in this case A is hereditary at any closed points. (See
Lemma (4.9).)

Now take a maximal order I of M,(X) that contains 4. Since the natural
map between the Brauer groups Br(0y) — Br(X') is a monomorphism, the Brauer
class of I' must be trivial, hence I" is Morita equivalent to 4. That is, there
is an equivalence of categories:
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bdl(I') ~ bdl(Oy).

For a vector bundle % €bdl(0y) (resp. a morphism f in bdl(0y)), we denote by
F' (resp. f') the object (resp. the morphism) in bdl(I") corresponding to & (resp. f).

Definition (7.1) Define the functor ¢ : bdl(A) — bdl(Oy) by
¢r(@) =9 Q4T

for an object ¢ in bdl(A). Since I is locally projective as a A-module, it follows
that 4 ® 4, I'e bdl(I"), hence that ¢ is a well-defined functor. By the same reason
¢ is an exact functor. For a vector bundle & €bdl(0y), denote by ¢, (F) the
full subcategory of bdl/(A) consisting of all the objects ¥ with ¢ (%) ~ F.

From the fact that A, is a hereditary order over a discrete valuation ring
(Oy ., m,) for any closed point xe X, we see that

ml,cA.cT,.

Notice from Lemma (5.1) that A, =TI, when p,=1. (Recall that p, =1 if
g, =0.) Now considering the ideal sheaf I = Oy(— prﬂ[x]), we have

IlcAcT,

in M, (). This shows that for any object ¢ in ¢ ' (&), the following condition
holds true:

(7.2) TF c4c4,=F.

Conversely, the object ¢ satisfying (7.2) belongs to ¢! (%). Denote A =A/TT
cI'=T/JT. And we define the category mod(A, #) as follows: The objects
are right A-submodules 4 of '/ F' with - I'=%'/TF'. A morphism
from %, to &, is a A-homomorphism ¢ such that there is an endomorphism
f of the vector bundle &# with the commutative diagram:

G QT — G, IT'=F|TF

v@fl S'e _l

G, ;T — 9, T =F'|TF'
Naturally there is a functor

a: ¢r (F) — mod(A, F)
defined by «(%) =%/T F' for any Yed(F); see (7.2). Now we can show:

Lemma (7.3) The functor o yields a bijective correspondence between the sets
of isomorphism classes of objects in ¢r*(F) and of objects in mod(A, F).

Proof. For $emod(A, F), we define a A-module B(%) by the pull-back
diagram:
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&) —— F'

g G I~F|TF,
where 7, and 7, are natural morphisms. Note that B(9) is a A-submodule of
ZF' and that it is a locally free Oy-module, as X is a curve. Furthermore
BB R, ~p(@- I =F', since B(%) is a projective A-module at any closed

point by (6.2). Hence f(%)e¢r!(F). Clearly af(4)~%. And by the definition
of o, we see that Ba(¥) ~ ¥ for any ¥e¢r'(#). Thus the lemma follows.

This lemma reduces the classification of objects in ¢,'(F) to that of
A-modules. We can describe the category mod(A, &) in more visible way. For
this purpose we introduce the following notation.

Definition (7.4) Let & be a vector bundle on X. Define the category
rep(#, D) as follows:
The objects of rep(#, D) are the sets of vector spaces:

{{V.:lxeX, 0<i<p,}| each V¥, is a k(x)-vector space and
Voic Vio1(0<i<p,), and & ®g, k(x) =V, o}
For two objects {V; ;} and {V} ;}, morphisms between them are the endomorphisms
¢ of & satisfying:
(P®r(XN() Ve (xeX, 0<i<p,).
Note that rep (&, D) is determined by p, and by &, but independent of gq,.
Lemma (7.5) There is an equivalence of categories:
mod(A, F) ~ rep(¥, D).

