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Introduction

Let 4 be the unit disk and I" be a Fuchsian group acting on 4 which may
be elementary or not. All Fuchsian groups considered in this paper are assumed
to be torsionfree, that is, they are covering groups of some universal
coverings. We denote by A(4, I') the Banach space of all holomorphic functions
¢ on 4 with

y¥¢p = ¢ for all yer,

where y*¢ = (¢-y)(y’)?, and norm

lolr= JT |p(z)|dx dy < .
A|lr

When I is the trivial group {1}, we abbreviate A(4, {1}) and [ ¢|, by A(4)
and || @], respectively.

For I' and its subgroup Iy, the Poincaré series operator @ : A(4, I'})—
A(4, I') is defined by

Ornr¢ = Z P* .
yel'( \I'
When I'; = {1}, we simply denote @ for @, . It is known that @  is an
open continuous surjection with norm at most one and satisfies @ = @\ O,
(cf. Kra [3, p.91]).
We have shown in [9]

Theorem A. Let I' be a Fuchsian group acting on A and I') be a normal
subgroup of I' such that I''\I is finitely generated and abelian. Then, for all
nonzero ®e A(4, I'), we have

sup{ ||¢”r. D= @rl\r¢’ ¢EA(A’ rl)} = 1,
léllr,
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58 Hiromi Ohtake
in particular, | O\ rll = 1.
Recently, McMullen [7] has extended this result.

Theorem B. Let I' be a Fuchsian group acting on A and ', be a subgroup
of T.

(a) If the covering: A|I', > A/T" is amenable, then the conclusion of Theorem
A holds.

(b) If the Riemann surface A/ is of finite type, in other words, I is finitely
generated and of the first kind, and if the covering: A", > A/I is
nonamenable, then |@p | < 1.

(See McMullen [7] for the definition of amenability.)

In the present paper, we investigate when ||@-|| = 1 for an arbitrary universal
covering group I, and show

Theorem 1. For a Fuchsian group I' acting on 4, the norm of the Poincaré
series operator O is one if and only if I satisfies one of the following conditions:
(0,) For any positive p, there exists a hyperbolic disk D in A with radius p
such that

DnyD =@  for all yeI' — {1}.

(03) For any positive &, there exists a hyperbolic element ye I' whose multiplier
A satisfies 1 <A <1 +e.

The above theorem can be rewritten as follows:

Theorem 1. Let X be a Riemann surface whose universal covering surface
is the unit disk, and I be the covering group. Then a necessary and sufficient
condition that |Op| =1 is that either (0}) or (0}) below holds.

(01) For any positive p, there is a point in X at which the injectivity radius

(in the hyperbolic metric) is greater than p.
(03) For any positive ¢, there is a geodesic in X whose length is less than e.

Thus the condition which determines whether ||@ || = 1 or not for a universal
covering group I" is not combinatorial but geometric.

Remark. 1. A universal covering is amenable if and only if the covering
group is cyclic.

2. Tt is obvious that |@f| = 1 if and only if @ || = 1 for every subgroup
I, of I

3. Nakanishi and Yamamoto [8] have shown that the outradius of the
Teichmiiller space T(I') equals six if and only if (O,) or (0,) holds.

By using Theorem 1, we obtain

Theorem 2. Let I' be a Fuchsian group acting on A. If neither (0,) nor
(03) holds, then the inclusion map of T(I') into the universal Teichmiiller space
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T(1) is strictly distance decreasing in the Teichmiiller metric.

The sufficiency of the condision in Theorem 1 is shown in Section 1. On
the other hand, the proof of the necessity is divided into four steps and these
correspond to Sections 2-5. Theorem 2 is proved in Section 6.

§1. Sufficiency

We denote by Méb the group of all Mobius transformations and set
Méb (4) = {ye Méb: y(4) = 4}.

We sometimes write m(E, f) instead of [{; fdx dy, for simplicity.
Let I be a Fuchsian group acting on the unit disk 4. First, suppose that
a hyperbolic disk D with center at ae 4 and radius p > O satisfies

yD)nD =@  for all yel'— {1},

that is, D is contained in a fundamental domain w for I Take a Mobius
transformation 7,eM&b(4) with ny(a) =0, and set ¢ =(n5)>. Then ¢ is an
elemant in A(4) with norm = and m(D, |¢|) = ntanh?p. Therefore

10r¢lr=ml, ¢l = 3 y*¢))

yeIl™”
>m(D, |¢|) — m(4 — D, |¢])
= (2tanh?p — 1) ||.

