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Introduction

Let A  be the unit disk and F  be a  Fuchsian group acting on A  which may
be elementary o r  n o t .  All Fuchsian groups considered in  this paper are assumed
t o  b e  torsionfree, t h a t  is, th e y  a r e  covering  g roups o f  some universal
coverings. W e denote by A(A, F) the Banach space of all holomorphic functions
4) on  A  with

y*0 = 4) for all y e F,

where y*4) = (4) y)(y) 2 , and norm

11 0 = (z) dx dy < oo.

W hen F  is  the trivial group {1}, we abbreviate A(A, {1}) a n d  011{1} by A (A )
and 11 0 11, respectively.

F or F  and its subgroup F 1 , the Poincaré series operator 0 A(A, F 1 ) —>
A(A, F) is defined by

= E Y*4).
yeFt \

When F , =  {1}, we simply denote 9 r  fo r  e umr . It is know n that e  \F is  an
open continuous surjection with norm at most one and satisfies 6 r  =
(cf. Kra [3, p.91]).

W e have shown in  [9]

Theorem A .  L et F  be  a  Fuchsian group acting on A  and F ,  be a norm al
subgroup o f  F  such that F l y -  is f initely  generated and abelian. Then, f o r all
nonzero 0e A(A, F), we have

sup {110 11F : 0 = 0 r i \ ,-(/), q5e A(A, F1 )} = 1,
11 4) II F
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in particular, Ile 1- r11 =  1.

Recently, McMullen [7] has extended this result.

Theorem B .  L et F  be a  Fuchsian group acting on A  and F , be a subgroup
o f  F.

(a) If  the covering: A  T,—* A I F is amenable, then the conclusion of Theorem
A  holds.

(b) If  the R iemann surface A I T  is of  f inite type, in other words, F  is finitely
generated an d  o f  th e  f irst k ind , an d  i f  th e  covering: A I F, —> A I T  is
nonamenable, then 110 r i v r lf < 1.

(See McMullen [7] for the definition of amenability.)

In the present paper, we investigate when 110,11 = 1 for an arbitrary universal
covering group F, and show

Theorem 1. For a Fuchsian group F  acting on A , the norm  of  the Poincaré
series operator er  is one if  and only if  F satisfies one of the following conditions:

(O r ) F o r  any positive p, there exists a  hyperbolic disk D  in  A  with radius p
such that

DnyD =0 f o r all T e r — {1}.

(0 2 ) For any positive e, there exists a hyperbolic element ye T  whose multiplier
satisf ies 1 <  <1  +  e .

The above theorem can be rewritten as follows:

Theorem 1'. L et X  be a R iem ann surface whose universal covering surface
is  the unit disk , and  F  b e  the  covering g ro u p . Then a  necessary and sufficient
condition that = I  is  that e ither (0 ) or (0) below  holds.

( 0 i )  For any positive p, there is a point in X  at w hich the injectivity radius
(in the hyperbolic m etric) is greater than p.

( 0 )  F o r  any positive e, there is a geodesic in X  whose length is less than E.

Thus the condition which determines whether 110 r11 = 1 or not for a universal
covering group F  is not combinatorial bu t geometric.

R em ark. 1. A  universal covering is amenable if  and  only if the  covering
group is cyclic.

2. It is obvious that 110 ,1 1 =  1 if and only if ller r11 =  1 for every subgroup
F ,  of F.

3. Nakanishi and Y am am oto [8 ]  have show n tha t th e  outradius of the
Teichmiiller space T (f)  equals six if and only if (O r) o r  (0 2) holds.

By using Theorem 1, we obtain

Theorem 2 . L et F  b e  a  Fuchsian group acting o n  A .  I f  neither (0 ,) nor
(0 2 )  holds, then the inclusion m ap o f  T (F ) into the universal Teichmaller space
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T(1) is strictly  distance decreasing in the Teichmiiller metric.

The sufficiency of the  condision in  Theorem 1 is shown in Section 1 . On
the other hand, the proof o f the  necessity is divided into four steps and  these
correspond to  Sections 2-5. Theorem 2 is proved in Section 6.

§ 1. Sufficiency

W e denote by M ob the group of a ll Möbius transformations and set

MOb(4) = {y e : y(4) = /1 }.