Proof. Note that Ox/J ~ [],.+,k(x) a finite product of fields. Writing a
ring of upper triangular matrices of size p, x p, over k(x) as T, (k(x)), we see
from Theorem (5.1) that A is Morita-eqivalent to the ring T = [ o1 T, (k(x)).
Hence there is an equivalence of categories: mod(A) ~ mod(T). Notice that any
T-module is a set {V,;/xeX, 0<i<p,} where each V,; is a k(x)-vector space
and V,; < V., (0 <i<p,). Then under the above equivalence, the subcategory
mod(A, #) maps onto rep(F, D).

Now we obtain the following theorem from (7.3) and (7.5).

Theorem (7.6) There is a bijective correspondence between the sets of
isomorphism classes of objects in ¢r'(F) and of objects in rep(¥, D).

We say that the category gr&(R) is of finite representation type if there are
a finite number of graded CM modules M,, M,,...,M, such that any graded
CM module over R is isomorphic to a direct sum of the modules of the form
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M;m) (i, meZ, 1 <i<n). Notice that if this is the case, the category gr&(R)
has only a countably many classes of objects. As a corollary of (7.6), in the
case that X is a curve, we obtain a necessary condition for R to be of finite
representation type in terms of X and D.

Corollary (7.7) Let k = C the field of complex numbers. Assume that grC (R)
is of finite representation type. Then X =P', P = {x|p, # 1} contains at most
three points and if P consists of three points then the following inequality holds:

1

,;»px > 1.

Proof. First we prove that under the assumption, X must be isomorphic
to P!. For this, assume that X has genus greater than one. Then the category
bdl(0y) of vector bundles has uncountably many isomorphism classes. Note that,
for any & ebdl(Oy), there is at least one object ¥e ¢ ' (F) by (7.6) and that if
F, 2F, in bdl(Oy), then 4, #%, in bdl(A) for Yed;'(#) (i=1,2). Thus
bdl(A), hence gr€(R), contains uncountably many classes of objects. This
contradicts that gr@(R) is of finite representation type. Therefore X ~ P

Let P={x,, x5,....xy} and let p;=p, (1 <i<N). We consider the
branched quiver Q with N branches, each of which has length p; (1 <i < N). See
Figure (7.7.1).

OIH
03‘/..
S
= —
~ 03
~ .
\OPN

Figure (7.7.1)

Then it is obvious that the condition concerning p; in (7.7) is equivalent to saying
that the undirected graph |Q| of Q is one of the Dynkin diagrams.

Now assume that gr€(R) is of finite representation type and that
X =P! Let & = 0% Since Endy, (#)= M,(C) the complete matrix algebra
and since ¥ ®,, k(x) ~C", we can see that rep(#, D) is the category of
representations of the quiver Q with C" on the center of Q and with each arrow
representing a monomorphism of C-vector spaces. Hence if Q| is not a Dynkin
diagram, then, by a theorem of Gabriel, mod(#, D) has uncountably many
objects. (For example see [3;8.5], where, for suitable n, uncountably many
representations of this kind are constructed very concretely.) This contradicts
that gr€(R) is of finite representation type, hence |Q| is a Dynkin diagram.
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Added in Proof:

" In the last paragraph of the proof of Proposition (3.7), we claimed that I, is
an exact functor and hence that it induces the functor I',: gr"(«/) —» gr"(R). But
this is not correct. The assertion of (3.7) should be changed into the following:

Propositon (3.7). 4,: gr’(R) - gr*(&/) is an equivalence of categories. In
general, A4,: gr*(R) - gr'"() is a full embedding, when n > 3.

The second claim of this is immediate form the bijectivity of the map in
(3.7.2). According to this change, the statements of (4.7) and (6.5.2) should be:

(4.7). There is an equivalence gr*(R) ~ mod®*(A). And if n> 3, then gr'(R) can
be fully embedded in mod"(A).

(6.5.2). Suppose that R has an isolated singularity and that X is nonsingular. If
d > 2, then bdl(A) = mod®(A), in which gr*(R) can be fully embedded.

After these alteration, the rest of the paper is valid as it is.
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