Letting p —» 00, we obtain ||@f| > 1, hence |O| = 1.

Next, suppose that I" contains a hyperbolic y whose multiplier A(> 1) is
close to one. Take a Mobius transformation n, which maps 4 onto the upper
half-plane U and the fixed points of y to {0, oo}, and set @ = (ny/n,)*, then
®Pe A4, {y>) and its norm is nlogl. Let

So=no'{zeU:0<argz<n—0,1<|z| <A},

then, from the so-called collar lemma (cf. Abikoff [1, p.95]), it follows that there
are a positive constant @ = #(4) and a fundamental domain w for I" such that

6(4) — 0 as A—1, and
SocwcS,.
We see by Theorem A that for any t < 1, there is ¢ € A(4) such that
Oyd=@ and ]l <[Pl

Therefore we have



60 Hiromi Ohtake
|| @r¢ ”r = " @<y>\r¢”r

> m(w, |®| — Y In*®1)
nedyX\(I'=<»»)

> m(Sy, |P|) — m(Sy — S, |P|)
= (n — 40)log A

>(r—ﬁ>w¢w
V(A

Letting t » 1 and 41— 1, we obtain |@| = 1. This completes the proof of the
sufficiency part.

§2. Removing a neighborhood of punctures

Let ye M6d (4) be parabolic and 0 <t < 1. Choose an element e Mob with
n(U) = 4 for which 4~ 'yn(z) = z + 1. We define a horocycle H,(y) at the fixed
point of y in 4 by

1
H,(y) = n{zeU: Imz > ;}

The following lemma is well-known (cf. Matelski [6, p.831]).

Lemma 2.1. Let I be a Fuchsian group acting on A. For a parabolic element
yel, H,(y) is precisely invariant under {y) in I. If two parabolic elements 7y,
and y, have distinct fixed points, then

H,(y))NH,(y;) = 9.

Let p be puncture of X = 4/I" and y be a prime parabolic element in I”
corresponding to p. Set

N.(p) = I'(H,()/T.

Then N,(p) is a deleted neighborhood of the puncture p homeomorphic to a
punctured disk. It follows from Lemma 2.1 that N (p)nN,(q) =@ for distinct
punctures p, g of X. We define a domain 4* invariant under I" by

| 4* = 4 — CI(UH,, (),
where Cl means its closure and the union is over all parabolic ye I, and set
X*=4*/T.
This is a subsurface of X obtained by deleting all parabolic cusps.

Lemma 2.2. For every ¢ holomorphic and integrable on 4 — {0}, we have

2.1) Jj |p|dx dysjj |p|dx dy.
0<|z|<1/2 1/2<|z|<1
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Proof. Since ¢ is holomorphic at 0 or has a simple pole there, |z¢(z)| is
subharmonic on 4. Hence the mean value over a circle

N
u(r)=—J rl(re”) d6

2n o

is a nondecreasing function of r, in particular, u(r) < u(r + 1/2). Integrating this
inequality from O to 1/2, we obtain (2.1).

The above two lemmas imply that
m(X, |®P|) < 2m(X*, |D|) for e A(4, I').
Thus for ¢ € A(4) we have
m(X, |0r¢|) < 2m(X*, |Or¢l)
< 2m(4*, |9}),

hence either
1 2
M(A*,I¢I)2§|I¢II or ||@r¢||r=m(X,|@r¢[)S§||¢||-

Therefore, to show |@p| < 1, it suffices to consider only such ¢ that

1

¢l =m4d,|¢))=1 and  m(4* |¢]) = 3

We denote the set of such ¢e A(4) by A(4; 1, 1/3).

§3. Finding fitting pants

We denote by d,(-, -), dx(-, ) etc. the hyperbolic distance funtions on 4,
X etc., respectively.

Our aim is to show that |@,| < 1 for a Fuchsian group I" which acts on
4 and satisfies

Assumption. There exist positive constants m and M such that
(A;) for every ze4

inf{d,(z, y(z)): yeI'— {1}} < M, and
(A,) the multiplier of each hyperbolic element in I" is not less than e?™.

Let Q(x; X) be the set of all loops in X whose initial and terminal point
is x. Then the above (A4,) and (4,) can be restated to the following:

(A;) for every xeX there is a (homotopically) nontrivial loop in Q(x; X)
whose length is not more than M,
(A3) every loop on X which is nontrivial and freely homotopic to no
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punctures of X has the length not less than m.