We sometimes write m(E, f )  instead of STE  f  dx  dy , for simplicity.
Let F  be a  Fuchsian group acting on the unit disk A .  First, suppose that

a  hyperbolic disk D  with center at ae LI and radius p >  0 satisfies

ADOD = 0 for all y e r  —111,

th a t is , D  is contained i n  a  fundamental domain co fo r  F .  T ake  a  Möbius
transformation ri0 eM i5b(4) w ith  11,(a) = 0, a n d  s e t  4) = (1/)2 . T h en  4 i s  an
elemant in A (A ) w ith  norm  n  and m(1), =  i v tanh2 p. Therefore

mcco, —  E 1.), *(al)
y e r '

?M D, IC) m (A  — l(P)

= (2 tanh2 p — Oil 011

Letting p —*  , w e  o b ta in  e r  > 1, h e n c e  e r  = 1.
Next, suppose th a t  F  contains a  hyperbolic y whose multiplier 2(> 1) is

close to  o n e .  Take a  Möbius transformation rio w hich m aps Ll onto  the upper
half-plane U  a n d  th e  fixed points of y  to { 0, x } ,, and set (i0 1 0 )2 , then

e A(.4, <y>) and its norm  is n log 2 . Let

S, =1  f z E U : <a rg z  <i t  — 0 ,1  < < Al,

then, from the so-called collar lemma (cf. Abikoff [1, p.95] ), it follows that there
are a positive constant 0 = 0(A ) and  a  fundamental domain co for F  such that

—> 0 as 2 1, and

So c  c  S 0 .

W e see by Theorem A  tha t for any t < 1, there is 4) E A (A) such that

00 >  =  0 and t 4  < t < ,>.110 11<y>-

Therefore we have
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lier4)111- = 1160 m i-011r

• m(0), 101 — E In*0 1)
ne<y>\(F—<y>)

• M(So, 101) M(So S05 IOI)

= (7r - 40) log A

>
(

1 -  !̀)t114)II.
7r

Letting t 1 and A - ) 1, we obtain II e r li =  1 . This completes the proof of the
sufficiency part.

§ 2 .  Removing a  neighborhood of punctures

Let y e Mi5d (A) be parabolic and 0 <  t  < 1. Choose an element ri Mi5b with
ri(U )= A  for which g - 1 y (z ) = z + I. W e  d e f in e  a  horocycle 1-11 (y) a t  the fixed
point of y  in  A  by

H,(y )= ri fz e U : Im z > -
1

1.

The following lemma is well-known (cf. Matelski [6, p.831]).

Lemma 2 . 1 .  L et F be a Fuchsian group acting on A . For a parabolic element
y e F, H ( y )  is precisely  invariant under <y> in  F .  I f  two parabolic elements Yi
and y 2 hav e distinct f ix ed points, then

H 1 (y1)nH 1 (y2) =0 .

L et p  be puncture o f X  = A l F an d  y  be  a  p rim e parabolic element in  F
corresponding to p. Set

N(p) = F(H,(y))1 T.

Then N ( p )  is  a  deleted neighborhood o f  th e  puncture p  homeomorphic t o  a
punctured disk. It follows from  Lem m a 2.1 th a t N i  (p) n N I (q) =  0  for distinct
punctures p, g  of X .  We define a  domain A * invariant under F  by

A * = A  -  Cl (U H , 12 (y)),

where C l means its closure and the union is over all parabolic y e F, and set

X * = A *IF.

This is  a  subsurface of X  obtained by deleting all parabolic cusps.

Lemma 2 .2 .  For every 4) holomorphic and integrable on A  - { 0} , we have

(2.1) 101 dx dy 101dx dy.
ff0<lzl<1/2 JJ112<1.1<1
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Pro o f . Since 0  is  holomorphic a t  0  o r  has a sim ple pole there, 1z4)(z)1 is
subharmonic o n  A .  Hence the mean value over a  circle

2is
p(r) — r14)(relld0

j
2ir 0

is a  nondecreasing function of r, in particular, t (r ) 1 2 (r +  1/2). Integrating this
inequality from 0 t o  1/2, we obtain (2.1).

The above two lemmas imply that

m(X,101) 2m(X*,101) for e A(d, r).

Thus for 4) eA(A ) we have

m(X , ler01 ) 2m(X*, lerC)
2m(d*, 101),

hence either

mo*,101)._ or
2

er(kilr = rn (X , e r0 i) —

3

114)11.

Therefore, to show  Ilerm < 1, it suffices to consider only such 0  that

11011 m(A,101) = 1 and m(A*,101) —
1

.
3

We denote the set of such 4) e A(A) by A (4 ; 1, 1/3).

§ 3 .  Finding fitting pants

W e denote by dA (• , • ), d ( . ,  • ) etc. the  hyperbolic distance funtions o n  A,
X  etc., respectively.