From now on to the end of Section 5, we assume that I” is a Fuchsian group
acting on 4 and satisfies the above assumption. We note that such I' is
necessarily of the first kind by (A4,). If I is finitely generated (and of the first
kind)—of course, such a group satisfies our assumption—then by Theorem B we
obtain what we desire. Therefore, we furthermore assume that

(A;) I is infinitely generated.

The assumption (A4,) means that all nontrivial short loops are freely
homotopic to punctures, thus we have

Lemma 3.1. There is a positive constant m, depending only on m for which
the following three equivalent conditions hold.
(By) For all ze 4* and all yeI” — {1},

D4(z; m)NyD4(z; my) =@,

where D ,(z; m,) is the (hyperbolic) disk in A with center at z and radius
m.

(By) The injectivity radius at every point in X* is not less than m,.

(B3) All nontrivial loops C in X with CnX* # @ has length not less than 2m, .

For an arc C, we denote by [(C) the length of C, and when C is a nontrivial
loop, we define g[C] as the geodesic or the puncture freely homotopic to C.

Take and fix an arbitrary point xe X*. Let C, be one of the shortest
nontrivial loops in 2(x; X), then C, is simple by the shortestness, and

cy<Mm
by (A}). Furthermore, this and (4,) imply

Lemma 3.2. There is a positive constant M, depending only on m and M
such that

dx(x, g[C D) <M,  if g[C,] is a geodesic,
dy(x, ON;2(p)) <M, if g[C,] is a puncture p.

Proof. Consider a universal covering: U — X, and fix a point ce U over
x. Let ¢’ be the terminal point of the lift of C; with initial point ¢, and let
be the covering transformation which maps ¢ to ¢. We can normalize 5 so that
n(z)= Az, A>e*™ or n(z)=z+1 according as ¢g[C,] is a geodesic or a
puncture. In the first case, we have

M > I(Cl) > du(C, ).C) 2 dU(C’ eZmC)’
dy(c, {Rez = 0}) > dy(x, g[C,]), and

dy(c, e*"c) — © as dy(c, {Rez = 0}) —> o0.
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Hence we obtain what we desire.
The proof of the second case is the same. Q.E.D.

Next, let C; be one of the shortest loops in the class {CeQ(x; X): C is not
homotopic to any C}, ne Z, (by a homotopy keeping x fixed)}. Then we have

Lemma 3.3. The loop C{ is simple and does not intersect with C, except at
Xx. Moreover, there is a positive constant M, depending only on m and M such that

(3.1) I(C)) < M,.

Proof. First, suppose that C; is not simple. Then, noting that C; is a
geodesic arc, we can devide C; into Cy,, C;, and Cj; so that C; = C{3!C;,C};,
where C;, and C;; are arcs from x to some x’ # x and Cj, is a nontrivial loop
in 2(x’, X). We may assume that [(C;,) <I(C;5). Since C;3'Cj, is shorter
than C}, it is homotopic to some C;, by definition. And since C;7'Ci,Cy, is
not a geodesic arc, there is a loop in its homotopy class whose length is strictly
less than I(C;;! C},Cy,) (< I(CY)), hence it is also homotopic to some C%. But
these imply that C} is homotopic to Ci**, a contradiction to the definition of C;.

Next, suppose that C; and C;{ have a common point x’ except x. Then C,
and C; can be devided into simple arcs C,,, C,,, C{; and Cj, from x to x" so
that C; = C,! C,, and C; = C;;' C;{,. We may assume that /(C,,) < I(C,,) and
I(C;,) <I(Cy,). Since C;;'C,, is nontrivial and is not a geodesic arc, there is
a loop in Q(x, X) homotopic to C;;'C,, and strictly shorter than it. The
shortestness of C, implies [(C,) < I(C;;*C,,), hence /(C,,) < I(C;;). But then
both C;7'C,, and C;;!C,, are shorter than C}, from which it follows that C;
is homotopic to some C7, a contradiction.

Finally, we show (3.1). Take a universal covering: 4 - X such that z=10
lies over x. Let G be the covering group and let g, € G correspond to the lift
of C, with initial point 0. We may assume that the fixed points of g, are e®
and e ¥ 0 <0 <n/2 if g, is hyperbolic, and that the fixed point is 1 if g, is
parabolic. The Dirichlet fundamental domain @ with center at 0 for G, which
coincides with the Ford fundamental domain (cf Maskit [5, p.72]), contains
D,(0; m;) by (B;). Set d=inf{d,(0;¢g(0)):g9eG — {(g,>} and let E(g) be the
exterior of the isometric circle of g. Then we have

> D4(0;d/2)nE(g,)nE(g; ")
> D4(0;d/2)n{zed: Rez <0, |Imz| < tanhm,}.

Hence w contains a hyperbolic disk with radius at least p = p(m,, d) where
p—>oo as d—oo. Since p<M/2 by (4,) and d =I(C}), we obtain [(C)) <
M, (my, M). Q.E.D.

A subsurface P of a Riemann surface X is called pants if P is of type (0,3)
and if each boundary component of P is a geodesic or a puncture of X. We
note that P is incompressible in X. When the length of every nonpuncture
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boundary component of P is neither less than | nor more than L, we say that
pants P is of size [I, L].

The geometric intersection number i(C,, Ci) of C; and C; is the minimum
number of points that any two loops freely homotopic, respectively, to C, and
C; have in common. By the above lemma, we see that i(C,, C;) is one or
zero. If i(C,, C})=1, then set C,=C;C,C;"', C;=C,C;'. On the other
hand, if not, then set C, = C; and let C5 be one of C,C, and C;'C, which
is freely homotopic to a puncture or a simple geodesic. We define P(x) as the
unique pants in X whose boundary is (J}-,g[C;]. Note that

Ig[CA) <M3:=2(M+ M,) for j=1,23, and dy(P(x), x) <M,
by Lemma 3.2 and Lemma 3.4 below. We also note that
lig[CJ)=m or =0 for j=1,2,3
by (43).
Lemma 3.4. For a simple geodesic C in X and a puncture p of X, we have
(32 CnN;(p) =0.

Proof. Suppose that C is a dividing loop. Let X, be the connected
component of X — C which has the puncture p, and let X 1 =X, UCUj(X,) be
the double of X, with respect to the new border C of X,;, where j is the
anticonformal involution of X, keeping every point in C fixed. By applying
Lemma 2.1 to a universal covering group of X 1» we have j(N;(p))nN,(p) =
N,(G(@)nN,(p) =9, from which (3.2) follows.

By almost the same argument, we see that (3.2) holds also for a nondividing
loop C. Q.E.D.

Suppose that pants P has three boundary components with length
l;, 15, 1;. We denote by a, (resp. «,, a3) the hyperbolic line in 4 which connects
e, 0<6, <m/2, and i (resp. €2 and €%, /2 < 0, <, <m, — 1 and 1), where
0; is determined so that

da(ay, oy) =13/2, da(ap, a3) =1,/2 and d,(as, o)) =1,/2.
Take a hyperbolic or parabolic element y;e M6b(4) (j = 1, 2) which maps «; onto
its mirrorimage «; in «;, and set G = {y,, y,>. Then
a;=AN0E(y)), aj=AnJE(y; ')  forj=1,2,
the Ford fundamental domain for G is
o =E@y)NE@)nEQ)NER;)Nn4,

and G represents pants P in the sense that P = K(G)/G, where K(G) is the
Nielsen convex domain for G, that is, K(G) is the (hyperbolically) convex
subdomain of 4 whose closure in the closed unit disk is the convex hull of the
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limit set of G. We note that
K(G)nw = U(xy, a)nUlay, ax)n Uy, ap) N U(eg, ay),

where Ul(x, o) is the half-plane in 4 such that 0eU(a, «') and 0U(a, ') is
orthogonal to two hyperbolic lines « and o'

Lemma 3.5. The subsurface P(x)NX* is triply connected and incompressible.
There is a positive constant M, depending only on m and M such that the diameter
of P(x)NX* is at most M,.

Proof. By Lemma 3.4, X n0dP(x), the geodesic boundary of P(x), does not
meet with the cusped neighborhoods CI(N,,(p)) of any punctures p of X. This
implies the first assertion.

We have seen that the pants P(x) is of size [m, M;], thus we conclude the
second assertion by using the above explicit representation of pants. Q.E.D.