O ur a im  is to  show th a t  110 14 < 1 fo r  a  Fuchsian group F  which acts on
A  and satisfies

Assumption. There exist positive constants m and M  such that
(A O  for every z e d

inf{dA (z, y(z)): y eF — M ,  and

(A 2 )
 the multiplier of each hyperbolic element in  F  is not less than  e

2 m .

Let f2(x; X ) be  the  se t o f all loops in  X  whose initial and  terminal point
is x. Then the above (A1) and (A2 ) can be restated to the following:

(A 1) for every x e X  there is a  (homotopically) nontrivial loop in  52(x; X)
whose length is not more than M,

( A ; )  every  loop o n  X  w hich is nontrivial a n d  freely homotopic t o  no
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punctures of X  has the length not less than m.

From now on to  the end of Section 5, we assume that I" is a Fuchsian group
acting on A  and satisfies the above assum ption . W e note th a t  su c h  T  is
necessarily of the first kind by (A O . If T is finitely generated (and of the first
kind)–of course, such a group satisfies our assumption–then by Theorem B  we
obtain what we desire. Therefore, we furthermore assume that

(A 3 ) I -  is infinitely generated.

The assumption (A 2 ) m e a n s  th a t  a ll  n o n tr iv ia l  short lo o p s  are freely
homotopic to punctures, thus we have

Lemma 3.1. There is a positive constant m , depending only on m  for which
the following three equivalent conditions hold.

(B O  For all z e d *  and all y e E  { 1 } ,

1),(z; m i )nyD A (z; m 1) = 0,

where DA(Z;111 1 )  is the (hyperbolic) disk in A  w ith center at z  and radius
m,

(B2) The injectivity  radius at every  point in  X * is not less than m ,.
(B3) A ll nontrivial loops C in X  with C n X * 0 0 has length not less than 2m 1 .

For an arc C, we denote by 1(C) the length of C, and when C is a nontrivial
loop, we define g [C ] as the geodesic or the puncture freely homotopic to C.

T ake and fix  an arbitrary point x e X * .  Let C ,  b e  one of the shortest
nontrivial loops in Q(x; X ), then  C , is  simple by  the shortestness, and

1(C1) < M

by (A i). F u rtherm ore , th is  and (A2 )  imply

Lemma 3.2. T here is a  positive constant M , depending only on m  and M
such that

dx(x, g[C1]) if  g[C i ]  is a  geodesic,

dx (x, aN1 72 (p ) )_ if  g[C 1]  is a puncture p.

P ro o f . Consider a  universal covering: U  X ,  and fix a point c  U  over
x. Let c ' be  the terminal point of the lift of C , with initial point c, and let
be the covering transformation which maps c to  c'. We can normalize n so that
g(z) = Az, A  > e2 n  o r  ri(z ) = z  + 1 according as g [C 1]  i s  a  geodesic or a
puncture . In the first case, we have

M > 1(C 1) du (c, Ac) du (c, e2 mc),

du (c, {Re z  = 0}) dx (x , g[C ,]), and

du (c, e 2 mc) — ■  oo as du (c, {Re z  = 0}) oo
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Hence we obtain what we desire.
The proof of the second case is the same. Q.E.D.

Next, let C i be one of the shortest loops in the class IC e g2(x ; X ): C is not
homotopic to any C7, neZ , (by a homotopy keeping x fixed)}. Then we have

Lemma 3.3. The loop C , is simple and does not intersect w ith C , except at
x. Moreover, there is a positive constant M , depending only on m and M such that

(3.1) /(Ci) < M 2 .

P ro o f . First, suppose th a t  C i is  n o t  sim p le . T hen , no ting  tha t C i  is  a
geodesic arc, we can devide Ci into Ci , C 2 a n d  C', 3  so  tha t Ci =
where C 1 a n d  Ci 3  a re  arcs from x  to some x' x  and C i, is a  nontrivial loop
in  (2(x', X ) .  W e m ay assume th a t  /(C'„) 1(Ci 3 ). Since C i ,  is shorter
th a n  C , it  is  homotopic to som e Cni ,  by definition. And since Ci -

1
1 Ci, Ci , is

not a  geodesic arc, there is a  loop in  its homotopy class whose length is strictly
less than /(C', -, Ci, C i' 1 )( / ( C i ) ) ,  hence it is also homotopic to som e C .  But
these imply that Ci is homotopic to  Cr", a contradiction to the definition of C .

Next, suppose tha t C i  a n d  C i have a common point x ' except x. Then C i

and C i can be devided in to  simple arcs C 1 1 , C 1 2 , C 1 and  C 2 from  x  to  x ' so
that C i  = C i

-
2

1 C i ,  and C i =  C  
C i .

 W e  m a y  assume that 1(C1 1 ). 1(C1 2 ) andi
1(Ci 1 ) < /(C 2 ). Since C11 is nontrivial and  is  no t a  geodesic arc, there is
a  lo o p  in  f2(x, X )  homotopic to  C 1 C 1 1  a n d  stric tly  shorter than it. T h e
shortestness o f  C , implies 1 (C 1 ) < C 1 1 ) ,  hence 1 (C 1 2 ) < /(Ci i ). B ut then
both Ci -

1
1 C 1 1  a n d  Ci -

2
1 C 1 1  a r e  shorter than C , from  which it follows that Ci

is homotopic to som e C7, a contradiction.
Finally, we show (3.1). Take a  universal covering: A -+X  su c h  th a t z = 0

lies over x. L et G  be  the  covering group and  le t g, e G correspond to  the lift
of C i  w ith  initial point O. W e  m a y  assume tha t the fixed points of g ,  are  ew

and e -
10 , 0 < 0 < nI2, if 8 ,  is hyperbolic, and  tha t the fixed point is  1 if g i  is

parabolic . The Dirichlet fundamental domain w  w ith center at 0  for G, which
coincides with th e  F o rd  fundamental domain (cf M askit [5, p.72]), contains
D 4 (0 ; m i )  b y  (B1 ). S et d = inf (0  ;  g (0 )) :  g e G — <g >1 a n d  le t  E(g) b e  the
exterior of the isometric circle of g. Then we have

w D DA  (0 ; d 12) n E(g E(g 1-
1 )

D(O; d12) n tz  e  : Re z < 0 ,  1 Im  <  tanh  mi l.

Hence co contains a  hyperbolic disk w ith radius a t  le a s t  p = p(m „ d )  where
p  c o  a s  d —> c o .  Since p  M /2  b y  (A1 )  a n d  d =1(C ,), w e ob ta in  /(Ci)

M). Q. E. D.

A  subsurface P  of a Riemann surface X  is called pants if  P  is  of type (0,3)
and if each boundary component of P  is  a  geodesic o r  a  puncture o f X .  We
note  th a t  P  i s  incompressible in X .  W hen th e  length o f  every nonpuncture
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boundary component o f P  is neither less than 1 nor m ore than L, we say that
pants P  is  o f  size [1, L].

The geometric intersection number i(C ,, C i) of C , a n d  C i is  the minimum
number of points that any two loops freely homotopic, respectively, to C, and
C i h a v e  in  com m on . B y  th e  above lem m a, w e see that i(C ,, C i)  is  one or
z e ro . I f  i(C ,, C i) =  1, then  se t C2 = C i  C i -  1 , C3 = C2 1 .  O n  th e  other
hand, if not, then se t C 2  =  C i and  le t C 3 be  one of C2 C 1 a n d  C2- 1  C i  which
is freely homotopic to a  puncture or a sim ple geodesic. W e define P(x) as the
unique pants in  X  w hose boundary is J]=  g[C i ]. N ote that

1(g [C i ]) M3 := 2(M + M 2 ) for j  =  1 , 2 , 3 , and  dx (P(x), x) M ,

by Lemma 3.2 and  Lem m a 3.4 below. W e also note that

l(g[C i ]) > m  or =  0 for j  =- 1, 2, 3

by (AD.

Lemma 3 .4 . For a simple geodesic C in X  and a puncture p of  X , we have

(3.2) C nN i(p )=  O.

Pro o f . Suppose t h a t  C  i s  a  dividing lo o p . L e t  X ,  b e  th e  connected
component of X  — C  which has the puncture p, and  le t X- , =  X 1 uCuj(X 1 )  be
th e  d o u b le  o f  X , w ith  respect t o  th e  new  border C  of X 1 ,  where j  i s  the
anticonformal involution of Î  k e e p in g  e v e ry  p o in t in  C  fixed. B y  app ly ing
L em m a 2.1  to  a  universal covering group of X 1 ,  w e  have j(N 1 (p))n N i (p) —
N 1 (j(p))n N i (p) =0, from which (3.2) follows.

By almost the same argument, we see that (3.2) holds also for a nondividing
loop C. Q. E. D.