For a subset Y of X and ¢ positive, we denote the t-neighborhood of Y in
X by Dy(Y;t). The collar lemma and Lemma 3.4 imply

Lemma 3.6. There is a positive constant m, depending only on M; and
satisfying
(a) For any simple geodesic C in X with I(C) < M5, Dyx(C; m,) is an annular
neighborhood of C and is contained in X*.
(b) For any mutually disjoint simple geodesics C and C' in X with length at
most M,,

Cl(Dx(C; my))nCl(Dx(C'; my)) = O.
We sum up the result obtained in this section as a proposition.

Proposition 3.1. There are positive constants my, M5 and M depending only
on m and M with the following properties:
For every xe X*, there is pants P(x) of size [m, M;] such that
(a) Dy(x; Mg) > P(x)NnX*,
(b) P*(x)=Px)NX* — Cl(Dx(X NOP(x); ms)) is an incompressible subsurface
of P(x) and homeomorphic to P(x), and
(c) P*(x) contains a univalent disk Dy(y; m3) for some ye P*(x).

§4. An estimate on pants

Let P be pants of size [I, L]. Proposition 3.1 (b) implies that there is a
positive constant ¢ depending only on / and L such that P*, obtained from P
by deleting the closed e-neighborhood of its geodesic boundary and the closed
1/2-neighborhood of its punctures, is incompressible and homeomorphic to P.

For given constants [, L and §(0</<L< o0, 6>0), we denote by
P =2(l, L, 6) the set of all pairs (G, ¢) of a Fuchsian group G acting on 4 and
nonzero ¢ € A(4) satisfying the following two conditions:
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(1) P(G)= K(G)/G is pants of size [I, L].
(2) m(K*(G), |¢]) = dm(K(G), |¢]),

where K*(G) = n~1(P*(G)) and n: 4 — 4/G.
When 2(l, L, ) # 9, we define § = (I, L, §) by

p=1-— sup{m(P—*(G)’—lM: (G, dJ)e@}.
m(K*(G), |1)
Then we have
Theorem 4.1. f(l, L, 8) > 0.
Proof. Take a sequence {(G,, ¢,)}>-, in 2 such that

n=1

mKENon 18a6al) _ |

im - B,
neo o m(KSE, @)

where K}*=K*(G,), o, is the Ford fundamental domain for G,, and
0,=0;,. We may assume that m(K,, |¢,|) =1 for all n, where K, = K(G,).
Let 1,;, j=1,2,3, be the length of three boundary components of P(G,). By
selecting a subsequence, we may assume that [,;—[; as n— . By taking a
conjugate group of G,, we may furthermore assume that every G, is a group as
in the explicit representation of pants in Section 3. Then y,, and 7y,,, the
generators of G,, converge to some y, and y, in Mob(4), respectively. The limit
group G = {y,, y,» is discontinuous on 4, i.e. Fuchsian, and w, converges to

the Ford fundamental domain w for G (we write w, 7 ) in the sense that for
every compact S and every open O with S € w < Cl(w) < O, there is an integer
ne such that S =« w, = Cl(w,) = O holds for all n > n,. Note that K/G is pants
of size [I, L], where K = K(G). Similarly, we can see that K¥Xnw, 3 K*now,
where K* = K*(G), and that for an arbitrary finite subset G’ of G,

K, nint(CI(U £,(9)(@,))) —S Knint(CI(U g(w))),

geG’ geG’

where f, is the group isomorphism of G onto G, with f,(y,) =7y, and
f.(y2) = yn2. Furthermore, from this it follows that every compact subset of K
is contained in K, for all large n. Therefore, again by selecting a subsequence,
we see that @,¢, converges locally uniformly on K to some function @ which
is holomorphic on K and satisfies

g*d(2) = D(2) for all zeK and geG.
We have

m(KNnow, |®]) <liminfm(K,Nnw,, |0,d,|)
n—aw

< liminfm(K,, |$,]) = 1



Poincaré series operator 67

and
m(K*nw, |P|) = limsupm(Kfnw,, 10,¢,])

= (I = B)lim sup m(K ¥, | §,])
>(1-p)5>0,

in particular, @ # 0. Now, by applying the same argument as in McMullen [7,
p.114, lines 16-22 and the proof of Theorem 1.1 (nonamenable case)], we have

m(KFNw,, 10,¢,]) < cm(K¥, |¢,])

for some constant ¢ < 1 independent of n. Thus 1 — 8 <c < 1, we are done.