Suppose  t h a t  p a n t s  P  has th ree  boundary  com ponen ts w ith  leng th
/1 , 12 , 13 . We denote by a, (resp. a 2 , 2 3 ) the hyperbolic line in  A  which connects
e h , 0 < 01 < m12, and i (resp. e 1 0 2 an d  e1 0 3 , n12 < 0 2 <0 3 < n , — 1 and 1), where
Oi  is determined so that

dA (2 1 , c(2) — 13/2, c/4(0(25 cx3) — 11 / 2  a n d  d4 (Œ3 , al) — 12 12.

Take a  hyperbolic or parabolic element ye Miib (A ) (j = 1, 2) which maps a;  onto
its mirrorimage a; in  «3 ,  and set G = <y,, y2 >. Then

aj  =  n aE(y ; ), =  n OE(yi l ) for j  = 1, 2,

the Ford fundamental domain for G  is

w = E(y i )nE(y 2 )nE(y )n E(y )nz l,

a n d  G  represents pants P  in  th e  sense  that P = K(G)1G, where K(G) i s  the
N ielsen convex dom ain f o r  G , th a t  is, K (G) i s  th e  (hyperbolically) convex
subdomain of A  whose closure in  the closed unit disk is the convex hull of the
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lim it set of G .  W e note that

K(G)ri U (Œ1, oc,)r) U (a2 , (x )fl U(a, cc)nU(oc, a i ),

w here U(Œ, oc') i s  the  ha lf-p lane  in  A  su c h  th a t 0 e  U(ot, a') a n d  OU(a, a') is
orthogonal to two hyperbolic lines a  and at'.

Lemma 3.5. The subsurface P(x) n X * is triply  connected and incompressible.
There is a positive constant M 4  depending only on m  and M  such that the diameter
o f  P(x )nX *  is at m ost M 4.

P ro o f . By Lemma 3.4, X  n P(x ), the  geodesic boundary of P(x ), does not
meet with the cusped neighborhoods Cl (N, /,(p)) of any punctures p  of X .  This
implies the first assertion.

W e have seen that the pants P(x ) is of size [m, M 3 ], thus we conclude the
second assertion by using the  above explicit representation of pants. Q. E. D.

F o r  a  subset Y of X  and  t  positive, we denote the t-neighborhood of Y in
X  by Dx (Y ; t). The collar lemma and Lemma 3.4 imply

Lemma 3.6. T here  is a positiv e constant m 2 depending only  o n  M 3  and
satisfying:

(a) For any  simple geodesic C in X  with 1(C) M 3 , D x (C; m ,) is an annular
neighborhood o f  C  and  is contained in X *.

(b) For any  m utually  disjoint simple geodesics C and  C ' in  X  with length at
m ost M 3,

Cl(D x (C; in,))n (Dx (C'; m 2 )) = 0.

W e sum  up the result obtained in  this section as a proposition.

Proposition 3.1. There are positive constants M 3, M 3 and  M , depending only
on m  and M  w ith the following properties:

For ev ery  x e X *, there is pants P(x ) o f  size [m, M 3 ] such that
(a) Dx (x;11/15 ) P(x )nx *,
(b) P*(x )= P(x )nx * —  (Dx (X  naP(x); m3 )) is an incompressible subsurface

of  P(x ) and homeomorphic to P(x ), and
(c) P*(x ) contains a univalent disk D x (y; m 3 ) for som e y eP*(x ).

§ 4 .  An estimate on pants

L et P  be  pan ts o f size [1, L ]  Proposition 3.1 (b) im plies that there is a
positive constant g depending only o n  /  a n d  L  such  that P*, obtained from P
by deleting the  closed g-neighborhood of its geodesic boundary and  the  closed
1/2-neighborhood of its punctures, is incompressible and homeomorphic to  P.

F o r  g iven  constan ts 1, L  and  5 ( 0 <  1  < L < oo , 6  > 0 ), w e  d e n o te  b y
,Y) = 9(1, L, 6) the set of all pairs (G, 0) of a Fuchsian group G  acting on A  and
nonzero 4) e A(A) satisfying the following two conditions :
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(1) P(G) = K (G)/G is pants of size [1, L].
(2) m(K * (G) , 41) S m (K (G), IOI),

where K*(G) = (P*(G)) and  n : d d  /  G.
When Y (1, L, (5) 0 0, we define fi = )6(1, L, c5) by

=  1  —  s u p  
{ m(P*(G), IOGOD : (G, 4)) e ,g}

m(K *(G),

Then we have

Theorem 4 .1 .  13(1, L, (5) > O.