§5. A total estimate over nicely arranged fitting pants
Let x,, neN, be points in ClI(X*) such that
(5.1) dy(x,, x,) = 2M for all n # k, and

Cl(X*) < G Dy(x,; 2M).

n=1
Lemma 5.1. Such points x,, neN, exist.
Proof. We note that for a compact subset S of X, there are the finite
number of points a,,...,q, in S such that

k
dy(a;, a) > 2Ms if i#j, and S < | Dyla;; 2Ms).
j=1

Let {X,};>., be a regular exhaustion of X and X* = X*nX,. We may assume
that CI(X}, ) — Dx(X¥; 2M)# @ for all n. First, for a compact set CI(X}),
take the finite number of points ai",...,al{}, as above. Next, for CI(X%) —

UsS) Dx(a?; 2M ), take points a'?, ..., a2}, as above, and so on. What we seek
is the points a{”, neN, 1 <j < k(n), obtained by repeating this process.
Q.E.D.

Let P, be pants P(x,) and y, be a point in P} = P*(x,) such that Dy(y,; ms)
is a univalent disk in P¥ (cf. Proposition 3.1). Then we see

Lemma 5.2. X*c |J Dy(y,; 3Ms), and P,nP, =@ for all n # k.

n=1
Proof. The first assertion is obvious by Proposition 3.1.
Suppose that P,NP, # @ for some n# k. Since P,nP,NnX* =@ by (5.1)

and Proposition 3.1, two pants P, and P, must have the same puncture. But
this necessarily implies P,nP,NX* # @, a contradiction. Q.E.D.
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Set
V,=n"!(P,), V*=a'(P}),
V=S¥, = V=YV
n=1 n=1
and S=n""'({y,: neN}),

where 7 is the covering projection: 4 > X = 4/I. Then we see

(5.2) D,C;my)NDy s my) =0 for distinct {, {'eS, and

4% < | D4(C; 3M55).
LeS

Furthermore, by (5.2) we have

sup#{{eS: D,((; 6Ms)3z} < 0.
zed

Hence, by the same argument as in the proof of Theorem 2 in [10], we obtain

Lemma 5.3. There is a positive constant m, depending only on m and M in
Assumption such that

m(Y, Ds((; my), |l)=m,  for all peA(4;1,1/3),
LeS
in particular,

(5.3) m(V* |¢l)=m,  for all peA(4; 1, 1/3).
Let

0
V=Y Vi and  Kr=Y Vi
k=1

be decomposition into connected components such that V¥ < V,. Take an
arbitrary element ¢ in A(4; 1, 1/3). Then, by using Lemma 5.3 above and
Lemma 1 in [10], we can find a subset I of N? depending on ¢ as well as m
and M in Assumption such that

(5.4) %m(Vnk, [p) < m(V.X, |p]) for all (n, k)el and
1 1

(5.5 Y m(VE o)== Y mViE 1ol)=-m(V* |¢]).
(n,k)el 2 (n,igeN? 2

Let w be a fundamental domain for I. We may assume that o} = wonV,*
is contained in V,}¥. Choose 5, el so that ok = n,.(w¥) = V¥, and let G, be
the stabilizer subgroup of V,, in I, then
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F: Z nnanl = Z Gnk"nk'
k=1 k=1
Noting that pants P, = K(G,)/G, is of size [m, M;], V, =K(G,) and
V¥ = K*(G,,), we get from (5.4)
(Gnka d))e?(m, M3, m4/2) for (n, k)GI
Thus, by the definition of § = f(m, M4, m,/2), we have
m(@f, |0, ¢)) < (1 — pm(VE, |¢l)  for (n, k)el,

where 6,, is the Poincaré series operator for G,,. Therefore

)

m(S Pr10rd]) = 3 m@?, |014])
n=1

n=1

a0

I
™

m(wy, | Z N O @)
k=1

00

<Y Y m(ok, 1049

n=1k=1

n=1

< Y mr i)+ (=) Y mViE o))

(n, k)¢ I (n,k)el

s(l ‘§>'"(V*’ 161),

here we use (5.5) in the last inequality. Consequently, by (5.3),

16,81 =m( 3. P, 18,4]) +m(X — 3. PY,10,8])

n=1

< (1 —g)m(V*, 161) + m(d — V*,|$])

pm,
s(l ——2—>||¢||-

This completes the proof of the necessity part of Theorem 1.

§6. An application to Teichmiiller theory

For a Fuchsian group I" acting on 4, we denote by Q(I") the set of all
quasiconformal self-mappings f of 4 such that f leaves +1, i fixed and
I'y=frf~'is Fuchsian. For feQ(I), we set

_ L+ k()

k() =esssuplfia/£@] and  K(f)= o
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We said that two elements f, g in Q(I') is equivalent if f =g on 04, and
denote by [ ], the equivalence class containing f. We remark that I', = I'; for
equivalent f and g in Q(/). The Teichmiiller space T(I") is the set of these
equivalence classes, and the Teichmiiller distance t,(-, -) on T(I') is defined by

1
tr(Lf]r [9]r) = Eloginf{K(h)l heQ(I'y), hof =g on 04}.

We first show

Proposition 6.1. The conditions (0,) and (0,) are quasiconformally invariant,
that is, if a Fuchsian group I satisfies one of them, then, for any feQ(I'), so
does I'y. In particular, if O, || =1 for some [f1reT(I'), then ||Of || =1 for
all [glreT(I).

Proof. First, suppose that a hyperbolic disk D in 4 with radius p is a
partial fundamental set for I, i.e., a subset of a fundamental set. A distortion
theorem of hyperbolic distances (cf. Lehto and Virtanen [4, p.65]) implies that
f(D) contains a hyperbolic disk whose radius is at least r = r(p, K(f)), where
r— oo as p— . Obviously, f(D) is a partial fundamental set for I',. Hence,
if I" satisfies (0,), then so does I;.

Next, y be a hyperbolic element in I" with multiplier 4. Since the multiplier
is quasiinvariant, fyf~! has the multiplier at most A¥Y) (cf. Gardiner [2,
p.159]). Thus, if (0,) holds for I, then so does for I';, The last assertion
immediately follows from Theorem 1. Q.E.D.

Theorem 2 is a consequence of Theorem 1, the above proposition and the
following result.

Theorem 6.1. Let I be a Fuchsian group and G be a subgroup of I. If
Lf1r and [glre T(I') satisfy min([|Og\r, I, 1Og,\r,|I) < 1, then we have

(6.1) 16(LS 6 [91e) < tr(LS]rs [91r)-

Moreover, for a fixed [g]l,, we have
62) 16(Lf 6> [9]e)

T S 1€eand + o) as tr(Lf1r [o1) — 0. and

1 2]
+ | 2c,,\rg” + o(1)

6.3) rdUkiﬂdgwqﬂprHéMg
as t([f1r [g]r) — .

Proof. We may assume that [|@g |l <1, and by changing the origin of
the Teichmiiller spaces, we may also assume that g is the identity mapping.
Moreover, we can assume that f is extremal, i.e.,

K(f) =inf{K(k): h=f on 84, he Q(I)},
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or, equivalently,
1 .
Elog K(f)=([f]1r [id]p).
Take sequences of finitely generated subgroups G, of G and closed subsets

E, of 04 with the following properties:

(1) Gn<Gn+1 and U:O=IGn=Ga
(2) E, is invariant under G, and (E, — 4(G,))/G, is a finite set, and
3) E,cE,,, and U, E, is dense in 04.

Then, for each n, in the set
{heQ(G,):h=f on E,},

there is the unique extremal mapping h,, whose Beltrami coefficient is of the
form k, ¢, /|$,|, where k,=k(h,) and ¢,eA(4, G,) with |¢,llg, =1. By the

main inequality of Reich and Strebel, we get

2
” |¢,,|1+K¢/|Z’ I v ay,
A/Gn | |

where K, = K(h,) and k is the Beltrami coefficient of f (cf Strebel [11, p
437]). Set k = k(f), then the right hand side of the above inequality is dominated

by
1
—— <1 +k*+2R .dx d
e[ ol

1
-1 {1 +k*+2Re J J KO, \ by dx dy}.
- A|r

Since || B, |l is uniformly bounded by d = | O, |, we obtain

log K, <logK(f) + log F(k, d),

where

1 + k? + 2kd

Flke dy=—177

By applying a usual normal family argument to {h,} (cf. Gardiner [2, p.145]),
we see

1
ElogK.. — 16([f 6. [idlg)  as n—> 0.

Thus
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from
6.1).

Hiromi Ohtake
to([f 1o [916) < Tr([/ 11 [g10) + %log F(K. d),

which (6.3) follows immediately. By noting logF(k,d) <0, we get
Since

limw —d—1,
k=0 log K(f)

we obtain (6.2). Q.E.D.
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