P r o o f .  Take a  sequence {(G,,, On)},73- -  in  g  such that

l i m  m (K : n con , 441) 1

" m(K:, 145.1)

w h e re  Kn* = K  *(G„), o),, is t h e  F o r d  fundam enta l dom ain  f o r  G „, and
=  O .  W e m ay assume th a t m(K„, 0„1) = 1 fo r a ll n , where K„ = K(G„).

L et 1„; , j = 1, 2, 3, b e  th e  length o f three boundary components o f P(G „). By
selecting a  subsequence, we may assume th a t  /ni a s  n —) co. B y  ta k in g  a
conjugate group of G„, we may furthermore assume that every G„ is a  group as
in  th e  explicit representation o f  pan ts  in  S ec tion  3. T hen  yn i  a n d  yn 2 ,  the
generators of G„, converge to some y  and y, in Mob (d), respectively. The limit
group G = <yi , y2 > is discontinuous o n  A , i.e. Fuchsian, and  con converges to

the  Ford  fundamental domain co for G  (we write co„ co) in  th e  sense that for
every compact S  and every open 0  with S  o )  OE Cl (co) c  0 ,  there is a n  integer
n ,  such that S  o ) „  C l ( o ) „ )  0  holds for all n  > n „. Note that K /G  is pants

o f  size [1, L ], where K  = K (G ). Sim ilarly, w e can see that K„* fl w,, K *  fl w,
where K * = K *(G), and tha t for an  arbitrary finite subset G ' of G,

K,, flint (Cl ( U f„(g)(w„))) E  K flint (Cl ( U g(W))),
geG geG'

w here f „  i s  t h e  group isom orphism  o f  G  o n to  G „ w ith  fn (y1)= yn i  a n d
L(Y2) = Yn2' Furthermore, from this it follows that every compact subset o f K
is contained in  K „ for a ll large n. Therefore, again by selecting a  subsequence,
w e see that 0,2 4)„ converges locally uniformly o n  K  to some function 0  which
is holomorphic on  K  and  satisfies

g* 0(z) = 0(z) for a ll z e K  and g e G.

W e have

m(K n 101) lim inf m(K, n w„, I en On I )

< lim inf m (K „, ( I)  n1) =
n—,00



and

in particular, çfi0
p.114, lines 16-22

for some constant
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m(K* n 101) iimsupm(K:nco n , I  nn  co

= (1 — 13) lim sup m(K„ ,
n

> (1  —  13)6 > 0,

0. Now, by applying the same argument as in McMullen [ 7 ,
and  the  proof of Theorem 1.1 (nonamenable case)], we have

m(K: n con , I e l ) cm (K „, 10„1)

c < 1 independent of n. Thus 1 — fi c < 1, we are done.

§ 5 .  A total estimate over nicely arranged fitting pants

Let x„, n e N, be points in Cl (X *) such that

(5.1) dx(x„, x k) 2M 5 for a ll n k ,  and
CO

Cl(X *) U Dx(x n ; 2 M5).
n= 1

L em m a 5.1. Such points x„ , neN , exist.

P ro o f .  W e no te  th a t  fo r a  com pact subset S  o f  X , there  a re  th e  finite
number of points a i ,...,a k in  S  such that

dx (a,, ai ) > 2M 5 i f  i j ,  a n d  S  c  u Dx (ai ; 2M 5 ).
j=1

Let {X„}„°_ 1 b e  a  regular exhaustion of X  and X „ =  X * n X „.  W e may assume
that Cl (X „, i ) — Dx (X„*; 2M 5 ) 0  0  for a ll n. First, for a com pact set C l (X t),
tak e  th e  finite num ber o f  p o in ts  d,1 ) , ,  d k8 ) a s  above . N ex t, for Cl (XI)

Dx (di n ; 2M 5 ), take points d i
2 ) ,..., d41) a s  above, and so o n .  What we seek

is the points d ,  n e N, 1 < j  <  k(n), obtained by repeating this process.
Q. E. D.

Let P pants P (x) and y, be a point in P„ = P*(x„) such that Dx (y„; m 3 )
is a univalent disk in P„ (cf. Proposition 3.1). Then we see

Lem m a 5.2. X * c  U  Dx(y .; 3A15), and P,, n Pk  = 0  f o r all n k .
n=1

P ro o f . The first assertion is obvious by Proposition 3.1.
Suppose that n f l k  0 0  fo r  som e n s  k. Since P„ n Pk n x* = 0  by (5.1)

and Proposition 3.1, tw o pants P„ and  Pk m ust have  the  sam e puncture . But
this necessarily implies P„ n Pk n X *  0 0 , a contradiction. Q.E.D.
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Set

V. = ir - i (P.), V.* =
CO SO

v= E vn , v*— E Vn
*

n=1 n= i

and S = 7r - i ({y r,: neN}),

where it i s  the covering projection: d —> X  = 4 / T .  Then we see

(5.2)D 4 ( ;  m3 ) n DA (Ç; in3 ) ---- 0 for distinct C, C' e S , and

d* c U DA(t ; 3 M 5 ) .
CES

Furthermore, by (5.2) we have

suptit{ eS:D 4 ((; 6M 5 )Dz} < c c .
zee

Hence, by the same argument as in the proof of Theorem 2 in [10], we obtain

Lemma 5.3. There is a positive constant m4  depending only  on m and M  in
A ssumption such that

M (  D A ( ;  1113 ) ,  IC )  .. M 4 f o r all cke A(.4; 1, 1/3),
CES

in particular,

(5.3) m(V*,101) -- ma f o r all 4) e 461; 1, 1/3).

Let
CO

K =  E Vnk and Vn* =  E Ti nt
k = 1 k = 1

be decom position into connected com ponents such that Vnt c  Ki k. T a k e  an
arbitrary element 0  i n  A (A ; 1, 1/3). Then, by  using  L em m a 5.3 above and
Lemma 1 in  [10], we can find a  subset / of NI' depending o n  0  as well a s  m
and M  in  Assumption such that

m4(5.4) —
2

m(Vnio 101) in(Vnt, 101) for all (n, k)e I  and

(5.5) E in(v 4)1) _—_,1 E  m(vnt,101)=-1 m(v*,101)..4 0, k)eN 2(n,k)el 2

Let co be a  fundamental domain for F .  W e may assume that co„ = co n Vn*
is contained in  Vnt. Choose q,,k e r  so  tha t (0 „*k = rink(4 )  OE V nt, and let G k  b e
the stabilizer subgroup o f  Vuk i n  F, then
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F = E l in k 6 n 1 E Gnelnk•
k=1 k= 1

N o tin g  th a t p a n ts  P n =  K (G „,31G , is o f  size Em, M 3], Ink —  K ( G  n k )  and
= K * (G„k), we get from (5.4)

(G„k , 4))eg(m, M3, m4 /2) for (n, k)e I.

Thus, by the definition of )6 = fl(m, M3, m4 /2), we have

m(cotk, 1 enk01) (1 — i3)m0/nt, 1011 for (n, k)E

where e n k  i s  the Poincaré series operator for G , .  Therefore

m( E P , erol) E lerol)
n 1n = 1

E m(04,1 E taenkoi)
n 1 k 1

oo co

• E E m(04, ienkol)
n=1 k = 1

• E m(vnt, 101) +(l-16) E m(vnt, lc)
(n,k)01 (n,k)El

G (1  —  
—fi

) 1n (V * , 101),2

here we use (5.5) in the last inequality. Consequently, by (5.3),

!lei-011r = E P:, 1 -0 1 )  + m (X  -  E P :  lero)
n= 1n = 1

(

(1  -  - )m (V * , 14)l) + m(A  - V* , I C)2

)6m 
1

2  

4  ) 114) 11.

This completes the proof of the necessity part of Theorem 1.

§ 6 .  An application to  Teichmiiller theory

For a Fuchsian group F  acting on A , we denote by Q (F) the set of all
quasiconformal self-mappings f  of 4  s u c h  t h a t  f  leaves ±  1 , i fixed and
F1  = f  Ff  -

1 is  F uch sian . For f  eQ (F), we set

,
k (f ) = ii(z)/f.(z)1 and K U 1-  

1 + k (f )
zeA 1  -  k (f )
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W e said that two elements f, g  in  Q(F) is equivalent if f  =  g  o n  OA, and
denote by [ f ] r  the  equivalence class containing f. W e remark that Fi . = rg for
equivalent f  and  g  in  Q (F ).  T he Teichmiiller space T (F ) is  th e  se t o f  these
equivalence classes, and the Teichmiiller distance Tr ( • , • ) o n  T (F ) is defined by

'Er a  f ] r , [g] r ) = 1  log inf IK(h): heQ(F f ), h. f =  g  o n  0/11.
2

W e first show

Proposition 6.1. The conditions (Or ) and (0 2 ) are quasiconformally invariant,
that is , i f  a  Fuchsian group F  satisfies one  o f  them , then, for any  fe Q (F ), so
does F1 . In particular, if II er,11 = 1 f o r som e [f i r  ET(F), then IlOrg ll = 1 f o r
all [O r  ET(F).

P ro o f . First, suppose th a t a  hyperbolic disk D  in  A  w ith  radius p  is  a
partial fundamental set for F, i.e., a  subset o f  a  fundamental set. A  distortion
theorem of hyperbolic distances (cf. Lehto and  Virtanen [4, p.65]) implies that
f (D ) contains a  hyperbolic disk whose radius is  a t le a s t r =  r(p , K (f)), where
r a )  as p --+ oo . Obviously, f (D) is a partial fundamental set for F .  Hence,
if F  satisfies (O r), then so does

Next, y  be a  hyperbolic element in F  with multiplier A. S in c e  the multiplier
i s  quasiinvariant, fy f -

1 h a s  the m ultip lier a t  m o s t  2K (1) (c f . G a rd in e r  [2,
p .159 ]). Thus, if  (0 2 )  ho lds fo r F , th en  so  d o es  for F 1 ,  T h e  la s t assertion
immediately follows from Theorem 1. Q. E. D.

Theorem 2  is  a  consequence of Theorem 1, the  above proposition and the
following result.

Theorem 6.1. L et F  be  a  Fuchsian group and  G  b e  a  subgroup o f  F .  I f
[ f ] r  an d  [g ] r e T (F ) satisfy  min ( OG, , eGg)  <  1 ,  then we have

(6.1) rG([f ] G , [g] G ) < T r a f ] n [g],-.).

M oreover, for a f ix ed [O r , we have
T G 1 [ f ] G , [g]G ) (6.2) GIG \ M  o (1 ) as Tr a i l . ,  [Or ) — +  0 , and
T A [f ]r, [g ] r ) g g

(6 .3 ) r G a f  ] G ,  [ g ] G )  r r Œ f ] r ,  [ g ] r )  +  

I

 l o g  
I  +  

2 +  o ( 1 )2 

a s  T r a i l - , [O r) co.

P ro o f . W e m ay assume t h a t  eGg\rg <  1 , and  by changing the origin of
th e  Teichmiiller spaces, w e m ay also assume th a t  g  i s  th e  identity mapping.
Moreover, we can assume that f  is extremal, i.e.,

K ( f )=  inf {K(h): h = f o n  OA, heQ(F)},
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or, equivalently,

1 log K (f ) = [id]r).
2

Take sequences of finitely generated subgroups G„ o f G  and closed subsets
E„ of (3/1 with the following properties :

(1) G„ < G„+ ,  a n d  U,°,°= G G,
(2) E invariant under G (E „ — A(G„))/Gn i s  a  finite set, and
(3) E „ En + ,  a n d  (.) = E„ is dense in aLt.

Then, for each n , in the set

tit E Q(Gn ): h = f  o n  En},

there is the unique extremal mapping h„, whose Beltrami
form k„ 4 , ,

 /14)„1, where k „ = k (h) a n d  (/)  e Gn) with
main inequality of Reich and Strebel, we get

Kn ff
-- lic12

li +Kon/lone dx dy,
A IG.

coefficient is  of
110.11G„ = I. B Y

the
the

where K n = K (h )  a n d  K  i s  the Beltrami coefficient of f  (cf Strebel [11, p.
4 3 7 ]). Set k  = k (f ), then the right hand side of the above inequality is dominated
by

1  —

I

k 2  

+ k 2  + 2 Re i f dx dy}
A/G „

1

1 k 2

{
1 + k2 + 2 R e  i f  K— A —X —dd y} .

 A I T

Since II eG,Ar II is uniformly bounded by d = lieG\ FL  we obtain

log K „  log K (f ) + log F(k, d),

where

1 + k 2  2 k d
F(k, d) = 

(1 + k) 2

By applying a  usual norm al family argument to  Ihn l  (cf. Gardiner [2, p.145]),
we see

1- log K„ TG(E.fh, [id]G)
2

a s  n cx).

Thus
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TG ( [ f ] G ,  [ g ] ,) ,-([f],-, [g],-) + —
1

log F(K , d),
2

f r o m  w h ic h  (6 .3) fo llo w s  im m e d ia te ly . B y  n o tin g  lo g  F(k, d) < 0, w e  g e t
(6.1). Since

lim  
log F(k, d)

— d — 1,
k -■ 0  log K (

w e obtain  (6.2). Q.E.D.
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